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Abstract. Land surface processes, crucial for exchanging carbon, nitrogen, water, and energy between the atmosphere and

terrestrial Earth, significantly impact the climate system. Many of these processes vary considerably at small spatial and tem-

poral scales, in particular in mountainous terrain and complex topography. To examine the impact of spatial resolution and

representativeness of input data on modeled land surface processes, we conducted simulations using the Community Land

Model 5 (CLM5) at different resolutions and based on a range of input datasets over the spatial extent of Switzerland. Using5

high-resolution meteorological forcing and land-use data, we found that increased resolution substantially improved the rep-

resentation of snow cover in CLM5 (up to 52% enhancement), allowing CLM5 to closely match performance of a dedicated

snow model. However, a simple lapse-rate based temperature downscaling provided large positive effects on model perfor-

mance, even if simulations were based on coarse-resolution forcing datasets, only. Results demonstrate the need for resolutions

higher than 0.25◦for accurate snow simulations in topographically complex terrain. These findings have profound implications10

for climate impact studies. As improvements were observed across the cascade of dependencies in the land surface model, high

spatial resolution as well as high-quality forcing data becomes necessary for accurately capturing the effects of a declining

snowcover and consequent shifts in the vegetation period, particularly in mountainous regions. This study further highlights

the utility of multi-resolution modeling experiments when aiming to improve representation of variables in land surface mod-

els. By embracing high-resolution modeling, we can enhance our understanding of the land surface and its response to climate15

change.

1 Introduction

The Earth’s changing climate is causing profound alterations in ecosystems globally, with large impacts on ecological, hydro-

logical, and climatological processes (Pachauri et al., 2014; IPCC, 2022). In the context of the climate system, land surface

processes control the exchange of carbon, nitrogen, water and energy between the atmosphere and terrestrial ecosystems, hence20

profoundly influencing contemporary and future climate dynamics (Ferguson et al., 2012; Dirmeyer et al., 2006; Seneviratne

et al., 2006). Seasonal snow cover greatly impacts this complex interplay, as it plays a vital role in the Earth’s energy balance
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and hydrological cycle (Flanner and Zender, 2005; Barnett et al., 2005). More specifically, snow’s characteristic high reflec-

tivity (Flanner et al., 2011) substantially modulates land surface albedo and energy balance, while its low thermal conductivity

(Zhang, 2005) allows snow to act as an insulating blanket for soil and organisms. More generally, agricultural irrigation often25

heavily relies on snow-melt for food production (Qin et al., 2020), while more than one sixth of the world’s population is

dependent on water from glaciers or snow melt (Barnett et al., 2005), highlighting the importance of glaciers and snow for

human water demand (Mankin et al., 2015; Pritchard, 2019).

Within the integrated Earth System, important interactions and feedback mechanisms exist between energy, water, and

nutrient cycles. In seasonally snow-covered areas, the snowpack creates numerous such interactions: it influences the energy30

balance by modulating the exchange of heat and moisture between the land surface and the atmosphere (Thackeray et al.,

2019). It influences the partitioning of energy fluxes, affecting the magnitudes of both sensible and latent heat fluxes (Male and

Granger, 1981), which, in turn, regulate the transfer of energy and water vapor, shaping the local and regional climate patterns

(Ban-Weiss et al., 2011). Moreover, the duration and extent of snow cover has direct implications for vegetation periods, which

has the potential to impact gross primary production (GPP), a measure of vegetation’s ability to convert solar energy into35

chemical energy (and carbon dioxide to organic matter) through photosynthesis (Slatyer et al., 2022). Therefore, the presence

or absence of snow cover directly influences the availability of water and sunlight for plants, influencing the productivity and

carbon cycling within terrestrial ecosystems and resulting in direct links between melt-out date and biomass production (Jonas

et al., 2008).

The Global Climate Observing System (GCOS, https://gcos.wmo.int/) has identified Snow Cover Extent as an essential40

climate variable, which further underlines the importance of snow for monitoring climate change and the critical role it has in

regulating the energy balance of the planet. In physically-based models, the representation of seasonal snow and its evolution

are usually based on mass- and energy balance calculations. Representations of snowpack structure range from simple, one-

layer approaches (Douville et al., 1995) to complex schemes that resolve up to 50 snowpack layers and track the evolution of

their microstructural properties (Vionnet et al., 2012; Bartelt and Lehning, 2002). For model applications at large scales and45

coarse resolutions, snowpack representations with few (3 to ca. 10) layers (Essery et al., 2013; Niu et al., 2011) have been

found to be an adequate compromise between model complexity and accuracy (Dutra et al., 2012; Magnusson et al., 2015).

Land surface models (LSM) specifically target global-scale applications, as they were initially developed to represent the

lower atmospheric boundary condition of Global Circulation Models. Land surface modeling has seen remarkable progress in

recent years, evolving from simple biophysical parametrizations to complex frameworks that incorporate key processes such as50

soil moisture dynamics, land surface heterogeneity, and plant and soil carbon cycling (Fisher and Koven, 2020; Lawrence et al.,

2019). Today’s LSMs are thus principally suitable for, and even intended to, study process interactions and feedbacks within

the Earth’s systems (e.g., Lawrence et al. (2019). However, large challenges in land surface modeling today remain due to

uncertainties in process representation, unresolved sub-grid heterogeneity, and the projection of spatial and temporal dynamics

of model parameters (Beven and Cloke, 2012; Fisher and Koven, 2020; Fisher et al., 2019; Blyth et al., 2021). It is these55

limitations that make it difficult to reconcile site-scale experimental data and LSM simulations, hampering their evaluation

and further development. Multi-resolution modelling setups (including the point/site scale) overcome this very limitation (e.g.
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(Singh et al., 2015; Meissner et al., 2009)), as they allow evaluating a spatially distributed LSM simulation over a large spatial

extent, while at the same time certain aspects of the model (i.e. snow depth / snow cover duration) can be validated at the point

scale using in-situ observations. This is especially of value if meteorological forcing data (e.g. station data) and/or land-use60

information as well as model evaluation data is available for a specific point-location.

Today, a strong push is evident towards higher resolution modeling, such as 1km simulations (Schär et al., 2020). While

achieving this level of resolution globally over extended periods remains a challenge due to computational limitations, higher

resolution allows for a more precise representation of land surface heterogeneity, which directly influences the representation

of various key parameters and their associated processes (e.g., Ma and Wang (2022); Rimal et al. (2019); Zhang et al. (2017)).65

Because depth, duration and variability of seasonal snow cover is strongly affected by topography and thus highly variable

in space (e.g., Clark et al. (2011)), higher resolution enables a more detailed characterization of snow distribution, depth, and

duration, capturing the spatial variability of snow cover across diverse landscapes (Lei et al., 2022; Magnusson et al., 2019;

Essery, 2003). Improved representation of snow cover dynamics has the potential to enhance simulation of surface albedo,

which affects the amount of solar radiation reflected back into the atmosphere, and thus influences the overall simulated70

surface energy balance (Thackeray and Fletcher, 2016; Flanner et al., 2011). An improved representation of snow melt-out

date can further directly affect simulation of land surface phenology (Xie et al., 2020).

In this study, we explore how model resolution, and the quality of meteorological and land surface datasets affect the

representation of seasonal snow cover dynamics in the Community Land Model 5 (CLM5), a state-of-the-art LSM. More

specifically and based on the ideas highlighted above, we hypothesize that with increasing spatial resolution and quality of75

meteorological and land surface input datasets, the representation of snow cover dynamics and its associated variables in

CLM5 can achieve an accuracy comparable to that of a dedicated snow model.

To test this hypothesis, we implement a multi-resolution modelling framework using CLM5. This framework bridges the gap

between point/site-scale and spatially distributed land surface modeling, thus allowing us to compare model accuracy across

a hierarchy of spatial scales and using diverse evaluation data, while preserving model architecture. This way, confounding80

effects due to differences in process parametrizations are eliminated, isolating and clarifying the effects of model resolution

and input-data, and allowing us to assess the importance of an accurate representation of sub-grid variability within coarser

resolution models.

