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Abstract. Satellite instruments provide spatially extended data with a high temporal resolution on almost global scales. How-

ever, nowadays, it is still a challenge to extract fully three-dimensional data from the current generation of satellite instruments,

which either provide horizontal patterns or vertical profiles along the orbit track. Following this, we train a neural network in

this study to generate three-dimensional cloud structures from MSG SEVIRI satellite data in high spatio-temporal resolution.

We evaluate the derived artificial intelligence-based predictions against the along-track radar reflectivity from the CloudSat5

satellite. By inferring the pixel-wise cloud column to the satellite’s full disk, our results emphasize that spatio-temporal dy-

namics can be delineated for the whole domain. Robust reflectivities are derived for different cloud types with a clear distinction

regarding the cloud’s intensity, height, and shape. Cloud-free pixels tend to be over-represented because of the high imbalance

between cloudy and clear-sky samples. The average error (RMSE) spans about 7.5 % (3.41 dBZ) of the total value range

enabling the advanced analysis of vertical cloud properties. Although we receive high accordance between radar data and our10

predictions, the quality of the results varies with the complexity of the cloud structure. The representation of multi-level and

mesoscale clouds is often simplified. Despite current limitations, the obtained results can help close current data gaps and ex-

hibit the potential to be applied to various climate science questions, like the further investigation of deep convection through

time and space.

1 Introduction15

Clouds and their interdependent feedback mechanisms have been a source of uncertainty in Earth system models for decades.

As they influence different spheres of the environment, their accurate representation is needed for an improved understanding

of interconnected dynamics (Norris et al., 2016; Stevens and Bony, 2013; Vial et al., 2013). Although their connection to

atmospheric gases and general circulation patterns is evident, further quantification is required (Rasp et al., 2018; Shepherd,

2014; Bony et al., 2015). The pressing need to adapt society to climate change emphasizes the need for reliable data today20

more than ever (Dubovik et al., 2021).

In recent years, observational data from remote sensing instruments have been proven reliable in investigating cloud prop-

erties on multiple scales (Jeppesen et al., 2019). Although these approaches drove research forward, techniques to detect
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three-dimensional (3D) cloud structures still need to be developed (Bocquet et al., 2015). While passive sensors like geosta-

tionary satellites monitor the uppermost atmospheric layer from space with a two-dimensional (2D) output (Noh et al., 2022),25

active radar penetrates the cloud top and delivers detailed information on the subjacent distribution (Barker et al., 2011). The

latter provides a thorough but spatially and temporally limited perspective (Wang et al., 2023). An approximation of cloud

physical properties like the cloud optical thickness, the effective radius, or the cloud water path is obtainable using the satel-

lite’s specificity at different wavelengths (Thies and Bendix, 2011; Platnick et al., 2017). While this analysis often rests upon

subjective labeling or fixed thresholds, it is under the risk of bias (Stubenrauch et al., 2013). Besides, passive sensors lack30

the inherent sensitivity to detect information from deep within cloud layers to accurately differentiate cloud types (Noh et al.,

2022). At this point, combining data sources can substantially leverage the quality of analysis (Amato et al., 2020; Steiner

et al., 1995). A joined use of different instruments to derive comprehensive 3D structures has been investigated before either

by statistical algorithms (Miller et al., 2014; Seiz and Davies, 2006; Noh et al., 2022), the integration of radiative transfer ap-

proaches (Forster et al., 2021; Zhang et al., 2012), or the derivation of the multi-angle geometry of neighboring clouds (Barker35

et al., 2011; Ham et al., 2015). The large-scale generability of these methods is expandable since their 3D results are limited to

the cloud’s spatial vicinity (Leinonen et al., 2019). To this day, no interpolation of the cloud vertical column to a large-scale,

supra-regional perspective exists (Wang et al., 2023; Dubovik et al., 2021).

