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Abstract. Land surface processes, crucial for exchanging carbon, nitrogen, water, and energy between the atmosphere and

terrestrial Earth, significantly impact the climate system. Many of these processes vary considerably at small spatial and

temporal scales, in particular in mountainous terrain and complex topography. To examine the impact of spatial resolution

and quality
::::::::::::::
representativeness

:
of input data on modeled land surface processes, we conducted simulations using the Com-

munity Land Model 5 (CLM5) at different resolutions and based on a range of input datasets over the spatial extent of5

Switzerland. Using high-resolution meteorological forcing and land-use data, we found that increased resolution not only

::::::::::
substantially

:
improved the representation of snow cover in CLM5 (up to 52% enhancement)but also propagated through the

model, directly affecting gross primary productivity and evapotranspiration. These findings highlight the significance of high

spatial resolution and high-confidence input datasets in land surface models, enabling better quantification and constraint of

process uncertainties. They ,
::::::::
allowing

::::::
CLM5

::
to

::::::
closely

::::::
match

:::::::::::
performance

::
of

::
a

::::::::
dedicated

:::::
snow

::::::
model.

::::::::
However,

::
a
::::::
simple10

::::::::
lapse-rate

:::::
based

::::::::::
temperature

:::::::::::
downscaling

::::::::
provided

:::::
large

:::::::
positive

::::::
effects

:::
on

:::::
model

::::::::::::
performance,

::::
even

::
if
::::::::::
simulations

:::::
were

:::::
based

::
on

:::::::::::::::
coarse-resolution

::::::
forcing

:::::::
datasets,

:::::
only.

::::::
Results

:::::::::::
demonstrate

:::
the

::::
need

:::
for

:::::::::
resolutions

::::::
higher

::::
than

::::
0.25◦

::
for

::::::::
accurate

::::
snow

::::::::::
simulations

::
in

:::::::::::::
topographically

:::::::
complex

::::::
terrain.

:::::
These

:::::::
findings

:
have profound implications for climate impact studies. As

improvements were observed across the cascade of dependencies in the land surface model, high spatial resolution as well as

high-quality forcing data becomes necessary for accurately capturing the impacts of recent climate change
::::::
effects

::
of

:
a
::::::::
reclining15

:::::::::
snowcover

:::
and

::::::::::
consequent

:::::
shifts

::
in

:::
the

:::::::::
vegetation

::::::
period,

::::::::::
particularly

::
in

:::::::::::
mountainous

::::::
regions. This study further highlights

the utility of multi-resolution modeling experiments when aiming to improve process-based representation of variables in

land surface models. By embracing high-resolution modeling, we can enhance our understanding of Earth’s systems and their

responses
:::
the

::::
land

::::::
surface

:::
and

:::
its

:::::::
response

:
to climate change.
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1 Introduction20

The Earth’s changing climate is causing increasingly severe impacts on ecosystems worldwide (Pachauri et al., 2014; IPCC, 2022)

. Human activity has played a significant role in past land-cover changes and will continue to have both direct and indirect

impacts in the future (Vitousek et al., 1997; Pitman, 2003; Sterling et al., 2013; Pongratz et al., 2021).
::::::::
profound

:::::::::
alterations

::
in

:::::::::
ecosystems

:::::::
globally,

::::
with

:::::
large

::::::
impacts

:::
on

:::::::::
ecological,

:::::::::::
hydrological,

:::
and

::::::::::::
climatological

::::::::
processes

::::::::::::::::::::::::::::
(Pachauri et al., 2014; IPCC, 2022)

:
. In the context of the climate system, land surface processes control the exchange of carbon, nitrogen,

::::
water

:
and energy be-25

tween the atmosphere and the terrestrial Earth, making them critical components of the current
:::::::
terrestrial

::::::::::
ecosystems,

::::::
hence

:::::::::
profoundly

:::::::::
influencing

::::::::::::
contemporary and future climate (Ferguson et al., 2012; Dirmeyer et al., 2006; Seneviratne et al., 2006)

.
::::::::
dynamics

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ferguson et al., 2012; Dirmeyer et al., 2006; Seneviratne et al., 2006).

::::::::
Seasonal

:::::
snow

:::::
cover

::::::
greatly

:::::::
impacts

::::
this

:::::::
complex

::::::::
interplay,

::
as

:
it
:::::
plays

:
a
::::
vital

::::
role

:
in
:::
the

::::::
Earth’s

::::::
energy

:::::::
balance

:::
and

::::::::::
hydrological

:::::
cycle

:::::::::::::::::::::::::::::::::::::::
(Flanner and Zender, 2005; Barnett et al., 2005)

:
.
:::::
More

::::::::::
specifically,

::::::
snow’s

:::::::::::
characteristic

:::::
high

:::::::::
reflectivity

::::::::::::::::::
(Flanner et al., 2011)

::::::::::
substantially

:::::::::
modulates

::::
land

:::::::
surface

::::::
albedo30

:::
and

::::::
energy

:::::::
balance,

:::::
while

::
its

::::
low

:::::::
thermal

::::::::::
conductivity

:::::::::::::
(Zhang, 2005)

:::::
allows

::::
snow

:::
to

::
act

:::
as

::
an

:::::::::
insulating

::::::
blanket

:::
for

:::
soil

::::
and

:::::::::
organisms.

:::::
More

::::::::
generally,

::::::::::
agricultural

::::::::
irrigation

:::::
often

:::::::
heavily

:::::
relies

:::
on

:::::::::
snow-melt

:::
for

::::
food

::::::::::
production

::::::::::::::
(Qin et al., 2020)

:
,

::::
while

:::::
more

::::
than

::::
one

::::
sixth

::
of

:::
the

:::::::
world’s

:::::::::
population

::
is

:::::::::
dependent

:::
on

:::::
water

::::
from

:::::::
glaciers

::
or

:::::
snow

::::
melt

:::::::::::::::::
(Barnett et al., 2005)

:
,

::::::::::
highlighting

:::
the

:::::::::
importance

::
of

:::::::
glaciers

:::
and

:::::
snow

:::
for

::::::
human

:::::
water

:::::::
demand

:::::::::::::::::::::::::::::::
(Mankin et al., 2015; Pritchard, 2019).

:

Important
::::::
Within

:::
the

::::::::
integrated

:::::
Earth

:::::::
System,

::::::::
important interactions and feedback mechanisms exist between energy, water,35

and nutrient cycles. In seasonally snow-covered areas, the snowpack creates numerous such feedbacks: it controls
::::::::::
interactions:

:
it
:::::::::
influences the energy balance by modulating the exchange of heat and moisture between the land surface and the atmosphere

(Thackeray et al., 2019). It determines
::::::::
influences

:
the partitioning of energy fluxes, influencing

:::::::
affecting

:
the magnitudes of

both sensible and latent heat fluxes (Male and Granger, 1981), which, in turn, regulate the transfer of energy and water vapor,

shaping the local and regional climate patterns (Ban-Weiss et al., 2011). Moreover, the duration and extent of snow cover has40

direct implications for vegetation periods, which has the potential to impact gross primary production (GPP), a measure of

vegetation’s ability to convert solar energy into chemical energy (and carbon dioxide to organic matter) through photosynthesis

(Slatyer et al., 2022). Thus
::::::::
Therefore, the presence or absence of snow cover directly influences the availability of water and

sunlight for plants, influencing the productivity and carbon cycling within terrestrial ecosystems
:::
and

::::::::
resulting

::
in

:::::
direct

:::::
links

:::::::
between

:::::::
melt-out

::::
date

:::
and

:::::::
biomass

:::::::::
production

::::::::::::::::
(Jonas et al., 2008).45

As snow plays a vital role in the Earth’s energy balance (e.g., due to its high reflectivity (Flanner et al., 2011) and low thermal

conductivity (Zhang, 2005)) and hydrological cycle (Flanner and Zender, 2005; ?), understanding and quantifying the intricate

interactions among snow cover and ecophysiological processes is essential for accurate predictions of environmental change

and its impacts on the Earth’s systems. Experimental studies, including snow manipulation experiments (Rixen et al., 2022; Slatyer et al., 2022)

, have observed and assessed these feedbacks at the local scale (e.g., Zeeman et al. (2017); Cooper et al. (2020)); Extrapolating50

these findings to regional and global scales , however, is only possible through modelling studies and remains challenging today.

Ecohydrological models such as Tethys&Chloris (Fatichi et al., 2012; Mastrotheodoros et al., 2020) and RHESSys (Son and Tague, 2019; Tague and Band, 2004)

are specifically designed to represent interactions between water, energy, and the carbon cycles, but are not suitable for
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global-scale applications
:::
The

::::::
Global

::::::::
Climate

:::::::::
Observing

::::::
System

::::::::
(GCOS,

::::::::::::::::::
https://gcos.wmo.int/)

:::
has

:::::::::
identified

:::::
Snow

::::::
Cover

:::::
Extent

::
as

:::
an

:::::::
essential

::::::
climate

::::::::
variable,

:::::
which

::::::
further

:::::::::
underlines

:::
the

:::::::::
importance

::
of

:::::
snow

:::
for

:::::::::
monitoring

::::::
climate

::::::
change

::::
and

:::
the55

::::::
critical

:::
role

::
it

:::
has

::
in

::::::::
regulating

:::
the

::::::
energy

::::::
balance

::
of

:::
the

::::::
planet.

::
In

::::::::::::::
physically-based

::::::
models,

:::
the

::::::::::::
representation

::
of

:::::::
seasonal

:::::
snow

:::
and

::
its

::::::::
evolution

:::
are

::::::
usually

:::::
based

::
on

::::::
mass-

:::
and

::::::
energy

::::::
balance

:::::::::::
calculations.