We apply our framework to the spatial extent of Switzerland, including relevant watersheds of neighboring countries. This

region provides an ideal setting due to its diverse topography, encompassing both the Swiss Alps and the Swiss plateau. Through85

a set of modelling experiments, we assess the relative impact of detailed meteorological and land cover information on snow

simulations with CLM5 across topographically complex landscapes. Our findings can inform the optimal design of further

offline applications of LSMs, for instance 1) to extrapolate local-scale experimental findings; 2) to address the limitations of

global-scale, coarse resolution simulations; and 3) to support the interpretation of snow cover information contained in Earth

System simulations.90
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2 Methodology

2.1 Land surface modelling

To investigate the effects of spatial resolution and input datasets in LSMs, we use the land component of the Community Earth

System Model (CLM5), an open-source, state-of-the-art, and widely used LSM that simulates carbon, nitrogen, water and

energy exchange between the atmosphere and the land surface (Lawrence et al., 2019, 2018). It offers two operational modes:95

prognostic biogeochemistry (BGC) mode and prescribed satellite phenology (SP) mode. For this study, we focused on running

CLM5 in SP mode, where remote sensing-based datasets are used to prescribe spatial extents of Plant Functional Types (PFTs)

and Crop Functional Types as well as the PFT-specific monthly Plant Area Index (PAI, sum of Leaf Area Index and Stem Area

Index), hence reducing the degrees of freedom compared to prognostic calculations. See Section 2.3.2 for more information.

It’s important to note that in SP mode, carbon-nitrogen cycling is not considered, and certain processes such as leaf nutrient100

limitation and respiration terms are omitted. GPP for the context of this study was approximated by photosynthetic activity,

with photosynthesis being limited by carboxylation, light, and export limitations for different plant functional types (Thornton

and Zimmermann, 2007; Farquhar et al., 1980). The photosynthesis module in CLM5 is described in detail by Thornton

and Zimmermann (2007), Bonan et al. (2011), and Oleson et al. (2010). Simulations were performed with the Leaf Use of

Nitrogen for Assimilation (LUNA) routine turned on (Ali et al., 2016). Evapotranspiration in CLM5 is calculated as the sum of105

transpiration, evaporation (considering soil/snow evaporation, ice/snow sublimation as well as dew), and canopy evaporation

following Lawrence et al. (2007).

Spatial resolution influences the representation of spatial heterogeneity in CLM5 which is represented by a sub-grid hierar-

chical system. Each grid cell is split into different land units (vegetation, glacier, lake, urban, crop). On the second sub-grid

level (column-level), potential variability in the soil and snow state variables within the same land-unit is accounted for. How-110

ever, the vegetation and lake land unit only allow for a single column. Each vegetated column can be further divided up into

up to 15 Plant Functional Types (PFTs) or bare ground (this is the third sub-grid level in CLM5, often referred to as the patch-

level). Vegetation structure for each PFT is described by monthly varying Leaf Area Index (LAI) and Stem Area Index (SAI),

as well as canopy top and bottom heights. All of these values are prescribed in our model setup (satellite phenology mode).

Here, we applied CLM5 both to the regional scale, and to the point-scale, for which CLM5 features a dedicated point115

mode (PTCLM). It is worth noting that what we refer to as point-scale simulations incorporates fractional state variables (e.g.,

fractional snow-cover), as the gridded modeling algorithms (i.e., exactly the same as used for large-scale gridded simulations)

are directly applied to a single point. From a snow-cover modeling perspective such an approach would be referred to as site-

scale, but in order to be consistent with LSM conventions we refer to them as point-scale simulations. As there is no lateral

exchange in our model setup (river routing is off), there is no difference in running a dedicated point-simulation and taking120

out individual grid cells from a regional simulation, apart from the fact that we have additional information at these station

locations (e.g. meteorological station data for forcing, exact GPS location for downscaling temperature). We elaborate on our

experiments setup for point-scale and gridded simulations in Section 2.2.
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2.1.1 Snow and fractional snow cover schemes in CLM5

Snow cover provides a convenient means of observing and validating the internal energy turnover of LSMs, and it is the duration125

of snow cover that influences vegetation periods, ecophysiological processes, and carbon cycles. The snow scheme in CLM5

classifies as a multi-layer snow model with detailed internal-snow-process schemes (Boone and Etchevers, 2001). General

snow parametrizations are based on Anderson (1976), Jordan (1991), and Dai and Zeng (1997), with fractional snow cover

calculations being based on the method of Swenson and Lawrence (2012). In recent years there have been several updates to the

snow-related parametrizations, most notably an inclusion of wind and temperature effects on fresh snow density and an increase130

in maximum snow layers from 5 to 12 (Lawrence et al., 2019). A detailed description of snow related calculations in CLM5

can be found in Lawrence et al. (2018), but for convenience we also give a brief summary of snow related parametrizations

used in CLM5 here. In CLM5, a snowpack can be made up of up to 12 layers, with the lowest being at the snow/soil interface

and the uppermost at the snow/atmosphere interface. Each layer is described by mass of water, mass of ice, layer thickness and

temperature. Any snowpack smaller than 10cm is treated as a single layer and only described by mass of snow.135

Upon falling of solid precipitation on a column, either a new snow layer is initialized (if >10cm) or the snow is added to the

present one, whereby combination and subdivision of snow layers is based on Jordan (1991). Mass of ice in each snow layer is

calculated based on the rate of solid precipitation reaching the ground, taking into account gains due to frost and losses due to

sublimation as well as change in ice due to phase change (melting). Bulk density of newly fallen snow is calculated dependent

on air temperature and further increased if wind speeds exceed 0.1 m-1 due to wind compaction, following van Kampenhout140

et al. (2017). CLM5 includes 4 processes leading to overall snow compaction: (1) destructive metamorphism of new snow

(2) snow load (3) melting (4) drifting snow. Mass of water in each layer is dependent on liquid water flow in and out of the

layer and change in liquid water due to phase change (melting). For the top snow layer this includes rate of liquid precipitation

falling, and evaporation as well as liquid dew. Any water flowing out of the lowest snow layer contributes to surface runoff and

infiltration calculations in different CLM5 subroutines.145

An essential variable for the energy balance due to its effects on surface albedo is fractional snow-covered area (FSno).

FSno is further of importance as CLM5 calculates surface energy fluxes separately for snow-free and snow-covered land unit

fractions. FSno in CLM5 is calculated following Swenson and Lawrence (2012), which uses separate parametrizations for the

snow accumulation and depletion phase. During accumulation, FSno is calculated as:

FSnon+1 = 1− ((1− tanh(0.1qsno∆t))(1−FSnon)) (1)150

where qsno∆t quantifies the amount of new snow; FSnon and FSnon+1 denote FSno at the previous and current time step,

respectively. During snow-melt, the following parametrization is used:

FSnon+1 = 1− [
1

π
acos(2

W

Wmax
− 1)]

nmelt

(2)

W is the simulated snow water equivalent (SWE) at the current time step and Wmax is the maximum accumulated SWE of

the snow season. nmelt is the snow covered area shape function, which is determined from σtopo, the standard deviation of155
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topography within a grid cell by:

nmelt =
200

max(10,σtopo)
(3)

2.1.2 Rain-snow partitioning in CLM5

CLM5 partitions total precipitation into rain and snow according to a linear temperature ramp, resulting in all snow below 0°C,

all rain above 2°C, and a mix of rain and snow for intermediate temperatures. More specfically, the fraction of total precipitation160

P falling as rain (qrain) and snow (qsnow) at each timestep is calculated as follows:

qrain = P (fp) (4)

qsnow = P (1− fp) (5)

165

fp = 0< 0.5(Tatm −Tf )< 1 (6)

where Tf is set to 0°C.