Emerging facilitators of data availability, like open-data policies and improved technological standards, open up unforeseen

possibilities (Jeppesen et al., 2019; Liu et al., 2016; Reichstein et al., 2019). These developments promote further integra-40

tion of computer science methods in climate science as they enable effective processing of memory-consuming satellite data

(Irrgang et al., 2021; Rasp et al., 2018). With an accompanying potential for substantial growth in knowledge (Amato et al.,

2020; Watson-Parris, 2021), ever-growing quantities of data surpass the capability of the human mind to extract explainable

information efficiently (Lee et al., 2021; Karpatne et al., 2019). Here, the usage of artificial intelligence (AI) has been assigned

a primary role (Runge et al., 2019). Cloud properties have been analyzed before using Machine Learning (ML) algorithms45

(Reichstein et al., 2019; Marais et al., 2020), but recent technological advances enable unprecedented operations, especially on

big data (Amato et al., 2020). Suitable to identify spatial, spectral, and temporal patterns, Deep-Learning (DL) based networks

outperform classical ML approaches in terms of time efficiency and feasibility (Jeppesen et al., 2019; Hilburn et al., 2020;

Le Goff et al., 2017). Their adaptation to applications in climate science offer new perspectives for the scientific community

and the general public (Rasp et al., 2018; Rolnick et al., 2022; Jones, 2017).50

So far, the possibility of investigating cloud properties by the usage of DL algorithms has been shown in various applications.

These comprise detecting and segmenting cloud fields (Drönner et al., 2018; Jeppesen et al., 2019; Lee et al., 2021; Le Goff

et al., 2017; Tarrio et al., 2020; Cintineo et al., 2020) or classifying distinct cloud types from meteorological satellites and

aerial imagery (Marais et al., 2020; Wang et al., 2023). Regressive models were used to investigate the delineation of rain

rates (Han et al., 2022) or convective onset (Pan et al., 2021) for an improved weather forecast. While the results indicate an55

improvement in resource efficiency, they are predominately restricted to horizontal processes of the cloud field. Reconstructing

the cloud vertical column can deliver insights into 3D dynamics (van den Heuvel et al., 2020; Leinonen et al., 2019). Current

studies by Hilburn et al. (2020) and Leinonen et al. (2019) use AI techniques such as convolutional neural networks (CNN)
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and conditional generative adversarial networks (CGAN) to address this issue. In both cases, they provide pixel-based cloud

reflectivities similar to the input of an active radar (Wang et al., 2023). Nevertheless, the large-scale spatial coherence cannot60

be fully resolved. Prior studies face limitations when predicting multi-layer and mesoscale events (Hilburn et al., 2020). Since

clouds in the real world are highly complex, spatially restricted models fail to reconstruct comprehensive cloud structures (Hu

et al., 2021). Image prediction approaches like the UNet (Ronneberger et al., 2015; Jiao et al., 2020; Wieland et al., 2019)

display a promising start to reconstruct the ground truth data and to provide the indicators for predicting clouds in 3D with its

adjacent boundaries, shadow locations, and geometries. Defining each cloud as a connected entity can lead to a more realistic65

representation of the actual distribution of clouds and their interactions around the globe (Jiao et al., 2020; Hu et al., 2021;

Wang et al., 2023).

This study combines the benefits of active and passive instruments by a modified Res-UNet (Diakogiannis et al., 2020;

Hu et al., 2021) to reconstruct the 3D vertical cloud column of volumetric radar data from 2D geostationary satellite data.

In contrast to former studies focusing on the pixel-based perspective along the radar track, the spatial connectivity between70

individual pixels is preserved to predict the results for the spatial extent of the input image and infer them to a large-scale

area on the satellite full disk (FD). The goal is to derive a spatio-temporal consistent cloud tomography based exclusively on

real-world data. This information can be used to improve the availability and quality of 3D resolved cloud structures, especially

in data-sparse regions, and their further investigation in a hydro-climatological context.

2 Methods75

2.1 Data

Our approach uses observational data from two different remote sensing sensors to predict a 3D cloud tomography. The input

data for the network originates a geostationary satellite (EUMETSAT Data Services, 2023). This sensor observes the Earth

surface from space providing 2D image data in a high resolution. The ground truth of the study is derived from an active

radar orbiting the globe on a sinusoidal track (CloudSat Data Processing Center, 2023). It receives information on the cloud80

reflectivity during this flight, point by point, which are combined into vertical profiles. Here, we feed the satellite data into the

model to delineate the relationships needed to accurately reconstruct these profiles.