:::::::::::::
Representations

::
of

::::::::
snowpack

::::::::
structure

::::
range

:::::
from

::::::
simple,

::::::::
one-layer

::::::::::
approaches

::::::::::::::::::
(Douville et al., 1995)

::
to

:::::::
complex

::::::::
schemes

:::
that

:::::::
resolve

::
up

::
to

:::
50

::::::::
snowpack

::::::
layers

:::
and

:::::
track

:::
the

:::::::
evolution

:::
of

::::
their

:::::::::::::
microstructural

::::::::
properties

::::::::::::::::::::::::::::::::::::::::
(Vionnet et al., 2012; Bartelt and Lehning, 2002).

::::
For

:::::
model

::::::::::
applications

::
at

:::::
large

:::::
scales

:::
and

::::::
coarse

:::::::::
resolutions,

:::::::::
snowpack

::::::::::::
representations

::::
with

::::
few

::
(3

::
to

::
ca.

:::
10)

::::::
layers

::::::::::::::::::::::::::::::
(Essery et al., 2013; Niu et al., 2011)

::::
have60

::::
been

:::::
found

::
to

::
be

::
an

::::::::
adequate

::::::::::
compromise

:::::::
between

:::::
model

::::::::::
complexity

:::
and

::::::::
accuracy

:::::::::::::::::::::::::::::::::::
(Dutra et al., 2012; Magnusson et al., 2015)

.

Land surface models (LSM) , in contrast, specifically target global-scale applications, as they were initially developed to

represent the lower atmospheric boundary condition of Global Circulation Models. Land surface modeling has seen remarkable

progress in recent years, evolving from simple biophysical parametrizations to complex frameworks that incorporate key pro-65

cesses such as soil moisture dynamics, land surface heterogeneity, and plant and soil carbon cycling (Fisher and Koven, 2020;

Lawrence et al., 2019). Today’s LSMs are thus principally suitable for, and even intended to, study process interactions and

feedbacks within the Earth’s systems (e.g., Lawrence et al. (2019). However, large challenges in land surface modeling today

remain due to uncertainties in process representation, unresolved sub-grid heterogeneity, and the projection of spatial and tem-

poral dynamics of model parameters (Beven and Cloke, 2012; Fisher and Koven, 2020; Fisher et al., 2019; Blyth et al., 2021).70

It is these limitations that make it difficult to reconcile site-scale experimental data and LSM simulations, hampering their

evaluation and further development. Multi-resolution modelling setups (including the point/site scale) overcome this very lim-

itation , as it allows to evaluate
::::
(e.g.

:::::::::::::::::::::::::::::::::
(Singh et al., 2015; Meissner et al., 2009)

:
),
:::
as

:::
they

:::::
allow

:::::::::
evaluating

:
a spatially distributed

LSM simulation over a large spatial extent, while at the same time certain aspects of the model (i.e. snow depth / snow cover

duration) can be validated at the point scale using in-situ observations.
::::
This

::
is

:::::::::
especially

::
of

:::::
value

::
if

::::::::::::
meteorological

:::::::
forcing75

:::
data

::::
(e.g.

::::::
station

:::::
data)

:::::
and/or

::::::::
land-use

::::::::::
information

::
as

::::
well

::
as

:::::
model

:::::::::
evaluation

::::
data

::
is

:::::::
available

:::
for

::
a

::::::
specific

::::::::::::
point-location.

:

Today, a strong push is evident towards higher resolution modeling, such as 1km simulations (Schär et al., 2020). While

achieving this level of resolution globally over extended periods remains a challenge due to computational limitations, higher

resolution allows for a more precise representation of land surface heterogeneity, which directly influences the representation

of various key parameters and their associated processes (e.g., Ma and Wang (2022); Rimal et al. (2019); Zhang et al. (2017)).80

Because snow cover dynamics
:::::
depth,

:::::::
duration

::::
and

:::::::::
variability

::
of

:::::::
seasonal

:::::
snow

:::::
cover

:
is strongly affected by topography and

thus highly variable in space (e.g., Clark et al. (2011)), higher resolution enables a more detailed characterization of snow

distribution, depth, and duration, capturing the spatial variability of snow cover across diverse landscapes (Lei et al., 2022;

Magnusson et al., 2019; Essery, 2003). Improved representation of snow cover dynamics has the potential to enhance simu-

lation of surface albedo, which affects the amount of solar radiation reflected back into the atmosphere, and thus influences85

surface temperatures (Thackeray and Fletcher, 2016; Flanner et al., 2011). Further variables and processes such as sensible

and latent heat fluxes (Singh et al., 2015), surface temperature and evapotranspiration rates, and GPP, are highly variable

in space (Anav et al., 2015). Increasing spatial resolution in land surface models, therefore has the potential to enhance not
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only the simulation of snow cover dynamics, but also helps understand for which related ecophysiological processes higher

spatial resolutions is paramount. Improved representation of the intricate interactions within the Earth’s systems makes LSMs90

a powerful tool to study these feedback processes across scales and advance our understanding of them
::
the

::::::
overall

:::::::::
simulated

::::::
surface

::::::
energy

::::::
balance

::::::::::::::::::::::::::::::::::::::::::
(Thackeray and Fletcher, 2016; Flanner et al., 2011)

:
.
:::
An

::::::::
improved

:::::::::::
representation

::
of

:::::
snow

:::::::
melt-out

::::
date

:::
can

::::::
further

::::::
directly

:::::
affect

:::::::::
simulation

::
of

::::
land

:::::::
surface

:::::::::
phenology

::::::::::::::
(Xie et al., 2020).

In this study, we explore how model resolution, and the quality of meteorological and land surface datasets affect the repre-

sentation of
:::::::
seasonal snow cover dynamics and dependent ecophysiological variables. Based

:
in

:::
the

::::::::::
Community

:::::
Land

::::::
Model95

:
5
::::::::
(CLM5),

:
a
:::::::::::::

state-of-the-art
:::::
LSM.

:::::
More

::::::::::
specifically

:::
and

::::::
based on the ideas highlighted above, we formulate the following

hypotheses:

Hypothesis 1: With increasing spatial resolution and quality of meteorological input datasets, the representation of snow

cover dynamics and its associated variables in CLM5 can achieve an accuracy comparable to that of a dedicated snow model.

However, differences in snow cover development (especially on the grid scale) raise the question of whether corresponding100

changes in growing season length arising from differences in simulated snow-cover have a substantial impact on phenology,

ecosystem functions, and the water budget
:::::::::
hypothesize

::::
that

::::
with

::::::::
increasing

::::::
spatial

::::::::
resolution

::::
and

::::::
quality

::
of

::::::::::::
meteorological

::::
and

:::
land

:::::::
surface

:::::
input

:::::::
datasets,

:::
the

::::::::::::
representation

::
of

:::::
snow

:::::
cover

::::::::
dynamics

::::
and

::
its

:::::::::
associated

::::::::
variables

::
in

::::::
CLM5

::::
can

::::::
achieve

:::
an

:::::::
accuracy

::::::::::
comparable

::
to

:::
that

:::
of

:
a
::::::::
dedicated

:::::
snow

:::::
model.

Hypothesis 2: Higher spatial resolution and increased level of detail in input datasets systematically affect the simulation105

of snow cover-dependent ecophysiological variables. We therefore predict that an increasing spatial resolution also improves

the simulation of evapotranspiration, and gross primary production, leading to better estimates of carbon fluxes.

To test these hypotheses
::
To

::::
test

:::
this

::::::::::
hypothesis, we implement a multi-resolution modelling framework using CLM5, a

state-of-the-art LSM. This framework bridges the gap between point/site-scale and spatially distributed land surface model-

ing, thus allowing us to compare process representation
:::::
model

:
accuracy across a hierarchy of spatial scales

:::
and

::::
using

:::::::
diverse110

::::::::
evaluation

::::
data, while preserving model architecture. This way, confounding effects due to differences in process parametriza-

tions are eliminated, isolating and clarifying the effects of model resolution and input-data, and allowing us to assess the

importance of an accurate representation of sub-grid variability within coarser resolution models.

We apply our framework to the spatial extent of Switzerland, including relevant watersheds of neighboring countries. This

region provides an ideal setting due to its diverse topography, encompassing both the Swiss Alps and the Swiss plateau. We115

test our hypotheses 1 and 2 by investigating relative differences between different
:::::::
Through

::
a
::
set

:::
of

::::::::
modelling

:::::::::::
experiments,

:::
we

:::::
assess

:::
the

::::::
relative

::::::
impact

::
of

:::::::
detailed

::::::::::::
meteorological

:::
and

::::
land

:::::
cover

::::::::::
information

::
on

:::::
snow

:::::::::
simulations

::::
with

:
CLM5 configurations

with regards to the (a ) snow dynamics, (b) terrestrial carbon cycle by focusing on heat fluxes and photosynthetic activity (GPP)

and (c) the terrestrial water budget by focusing on the sum of water returning back to the atmosphere (evapotranspiration,

ET)
:::::
across

:::::::::::::
topographically

::::::::
complex

:::::::::
landscapes. Our findings can inform

:::
the

::::::
optimal

::::::
design

::
of

:
further offline applications of120

LSMsto ,
:::
for

:::::::
instance

:
1)

::
to extrapolate local-scale experimental findings, and

:
; 2) provide context to

:
to

:::::::
address

:::
the

:::::::::
limitations

::
of global-scale, coarse resolution simulations;

::::
and

::
3)