2.2 Model experiments with CLM5

Figure 1 provides a general overview of the experimental setup, which includes three aspects. Firstly, we varied the spatial

resolution, ranging from 0.5◦(10x6 grid cells) to 0.25◦(19x11 grid cells) to 1 km (365x272 grid cells) over the study domain.170

As the 0.5◦and 0.25◦grids were chosen to closely match the extent of the pre-determined 1km grid, grid anchoring might

slightly vary between resolutions. Secondly, we used different meteorological forcing datasets, including a globally available

coarse-resolution dataset (ClimCRU), the same global dataset with lapse-rate corrected temperature (ClimCRU*), and a high-

resolution regional dataset (ClimOSHD). Lastly, we considered two options for land-use information: a global dataset (LUGl)

and a high-resolution dataset (LUHR). This approach is intended to cover the multiple facets of resolution: on the one hand, the175

spatial resolution of the CLM5 simulations themselves; on the other hand, the ‘native’ resolution, or level of detail, of the input

datasets, with higher resolution implying better quality of the datasets. Different CLM5 configurations were set up to cover the

variations in spatial resolution, meteorological forcing, and land-use information.

At the 1km scale, CLM5 was run with six different configurations, each using different combinations of meteorological

forcing and land-use information. At the 0.5◦and 0.25◦resolutions, CLM5 was run with three configurations corresponding to180

the respective meteorological forcing datasets and using the global land-use dataset. These regional CLM5 simulations across

the spatial extent of Switzerland and adjacent watersheds of neighboring countries, covering an area of 44,050 km2, were set

up in an identical way as global simulations.

Additionally, point-scale simulations were conducted at 36 snow-monitoring station locations within the model domain. At

the snow monitoring stations, we focus on the impact of meteorological forcing and land-surface input on CLM5 simulations185
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Figure 1. Schematic overview specifying the 3 facets of the experimental setup: Variation of i) spatial resolution, ii) meteorological forcing

data and iii) land-use information. i) shows the different grids used, including the locations of the snow stations. ii) shows monthly mean

temperature (May 2018) from the different data sources: Globally-available coarse-scale dataset (ClimCRU), the same but with a lapse-rate

corrected temperature (ClimCRU*), and a high-resolution regional dataset (ClimOSHD). Note that ClimCRU data is provided at 0.5◦(top left-most

panel in ii), and bilinearly regridded to 0.25◦and 1km. ClimCRU1km is then downscaled via a lapse-rate correction to obtain ClimCRU*1km, before

being up-scaled to 0.25◦and 0.5◦. Apart from temperature, meteorological forcing data is identical for ClimCRU1km and ClimCRU∗1km

simulations. ClimOSHD data is provided at 1km, and upscaled to 0.25◦and 0.5◦. iii) shows differences in land-use information considered in

this study by the example of percentage vegetation cover (sum of vegetation PFTs and crop CFTs).
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by first running the same six configurations as for the 1km gridded experiment. While exactly the same modelling framework

was used for these point-scale simulations as for the gridded simulations, meteorological forcing was station-specific (e.g. not

just the extracted meteorological forcing from the closest 1km gridcell, see 2.3.1 for additional information). Knowing that all

36 snow-monitoring stations are located on non-forested land, we set up 3 additional simulations enabling direct comparison

of observations with respective simulations: For each meteorological forcing dataset (ClimCRU, ClimCRU*, ClimOSHD) we set190

up a simulation where the land-unit was set to be 100% vegetated with PFT 0 (bare ground) rather than using the composite

grid-cell from the LUHR and LUGl dataset, respectively. This additional land use dataset is further refereed to as LUnofor. Model

performance evaluation was carried out based on in-situ observations at these stations (see Section 2.4.1 and 2.5.1 for more

information).

The performance of all gridded CLM5 configurations in simulating seasonal snow cover was assessed against simulations195

obtained with a dedicated snow model (see Section 2.4.2 and 2.5.2 for more information). Outcomes from the snow cover

analyses were complemented by a relative comparison of the different gridded CLM5 configurations for the ecophysiological

variables gross primary production and evapotranspiration.

2.3 Input datasets

Each CLM5 model configuration requires the following meteorological driving data: incident short and long-wave radiation, air200

temperature, relative humidity, wind speed, pressure, and precipitation. Additionally, a land surface information file is required.

CLM5 simulations were set-up to run between January 2016 and December 2019, in order to maximize the temporal overlap

between the various meteorological forcing datasets and available data for model benchmarking. We further performed 10 years

of spin-up by re-cycling through the available input-data. A spin-up was necessary to ensure soil moisture and soil temperature

were in approximate equilibrium and not affecting temporal dynamics and physical properties e.g., of the simulated snow cover205

evolution.

2.3.1 Meteorological Forcing

To assess the impact of meteorological input data quality, we considered three meteorological forcing datasets with increasing

level of detail. As an example of a standard global dataset, we used the recent state-of-the-art dataset CRU-JRA (University

of East Anglia Climatic Research Unit; of East Anglia Climatic Research Unit; Harris (2019)), which provides near-global210

(excluding Antarctica) six-hourly meteorological data on a 0.5◦latitude x 0.5◦longitude grid. CRU-JRA is a merged product

of the monthly Climate Research Unit (CRU) gridded climatology (Harris et al., 2014) with the Japanese Reanalysis product

(JRA, Kobayashi et al. (2015)). We selected CRU-JRA due to its large timespan (1901-2020), which includes recent years

and hence ensures sufficient overlap with our high-resolution forcing dataset (see below), as well as due to its application in

the annual Global Carbon Budget assessments (e.g., TRENDY, Friedlingstein et al. (2020)) and in the Land Surface, Snow215

and Soil Moisture Model Intercomparison Project (LS3MIP, Hurk et al. (2016)). The original 0.5◦CRU-JRA dataset was first

projected to our model domain using nearest neighbor techniques (ClimCRU0.5◦ ), before re-gridding it to 0.25◦, 1km and all

point locations using bilinear interpolation to obtain ClimCRU0.25°, ClimCRU1km as well as ClimCRUpt .
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As a dataset representing an intermediate level of detail, we upgraded the ClimCRU1km as well as ClimCRUpt datasets by down-

scaling temperature data using a temperature lapse rate of -6.5K/1000m, which resulted in the ClimCRU* and the ClimCRU*pt220

datasets. This approach was intended to account for variations of air temperature within the complex topography of the Swiss

Alps and subsequent refinement of the partitioning of precipitation into snow and rain. We use a global DEM at 0.5◦to first

bring temperature to sea-level temperatures by applying negative lapse rates, before using a high-resolution DEM of Switzer-

land to re-lapse temperature (see Figure C1 in the Appendix for both DEMs). For the snow station locations we used the actual

GPS measurement of each station, resulting in ClimCRU*pt . The updated 1km fields were upscaled back to 0.25◦and 0.5◦to in-225

herit this correction also to the coarser-resolution simulations. This resulted in the ClimCRU* dataset. All other forcing variables

were left identical for ClimCRU1km and ClimCRU*1km, as well as ClimCRUpt and ClimCRU*pt simulations.

As input datasets with the highest level of detail, we used meteorological forcing generated according to methods developed

by the Operational Snow Hydrological Service (OSHD), at 1km spatial and 1hour temporal resolution as well as all point

locations at 1 hour temporal resolution. Necessary meteorological input variables were all provided by MeteoSwiss (COSMO1230

and COSMOE product), and specific downscaling routines were applied e.g., to incoming solar radiation and wind velocity

to optimally capture the influence of complex topography. Of particular relevance to this study is the correction of snowfall

input fields by assimilation of station data according to Magnusson et al. (2014). In the context of this study, this dataset can be

considered a meteorological input specifically optimized for accurate gridded snow cover simulations. The 1km forcing data

was then upscaled to the desired target resolution (0.25◦and 0.5◦) with no smoothing applied. We refer to Mott et al. (2023) for235

further details with regards to the ClimOSHD product. The OSHD downscaling algorithms were also applied for each specific

snow station location, resulting in the ClimOSHDpt dataset for the point-scale simulations.