2.1.1 Satellite data

Data from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Spinning Enhanced

Visible and InfraRed Imager (SEVIRI) instrument on the Meteosat Second Generation (MSG) satellite displays the input85

for the network (Schmetz et al., 2002). Observing the Earth’s surface in intervals of 15 min and 3 km at nadir, it provides

information in 11 channels centered within wavelengths from 0.6–132 µm (Benas et al., 2017). While the first three channels

are sensitive to reflected solar radiation, the others measure surface emissions within the near to thermal infrared spectrum.

These channels can be applied to approximate cloud physical properties (Sieglaff et al., 2013). Regions close to the poles are
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discarded due to reduced sensor accuracy at the satellite’s outer boundaries (Bedka et al., 2010). The final area of interest (AOI)90

comprises an extent between 60° in all directions and represents the new FD. All satellite images are resampled to a geographic

grid using the global reference system WGS84 (Drönner et al., 2018).

2.1.2 Radar data

Within the CloudSat (CS) GEOPROF-2B product, a nadir-looking 94 GHz active radar delivers information on the cloud

reflectivity in logarithmic dBZ scale (Stephens et al., 2008). The radar scenes reflect the predominant cloud structure at the95

given transect with a horizontal resolution of 1.1 km and a vertical bin size of 240 m in 125 height levels (Guillaume et al.,

2018). The total vertical extent comprises 0–30 km, from the mean ground surface to the lower stratosphere. Information on

the reflectivity obtained by the radar displays the ground truth used to evaluate the model results.

2.1.3 Matching scheme

Matching the MSG SEVIRI scenes and the overflight of the CloudSat radar extracts the training data of the study. The frame-100

work automatically identifies the radar overpass over the satellite domain and its flight direction (Fig. 1). Figure 1 pictures a

schematic view of the matching scheme. First, the timestamps and locations of both data sources are compared. Suppose the

current flight coordinates lie within the satellite AOI. In that case, the direction of flight is determined by the coordinates of

the first and last entry of the radar file. The most northward and southward locations define the radar’s direction as ascending

or descending. We place the first image at the lower-right or upper-left corner of the radar within the satellite FD. To derive105

continuous tracks, a moving-window approach is applied with a 50 % overlap between single images starting with the most

northern (descending) or southern (ascending) location (Denby, 2020; Jeppesen et al., 2019). Each image contains the native

satellite channels leading to an input size of 11 x 128 x 128 pixels [C x X x Y]. The radar track is centered within each image

displaying the vertical column along the horizontal transect [Z x XY] (Fig. 1). A spatial join of the radar data coordinates

fits the resolution between both sensors. For that purpose, the local maximum reflectivity of each pixel area returns the factor110

to coarse-grain the radar data. This filter results in a partial information loss at the edges of individual clouds (Jordahl et al.,

2020).
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Figure 1. Workflow of the study. Part (1) points out the moving-window approach used for matching the radar and the satellite data. Steps

needed for the processing of both datasets is depicted in (2). In (3), the architecture of the proposed Res-UNet is pictured alongside the input

data, ground truth and predicted output. In the output sample, the location of the radar is pictured with full opacity. Each numbered box refers

to the feature channels at the given model depth.
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2.1.4 Processing

Extracted satellite samples display the physical predictors fed into the network to reconstruct the vertical cloud distribution.

Using a whole year of data (2017) integrates seasonal variations into the modeling routine, leading to 30.000 samples. From115

these, 75 % went into training the model and 25 % into its evaluation. Since the radar data distribution is highly skewed

towards clear-sky samples, reducing the percentage of cloud-free ground truth in the final dataset to 10 % tackles this imbalance

(Jeppesen et al., 2019). This threshold accounts for the classification of whole samples, not the proportion within single images.

Nevertheless, a cloudy scene can still consist of a big proportion of background pixels (Fig. 1). Data from each satellite channel

x was normalized between [-1,1] by120

x′ =
x−µ

σ
(1)

using the arithmetic mean µ and standard deviation σ of the training data (Leinonen et al., 2019). The technical limitations

of the sensor require rescaling all radar tracks between 20 dBZ and -25 dBZ. Reducing the data to 90 height levels between