::
to

::::::
support

:::
the

:::::::::::
interpretation

::
of
:::::
snow

:::::
cover

::::::::::
information

::::::::
contained

::
in

:::::
Earth

::::::
System

::::::::::
simulations.
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2 Methodology

2.1 Land surface modelling125

To investigate the effects of spatial resolution and input datasets in LSMs, we use the land component of the Community Earth

System Model (CLM5), a
::
an

::::::::::
open-source,

:
state-of-the-art,

::::
and

::::::
widely

::::
used

:
LSM that simulates carbon, nitrogen, water and

energy exchange between the atmosphere and the land surface (Lawrence et al., 2019, 2018). It offers two operational modes:

prognostic biogeochemistry (BGC) mode , which fully prognostically calculates all state variables, and prescribed satellite

phenology (SP) mode. For this study, we focused on running CLM5 in SP mode, where latest remote sensing-based datasets130

are used to prescribe part of the state variables in natural vegetation,
:::::
spatial

::::::
extents

::
of

:::::
Plant

:::::::::
Functional

:::::
Types

::::::
(PFTs)

:::
and

:::::
Crop

:::::::::
Functional

:::::
Types

::
as

::::
well

::
as

:::
the

:::::::::::
PFT-specific

:::::::
monthly

:::::
Plant

::::
Area

:::::
Index

:::::
(PAI,

::::
sum

::
of

::::
Leaf

:::::
Area

:::::
Index

:::
and

:::::
Stem

::::
Area

:::::::
Index),

:::::
hence reducing the degrees of freedom compared to prognostic calculations.

:::
See

:::::::
Section

::::
2.3.2

:::
for

:::::
more

::::::::::
information.

:

It’s important to note that in SP mode, carbon-nitrogen cycling is not considered, and certain processes such as leaf nutrient

limitation and respiration terms are omitted. GPP in CLM5 SP is
:::
for

:::
the

::::::
context

::
of

::::
this

:::::
study

:::
was

:
approximated by photosyn-135

thetic activity, with photosynthesis being limited by carboxylation, light, and export limitations for different plant functional

types (Thornton and Zimmermann, 2007; Farquhar et al., 1980). The photosynthesis module in CLM5 is described in detail by

Thornton and Zimmermann (2007), Bonan et al. (2011), and Oleson et al. (2010).
:::::::::
Simulations

:::::
were

::::::::
performed

:::::
with

:::
the

::::
Leaf

:::
Use

::
of

::::::::
Nitrogen

:::
for

::::::::::
Assimilation

::::::::
(LUNA)

::::::
routine

:::::
turned

:::
on

:::::::::::::
(Ali et al., 2016)

:
. Evapotranspiration in CLM5 is calculated as the

sum of transpiration, evaporation (considering soil/snow evaporation, soil
::
ice/snow sublimation as well as dew), and canopy140

evaporation following Lawrence et al. (2007).

Snow cover provides a convenient means of observing and validating the internal energy turnover of LSMs, and it is the

duration of snow cover that influences vegetation periods, ecophysiological processes, and carbon cycles. In CLM5, general

snow parametrizations are based on Anderson (1976), Jordan (1991), and Dai and Zeng (1997), with fractional snow cover

calculations being based on the method of Swenson and Lawrence (2012). In recent years there have been several updates to145

the snow-related parametrizations, most notably an inclusion of wind and temperature effects on fresh snow density and an

increase in maximum snow layers from 5 to 12 (Lawrence et al., 2019). A detailed description of snow related calculations in

CLM5 can be found in Lawrence et al. (2018).

Spatial resolution mostly
:::::
Spatial

:::::::::
resolution influences the representation of spatial heterogeneity in CLM5 which is repre-

sented by a sub-grid hierarchical system. Each grid cell is split into different land units (vegetation, glacier, lake, urban, crop),150

and vegetated land-units .
:::
On

:::
the

::::::
second

:::::::
sub-grid

:::::
level

::::::::::::
(column-level),

::::::::
potential

:::::::::
variability

::
in

:::
the

:::
soil

:::
and

:::::
snow

::::
state

::::::::
variables

:::::
within

:::
the

:::::
same

::::::::
land-unit

::
is

::::::::
accounted

::::
for.

::::::::
However,

:::
the

:::::::::
vegetation

:::
and

::::
lake

::::
land

::::
unit

::::
only

:::::
allow

:::
for

::
a

:::::
single

:::::::
column.

:::::
Each

::::::::
vegetated

::::::
column

:::
can

:::
be further divided up into

::
up

::
to
:
15 Plant Functional Types (PFTs) or bare ground (this is the second

::::
third

sub-grid level in CLM5, often referred to as the column-level
:::::::::
patch-level). Vegetation structure for each PFT is described by

monthly varying Leaf Area Index (LAI) and Stem Area Index (SAI), as well as canopy top and bottom heights.
:::
All

::
of

:::::
these155

:::::
values

:::
are

:::::::::
prescribed

::
in

:::
our

::::::
model

::::
setup

::::::::
(satellite

:::::::::
phenology

::::::
mode).
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Here, we applied CLM5 both to the regional scale, and to the point-scale, for which CLM5 features a dedicated point

mode (PTCLM). It is worth noting that what we refer to as point-scale simulations incorporates fractional state variables

(e.g., fractional snow-cover), as the gridded modeling algorithms (e.g.
::
i.e., exactly the same algorithms that are applied to

::
as

::::
used

:::
for

:
large-scale gridded simulations) are directly applied to a single point. From a snow-cover modeling perspective160

such an approach would be referred to as site-scale, but in order to be consistent with LSM conventions we refer to them

as point-scale simulations.
::
As

:::::
there

::
is

::
no

::::::
lateral

::::::::
exchange

::
in
::::

our
:::::
model

:::::
setup

:::::
(river

:::::::
routing

::
is

::::
off),

::::
there

::
is
:::
no

:::::::::
difference

::
in

::::::
running

::
a
::::::::
dedicated

::::::::::::::
point-simulation

:::
and

::::::
taking

:::
out

:::::::::
individual

::::
grid

::::
cells

::::
from

::
a
:::::::
regional

:::::::::
simulation,

:::::
apart

:::::
from

:::
the

:::
fact

::::
that

::
we

:::::
have

::::::::
additional

::::::::::
information

::
at

:::::
these

::::::
station

::::::::
locations

::::
(e.g.

::::::::::::
meteorological

::::::
station

::::
data

:::
for

:::::::
forcing,

:::::
exact

::::
GPS

:::::::
location

:::
for

::::::::::
downscaling

:::::::::::
temperature).

:::
We

::::::::
elaborate

:::
on

:::
our

::::::::::
experiments

:::::
setup

:::
for

:::::::::
point-scale

:::
and

:::::::
gridded

::::::::::
simulations

::
in

::::::
Section

::::
2.2.165

2.1.1
:::::
Snow

:::
and

:::::::::
fractional

:::::
snow

:::::
cover

::::::::
schemes

::
in

::::::
CLM5

:::::
Snow

::::
cover

::::::::
provides

:
a
:::::::::
convenient

:::::
means

::
of

:::::::::
observing

:::
and

::::::::
validating

:::
the

:::::::
internal

:::::
energy

::::::::
turnover

::
of

:::::
LSMs,

::::
and

:
it
::
is

:::
the

:::::::
duration

::
of

::::
snow

:::::
cover

::::
that

:::::::::
influences

::::::::
vegetation

:::::::
periods,

::::::::::::::
ecophysiological

:::::::::
processes,

::::
and

::::::
carbon

::::::
cycles.

:::
The

:::::
snow

:::::::
scheme

::
in

::::::
CLM5

:::::::
classifies

:::
as

:
a
::::::::::

multi-layer
:::::
snow

::::::
model

::::
with

:::::::
detailed

:::::::::::::::::::
internal-snow-process

:::::::
schemes

::::::::::::::::::::::::
(Boone and Etchevers, 2001)

:
.
:::::::
General

::::
snow

::::::::::::::
parametrizations

:::
are

::::::
based

::
on

:::::::::::::::
Anderson (1976),

::::::::::::
Jordan (1991)

:
,
:::
and

::::::::::::::::::
Dai and Zeng (1997),

::::
with

:::::::::
fractional

:::::
snow

:::::
cover170

::::::::::
calculations

::::
being

:::::
based

:::
on

:::
the

::::::
method

::
of

:::::::::::::::::::::::::
Swenson and Lawrence (2012)

:
.
::
In

:::::
recent

:::::
years

::::
there

::::
have

::::
been

::::::
several

:::::::
updates

::
to

:::
the

::::::::::
snow-related

:::::::::::::::
parametrizations,

::::
most

::::::
notably

::
an

::::::::
inclusion

::
of

:::::
wind

:::
and

::::::::::
temperature

::::::
effects

::
on

::::
fresh

:::::
snow

::::::
density

:::
and

:::
an

:::::::
increase

::
in

::::::::
maximum

:::::
snow

:::::
layers

:::::
from

::
5

::
to

::
12

:::::::::::::::::::
(Lawrence et al., 2019)

:
.
::
A

:::::::
detailed

:::::::::
description

:::
of

::::
snow

::::::
related

:::::::::::
calculations

::
in

::::::
CLM5

:::
can

::
be

::::::
found

::
in

:::::::::::::::::::
Lawrence et al. (2018),

:::
but

:::
for

:::::::::::
convenience

:::
we

::::
also

::::
give

:
a
::::
brief

:::::::::
summary

::
of

:::::
snow

::::::
related

::::::::::::::
parametrizations

::::
used

::
in

::::::
CLM5

::::
here.