2.3.2 Land-use information

Global-scale land-use information: Input datasets for the land surface are based on the global-scale input dataset commonly

used in CLM5, where extents of each land unit and percent plant functional type for each grid cell are derived from MODIS240

satellite data (Lawrence and Chase, 2007), as are monthly LAI and SAI values. In a first step, which was performed sepa-

rately for each target resolution (including all point-locations), we used the standard CLM tools (including the Earth System

Modelling Framework (ESMF) regridding tools), to obtain our “global info” land surface dataset (LUGl, see Figure 1). This

represents a land surface dataset equivalent to that which would be used in a typical large scale LSM/General Circulation

Model application. Note that the resolution of the underlying global datasets varied (0.05◦for urban/lake/glacier, 0.25◦for245

vegetated/PFT fractions/LAI and SAI), since we used the most commonly applied CLM5 datasets. This step resulted in the

LUGl0.5◦ , LUGl0.25◦ as well as the LUGl1km datasets (see Figure 1). In Appendix B we show obtained land unit distributions per

grid cell for all 3 target resolutions (Figure B2, Figure B3 and Figure B4 for LUGl1km, LUGl0.25◦ and LUGl0.5◦ , respectively),

patch-level PFT distributions (Figures B6, B7, B8) and monthly PAI for temperate needle leaf evergreen trees (Figures B10,

B11, B12) as well as boreal broad-leaf deciduous trees (Figures B14, B15, B16).250

High resolution land-use information: To obtain an alternative land-use input dataset (LUHR1km) with a higher level of

detail and based on a more up-to-date land use dataset, the LUGl1km dataset was updated based on a combination of high-
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resolution data sources: (1) Copernicus Global Land Service PROBA-V data (2) Copernicus Sentinel-3/OLCI data, and (3)

high-resolution national forest mixing ratios derived specifically for Switzerland (100m resolution, Swiss-Federal-Statistical-

Office (2013)). In a first step, land unit distributions per grid cell (first sub-grid level in CLM5) were computed using the255

Copernicus PROBA-V 100m 2019 landcover datasets, which have been shown to be of high spatiotemporal quality (e.g.

79.9% accuracy over Europe for the Discrete Classification dataset, (Tsendbazar et al., 2021)). The native 100m fractional

cover datasets were reprojected and regridded to our domain using ESMF tools (with a bilinear interpolation algorithm). We

used the Copernicus Builtup-Cover Fraction to obtain the spatial extent of the urban landunit (assumed to be all at medium

density), the Crops-Cover Fraction for the crop landunit (assumed to all be rainfed, non-irrigated land), and the level 1 Discrete260

Classification dataset for lake and glacier land units. The vegetated landunit was derived by adding Copernicus PROBA-V

Grass-Cover Fraction, Tree-Cover Fraction, Shrub-Cover Fraction as well as Bare-Cover Fraction together. Minor adjustments

were necessary due to regridding artifacts to ensure (a) no pixel exceeded 100% (e.g. around edges of lakes) and (b) each pixel

added up exactly to 100% (any non-classified pixels were classified as non-vegetated). Figure B1 in Appendix B shows extents

of the LUHR1km dataset for each CLM5 land unit.265

For the third sub-grid level (patch-level) of the vegetated landunit, we merged the 100m Copernicus Forest Type layer as well

as the 100m Copernicus shrub- and grass cover fraction with Swiss national 100m forest mixing ratio data. The Copernicus

Forest Type layer distinguishes between 6 forest classes (needle leaf and broad leaf evergreen forests; needle leaf and broad leaf

deciduous forests; mixed forests and unclassified) which were translated to CLM5 PFTs in the following manner: Evergreen

trees (both deciduous and broad-leaf) were classified as needle leaf evergreen temperate trees (PFT2), deciduous needle-leaf270

trees were classified as needle leaf deciduous boreal trees (PFT4) and deciduous broad-leaf trees were classified as broad-leaf

deciduous temperate trees (PFT8). All shrubs from Copernicus shrub cover were assumed to be broad-leaf deciduous shrubs

(PFT12), and all grass as well as sparsely vegetated cells were classified as C3 grass. Mixed and unknown pixels were then

updated based on the Swiss-wide dataset. If the Swiss-dataset classified it as needle leaf forest, it was set to PFT2, if it was a

deciduous forest it was PFT 8, needle-mix and deciduous-mix forest were set to PFT 4 and no wood was classified as C3 grass275

(PFT 13). Figure B5 in Appendix B shows percentage PFT fractions of the LUHR1km dataset.

In order to obtain an updated LAI dataset, Copernicus Sentinel-3/OLCI/PROBA-V data at 333m spatial resolution was used,

which has a temporal resolution of 3 timesteps per month. We used data for the year 2020, and averaged the 3 monthly timesteps

to obtain one layer of LAI data per month. For evergreen PFTs August LAI was used year round, whereas for deciduous PFTs

the respective monthly values were used. LAI of pixels where satellite data was not available (snow, clouds) was set to 1. LAIs280

of crops, shrubs and grasses remained unchanged in the LUHR1km dataset. Figure B9 and B13 in Appendix B show monthly

PAI for temperate needle leaf evergreen trees (PFT2) and boreal broad-leaf deciduous tree (PFT 4).

2.4 Test datasets

We used two datasets to assess model performance. The first, consisting of daily snow depth observations from 36 snow

stations, allowed to evaluate the performance of CLM5 point-scale configurations in simulating seasonal snow cover against285
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ground truth data. For an evaluation of the gridded CLM5 simulations, we employed the Flexible Snow Model (FSM2) as a

reference snow model for validation.

2.4.1 Snow stations

The 36 snow stations considered cover an elevational gradient, are spread throughout Switzerland (see Figure 1)) and were

selected from an exceptionally dense and accurate network of snow observations. Table A1 in the Appendix specifies locations290

and characteristics of each of these sites. Observations at the station locations consist of daily monitored snow depth (HS),

which are collected as part of the snow monitoring networks of either the WSL Institute for Snow and Avalanche Research

(SLF) or the Federal Office for Meteorology and Climatology (MeteoSwiss). HS measurements were extracted at a daily

timestep and cleaned from obvious outliers (assessed against neighboring stations at similar elevations), which can occur e.g.

due to measurement errors (see Mott et al. (2023) for more details).295

2.4.2 Snow cover simulations with FSM2

The Flexible Snow Model (FSM2, Mazzotti et al. (2020)), a recent upgrade of the Factorial Snow Model (FSM, Essery (2015)),

is an open-source, physics-based snow model of intermediate complexity. As in CLM5, FSM2 represents the snowpack with

few layers only (up to three in the version used here), where each layer is characterized in terms of mass of water, mass of ice,

layer thickness and temperature. Snow cover processes in FSM2 include heat conduction through the snowpack, transport (and300

refreezing) of liquid water in the snowpack, the evolution of snow density by compaction, as well as surface albedo. For further

detail on the parametrizations of snow properties and processes, we refer to Essery (2015) and Mott et al. (2023). Contrary to

CLM5, FSM2 does not include a precipitation partitioning scheme but accepts separate inputs of solid and liquid components.

Precipitation partitioning is performed offline following a sigmoid function centered around 1.04°C and based on the 10m air

temperature (Ta10m, in °C):305

snowfall

preciptot
=

1

1+ exp(Ta10m−1.04
0.15 )

(7)

Simulations at 250m resolution and point simulations at snow station locations have been specifically set up and calibrated

by SLF to run over the extent of Switzerland for the purpose of operational snow water resources monitoring (Griessinger

et al., 2019; Mott et al., 2023). At the 250m resolution, model grid cells are subdivided into forest, open, and glacier fractions,

with forest cover descriptors derived from a 1m-resolution, LiDAR-based canopy height model available for Switzerland (Mott310

et al., 2023; Waser et al., 2017). Snow cover fraction parametrizations differ for each tile, for details we refer to Section 2.1.2

in Mott et al. (2023). In the absence of high-quality, spatially distributed snow depth observations over the entire extent of

Switzerland, these FSM2 simulations were served as ground truth for this study. For comparison with CLM5 output, 250m

resolution FSM2 output results were upscaled to 1km without smoothing (e.g. conservative regridding).
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2.5 Evaluation of model experiments315

2.5.1 Comparing point-scale CLM5 model simulations to station observations of snow depth

Observations at the snow monitoring stations (Figure 1 and Table A1) provide an exceptional opportunity to allow proper

assessment of regional model performance. Sub-sampled from a dense, high-quality network of snow observations, these mea-

surements of snow height were used to assess the ability of each station-specific point-scale CLM5 configuration to simulate

seasonal snowpack in Switzerland, and were additionally compared to FSM2 simulations. The evaluation of FSM2 runs al-320

lowed to assess whether FSM2 is a suitable model to be used as a reference for the gridded simulations.