2.4 and 24 km minimizes the influence of the topography and higher atmosphere. Otherwise, the high attenuation degrades

the quality flag of the CloudSat radar in high and low altitudes. Smoothing the CloudSat values by its internal quality flag125

diminishes noise within the samples (Marchand et al., 2008). Here, pixels lower than six were classified as missing values and

set to a background value of -25 dBZ. After the quality assessment, all radar reflectivity values ZdB were normalized to [-1,1]

as follows

Z ′
dB = 2

ZdB + 35dB

55dB
+ 1 (2)

by the maximum and minimum [-35, 20] of the value range (Stephens et al., 2008; Leinonen et al., 2019).130

2.2 Model architecture and training

The backbone of the study rests upon the Res-UNet architecture (LeCun et al., 2015; Ronneberger et al., 2015). While the UNet

is well established for tasks from vision computing, evaluating its feasibility for environmental data is still in progress (Dixit

et al., 2021). The Res-UNet displays a modified framework designed for the use-case of remote sensing data. By adding residual

connections and continuous pooling operations, the dependence of the network on the input’s location is reduced (Diakogiannis135

et al., 2020). Former studies dealing with the classification of tree species (Cao and Zhang, 2020), the segmentation of buildings

(Dixit et al., 2021), or the delineation of precipitation intensity (Zhang et al., 2023) emphasize the potential of the Res-UNet

to adequately address the importance of spatial coherence in a dynamic environment (Marais et al., 2020). In this study, the

regression derives cloud reflectivities in dBZ for each pixel in a three-dimensional image field (Hilburn et al., 2020; Leinonen

et al., 2019; Zhang et al., 2023). By seeking non-linear approximations of between the input and the output data, the neural140

network can detect complex relationships between the variables (Lee et al., 2021).
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As introduced by Ronneberger et al. (2015), the UNet and its modifications provide an almost symmetrical architecture.

Figure 1 illustrates the network architecture whereas each convolution is expanded by the structure of a residual block as

described by Diakogiannis et al. (2020). Following a sequence of down-sampling layers on the encoder side, the original

spatial extent of 128 x 128 pixels is reconstructed by continuous up-sampling layers in the decoder side (Lee et al., 2021). To145

maintain the spatial coherence in the last down-sampling layer, the model depth is restricted to 4 subsequent convolutions. Each

residual block consists of a convolution with a kernel size of 3 x 3 and shortcut connections used to avoid model degradation

(Diakogiannis et al., 2020). A batch normalization layer and an activation layer with a rectified linear unit (ReLU) follow the

convolution of the input layer for improved robustness and to avoid extreme values (Le Goff et al., 2017; Li et al., 2018). A

maximum pooling of size 2 x 2 reduces the initial spatial extent from 128 x 128 to 64 x 64 pixels (Lee et al., 2021). Repeating150

this routine of operations for every layer in the encoder, we halve the image size every time while doubling the number of

feature channels leading to a final size of 256 x 8 x 8 pixels (Ronneberger et al., 2015). After the last pooling layer, we apply a

sequence of repeated convolutions followed by batch normalization and a ReLU activation.

On the decoder side, a likewise sequence of upsampling blocks accompanied by features originating skip connections ex-

pands the low-resolution image to its original extent but with a modified representation (Li et al., 2018). In this case, these155

are the 3D radar reflectivities. The upsampling displays the inversion of the pooling on the encoder side, doubling the spatial

extent to fit the size of the corresponding skip connection. In each step, the upsampling is followed by a residual block with a

convolution and a ReLU activation layer ((Lee et al., 2021)). After the last upsampling block, a convolution with a kernel size

of 1 x 1 maps the output to a size of 90 x 128 x 128 pixels. A subsequent removal of the outermost pixels leads to a final size

of 90 x 100 x 100 pixels (Jeppesen et al., 2019).160

Choosing the Adaptive Moment Estimation (ADAM) method ensures model optimization due to its fast convergence rate

(Kingma and Ba, 2014). As flipped images are perceived as new samples, we enhance the amount of training data by giving

all samples a chance of 25% to be either vertically or horizontally rotated (Jeppesen et al., 2019). Predicted reflectivities are

matched to the CloudSat value range with a lower limit of -25 dBZ to differentiate a cloud signal from background noise

(Leinonen et al., 2019).165

2.3 Evaluation

2.3.1 Model performance

The model performance is evaluated by the root-mean-square error (RMSE), which equally penalizes misses and false alarms

(Lee et al., 2021). Since ground truth is limited to the radar overpass, only 10 % of the pixels are used for the error calculation