::
In

:::::::
CLM5,

:
a
::::::::
snowpack

::::
can

::
be

:::::
made

::
up

:::
of

::
up

::
to

:::
12

::::::
layers,

::::
with

:::
the

:::::
lowest

:::::
being

::
at

:::
the

::::::::
snow/soil

::::::::
interface175

:::
and

:::
the

:::::::::
uppermost

::
at

:::
the

::::::::::::::
snow/atmosphere

::::::::
interface.

::::
Each

:::::
layer

::
is

::::::::
described

::
by

:::::
mass

::
of

:::::
water,

:::::
mass

::
of

:::
ice,

::::
layer

::::::::
thickness

::::
and

::::::::::
temperature.

::::
Any

::::::::
snowpack

:::::::
smaller

::::
than

:::::
10cm

::
is

:::::
treated

:::
as

:
a
:::::
single

:::::
layer

:::
and

::::
only

::::::::
described

:::
by

::::
mass

:::
of

:::::
snow.

::::
Upon

::::::
falling

:::
of

::::
solid

:::::::::::
precipitation

:::
on

::
a

:::::::
column,

:::::
either

::
a
::::
new

:::::
snow

::::
layer

::
is
:::::::::

initialized
:::
(if

:::::::
>10cm)

::
or

:::
the

:::::
snow

::
is
::::::
added

::
to

:::
the

::::::
present

:::::
one,

:::::::
whereby

:::::::::::
combination

::::
and

::::::::::
subdivision

::
of

:::::
snow

::::::
layers

::
is

:::::
based

:::
on

::::::::::::
Jordan (1991).

:::::
Mass

:::
of

:::
ice

::
in

:::::
each

::::
snow

:::::
layer

::
is

:::::::::
calculated

:::::
based

::
on

::::
the

:::
rate

:::
of

::::
solid

:::::::::::
precipitation

:::::::
reaching

::::
the

::::::
ground,

::::::
taking

::::
into

:::::::
account

:::::
gains

:::
due

::
to
:::::

frost180

:::
and

:::::
losses

::::
due

::
to

::::::::::
sublimation

::
as

::::
well

:::
as

::::::
change

::
in

:::
ice

::::
due

::
to

:::::
phase

::::::
change

:::::::::
(melting).

:::::
Bulk

::::::
density

::
of

::::::
newly

:::::
fallen

:::::
snow

::
is

::::::::
calculated

:::::::::
dependent

::
on

:::
air

::::::::::
temperature

:::
and

::::::
further

::::::::
increased

:
if
:::::
wind

:::::
speeds

::::::
exceed

:::
0.1

::::
m-1

:::
due

::
to

::::
wind

:::::::::::
compaction,

::::::::
following

::::::::::::::::::::::::
van Kampenhout et al. (2017).

::::::
CLM5

:::::::
includes

::
4
::::::::
processes

::::::
leading

::
to

::::::
overall

:::::
snow

::::::::::
compaction:

:::
(1)

:::::::::
destructive

:::::::::::::
metamorphism

::
of

::::
new

::::
snow

:::
(2)

:::::
snow

::::
load

:::
(3)

:::::::
melting

:::
(4)

:::::::
drifting

:::::
snow.

:::::
Mass

::
of

:::::
water

::
in
:::::

each
::::
layer

::
is
:::::::::

dependent
:::
on

:::::
liquid

:::::
water

:::::
flow

::
in

:::
and

:::
out

::
of

::::
the

::::
layer

::::
and

::::::
change

::
in

::::::
liquid

:::::
water

:::
due

::
to
::::::

phase
::::::
change

:::::::::
(melting).

:::
For

:::
the

:::
top

:::::
snow

:::::
layer

:::
this

::::::::
includes

:::
rate

:::
of185

:::::
liquid

::::::::::
precipitation

:::::::
falling,

:::
and

::::::::::
evaporation

::
as

::::
well

::
as

:::::
liquid

:::::
dew.

::::
Any

:::::
water

::::::
flowing

:::
out

::
of

:::
the

::::::
lowest

:::::
snow

::::
layer

::::::::::
contributes

::
to

::::::
surface

:::::
runoff

::::
and

:::::::::
infiltration

::::::::::
calculations

::
in

:::::::
different

::::::
CLM5

::::::::::
subroutines.

:

::
An

::::::::
essential

:::::::
variable

:::
for

:::
the

::::::
energy

:::::::
balance

::::
due

::
to

:::
its

::::::
effects

::
on

:::::::
surface

::::::
albedo

::
is

::::::::
fractional

::::::::::::
snow-covered

::::
area

:::::::
(FSno).

::::
FSno

::
is

::::::
further

::
of

::::::::::
importance

::
as

::::::
CLM5

::::::::
calculates

:::::::
surface

::::::
energy

:::::
fluxes

:::::::::
separately

::
for

:::::::::
snow-free

:::
and

::::::::::::
snow-covered

::::
land

::::
unit

:::::::
fractions.

:::::
FSno

::
in

::::::
CLM5

::
is

:::::::::
calculated

::::::::
following

:::::::::::::::::::::::::
Swenson and Lawrence (2012)

:
,
:::::
which

::::
uses

:::::::
separate

::::::::::::::
parametrizations

:::
for

:::
the190
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::::
snow

:::::::::::
accumulation

::::
and

::::::::
depletion

:::::
phase.

::::::
During

::::::::::::
accumulation,

:::::
FSno

::
is

::::::::
calculated

:::
as:

:

FSnon+1 = 1− ((1− tanh(0.1qsno∆t))(1−FSnon))
:::::::::::::::::::::::::::::::::::::::::::::

(1)

:::::
where

::::::
qsno∆t

:::::::::
quantifies

:::
the

::::::
amount

::
of
::::

new
::::::
snow;

::::::
FSnon

::::
and

:::::::::
FSnon+1

:::::
denote

:::::
FSno

::
at

:::
the

::::::::
previous

:::
and

::::::
current

::::
time

:::::
step,

::::::::::
respectively.

::::::
During

::::::::::
snow-melt,

::
the

:::::::::
following

:::::::::::::
parametrization

::
is

::::
used:

:

FSnon+1 = 1−
:::::::::::::

[
1

π
acos(2

W

Wmax
− 1)

::::::::::::::::

]nmelt

::::
(2)195

::
W

::
is
:::
the

:::::::::
simulated

:::::
snow

:::::
water

:::::::::
equivalent

::::::
(SWE)

::
at
::::

the
::::::
current

::::
time

::::
step

::::
and

::::::
Wmax ::

is
:::
the

:::::::::
maximum

::::::::
simulated

:::::
SWE

:::
of

::
the

:::::
snow

:::::::
season.

:::::
nmelt::

is
:::
the

:::::
snow

:::::::
covered

::::
area

:::::
shape

::::::::
function,

:::::
which

::
is
::::::::::
determined

::::
from

::::::
σtopo,

:::
the

:::::::
standard

::::::::
deviation

:::
of

:::::::::
topography

::::::
within

:
a
::::
grid

:::
cell

:::
by:

:

nmelt =
200

σtopo
:::::::::::

(3)

2.1.2
:::::::::
Rain-snow

::::::::::
partioning

::
in

::::::
CLM5200

:::::
CLM5

::::::::
partitions

::::
total

:::::::::::
precipitation

:::
into

::::
rain

:::
and

:::::
snow

::::::::
according

::
to
::
a
:::::
linear

::::::::::
temperature

:::::
ramp,

:::::::
resulting

::
in

:::
all

::::
snow

::::::
below

::::
0°C,

::
all

::::
rain

:::::
above

::::
2°C,

:::
and

:
a
::::
mix

::
of

:::
rain

::::
and

::::
snow

:::
for

::::::::::
intermediate

::::::::::::
temperatures.

::::
More

::::::::::
specfically,

:::
the

::::::
fraction

::
of

::::
total

:::::::::::
precipitation

:
P
::::::
falling

::
as

::::
rain

::::::
(qrain)

:::
and

:::::
snow

::::::
(qsnow)

::
at

::::
each

::::::::
timestep

:
is
:::::::::
calculated

::
as

:::::::
follows:

:

qrain = P (fp)
:::::::::::

(4)

205

qsnow = P (1− fp)
:::::::::::::::

(5)

fp = 0< 0.5(Tatm −Tf )< 1
:::::::::::::::::::::::

(6)

:::::
where

:::
Tf :

is
:::
set

::
to

::::
0°C.

:

2.2 Model experiments with CLM5210

Figure 1 provides a general overview of the experimental setup, which includes three main aspects. Firstly, we varied the

spatial resolution, ranging from 0.5◦(10x6 grid cells) to 0.25◦(19x11 grid cells) to 1 km (365x272 grid cells) over the study

domain.
::
As

:::
the

::::
0.5◦

:::
and

::::
0.25◦

::::
grids

:::::
were

::::::
chosen

::
to

:::::::
closely

:::::
match

:::
the

::::::
extent

::
of

:::
the

:::::::::::::
pre-determined

::::
1km

::::
grid,

::::
grid

:::::::::
anchoring

:::::
might

::::::
slightly

:::::
vary

:::::::
between

::::::::::
resolutions.