The stations were binned into three elevational bands (<1000 m.a.s.l, 1000 – 2000 m.a.s.l, >2000 m.a.s.l) resulting in 10, 12

and 14 stations for the low, mid- and high elevation band, respectively. For each station location, the various CLM5 point-scale

simulations (ClimCRU1km+LUGl/HR 1km, ClimCRU*1km+LUGl/HR 1km, ClimOSHD1km+LUGl/HR 1km) as well as the FSM2 simulation

were compared to observations of snow depth (HS), by computing relative and absolute differences as well as Root Mean325

Square Errors (RMSE) and Mean Absolute Errors (MAE) for the time frame between October and July across all 4 simulated

snow seasons.

Additionally we use wiggle plots to show the seasonal evolution of model errors for all the point-scale simulations across

the 2017/18 season.

2.5.2 Comparing gridded CLM5 model simulations to FSM2 simulations of snow depth330

Given that the point-scale evaluation against station data offers an incomplete picture of CLM5 performance in its ’typical’

setting (coarse-resolution, gridded) as it is limited to point locations with a narrow range of topographic and vegetation char-

acteristic, we provide a complementary evaluation of all gridded CLM5 simulations against FSM2. This model evaluation was

performed at 0.25◦resolution, which is a fair target given the complexity of the topography across our modelling domain and

its relatively small size, and considering today’s ever-increasing computational resources. FSM2 as well as 1km CLM5 sim-335

ulation results were hence upscaled to 0.25◦using a conservative upscaling approach which preserves areal averages. For this

purpose, we had to decrease our evaluation domain slightly, as we performed the 1km simulations with a mask running exactly

along the edges of our modelling domain, making it impossible to upscale these areas to 0.25◦without crude assumptions. The

0.5◦simulations were downscaled to 0.25◦, and all simulations were evaluated across the same domain.

For the evaluation and quantification of snow-related CLM5 model experiment’s performance we used a Taylor diagram340

(Taylor, 2001), with FSM2 simulations of snow depth at 0.25◦as our reference. A Taylor diagram combines centered RMSE,

correlation coefficients as well as the spatial/temporal standard deviation and hence describes overestimation or underestima-

tion of the models relative to a benchmark.

Additionally, in order to better understand patterns in model discrepancy as they relate to topography and land cover, we

compared simulated snow depth (HS) as a function of elevation for three dates during the 2018/19 winter season (early winter345

1-Dec; mid winter 1-Feb; late winter 1-Apr). This comparison was performed at 1km, and only included the six 1km CLM5

simulations as well as FSM2, hence no up-/down-sampling was necessary and the effect of elevation could be assessed over
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a larger distribution. We further compared changes in land-use information and simulated snow-cover for non-forested vs.

forest-dominated grid-cells, allowing an assessment of whether the sensitivity to the chosen dataset depends on the land cover

type.350

3 Results

3.1 Evaluation of snow simulations at point locations

We begin by focusing on simulated snow depth at point locations. We observed distinct differences in performance using

different meteorological forcing datasets in our CLM5 experiments (see Figure 2). The point-scale CLM5 model using global

meteorological forcing data (ClimCRUpt+LUGl/HR/nofor) showed poor performance in modeling seasonal snow development355

across all snow station locations. RMSEs were close to 1m for mid-elevation stations and only marginally better for high- and

low-elevation stations. This demonstrates that these runs fail to accurately represent elevational gradients in temperature and

snow amounts, making the error dependent on how closely the characteristics of the station happen to match the characteristics

of the coarse resolution grid-cells of the ClimCRU forcing dataset.

When the lapse-rate based downscaled temperature input was used (ClimCRU*pt+LUGl/HR/nofor) instead, the model’s per-360

formance improved significantly, particularly at low elevations. At mid- and high elevations the positive impact of a better

temperature representation is masked by the overestimated precipitation input when compared to the OSHD dataset (see Fig-

ure C2 and Figure C4 in the Appendix for a comparision of precipitation forcing between the CRU and the OSHD forcing

dataset). The overestimation of snow at mid- and high elevations of the ClimCRU* dataset is hence a direct result of overesti-

mated precipitation along the Alps.365

The CLM5 model forced with OSHD data (ClimOSHDpt+LUGl/HR/nofor) demonstrated the best performance across all three

elevation bands, with only minor errors in low- and mid-elevation locations (e.g., RMSE/MAE of 0.22/0.11m for mid-elevation

ClimOSHDpt+LUHR simulations). These simulations overcome the ’too much solid precipitation problem’ outlined above as the

OSHD precipitation forcing dataset is optimized by data assimilation. The underestimation at high elevations is likely due to

snow process representation in the model (combination of snow settling too fast and melting too efficiently, see Figure 3f).370

Generally, these results indicate that the CLM5 model forced with OSHD data approach the accuracy of a dedicated snow

model (FSM2), at least when assessed at point locations.

Figure 3 further illustrates these results, as it features wiggle plots as well as seasonal snow development for selected snow

station location throughout the 2017/18 winter season. It is apparent across all elevation bands that FSM2 simulations match

observations the closest (discussed in more detail in Section 3.1.1), and that CLM5 forced with OSHD data is the next best.375

CLM5 with global meteorological forcing data (ClimCRUpt ) performs poorly with maximal errors of over 3m. These biases are

persistent throughout the snow season, whereas snow depth is mostly overestimated below, and underestimated above 2000m,

respectively.

Regarding the effects of the land-use information dataset, we observed that the choice of land-use information only had a

small impact on simulated snow depth (Figure 2). We include simulations using the global, the high-resolution, as well as the380
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Figure 2. Comparisons of point-scale model simulations to observations of snow depth (HS) across all simulated snow seasons (October-July)

for combined (a) low elevation, (b) mid-elevation and (c) high elevation snow station locations. Negative values depict under-estimations of

the simulations. Means are shown by the white dots.

non-forested land use dataset (LUGl, LUHR, LUnofor respectively). While a slight improvement was seen when using the high-

resolution land-use information dataset (LUHR) at high elevations for all three sets of meteorological forcing data (reducing

RMSE by -0.06m/-0.02m/-0.11m for ClimCRUpt/ ClimCRU*pt/ ClimOSHDpt simulations, respectively), no substantial differences
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Figure 3. Wiggle plots comparing point-scale model simulations to observations of snow depth (HS) throughout the 2017/18 season for

low elevation (a), mid-elevation (b) and high elevation (c) point locations whereby blue denotes too much and red too little snow in the

models when compared to observations. (d-f): Absolute difference to observations and seasonal snow depth development for 3 example point

locations.

or marginal decreases in model performance were observed for the lower two elevation bands. This is further underlined by

Figure 3d-f. Simulating open, non-forested sites (LUnofor) only had marginal effects on model performance: For low and385

mid-elevations a slight decrease in model performance is apparent for all three meteorological forcing datasets, whereas at

high elevations differences are virtually non-existent. This can be explained by the larger variety in land-unit distributions at

lower elevations, while at high elevations differences between the two datasets remained small. Ultimately, it can be seen that,

at coarse model resolution, the effect of meteorological forcing data is substantially larger in comparison to differences arising

from the choice of land surface information.390
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Figure 4. Taylor plots (Taylor, 2001) for comparisons of simulated snow-depth (HS) between all 12 different CLM5 configurations and

the reference snow simulation (FSM2, dark grey) during (a) early accumulation season (1-Dec), (b) mid-accumulation period (1-Feb) and

(c) ablation period (1-Apr) throughout four winter seasons (2015/16, 2016/17, 2017/18, 2018/19). The plotted statistical metrics allow for

evaluation and quantification of CLM5 model experiments performance, based on centered RMSE (directly proportional to the distance away

from the reference (=FSM2)), correlation coefficients (azimuthal position) and the spatial/temporal standard deviation (radial position from

the origin) which determines overestimation or underestimation of the models.

3.1.1 Accuracy of FSM2 point-scale simulations

Across all elevation bands, the FSM2 simulations closely matched the observations, with only minor errors at low and mid

elevations during the 2017/18 season (Figure 2). At high elevations, the FSM2 model slightly underestimated snow depths,

which can be assessed in more detail in Figure 3. Figure 3 visualizes the superior performance of FSM2 in comparison to all

CLM5 model experiments, further justifying using FSM2 model simulations as our ground truth for the gridded simulation395

comparisons in Section 3.2.