(Wang et al., 2020). The loss is calculated according to:170

RMSE =

√√√√
D∑

i=1

(xi− yi)2. (3)
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The results of the DL network are compared against two pixel-based methods to examine its performance along the radar

track. Training data for these approaches is extracted from the previously created dataset. For each image, the horizontal

diagonal of the radar overpass is divided into pixel-wise training samples along the XY–axis. The final input consists of an array

of 11 satellite channels. Each ground truth sample displays an array of 90 height bins along the Z–axis (Fig. 1). Preserving175

the index of the pixel along the diagonal during the training routine allows a reconstruction of the radar track. Both models

utilize the normalized satellite data to reconstruct the radar reflectivity (Sect. 2.1.4). The RMSE is calculated after rescaling the

output back to the dBZ scale. First, this study applies an ordinary least squares model with multiple regression output (OLS)

as a baseline model (Miller et al., 2014). In this case, all 11 satellite channels were used as independent predictor variables

to estimate the radar reflectivity for each pixel along the cloud column. Second, a Random-Forest (RF) regression is applied180

(Wang et al., 2021). As a supervised ML algorithm, the RF pictures a robust method when working with large environmental

datasets in the natural sciences (Boulesteix et al., 2012). In the past, numerous studies investigated its feasibility for complex

meteorological data, e.g., detecting clouds (McCandless and Jiménez, 2020) or delineating rain rates (Kühnlein et al., 2014).

This study tested a minimal setup with 100 trees, each choosing a random subset of predictors (McCandless and Jiménez,

2020). Both models use the same data split as the Res-UNet (Sect. 2.1.4). After training, the original radar track is restored to185

enable a track-wise comparison.

2.3.2 Comprehensive predictions

A 3D cloud tomography can be achieved by dividing the satellite FD into 128 x 128 pixel subsets. These images are individually

processed and fed into the network. Combining their outputs of 100 x 100 pixels into a joined 3D prediction of 2400 x 2400

pixels enables a whole satellite grid coverage. This comprehensive cloud tomography is derived for every time step of the190

satellite dataset and is used to evaluate the network’s ability to create a smooth interpolation of large-scale cloud fields.

2.3.3 Cloud top properties

Since neither simulations nor observational-based models deliver comparable data, the predictions are interpreted based on

their applicability for deriving cloud-top properties (Wang et al., 2023). At first, CloudSat data and track-wise predictions are

used to compute the cloud top height (CTH) for the validation data. The CTH is defined as the distance between the ground195

surface and the uppermost cloud layer for every vertical column (Huo et al., 2020). This calculation requires converting the

CloudSat height bins into a kilometer scale. Values with a reflectivity higher than -15 dBZ display a cloudy signal, whereas

lower values are classified as the background class (Marchand et al., 2008). The final output displays an aggregation on a

monthly scale. Afterward, the CTH of the FD 3D reflectivities is compared to the operational product CLAAS-V002E1 (CLoud

property dAtAset using SEVIRI, Edition 2) (Finkensieper et al., 2020). Based on the MSG SEVIRI channels and additional200

model data, CLAAS-V002E1 provides information on the macrophysical and microphysical cloud properties. It is available as

a monthly aggregate with a resolution of 0.05 ° on the MSG SEVIRI FD. The goal is to rate the predicted CTH compared to

CLAAS-V002E1 by pointing out the overall agreement and regional differences.
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Figure 2. Comparison of the height dependent RMSE for every height bin between 5–24 km and the mean error for all models calculated on

the validation dataset.

3 Results

3.1 Evaluating the model performance205

Three models were trained to compare the performance of the different approaches (Sect. 2.3.1). Due to the applied CloudSat

quality flag, predictions below 5 km are influenced by the high amount of background values at -25 dBZ (Sect. 2.1.4). As

a consequence, the following evaluation refers to the predicted reflectivity above 5 km. The results illustrate a substantial

improvement when applying a DL framework compared to the OLS and RF. Figure 2 illustrates the variance of the error

between 5–24 km. The mean RMSE varies between 3.41 dBZ for the Res-UNet and 4.91 dBZ (RF) or 5.27 dBZ (OLS).210

This difference depicts a reduction of the total error from 11.7 % (OLS) or 10.9 % (RF) to 7.5 % for the DL network. The

overall RMSE and the difference between the models reach their maximum in low altitudes between 5–7 km height. In higher

altitudes with more uniform clouds, the performance of all models improves. Nevertheless, the DL network outperforms the

other approaches at every height level (Fig. 2).