:
Secondly, we used different meteorological forcing datasets, including a globally

available coarse-resolution dataset (ClimCRU), the same global dataset with lapse-rate corrected temperature (ClimCRU*), and215

a high-resolution regional dataset (ClimOSHD). Lastly, we considered two options for land-use information: a global dataset

7



Figure 1. Schematic overview specifying the 3 facets of the experimental setup: Variation of i) spatial resolution, ii) meteorological forcing

data and iii) land-use information. i) shows the different grids used, including the locations of the snow stations. ii) shows monthly mean

temperature (May 2018) from the different data sources: Globally-available coarse-scale dataset (ClimCRU), the same but with a lapse-rate

corrected temperature (ClimCRU*), and a high-resolution regional dataset (ClimOSHD). Note that ClimCRU data is provided at 0.5◦(top left-most

panel in ii), and bilinearly regridded to 0.25◦and 1km. ClimCRU1km is then downscaled via a lapse-rate correction to obtain ClimCRU*1km, before

being up-scaled to 0.25◦and 0.5◦. Apart from temperature, meteorological forcing data is identical for ClimCRU1km and ClimCRU∗1km

simulations. ClimOSHD data is provided at 1km, and upscaled to 0.25◦and 0.5◦. iii) shows differences in land-use information considered in

this study by the example of percentage vegetation cover
::::
(sum

::
of

::::::::
vegetation

::::
PFTs

:::
and

::::
crop

:::::
CFTs).
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(LUGl) and a high-resolution dataset (LUHR). This approach is intended to cover
:::
the multiple facets of resolution: on

::
the

:
one

hand, the spatial resolution of the CLM5 simulations themselves; on the other hand, the ‘native’ resolution, or level of detail,

of the input datasets, with higher resolution implying better quality of the datasets. Different CLM5 configurations were set up

to cover the variations in spatial resolution, meteorological forcing, and land-use information.220

At the 1km scale, CLM5 was run with six different configurations, each using different combinations of meteorological

forcing and land-use information. At the 0.5◦and 0.25◦resolutions, CLM5 was run with three configurations corresponding to

the respective meteorological forcing datasets and using the global land-use dataset. These regional CLM5 simulations across

the spatial extent of Switzerland and adjacent watersheds of neighboring countries, covering an area of 44,050 km2, were set

up in an identical way as global simulations.225

Additionally, point-scale simulations were conducted at 36 snow-monitoring station locations within the model domain. At

the snow monitoring stations, we focus on the impact of meteorological forcing and land-surface input on CLM5 simulations

by
::::
first running the same six configurations as for the 1km gridded experiment. Land surface information for each site location

was thereby extracted from the nearest
:::::
While

::::::
exactly

:::
the

::::
same

:::::::::
modelling

:::::::::
framework

::::
was

::::
used

::
for

:::::
these

:::::::::
point-scale

::::::::::
simulations

::
as

:::
for

:::
the

::::::
gridded

:::::::::::
simulations,

::::::::::::
meteorological

:::::::
forcing

:::
was

:::::::::::::
station-specific

::::
(e.g.

:::
not

::::
just

:::
the

::::::::
extracted

::::::::::::
meteorological

:::::::
forcing230

::::
from

:::
the

::::::
closest

:
1km tile of the gridded dataset (either LUGl1km or LUHR1km).

::::::
gridcell,

:::
see

:::::
2.3.1

:::
for

::::::::
additional

::::::::::::
information).

:::::::
Knowing

::::
that

:::
all

::
36

:::::::::::::::
snow-monitoring

::::::
stations

:::
are

:::::::
located

::
on

:::::::::::
non-forested

:::::
land,

:::
we

:::
set

::
up

::
3

::::::::
additional

::::::::::
simulations

::::::::
enabling

:::::
direct

:::::::::
comparison

:::
of

::::::::::
observations

:::::
with

::::::::
respective

:::::::::::
simulations:

:::
For

::::
each

:::::::::::::
meteorological

::::::
forcing

::::::
dataset

:::::::::
(ClimCRU,

:::::::::
ClimCRU*,

:::::::::
ClimOSHD)

:::
we

::
set

:::
up

::
a
:::::::::
simulation

:::::
where

::::
the

:::::::
land-unit

::::
was

:::
set

::
to

:::
be

:::::
100%

::::::::
vegetated

:::::
with

::::
PFT

:
0
:::::

(bare
:::::::
ground)

::::::
rather

::::
than

::::
using

:::
the

:::::::::
composite

:::::::
grid-cell

:::::
from

::
the

::::::
LUHR :::

and
:::::
LUGl ::::::

dataset,
::::::::::
respectively.

:::::
This

::::::::
additional

::::
land

:::
use

::::::
dataset

::
is

::::::
further

:::::::
refereed235

::
to

::
as

:::::::
LUnofor. Model performance evaluation was carried out based on in-situ observations at these stations (see Section 2.4.1

and 2.5.1 for more information). We also set up simulations at 6 FLUXNET tower locations (Pastorello et al., 2020), setup and

results of which can be found in Appendix ??.

The performance of all gridded CLM5 configurations in simulating seasonal snow cover was assessed against simulations

obtained with a the dedicated snow model (see Section 2.4.2 and 2.5.2 for more information). Outcomes from the snow cover240

analyses were complemented by examining the link between spatially distributed CLM5 simulations of seasonal snow and

their subsequent effects on ecophysiological variables through a relative comparison of the different gridded CLM5 model

configurations , with a particular focus on
:::::::::::
configurations

:::
for

:::
the

:::::::::::::::
ecophysiological

::::::::
variables gross primary production and

evapotranspiration.

2.3 Input datasets245

Each CLM5 model configuration requires the following meteorological driving data: incident short and long-wave radiation, air

temperature, relative humidity, wind speed, pressure, and precipitation. Additionally, a land surface information file is required.

CLM5 simulations were set-up to run between January 2016 and December 2019, in order to maximize the temporal overlap

between the various meteorological forcing datasets and available data for model bench-marking
::::::::::::
benchmarking. We further

performed 10 years of spin-up in accelerated decomposition mode, followed by a final spin-up of 10 years, both by
::
by

:
re-cycling250
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through the available input-data. A spin-up was necessary to ensure soil moisture and soil temperature were in approximate

equilibrium and not affecting temporal dynamics and physical properties e.g., of the simulated snow cover evolution.

2.3.1 Meteorological Forcing

To assess the impact of meteorological input data quality, we considered three meteorological forcing datasets with increasing

level of detail. As an example of a standard global dataset, we used the recent state-of-the-art dataset CRU-JRA (University255

of East Anglia Climatic Research Unit; of East Anglia Climatic Research Unit; Harris (2019)), which provides near-global

(excluding Antarctica) six-hourly meteorological data on a 0.5◦latitude x 0.5◦longitude grid. CRU-JRA is a merged product

of the monthly Climate Research Unit (CRU) gridded climatology (Harris et al., 2014) with the Japanese Reanalysis product

(JRA, Kobayashi et al. (2015)). We selected CRU-JRA due to its large timespan (1901-2020), which includes recent years and

hence ensures sufficient overlap with our high-resolution forcing dataset (see below), data as well as due to its application in260

the annual Global Carbon Budget assessments (e.g., TRENDY, Friedlingstein et al. (2020))
:::
and

:
in the Land Surface, Snow

and Soil Moisture Model Intercomparison Project (LS3MIP, Hurk et al. (2016)). The original 0.5◦CRU-JRA dataset was first

projected to our model domain using nearest neighbor techniques (ClimCRU0.5◦ ), before re-gridding it to 0.25◦and ,
:
1km

:::
and

::
all

:::::
point

:::::::
locations

:
using bilinear interpolation to obtain ClimCRU0.25°and ,

:
ClimCRU1km :

as
::::
well

:::
as

::::::::
ClimCRUpt .

As a dataset representing an intermediate level of detail, we upgraded the ClimCRU1km dataset
::
as

::::
well

::
as

:::::::::
ClimCRUpt

:::::::
datasets265

by downscaling temperature data using a temperature lapse rate of -6.5K/1000m, which resulted in the ClimCRU* dataset
:::
and

:::
the

:::::::::
ClimCRU*pt:::::::

datasets. This approach was intended to account for variations of air temperature within the complex topography

of the Swiss Alps and subsequent refinement of the partitioning of precipitation into snow and rain.
::
We

::::
use

:
a
::::::
global

:::::
DEM

::
at

:::
0.5◦

::
to

::::
first

::::
bring

:::::::::::
temperature

::
to

:::::::
sea-level

:::::::::::
temperatures

:::
by

:::::::
applying

:::::::
negative

:::::
lapse

:::::
rates,

::::::
before

::::
using

::
a
:::::::::::::
high-resolution

:::::
DEM

::
of

::::::::::
Switzerland

::
to

::::::
re-lapse

::::::::::
temperature

::::
(see

::::::
Figure

:::
C1

::
in

:::
the

::::::::
Appendix

:::
for

::::
both

:::::::
DEMs).

:::
For

:::
the

::::
snow

::::::
station

::::::::
locations

:::
we

::::
used270

::
the

::::::
actual

::::
GPS

:::::::::::
measurement

::
of

::::
each

:::::::
station,

:::::::
resulting

::
in

::::::::::
ClimCRU*pt .

:
The updated 1km fields were upscaled back to 0.25◦and

0.5◦to inherit this correction also to the coarser-resolution simulations. This resulted in the ClimCRU* dataset. All other forcing

variables were left identical for ClimCRU1km and ClimCRU*1km,
:::
as

:::
well

:::
as

::::::::
ClimCRUpt

::::
and

:::::::::
ClimCRU*pt:simulations.