3.2 Evaluation of gridded snow simulations

The comparison of gridded simulations with CLM5 to FSM2 reference simulations allows us to investigate all three facets

of this study: Effects of resolution, effects of meteorological forcing data, and effects of land-use information data. To this

end, we consider gridded simulations of snow depth from all 12 different CLM5 configurations (see Figure 1(ii) and (iii))400

and compare them to FSM2 simulations (Figure 4). Our analysis is performed across all four snow seasons, and at 0.25◦.

Additionally we investigate how the accuracy of CLM5 varies as a function of elevation by comparing all 1km simulations

against FSM2 (Figure 5) for the 2018/19 season. For both analysis we differentiate between early accumulation period (1st

December), mid-accumulation period (1st of February) and ablation period (1st of April).

Increasing the level of detail in meteorological forcing data has the largest effect on accuracy of simulated seasonal snow405

cover, especially when simulating at 1km. CLM5 runs with OSHD-based input data outperform all CRU- and CRU*-based sim-
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ulations at all three points in time during winter (e.g., RMSE ClimOSHD1km+LUGl1km: 0.07, 0.14, 0.18m vs. RMSE ClimCRU*1km+LUGl1km:

0.12, 0.29, 0.37m vs. RMSE ClimCRU1km+LUGl1km : 0.15, 0.41, 0.53m for early, mid, and end-winter respectively; Figure 4)) as

compared to FSM2 simulations. The postitive effects of lapse-rate corrected temperatures on model performance (ClimCRU1km

vs. ClimCRU*1km) are pronounced during mid-accumulation and ablation period, where performance is substantially enhanced,410

while during early accumulation only correlation and standard deviation is improved when moving from ClimCRU1km to

ClimCRU*1km. The reason behind this is that during early season snow height tends to be small anyways, but once snow amounts

become substantial the effect of a lapse-rate correction in the context of partitioning precipitation into rain and snowfall be-

comes more evident, and simulation results diverge. A simple lapse rate correction that accounts for high-resolution topography

hence already brings a lot of benefit relative to a coarse-resolution dataset.415

Figure 5 further illustrates these findings: Focusing in on only one representative season (2018/19) and looking at simulated

snow-depth as a function of elevation, elevational behaviour of FSM2 is matched closest by CLM5 simulations using OSHD-

based forcing data, with most discrepancies occurring during the ablation period at high elevation. Downscaling temperature

has a substantial effect on performance, allowing ClimCRU*1km to closely match performance of ClimOSHD1km.

However, the benefits of a higher level of detail in the meteorological forcing are negated when model resolution itself is420

decreased. Comparing results of CLM5 configurations that differed in resolution only, a large decrease in accuracy is evident

for the OSHD- and CRU*-based runs when moving from 1km to 0.25°, while further coarsening to 0.5° only has a marginal

effect. This is because the evolution of snow cover is shaped by non-linear process interactions (e.g., temperature fields affect

both snowpack energetics and its mass balance by dictating precipitation phase) that are ’lost’ when meteorological input

is averaged spatially. Our simulations suggest that a model resolution higher than 0.25° is essential to capture the spatial425

heterogeneity of snow cover evolution processes in the complex terrain present in our study domain. In accordance with this

finding, resolution did not have much impact on the performance of the CRU-based runs, since simple regridding without

additional consideration of topographic effects on the meteorological drivers does not bring any added values in capturing the

non-linear processes shaping snow cover dynamics in complex terrain.

Ultimately, throughout the four modeled years, and averaged over the model domain, substantial differences in simulated430

snow-cover between the various CLM5 configurations are evident (Figure 4). In a similar manner to the point-scale CLM5

simulations, results revealed considerable improvements in simulated snow cover accuracy when using high-confidence forcing

data (Figure 2, Figure 4), with CLM5 in our best-effort scenario (ClimOSHD1km+LUHR1km simulation) almost reaching the level

of a dedicated snow model also in a gridded application. This becomes especially apparent when looking at the high correlation

coefficient of the ClimOSHD1km+LUHR1km simulation in Figure 4. However, degraded model performance between the 1km and435

the 0.25◦configurations suggests that in order to actually benefit from the added value of high-quality forcing data, a sufficiently

high model resolution remains necessary when applying CLM5 in topographically complex regions.

In order to better understand why the effect of land-use data in our results was minimal, we further investigated the link

between changes in land-use information and simulated snow-cover for non-forested vs. forest-dominated grid-cells. Figure 6

compares differences in PAI (averaged across all PFTs, averaged between January-March) across the model domain between440

LUHR1km and the LUGl1km with simulated snow height for 1-Feb-2018. We show that the majority of snow-dominated pixels

17



1000 2000 3000
Elevation [m]

0.0

0.2

0.4

0.6

0.8
Sn

ow
 d

ep
th

 [m
]

(a) Early accumulation

1000 2000 3000
Elevation [m]

0.0

0.5

1.0

1.5

2.0

(b) Mid-accumulation

ClimCRU1km+LUGl1km

ClimCRU1km+LUHR1km

ClimCRU*1km+LUGl1km

ClimCRU*1km+LUHR1km

ClimOSHD1km+LUGl1km

ClimOSHD1km+LUHR1km

FSM2
Hypsometry

1000 2000 3000
Elevation [m]

0.0

0.5

1.0

1.5

2.0

2.5
(c) Ablation

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

Hy
ps

om
et

ry
 [%

]

Figure 5. Simulated snow depth (HS) as a function of elevation during (a) early accumulation season (1-Dec), (b) mid-accumulation period

(1-Feb) and (c) ablation period (1-Apr) for the 2018/19 winter season. We contrast elevational dependency of FSM2 (dark grey) with all six

1km CLM5 configurations. The dark blue dashed line represents hypsometry across the model domain (Switzerland+).

correspond to pixels with little change in PAI between the high-resolution and the global land-use datasets (e.g. non-forested

areas). Pixels with large changes in PAI on the contrary tend to be located in the lowlands, with little snow throughout the

season. This demonstrates that the impact of land-use data is masked by the many pixels with much snow but little change in

PAI. The low sensitivity we find with regards to land-use forcing is hence mostly a symptom of the limited overlap between445

snow dominated and forested areas in our model domain.

3.3 Simulation of ecophysiological variables

While the previous sections focused on the representation of snow cover, an asset of LSMs relative to dedicated snow models

such as FSM2 is that they include a more comprehensive description of land surface processes and state variables, allowing

the interaction between these to be investigated. In this final part of our analysis, we thus extend our focus to ecophysiological450

parameters to showcase effects of spatial resolution, meteorological forcing and land-use information beyond snow cover. In

lack of a reference model for evaluation, we present a relative comparison between spatially distributed (a) simulated mean

total GPP for 2016-2019 as well as (b) total ET during 2017 in Figure 7. To single out the impact of each facet of our study,

in each plot ClimOSHD1km+LUGl1km is compared with the ClimOSHD1km+LUHR1km simulation (effect of land-use information),

with the ClimCRU1km+LUGl1km (effect of meteorological forcing) as well as with the ClimOSHD0.5◦+LUGl0.5◦ simulation (effect455

of spatial resolution).

For GPP, sensitivity of land-use information outweighed sensitivity of meteorological forcing. Higher level of detail in the

land use data caused both increases and decreases in GPP across the model domain, while improved meteorological input had

a more systematic effect.
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Figure 6. Links between change in land-use and simulated snow cover: (a) PAI difference between the LUHR1km and LUGl1km dataset, whereby

PAI (LAI+SAI) is averaged across all PFTs as well as between January and March. (b) Snow depth on 1-Feb-2018 as simulated by CLM5

ClimOSHD1km+LUHR1km. (c) Comparison of snow height distributions on 1-Feb-2018 for ClimOSHD1km+LUHR1km and ClimOSHD1km+LUGl1km

, each for pixels with a large change in overall PAI (>0.25) and a small change in overall PAI (<0.25).