To evaluate the accuracy of the models on different height levels, the normalized difference between the observed and215

predicted reflectivities is analyzed by a two-dimensional joint distribution plot (Steiner et al., 1995). All models deviate from

the original radar data, especially in low altitudes (Fig. 3). The differences get smaller in higher parts of the troposphere and

tropopause. A diagonal of high agreement with the observed data from high altitudes with low reflectivities to lower altitudes
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Figure 3. Joint plot of the normalized difference between the observed and predicted reflectivity. The deviation on each height bin between

5–24 km is compared for the Res-UNet (a), the ordinary least squares model (OLS) (b), and the Random-Forest regression (RF) (c).

with higher reflectivities can be observed with the steepest diversion for the OLS. Appearing in the shape of two contrasting

parts, the direction differs between the Res-UNet and the other models. That said, the DL network indicates an underestimation220

of high reflectivities and an overestimation of low reflectivities for low-level clouds. Predictions in higher altitudes represent a

smaller deviation from the ground truth. The other models show an overestimation of high reflectivities and an underestimation

of low values in both, low- and mid-altitude. In terms of total deviation from the ground truth, the Res-UNet performs best out

of the three proposed models.

3.2 Analysis of cloud vertical properties225

Figure 4 depicts the model predictions and the observed CloudSat reflectivities along the radar track for four samples. All

models detect the horizontal location of different clouds along the XY–axis. A detailed view of the individual radar tracks

illustrates the transferability of the proposed DL method. In contrast to the RF and OLS, the Res-UNet reconstructs the clouds

along the original track more adequately with a RMSE between 4.1–6.9 dBZ (Fig. 4). Especially for clouds with a less uniform

shape, it represents the small-scale variability with higher accuracy. In the core regions of the cloud, the underestimation of230

high reflectivities is demonstrated. A denominational structure within each cloud is apparent for the RF and OLS. Contrasting,

the output of the Res-UNet pictures more interconnected and smooth features. The OLS and RF fail to predict shallow clouds
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at high altitudes and complex structures of multi-layered clouds. Here, the Res-UNet shows more robust results leading to a

more accurate reconstruction of the CloudSat data.

Due to the applied quality flag, few clouds are detected below 5 km, thus, no RMSE is calculated here (Fig. 2). After a235

stage of adjustment, more pixels pass the quality criterion above this level. An enhanced RMSE of 8 dBZ for the Res-UNet

accompanies this sudden augmentation of available data points. Further increasing altitudes correspond to a decreasing RMSE.

More uniform clouds above 15 km, like extended tropical cirrus, are easier to predict. In turn, this leads to a lower model

uncertainty (Fig. 2, Fig. 3). That said, the results display a trade-off between generating noise-free images and minimizing the

amount of skipped data points. While the model accurately identifies single-layer clouds and their horizontal location along the240

radar track, it misses the sharp edges of multi-layer clouds, especially in mid-altitudes. Most clear-sky situations are recognized

with an almost noise-free background. The overall shape and increased intensification towards the cloud’s core follow the radar,

even though edges are blurred, and reflectivities remain underestimated (Fig. 4).
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Figure 4. Reconstructing the vertical radar track along the horizontal diagonal XY–axis. Values lower than -25 dBZ are displayed transparent.

For each sample (I)–(IV) the reflectivity is compared between the processed CloudSat CPR track and the predictions of the Res-UNet, the

OLS, and the RF.
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3.3 Implications and sample applications

The trained Res-UNet was used to evaluate the pixel-based vertical columns and predict clouds on the whole image domain.245

Results contain a 3D representation within each output image along 90 height bins. Even though observational data is missing

for most pixels, smooth cloud structures can be derived in different proximity to the track (Fig. 5). These 3D images are the

basis to create comprehensive predictions on the MSG SEVIRI FD. For that purpose, the satellite scene was divided into small

subsets of overlapping 128 x 128 pixel images as described in Section 2.3.2. After feeding each subset into the network, the

output samples of 90 x 100 x 100 pixels were merged into a scene of 90 x 2400 x 2400 pixels for the whole AOI. The results250

of the column’s maximum reflectivity demonstrate the absence of hard borders but point out a fluent transition between image

edges that enable the identification of large-scale cloud patterns. The diversity of cloud types depicted within the samples in

Figure 5 illustrates the transferability of the approach to different locations and their environmental conditions. High clouds,

convective complexes, and isolated cores are represented as smooth structures at the FD scale regardless their location.