As input datasets with the highest level of detail, we used meteorological forcing generated according to methods developed

by the Operational Snow Hydrological Service (OSHD), at 1km spatial and 1hour temporal resolution as well as all point275

locations at 1 hour temporal resolution. Necessary meteorological input variables were all provided by MeteoSwiss (COSMO1

and COSMOE product), and specific downscaling routines were applied e.g., to incoming solar radiation and wind velocity

to optimally capture the influence of complex topography. Of particular relevance to this study is the correction of snowfall

input fields by assimilation of station data according to Magnusson et al. (2014). In the context of this study, this dataset can be

considered a meteorological input specifically optimized for accurate gridded snow cover simulations. The 1km forcing data280

was then upscaled to the desired target resolution (0.25◦and 0.5◦) with no smoothing applied. We refer to Mott et al. (2023) for

further details with regards to the ClimOSHD product.
:::
The

::::::
OSHD

:::::::::::
downscaling

:::::::::
algorithms

:::::
were

:::
also

:::::::
applied

:::
for

::::
each

:::::::
specific

::::
snow

::::::
station

:::::::
location,

::::::::
resulting

::
in

:::
the

::::::::::
ClimOSHDpt

::::::
dataset

:::
for

:::
the

:::::::::
point-scale

::::::::::
simulations.

:
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2.3.2 Land-use information

::::::::::
Global-scale

::::::::
land-use

:::::::::::
information:

:
Input datasets for the land surface are based on the global-scale input dataset commonly285

used in CLM5, where
::::::
extents

::
of

::::
each

::::
land

::::
unit

::::
and percent plant functional type for each grid cell are derived from MODIS

satellite data (Lawrence and Chase, 2007), as are monthly LAI and SAI values. These global-scale surface input-datasets

have an initial resolution of 0.05. We firstly re-projected and re-gridded the dataset to the model domain using
:
In

::
a
:::
first

:::::
step,

:::::
which

::::
was

:::::::::
performed

::::::::
separately

:::
for

:::::
each

:::::
target

:::::::::
resolution

:::::::::
(including

::
all

::::::::::::::
point-locations),

:::
we

:::::
used

:::
the

:::::::
standard

:::::
CLM

:::::
tools

::::::::
(including

:::
the

:
Earth System Modelling Framework (ESMF) regridding tools, which resulted in

::
),

::
to

:::::
obtain

:
our “global info”290

land surface dataset (LUGl, see Figure 1)and .
::::
This

:
represents a land surface dataset equivalent to that which would be used in a

typical large scale LSM/General Circulation Model application. This step was performed separately for each target resolution ,

resulting
::::
Note

::::
that

:::
the

::::::::
resolution

::
of

:::
the

:::::::::
underlying

::::::
global

:::::::
datasets

:::::
varied

:::::
(0.05◦

::
for

:::::::::::::::
urban/lake/glacier,

::::
0.25◦

:::
for

::::::::::::
vegetated/PFT

:::::::::::
fractions/LAI

:::
and

:::::
SAI),

:::::
since

::
we

::::
used

:::
the

:::::
most

:::::::::
commonly

::::::
applied

::::::
CLM5

:::::::
datasets.

::::
This

::::
step

::::::
resulted

:
in the LUGl0.5◦ , LUGl0.25◦

as well as the LUGl1km dataset.
:::::::
datasets

::::
(see

:::::
Figure

:::
1).

::
In

:::::::::
Appendix

::
B

:::
we

:::::
show

:::::::
obtained

::::
land

::::
unit

::::::::::
distributions

:::
per

::::
grid

::::
cell295

::
for

:::
all

:
3
:::::
target

::::::::::
resolutions

::::::
(Figure

:::
B2,

::::::
Figure

:::
B1

:::
and

::::::
Figure

:::
B2

:::
for

:::::::
LUGl1km,

::::::::
LUGl0.25◦:::

and
::::::::
LUGl0.5◦ ,

:::::::::::
respectively),

::::::::::
patch-level

:::
PFT

:::::::::::
distributions

:::::::
(Figures

::::
B4,

:::
B5,

::::
B6)

:::
and

::::::::
monthly

:::
PAI

:::
for

:::::::::
temperate

:::::
needle

::::
leaf

::::::::
evergreen

:::::
trees

:::::::
(Figures

:::
B8,

::::
B9,

::::
B10)

:::
as

:::
well

:::
as

:::::
boreal

:::::::::
broad-leaf

::::::::
deciduous

:::::
trees

:::::::
(Figures

::::
B12,

:::::
B13,

:::::
B14).

::::
High

:::::::::
resolution

::::::::
land-use

:::::::::::
information:

:
To obtain an alternative land-use input dataset

::::::::
(LUHR1km)

:
with a higher level of

detail
:::
and

:::::
based

:::
on

::
a
:::::
more

:::::::::
up-to-date

::::
land

::::
use

::::::
dataset, the LUGl1km dataset was updated based on a combination of the300

official land use and land cover Data of Switzerland (Arealstatistik,
::::::::::::
high-resolution

::::
data

:::::::
sources:

::::
(1)

:::::::::
Copernicus

:::::::
Global

::::
Land

:::::::
Service

:::::::::
PROBA-V

:::::
data

:::
(2)

::::::::::
Copernicus

::::::::::::::
Sentinel-3/OLCI

::::
data,

::::
and

:::
(3)

:::::::::::::
high-resolution

::::::::
national

:::::
forest

::::::
mixing

::::::
ratios

::::::
derived

::::::::::
specifically

:::
for

::::::::::
Switzerland

:
(100m resolution, updated every 6-8 years and derived by visual interpretation of aerial

photographs (Office., 2001), forest mixing ratios (
:::::::::
resolution,

:::::::::::::::::::::::::::::::
Swiss-Federal-Statistical-Office (2013)

::
).

::
In

:
a
::::
first

::::
step,

::::
land

::::
unit

::::::::::
distributions

:::
per

::::
grid

::::
cell

::::
(first

:::::::
sub-grid

:::::
level

::
in

:::::::
CLM5)

::::
were

:::::::::
computed

:::::
using

:::
the

::::::::::
Copernicus

:::::::::
PROBA-V

:
100m resolution,305

Swiss-Federal-Statistical-Office (2013)) and
::::
2019

:::::::::
landcover

:::::::
datasets,

::::::
which

::::
have

:::::
been

::::::
shown

::
to

:::
be

::
of

::::
high

:::::::::::::
spatiotemporal

::::::
quality

::::
(e.g.

:::::
79.9%

::::::::
accuracy

::::
over

:::::::
Europe

::
for

:::
the

::::::::
Discrete

:::::::::::
Classification

:::::::
dataset,

::::::::::::::::::::
(Tsendbazar et al., 2021)

::
).

:::
The

::::::
native

:::::
100m

::::::::
fractional

:::::
cover

:::::::
datasets

:::::
were

::::::::::
reprojected

:::
and

:::::::::
regridded

::
to
::::

our
:::::::
domain

:::::
using

::::::
ESMF

:::::
tools

:::::
(with

::
a

:::::::
bilinear

:::::::::::
interpolation

:::::::::
algorithm).

:::
We

::::
used

:::
the

::::::::::
Copernicus

::::::::::::
Builtup-Cover

:::::::
Fraction

:::
to

:::::
obtain

:::
the

::::::
spatial

:::::
extent

:::
of

:::
the

:::::
urban

:::::::
landunit

::::::::
(assumed

::
to

:::
be

::
all

::
at

:::::::
medium

::::::::
density),

::
the

:::::::::::
Crops-Cover

:::::::
Fraction

:::
for

:::
the

::::
crop

:::::::
landunit

:::::::::
(assumed

::
to

::
all

:::
be

::::::
rainfed,

:::::::::::
non-irrigated

:::::
land),

::::
and

:::
the310

::::
level

:
1
:::::::
Discrete

::::::::::::
Classification

::::::
dataset

:::
for

:::
lake

::::
and

::::::
glacier

:::
land

:::::
units.

::::
The

::::::::
vegetated

:::::::
landunit

:::
was

:::::::
derived

::
by

::::::
adding

::::::::::
Copernicus

:::::::::
PROBA-V

::::::::::
Grass-Cover

::::::::
Fraction,

::::::::::
Tree-Cover

:::::::
Fraction,

:::::::::::
Shrub-Cover

:::::::
Fraction

::
as
::::

well
:::

as
:::::::::
Bare-Cover

::::::::
Fraction

:::::::
together.

::::::
Minor

::::::::::
adjustments

::::
were

::::::::
necessary

::::
due

::
to

:::::::::
regridding

:::::::
artifacts

::
to

::::::
ensure

::
(a)

:::
no

::::
pixel

::::::::
exceeded

:::::
100%

:::::
(e.g.

::::::
around

:::::
edges

::
of

:::::
lakes)

::::
and

::
(b)

:::::
each

::::
pixel

:::::
added

:::
up

::::::
exactly

::
to
::::::

100%
::::
(any

:::::::::::
non-classified

::::::
pixels

::::
were

::::::::
classified

::
as

:::::::::::::
non-vegetated).

::::::
Figure

:::
B1

::
in

:::::::::
Appendix

:
B
::::::
shows

::::::
extents

::
of

:::
the

::::::::
LUHR1km ::::::

dataset
:::
for

::::
each

::::::
CLM5

::::
land

::::
unit.315

:::
For

:::
the

::::
third

:::::::
sub-grid

::::
level

:::::::::::
(patch-level)

::
of

:::
the

::::::::
vegetated

:::::::
landunit,

:::
we

::::::
merged

:::
the

:::::
100m

::::::::::
Copernicus

:::::
Forest

::::
Type

:::::
layer

::
as

::::
well

::
as

:::
the

:::::
100m Copernicus Sentinel-3 data (333m resolution). More specifically we merged arealstatistics Switzerland and

:::::
shrub-
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:::
and

:::::
grass

:::::
cover

::::::
fraction

:::::
with

:::::
Swiss

:::::::
national

:::::
100m

:::::
forest

:::::::
mixing

::::
ratio

::::
data.