The choice of land surface information datasets, on the other hand, only showed marginal effects on simulated ET, but the460

effect of meteorological forcing results in substantial differences in simulated ET (up to 26% when averaged over the entire

model domain). This effect is especially pronounced along the Swiss Alps, where complex terrain leads to differences in

precipitation patterns captured by the two forcings (see Figures C2, C4, C3 in the appendix for comparison of precipitation

patterns in the forcing datasets). Temperature differences between the two forcing datasets further contributed to the differences,

as it is precisely along the Swiss Alps where ClimCRU1km does not capture topographic effects on temperature.465
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Figure 7. Spatial comparison of CLM5-simulated a) yearly GPP (mean 2016-2019) and b) Evapotranspiration for 4 different CLM5 config-

urations of this study, showing absolute values as well as relative differences to investigate the effect of land-use information, the effect of

climatological forcing and the effect of spatial resolution.

For both GPP and ET, model resolution in isolation strongly affects the spatial patterns due to non-resolved surface hetero-

geneity at coarse resolution. Discrepancies between the simulations are less directional and hence difficult to quantify.

4 Discussion

This study used CLM5 to offer a multi-scale assessment of the representation of seasonal snow in complex topographic terrain,

by evaluating simulated snow depth against a wealth of station data, as well as gridded FSM2 simulations. The multi-resolution470

setup and a suite of model experiments allowed assessment of several aspects (impact of resolution and input datasets), in

spatially and temporally resolved manner, while leveraging diverse reference datasets.

Evaluation against station data showed that CLM5 itself is capable of achieving performance similar to a dedicated snow

model when applied in point mode and with the best available input data (land use info and meteorological forcing; ClimOSHD1km+LUHR1km).

Differences to station data are largest at high elevation, where CLM5 underestimates snow cover. As this bias persists through-475

out the season, it is likely due to a combination of accumulation and internal snowpack properties (e.g. the settling parameter-

ization) and melt processes. Tracking down the exact mechanism would require a process-level comparison beyond the scope

of this study, but it should be noted that in FSM2 as set up by OSHD parameters such as the effective roughness length and
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fresh snow albedo vary spatially (e.g. with elevation); future studies could assess whether such spatially variable parameters

could benefit CLM5 snow simulations as well.480

Rather than point-mode applications, however, CLM is intended for gridded applications over large areas. This is where

our modelling experiments provided interesting insights into the performance of different CLM5 configurations. We found

that the most accurate snow cover simulations for Switzerland, with results comparable to those of the operational snow-

hydrological model (FSM2), were achieved using high-resolution meteorological forcing data (OSHD) and a 1km resolution

that fully resolved landscape heterogeneity. This confirmed our hypothesis, which stated that with increasing spatial resolution485

and quality of meteorological and land surface input datasets, the representation of snow cover dynamics and its associated

variables in CLM5 can achieve an accuracy comparable to that of a dedicated snow model. These findings align with previous

studies (e.g., Lüthi et al. (2019)).

Performance of snow-cover simulations is thus constrained by the capability of the meteorological input to capture topo-

graphic effects (e.g., improved estimation of precipitation phase due to the high resolution temperature fields) and precipitation490

patterns, which is a function of both input type (e.g., ClimOSHD vs. ClimCRU) and model resolution. Indeed, the fact that ag-

gregating OSHD-based forcing data for coarser resolution simulations drastically reduced simulation accuracy evidenced the

need for resolutions higher than 0.25◦for snow simulations in topographically complex terrain.

The lapse-rate corrected results (ClimCRU*) suggest that in the absence of native high-resolution input data, increasing model

resolution through interpolation of input fields with a simple lapse-rate correction of temperature fields can already account495

for an important topographic effect and thus positively impact model results. This approach, however, cannot provide the high-

quality precipitation data achieved with data assimilation based techniques (as used in the OSHD forcing). Model errors are

thus inherently linked to uncertainty in precipitation input, which can cause both over and underestimations of snow (in the

case of the evaluation at the stations, errors in precipitation (overestimation) overcompensated the underestimation seen in the

ClimOSHD simulations for the highest elevation band).500

Where model simulations at high resolution are unfeasible (e.g. limited by computational constraints), results from our study

suggest that developing a sub-grid parametrization that accounts for the impact of topography on precipitation partitioning as

well as on temperature could be a promising approach.

Snow simulations were not sensitive to land-use data, but this is likely due to the distribution of land-units within our model

domain, as most snow-dominated grid-cells only saw small changes when moving from the global (LUGl1km) to the high-505

resolution land use dataset (LUHR1km). Previous mulit-resolution studies with FSM2 have shown that land-use data does indeed

affect simulated snow dynamics (Mazzotti et al., 2021). However, for other ecophysiological variables (GPP in this case) we

showed a large effect of land-use data. Today, a plenitude of new detailed land cover datasets are emerging thanks to advances

in satellite remote sensing datasets, which should be exploited for land surface modelling.

To gain a more comprehensive understanding, it would be beneficial to repeat such a model experiment in an arctic environ-510

ment rather than just an alpine one, as high latitudes are critical components of the rapidly changing climate system. Changes

in land-use datasets are likely to have a greater effect in such environments, as larger extents of forested areas overlap with

seasonally snow-covered areas.
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Additionally, it is important to note that all simulations in this work were conducted in satellite phenology mode. Direct

assessments of linkages between simulated snow cover and ecophysiological parameters were hence not possible. Future515

studies should compare CLM5 simulations with prognostic vegetation and biogeochemistry modes turned on to enable a more

detailed analysis of the terrestrial carbon and nitrogen cycles, as well as evapotranspiration fluxes.

Uncertainty remains in climate change impact assessments using LSM projections (e.g., Shrestha et al. (2022); Yuan et al.

(2021, 2022)), with two major sources of uncertainty being the effects of resolution and the quality of meteorological input data

(especially precipitation, Peters-Lidard et al. (2008)) on LSM simulation outputs. Quantifying such uncertainties is imperative520

to further increase the predictive power of climate impact models. Furthermore, given the complexity of state-of-the art LSMs,

an understanding of the ways different parts/modules of LSMs interact with each other is more important than ever, as climate

change impacts are not isolated, but highly interconnected processes (Zscheischler et al., 2018; Ridder et al., 2021). It is there-

fore of great importance to investigate how exchanges and interactions between model components are represented, rather than

assessing process representation for each model component separately (Blyth et al., 2021), which ultimately requires multi-525

disciplinary community efforts (Ciscar et al., 2019). Multi-resolution modelling frameworks as used for this study have large

potential to help with such endeavors and provide critical insights into ecosystem responses to environmental change. More

specifically, it can help identify both the key processes for which high spatial resolution and high-fidelity input data are nec-

essary, as well as quantify the minimum resolution needed to resolve these processes accurately. Such modelling experiments

should be prioritized in the future, ideally in combination with experimental manipulations (e.g., increase the availability of530

nitrogen or carbon dioxide in the system) as suggested by Wieder et al. (2019).

5 Conclusions

Using multi-resolution modeling experiments to quantify and potentially constrain uncertainties in land surface modeling,

we highlight the importance of input data quality and spatial resolution in accurately representing seasonal snow cover across

scales. We found that CLM5 is capable of achieving performance similar to a dedicated snow model when using high-resolution535

meteorological forcing data and a 1km resolution that represented landscape heterogeneity well. Results further showed that

a simple lapse-rate correction of temperature fields can already account for an important topographic effect on precipitation

partitioning and has large positive impacts on model performance. Aggregating high-resolution forcing data for coarser res-

olution simulations drastically reduced simulation accuracy, further underlining the need for resolutions higher than 0.25◦for

snow simulations in topographically complex terrain. Snow simulations were less sensitive to land-use data compared to me-540

teorological data, but eco-physiological variables (GPP) are strongly affected by the choice of land-use forcing. The results

clearly demonstrate the utility of high spatial resolution and regionally detailed forcings in land surface models to better quan-

tify and constrain the uncertainties in the represented processes, with profound implications for climate impact studies. More

generally, this study highlights the utility of multi-resolution modeling experiments which bridge the gap between point-scale

and spatially distributed land surface modeling.545

22



Code and data availability. All scripts used for simulation setup and analysis can be found at https://github.com/johanna-malle/CLM5_CH.