Following the 3D representation, the CTH was derived from the CloudSat reflectivities and the Res-UNet predictions. Con-255

sidering the available data points for the calculated CTH, predicted images surpass the radar observations by 10.000. Comparing

the distributions in Figure 6 shows lower reflectivities for predicted than for observational data. Again, the high proportion of

background values around -25 dBZ rests upon the imbalance within the radar data. Both datasets provide more similar results

concerning the frequencies above -15 dBZ. This distinction emphasizes an overall surplus of background values in the FD pre-

diction. Both datasets display a maximum CTH at up to 7 km height. This first peak is overestimated by the model. The absence260

of a second peak around 12–15 km height is reflected within the normalized difference. Here, the model shifts towards lower

altitudes than the observational data (Fig. 6). The underestimated second peak can be traced back to high clouds with a low

optical thickness, which is sometimes not well recognized, especially in the visible channels of MSG SEVIRI. These channels

are identified as essential information providers for the ML algorithm, and therefore those high clouds are also underestimated

in the derived radar reflectivities.265

Although the total accuracy is improvable, derived data and deducted parameters allow an expedient investigation of regional

differences. Comparing the model output and the CTH from the CLAAS-V002E1 product (Finkensieper et al., 2020) reveals an

overall high agreement. Regional differences arise around the equator and mid to high latitudes. Regarding the first, the model

is biased toward predicting lower clouds. In the latter regions, they appear too intense, especially over water bodies of the

southern hemisphere (Fig. 7). Unlike most satellite-based procedures, the CTH is derived without integrating additional data,270

such as vertical temperature profiles from e.g., model forecast or re-analysis data. This simplification reduces the workload for

users and the co-dependence of corresponding data. Therefore, the approach offers added value in terms of a more efficient

investigation of cloud-related processes.

13

https://doi.org/10.5194/egusphere-2023-1834
Preprint. Discussion started: 16 August 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 5. Prediction of 3D cloud structures for the FD MSG SEVIRI domain with a a top-view on the maximum cloud column reflectivity

for each pixel on 06 May 2016, 13:00 UTC (a). The detailed views in (b), (c), and (d) show the cloud tomography at different locations of

the FD.
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Figure 6. Comparing the FD distribution of reflectivities and CTH derived from CloudSat and the model aggregated for May, 2016. The

upper row frequencies (a) and (b) display the dBZ for observed and predicted data and their normalized difference. Grey areas lie below the

threshold of -15 dBZ applied for the CTH analysis. Lower row images (c) and (d) picture the frequency of the CTH per height level (for

observations above -15 dBZ) alongside the normalized difference between 5–24 km height.

15

https://doi.org/10.5194/egusphere-2023-1834
Preprint. Discussion started: 16 August 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 7. Aggregated CTH derived from the Res-UNet (a) and from the CLAAS-V002E1 CTO product (b) for May, 2016.
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4 Discussion

In contrast to established ML methods like RF which need a cumbersome selection of predictor variables, the network in this275

study learns directly from the data (Kühnlein et al., 2014; Leinonen et al., 2019). That said, the DL approach reduces the

time spent on processing and the user-generated bias (Jeppesen et al., 2019; Jiao et al., 2020). Standard DL models often use

gray-scale or RGB images (Drönner et al., 2018). In contrast, the input data in our study consists of multiple satellite channels.

That is why using a pre-trained model is restrained by expensive modifications (Amato et al., 2020). To evaluate the feasibility

of the approach, we test a minimal architecture for transferring the 2D resolved satellite data to a 3D perspective.280

While Hilburn et al. (2020) were able to reconstruct the radar signal over the USA, they are limited to a planar representation

and leave out cloud development over the sea surface. Contrasting their and others work, our study integrates a heterogeneous

landscape into the training routine (Leinonen et al., 2019; Le Goff et al., 2017; Hilburn et al., 2020; Forster et al., 2021).