::::
The

::::::::::
Copernicus

:::::
Forest

:::::
Type

:::::
layer

:::::::::::
distinguishes

:::::::
between

:
6
::::::

forest
::::::
classes

::::::
(needle

::::
leaf

::::
and

:::::
broad

::::
leaf

::::::::
evergreen

:::::::
forests;

::::::
needle

:::
leaf

::::
and

:::::
broad

::::
leaf

::::::::
deciduous

:::::::
forests;

::::::
mixed

:::::
forests

::::
and

::::::::::
unclassified)

::::::
which

::::
were

:::::::::
translated

::
to

::::::
CLM5

::::
PFTs

::
in
:::

the
:::::::::

following
:::::::
manner:

:::::::::
Evergreen

::::
trees

:::::
(both

::::::::
deciduous

::::
and320

:::::::::
broad-leaf)

:::::
were

::::::::
classified

::
as

::::::
needle

::::
leaf

::::::::
evergreen

:::::::::
temperate

::::
trees

:::::::
(PFT2),

:::::::::
deciduous

::::::::::
needle-leaf

::::
trees

:::::
were

::::::::
classified

:::
as

:::::
needle

::::
leaf

:::::::::
deciduous

:::::
boreal

:::::
trees

::::::
(PFT4)

::::
and

::::::::
deciduous

:::::::::
broad-leaf

:::::
trees

::::
were

::::::::
classified

:::
as

::::::::
broad-leaf

:::::::::
deciduous

:::::::::
temperate

::::
trees

:::::::
(PFT8).

:::
All

:::::
shrubs

:::::
from

:::::::::
Copernicus

:::::
shrub

:::::
cover

:::::
were

:::::::
assumed

::
to

::
be

:::::::::
broad-leaf

:::::::::
deciduous

:::::
shrubs

::::::::
(PFT12),

::::
and

::
all

:::::
grass

::
as

::::
well

::
as

:::::::
sparsely

:::::::::
vegetated

::::
cells

:::::
were

::::::::
classified

::
as

:::
C3:::::

grass.
::::::
Mixed

::::
and

::::::::
unknown

:::::
pixels

:::::
were

::::
then

:::::::
updated

:::::
based

:::
on

:::
the

:::::::::
Swiss-wide

:::::::
dataset.

::
If

:::
the

:::::::::::
Swiss-dataset

::::::::
classified

:
it
:::
as

:::::
needle

::::
leaf

:::::
forest,

::
it

:::
was

:::
set

::
to

::::::
PFT2,

:
if
::
it
::::
was

:
a
:::::::::
deciduous

:::::
forest

:
it
::::
was325

:::
PFT

::
8,
::::::::::
needle-mix

:::
and

:::::::::::::
deciduous-mix

:::::
forest

::::
were

:::
set

::
to

::::
PFT

:
4
::::
and

::
no

:::::
wood

::::
was

:::::::
classified

:::
as

::
C3:::::

grass
:::::
(PFT

:::
13).

::::::
Figure

:::
B3

::
in

::::::::
Appendix

::
B

:::::
shows

:::::::::
percentage

::::
PFT

::::::::
fractions

::
of

:::
the

::::::::
LUHR1km ::::::

dataset.
:

::
In

::::
order

::
to
::::::

obtain
::
an

:::::::
updated

::::
LAI

:::::::
dataset, Copernicus Sentinel-3/OLCI,

::::::
OLCI/PROBA-V @333m and forest mixing ratios

to obtain vegetation, lake, urban, glacier, crop-fraction at the land-unit level and monthly LAI, SAI, fraction per PFT (incl.

bare ground) at the column level. This resulted in the high-resolution
:::
data

::
at
:::::
333m

::::::
spatial

:::::::::
resolution

::::
was

::::
used,

::::::
which

:::
has

::
a330

:::::::
temporal

:::::::::
resolution

::
of

:
3
::::::::
timesteps

:::
per

:::::::
month.

:::
We

::::
used

::::
data

:::
for

::
the

::::
year

:::::
2020,

::::
and

:::::::
averaged

:::
the

::
3
:::::::
monthly

::::::::
timesteps

::
to

::::::
obtain

:::
one

:::::
layer

::
of

::::
LAI

::::
data

:::
per

:::::::
month.

:::
For

:::::::::
evergreen

:::::
PFTs

::::::
August

::::
LAI

::::
was

::::
used

:::::
year

:::::
round,

::::::::
whereas

:::
for

:::::::::
deciduous

:::::
PFTs

:::
the

::::::::
respective

:::::::
monthly

::::::
values

::::
were

:::::
used.

::::
LAI

::
of

:::::
pixels

::::::
where

::::::
satellite

::::
data

::::
was

:::
not

:::::::
available

::::::
(snow,

:::::::
clouds)

:::
was

:::
set

::
to

::
1.

:::::
LAIs

::
of

:::::
crops,

::::::
shrubs

:::
and

::::::
grasses

::::::::
remained

::::::::::
unchanged

::
in

:::
the LUHR1km dataset.

::::::
Figure

:::
B7

:::
and

::::
B11

::
in

::::::::
Appendix

::
B
:::::
show

:::::::
monthly

::::
PAI

::
for

:::::::::
temperate

:::::
needle

::::
leaf

::::::::
evergreen

::::
trees

:::::::
(PFT2)

:::
and

::::::
boreal

::::::::
broad-leaf

:::::::::
deciduous

:::
tree

:::::
(PFT

:::
4).335

2.4 Test datasets

We used two observational datasets as test datasets
::::::
datasets

:
to assess model performance. The first, consisting of daily snow

depth observations from 36 snow stations, served
::::::
allowed

:
to evaluate the performance of CLM5 point-scale configurations

in simulating seasonal snow cover . For the second dataset
::::::
against

::::::
ground

:::::
truth

::::
data.

::::
For

::
an

:::::::::
evaluation

::
of

:::
the

:::::::
gridded

::::::
CLM5

:::::::::
simulations, we employed the Flexible Snow Model (FSM2) as a reference snow model for validationand comparison with the340

gridded CLM5 simulations of seasonal snow development. .
:

2.4.1 Snow stations

The 36 snow stations considered cover an elevational gradientand ,
:
are spread throughout Switzerland (see Figure 1i))

:
))
::::
and

::::
were

:::::::
selected

:::::
from

::
an

:::::::::::
exceptionally

::::::
dense

:::
and

::::::::
accurate

:::::::
network

::
of

:::::
snow

:::::::::::
observations. Table A1 in the Appendix specifies

locations and characteristics of each of these sites. Observations at the station locations consist of daily monitored snow depth345

(HS), which are collected as part of the snow monitoring networks of either the WSL Institute for Snow and Avalanche

Research (SLF) or the Federal Office for Meteorology and Climatology (MeteoSwiss). HS measurements were extracted at a

daily timestep and cleaned from obvious outliers (assessed against neighboring stations at similar elevations), which can occur

e.g. due to transmission or measurement errors (see Mott et al. (2023)
:::
for

::::
more

::::::
details).
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2.4.2 Snow cover simulations with FSM2350

The Flexible Snow Model (FSM2, Mazzotti et al. (2020)), a recent upgrade of the Factorial Snow Model (FSM, Essery

(2015)), is an open-source, spatially distributed, physics-based snow model . Gridded simulations
:
of

:::::::::::
intermediate

::::::::::
complexity.

::::::::::
Simulations at 250m resolution and point simulations at snow station locations have been specifically set up and calibrated

by SLF to run over the extent of Switzerland for the purpose of operational snow water resources monitoring (Griessinger

et al., 2019; Mott et al., 2023).
::
At

:::
the

:::::
250m

:::::::::
resolution,

:::::
model

::::
grid

::::
cells

:::
are

:::::::::
subdivided

::::
into

::::::
forest,

::::
open,

::::
and

::::::
glacier

::::::::
fractions,355

::::
with

:::::
forest

:::::
cover

::::::::::
descriptors

::::::
derived

:::::
from

::
a
::::::::::::
1m-resolution,

::::::::::::
LiDAR-based

:::::::
canopy

::::::
height

:::::
model

::::::::
available

:::
for

:::::::::::
Switzerland

::::::::::::::::::::::::::::::
(Mott et al., 2023; Waser et al., 2017)

:
. In the absence of high-quality, spatially distributed snow depth observations over the

entire extent of Switzerland, these FSM2 simulations were served as ground truth for this study. For comparison with CLM5

output, 250m resolution FSM
:::::
FSM2

:
output results were upscaled to 1km without smoothing

:::
(e.g.

:::::::::::
conservative

:::::::::
regridding).

2.5 Evaluation of model performance
:::::::::::
experiments360

2.5.1 Comparing point-scale CLM5 model simulations to station observations of snow depth

Observations at the snow monitoring stations (Figure 1 i and Table S1)
:::
and

:::::
Table

::::
A1)

::::::
provide

:::
an

::::::::::
exceptional

::::::::::
opportunity

::
to

::::
allow

::::::
proper

:::::::::
assessment

::
of

:::::::
regional

::::::
model

:::::::::::
performance.

::::::::::
Sub-sampled

:::::
from

:
a
:::::
dense,

:::::::::::
high-quality

::::::
network

::
of
:::::
snow

:::::::::::
observations,

::::
these

::::::::::::
measurements

::
of

:::::
snow

::::::
height were used to assess the ability of each

::::::::::::
station-specific

:
point-scale CLM5 configuration to

simulate seasonal snowpack in Switzerland,
:

and were additionally compared to offline FSM2 simulations. The
::::::::
evaluation

:::
of365

:::::
FSM2

::::
runs

:::::::
allowed

::
to

:::::
assess

:::::::
whether

::::::
FSM2

:
is
::
a
:::::::
suitable

:::::
model

::
to

:::
be

::::
used

::
as

:
a
::::::::
reference

:::
for

:::
the

:::::::
gridded

::::::::::
simulations.