All CLM5 simulation results presented in this study as well as land surface forcing datasets are available from the WSL data repository

Envidat at https://www.envidat.ch/dataset/clm5-snow-gpp-evapo-switzerland (doi:10.16904/envidat.525). FSM2 snow simulation results can

be downloaded from https://www.envidat.ch/dataset/seasonal-snow-data-wy-2016-2022 (doi:10.16904/envidat.404).
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Appendix A: Point-scale CLM5 model simulations at snow stations550

Site Name Latitude (CH1903) Longitude (CH1903) Elevation [m a.s.l.] HS max 2017/18 [m]

BSG Brissago 108390 698200 280 0.15

FRI Frick 262700 643353 345 0.05

ALT Altdorf 191700 690960 449 0.21

CBS Chaebles 186320 552495 589 0.22

ABG Labergement 178770 527540 645 0.25

MAS Marsens 167220 571440 718 0.2

7BR Brusio 126780 807070 800 0.17

DEH Degersheim 247600 732600 830 0.41

SON Sonogno 134050 703640 925 0.75

WHA Wildhaus 229570 746130 1000 0.8

APT Alpthal 212930 696860 1031 0.75

AIR Airolo 153400 688910 1139 1.45

1LC LaComballaz 136580 572640 1360 1.26

4MS Muenster 148900 663420 1410 2.25

7ZN Zernez 175259 802751 1475 1.22

5DF DavosFluelastr 187400 783800 1560 1.75

6SB SanBernardino 147290 734110 1640 1.58

YBR2 Ybrig 210311 705399 1701 2.36

7ZU Zuoz 164590 793350 1710 1.2

7SD Samedan 156400 786210 1750 1.07

ARO Arosa 183320 770730 1840 1.79

LAU2 LauenenTruettlisbergpass 141633 595482 1970 2.06

VLS2 ValsAlpCalasa 170764 735166 2064 1.72

OBM2 OberMeielGrossStand 141183 582760 2097 3.96

FRA2 FrascoEfra 132853 708906 2100 2.64

VAL2 VallasciaSchneestation 155980 690126 2268 2.99

CMA2 CrapMasegnSchneestation 189875 733050 2330 2.81

OFE2 OfenpassMurtaroel 168460 818233 2359 2.34

JUL2 JulierVairana 149949 773049 2426 2.12

DAV3 DavosHanengretji 184616 778292 2455 2.94

TRU2 TrubelbodenSchneestation 135519 611306 2459 4.11

5WJ Weissfluhjoch 189230 780845 2540 3.13

DAV2 DavosBaerentaelli 174726 782062 2558 2.68

ZNZ2 ZernezPuelschezza 175078 797312 2677 2.72

LAG2 PizLagrevSchneestation 147050 777150 2730 2.31

GOR2 GornergratSchneestation 92900 626700 2950 3.3

Table A1. Name, location and elevation of all snow station locations used in this study. The last column additionally shows maximum

measured snow depth at each station during the 2017/18 winter season.
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Appendix B: Land-use information data sets

Figure B1. Land unit distribution per grid cell for the high-resolution 1km land use dataset (LUHR1km) as used in this study. The 5 CLM5

land units sum up to exactly 100%.

Figure B2. Land unit distribution per grid cell for the global 1km land use dataset (LUGl1km) as used in this study. The 5 CLM5 land units

sum up to exactly 100%.
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Figure B3. Land unit distribution per grid cell for the global 0.25◦ land use dataset (LUGl0.25◦ ) as used in this study. The 5 CLM5 land units

sum up to exactly 100%.

Figure B4. Land unit distribution per grid cell for the global 0.5◦ land use dataset (LUGl0.5◦ ) as used in this study. The 5 CLM5 land units

sum up to exactly 100%.
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Figure B5. Patch-level Plant Functional Types (PFT) distributions for the high-resolution 1km land use dataset (LUHR1km) as used in this

study.
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Figure B6. Patch-level Plant Functional Types (PFT) distributions for the global 1km land use dataset (LUGl1km) as used in this study.
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Figure B7. Patch-level Plant Functional Types (PFT) distributions for the global 0.25◦ land use dataset (LUGl0.25◦ ) as used in this study.
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Figure B8. Patch-level Plant Functional Types (PFT) distributions for the global 0.5◦ land use dataset (LUGl0.5◦ ) as used in this study.
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Figure B9. Monthly Plant Area Index (PAI) for temperate needle leaf evergreen trees for the high-resolution 1km land use dataset (LUHR1km)

as used in this study.
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Figure B10. Monthly Plant Area Index (PAI) for temperate needle leaf evergreen trees for the global 1km land use dataset (LUGl1km) as used

in this study.
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Figure B11. Monthly Plant Area Index (PAI) for temperate needle leaf evergreen trees for the global 0.25◦ land use dataset (LUGl0.25◦ ) as

used in this study.
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Figure B12. Monthly Plant Area Index (PAI) for temperate needle leaf evergreen trees for the global 0.5◦ land use dataset (LUGl0.5◦ ) as used

in this study.
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Figure B13. Monthly Plant Area Index (PAI) for boreal broad-leaf deciduous trees for the high-resolution 1km land use dataset (LUHR1km)

as used in this study.
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Figure B14. Monthly Plant Area Index (PAI) for boreal broad-leaf deciduous trees for the global 1km land use dataset (LUGl1km) as used in

this study.
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Figure B15. Monthly Plant Area Index (PAI) for boreal broad-leaf deciduous trees for the global 0.25◦ land use dataset (LUGl0.25◦ ) as used

in this study.
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Figure B16. Monthly Plant Area Index (PAI) for boreal broad-leaf deciduous trees for the global 0.5◦ land use dataset (LUGl0.5◦ ) as used in

this study.
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Appendix C: Meteorological forcing data

This section shows supporting information regarding the meteorological forcing data presented in the main part of the manuscript.

First, we show the two DEMs used for lapse rate calculation in this study. We further show differences in yearly and monthly

precipitation for the OSHD-based and CRU-based dataset, as well as differences in monthly temperatures between the OSHD-555

based, the CRU-based and the CRU* datset.

Figure C1. Comparison of digital elevation model (DEM) at (a) 1km and (b) 0.5◦as used for lapse rate correction in this study.

Figure C2. Total yearly precipitation input for the year 2017: OSHD-based, CRUJRA-based and a differential plot.
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Figure C3. Total monthly precipitation input as averaged between 2014 and 2019 for the ClimOSHD forcing dataset.

40



Figure C4. Differences in total monthly precipitation input between the ClimOSHD and the ClimCRU forcing dataset.
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Figure C5. Mean monthly temperatures for the ClimOSHD forcing dataset.

42



Figure C6. Differences in mean monthly temperatures between the ClimOSHD and the ClimCRU forcing dataset.
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Figure C7. Differences in mean monthly temperatures between the ClimOSHD and the lapse-rate corrected ClimCRU* forcing dataset.
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Appendix D: Spatially distributed CLM5 model simulations

This section shows supporting analyses for the spatially distributed CLM5 model simulations presented in the main part of the

manuscript.

Figure D1. Spatial comparison of number of days with more than 2cm snow on the ground between January and June 2017: The reference

case (ClimOSHD1km+LUHR1km) is compared with simulations of all other CLM5 configurations used in this study. For the residual plots, blue

indicates underestimation and red indicates overestimation with regards to the reference case.
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Figure D2. Spatial comparison of melt-out date (day of year) during 2017: The reference case (ClimOSHD1km+LUHR1km) is compared with

simulations of all other CLM5 configurations used in this study. For the residual plots, blue indicates underestimation and red indicates

overestimation with regards to the reference case.
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Figure D3. Violin-plots showing comparison of all 12 CLM5 model configurations for the year 2017 across the entire model domain: (a)

number of days with >2cm of snow between January and June 2017, (b) cumulative SWE (total positive SWE increments; ‘how much water

is stored in total’) during the hydrological year 2017 (1.10.2016 - 30.09.2017), (c) monthly-averaged GPP during May and June 2017and (d)

total Evapotranspiration during the 2017 hydrological year. In addition to information obtained from a box plot (25th + 75th percentiles and

median), the violin plots show a kernel density estimate of the data.
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