The latitude and topography are highly influential for cloud microphysics (Wang et al., 2023). Nonetheless, defining those

variables as additional predictors has a negligible effect on the model performance. Instead, the network performs equally well285

over land and ocean bodies capturing the shape of convective and shallow clouds. Predictions at nighttime are limited due

to the influence of solar radiation in the channels located within wavelengths of the visible spectrum (Hilburn et al., 2020;

Jeppesen et al., 2019). Leaving out the affected channels downgrades the overall performance. While the results imply a high

agreement between observations and predictions, distortions are possible. Since the satellite data deliver only information on

the uppermost layer, the incoming signal could originate from any surface with an enhanced albedo (Drönner et al., 2018).290

The Res-UNet in this study generates its predictions with the influence of the neighboring pixels along the image domain.

In contrast to pixel-based DL methods like the CNN or CGAN, the Res-UNet utilizes a larger receptive field preserving the

spatial dimensionality and global context information during the training routine (Wang et al., 2022). Thus, it receives a more

accurate spatial connectivity between the pixels and following, the clouds within the image. While the OLS and RF solely get

information on the reflectivities along a single cloud column, the Res-UNet enables an interpolation towards an FD perspective.295

While the CGAN was restrictively trained over sea surfaces, the influence of the variability of the topography beneath needs

to be included (Wang et al., 2023). The restoration of the original track is comparable to results achieved by Leinonen et al.

(2019) and Wang et al. (2023). The RMSE varies between 0–1 dBZ for cloud-free samples, 3–7 dBZ for more uniform clouds,

and more than 10 dBZ for multi-layer clouds (Leinonen et al., 2019). All networks struggle to depict multi-layer structures

accurately. Due to the sensor limitations of CloudSat, few signals close to the ground are received (Stephens et al., 2008). In300

consequence, predictions at low altitudes are error-prone. This issue is reflected within the normalized differences between

observed and predicted reflectivities (Fig. 2). Similar results are achieved by Leinonen et al. (2019) where falsely estimated

reflectivities appear in similar dBZ regions up to 12 km height. In both cases, an underestimation of high reflectivities is

predominant. Since the input data of the CGAN originates from the MODIS satellite, it has a higher native resolution than

the MSG SEVIRI data enabling sharper predictions along the track. On the other hand, the mismatch between CloudSat and305

MSG SEVIRI requires an aggregation of each radar pixel leading to reduced contrasts and blurry edges within individual

clouds. Nevertheless, polar-orbiting satellites like MODIS lack spatio-temporal coverage compared to geostationary satellites
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(Dubovik et al., 2021). By using MSG SEVIRI data, the amount of training data substantially increases. Matching MODIS

with CloudSat accounts for about 24.000 training samples for six years (Wang et al., 2023). This study extracted about 30.000

training samples for only one year, equaling a ratio of about 1:7 for the whole period.310

A compromise on the resolution is necessary to obtain predictions on the FD. However, newly emerging instruments offer

an enticing prospect to tackle this information loss. The recently launched satellite Meteosat Third Generation by EUMETSAT

(Holmlund et al., 2021) provides data in a resolution of 1 km. This sensor allows a more accurate representation of individual

clouds. While the approach is currently restricted to a domain of 60° in all directions, assimilating related geostationary

satellites helps to achieve global coverage. Consequently, this model can be used to close current gaps in the 3D representation315

of clouds, leading to a seamless coverage of the vertical column along the troposphere for the first time.

5 Conclusions

With the help of a neural network, this study demonstrates the potential to infer a comprehensive 3D perspective of radar

reflectivities from 2D geostationary satellite data for the first time. While former studies are restricted to a regional extent or

the flight path of the ground truth instrument, this approach provides a flexible and landscape-independent framework to model320

the cloud signal with a high spatio-temporal resolution. Since it is independent of external or interconnected data sources, the

bias within the data is reduced. Overall, the approach leads to an accurate representation of multi-scale dynamics in varying

environmental conditions. Although the results are affected by sensor-specific limitations, a vast potential for applications in

the field of weather and climate is apparent. With steadily growing data and the emergence of improved instruments, the results

can close the consisting global data gap, especially in secluded regions and above the sea surface. Future work will focus on325

extending the proposed network by data with an enhanced spatial and temporal resolution and investigating 3D cloud processes

in proceeding applications.
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