:::
The

:
stations were binned into three elevational bands (<1000 m.a.s.l, 1000 – 2000 m.a.s.l, >2000 m.a.s.l) resulting in 10, 12

and 14 stations for the low, mid- and high elevation band, respectively. For each station location, the various CLM5 point-scale

simulations (ClimCRU1km+LUGl/HR 1km, ClimCRU*1km+LUGl/HR 1km, ClimOSHD1km+LUGl/HR 1km) as well as the FSM2 simulation

were compared to observations of snow depth (HS), by computing relative and absolute differences as well as Root Mean370

Square Errors (RMSE) and Mean Absolute Errors (MAE) for the timeframe between November and May of each simulation

year (2016-2019)
:::
time

::::::
frame

:::::::
between

:::::::
October

:::
and

::::
July

:::::
across

:::
all

:
4
:::::::::
simulated

::::
snow

::::::::
seasons.

::::::::::
Additionally

:::
we

:::
use

::::::
wiggle

:::::
plots

::
to

:::::
show

:::
the

:::::::
seasonal

::::::::
evolution

:::
of

:::::
model

:::::
errors

:::
for

:::
all

:::
the

:::::::::
point-scale

::::::::::
simulations

::::::
across

::
the

::::::::
2017/18

:::::
season.

2.5.2 Comparing gridded CLM5 model simulations to FSM2 simulations of snow depth375

For the
::::
Given

::::
that

:::
the

::::::::::
point-scale

:::::::::
evaluation

::::::
against

::::::
station

::::
data

:::::
offers

:::
an

:::::::::
incomplete

:::::::
picture

::
of

::::::
CLM5

:::::::::::
performance

::
in

:::
its

:::::::
’typical’

:::::
setting

::::::::::::::::
(coarse-resolution,

:::::::
gridded)

::
as

::
it

:
is
::::::
limited

::
to
:::::
point

::::::::
locations

::::
with

:
a
::::::
narrow

:::::
range

::
of

::::::::::
topographic

:::
and

:::::::::
vegetation

:::::::::::
characteristic,

:::
we

:::::::
provide

:
a
:::::::::::::
complementary

:::::::::
evaluation

::
of

::
all

:::::::
gridded

::::::
CLM5

:::::::::
simulations

::::::
against

::::::
FSM2.

:::::
This

:::::
model

:::::::::
evaluation

:::
was

:::::::::
performed

::
at

::::
0.25◦

::::::::
resolution,

::::::
which

::
is

:
a
:::
fair

::::::
target

::::
given

:::
the

::::::::::
complexity

::
of

:::
the

::::::::::
topography

:::::
across

::::
our

::::::::
modelling

:::::::
domain

:::
and

::
its

:::::::::
relatively

::::
small

:::::
size,

:::
and

::::::::::
considering

:::::::
today’s

::::::::::::
ever-increasing

:::::::::::::
computational

::::::::
resources.

::::::
FSM2

::
as

::::
well

:::
as

::::
1km

::::::
CLM5380
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::::::::
simulation

::::::
results

:::::
were

::::::
hence

::::::::
upscaled

::
to

::::
0.25◦

:::::
using

:
a
:::::::::::

conservative
:::::::::
upscaling

::::::::
approach

:::::
which

:::::::::
preserves

::::
areal

:::::::::
averages.

:::
For

:::
this

::::::::
purpose,

:::
we

::::
had

::
to

::::::::
decrease

:::
our

:::::::::
evaluation

:::::::
domain

:::::::
slightly,

:::
as

:::
we

:::::::::
performed

:::
the

:::::
1km

::::::::::
simulations

::::
with

::
a
:::::
mask

::::::
running

:::::::
exactly

:::::
along

:::
the

:::::
edges

::
of

:::
our

:::::::::
modelling

:::::::
domain,

::::::
making

::
it
:::::::::
impossible

:::
to

::::::
upscale

:::::
these

::::
areas

:::
to

::::
0.25◦

::::::
without

:::::
crude

::::::::::
assumptions.

::::
The

:::
0.5◦

:::::::::
simulations

:::::
were

:::::::::
downscaled

::
to
::::
0.25◦

:
,
:::
and

:::
all

::::::::::
simulations

::::
were

::::::::
evaluated

:::::
across

:::
the

:::::
same

:::::::
domain.

:

:::
For

:::
the

:
evaluation and quantification of snow-related CLM5 model experiment’s performance we used a Taylor diagram385

(Taylor, 2001), with FSM2 simulations of snow depth
:
at
:::::

0.25◦as our reference. A Taylor diagram combines centered RMSE,

correlation coefficients as well as the spatial/temporal standard deviation and hence describes overestimation or underesti-

mation of the models relative to a benchmark. In order to calculate the values for the Taylor diagram the output of the low

resolution

::::::::::
Additionally,

:::
in

:::::
order

::
to

:::::
better

:::::::::
understand

:::::::
patterns

:::
in

:::::
model

::::::::::
discrepancy

:::
as

::::
they

:::::
relate

::
to

::::::::::
topography

:::
and

::::
land

::::::
cover,

:::
we390

::::::::
compared

::::::::
simulated

:::::
snow

::::::
depth

::::
(HS)

:::
as

::
a

:::::::
function

:::
of

::::::::
elevation

:::
for

:::::
three

:::::
dates

::::::
during

:::
the

:::::::
2018/19

::::::
winter

::::::
season

::::::
(early

:::::
winter

::::::
1-Dec;

::::
mid

::::::
winter

::::::
1-Feb;

::::
late

::::::
winter

:::::::
1-Apr).

::::
This

::::::::::
comparison

::::
was

:::::::::
performed

:::
at

::::
1km,

::::
and

:::::
only

:::::::
included

::::
the

:::
six

::::
1km CLM5 simulations (0.25and 0.5resolution) was interpolated to the finer 1km grid without smoothing

::
as

::::
well

:::
as

::::::
FSM2,

:::::
hence

::
no

::::::::::::::::
up-/down-sampling

::::
was

::::::::
necessary

::::
and

::
the

:::::
effect

:::
of

:::::::
elevation

:::::
could

:::
be

:::::::
assessed

::::
over

:
a
:::::
larger

:::::::::::
distribution.

:::
We

::::::
further

::::::::
compared

:::::::
changes

::
in

:::::::
land-use

::::::::::
information

:::
and

::::::::
simulated

::::::::::
snow-cover

:::
for

::::::::::
non-forested

:::
vs.

::::::::::::::
forest-dominated

::::::::
grid-cells,

::::::::
allowing395

::
an

:::::::::
assessment

::
of

:::::::
whether

:::
the

:::::::::
sensitivity

::
to

:::
the

::::::
chosen

::::::
dataset

:::::::
depends

:::
on

:::
the

::::
land

::::
cover

::::
type.

3 Results

3.1 Snow
:::::::::
Evaluation

::
of

:::::
snow simulations

:
at

:::::
point

::::::::
locations

3.1.1 Snow dynamics using different meteorological forcing

We400

:::
We

:::::
begin

::
by

::::::::
focusing

::
on

:::::::::
simulated

:::::
snow

:::::
depth

::
at

::::
point

:::::::::
locations.

:::
We

:
observed distinct differences in performance using

different meteorological forcing datasets in our CLM5 experiments (see Figure 2). The
:::::::::
point-scale CLM5 model using global

meteorological forcing data (ClimCRU1km:::::CRUpt+LUGl/HR 1km:::::::Gl/HR/nofor) showed poor performance in modeling seasonal snow

development . RMSEs exceeded
:::::
across

:::
all

::::
snow

::::::
station

::::::::
locations.

:::::::
RMSEs

::::
were

:::::
close

::
to 1m for mid-elevation stations and only

marginally improved
:::::
better for high- and low-elevation stations.

::::
This

:::::::::::
demonstrates

:::
that

:::::
these

::::
runs

:::
fail

::
to

:::::::::
accurately

::::::::
represent405

:::::::::
elevational

::::::::
gradients

::
in

::::::::::
temperature

:::
and

:::::
snow

::::::::
amounts,

::::::
making

:::
the

:::::
error

:::::::::
dependent

::
on

::::
how

::::::
closely

:::
the

::::::::::::
characteristics

:::
of

:::
the

:::::
station

:::::::
happen

::
to

:::::
match

:::
the

::::::::::::
characteristics

::
of

:::
the

::::::
coarse

::::::::
resolution

::::::::
grid-cells

::
of

:::
the

::::::::
ClimCRU ::::::

forcing
:::::::
dataset.

When the lapse-rate based downscaled temperature input was used (ClimCRU*1km :::::CRU*pt+LUGl/HR 1km:::::::Gl/HR/nofor) instead, the

model’s performance improved significantly, particularly at low elevations.
::
At

::::
mid-

:::
and

::::
high

:::::::::
elevations

:::
the

:::::::
positive

::::::
impact

::
of

:
a
:::::
better

::::::::::
temperature

::::::::::::
representation

::
is
:::::::
masked

::
by

::::
the

:::::::::::
overestimated

:::::::::::
precipitation

:::::
input

:::::
when

::::::::
compared

::
to
:::

the
:::::::

OSHD
::::::
dataset410

:::
(see

::::::
Figure

:::
C2

::::
and

:::::
Figure

:::
C4

:::
in

:::
the

::::::::
Appendix

:::
for

::
a
::::::::::
comparision

:::
of

::::::::::
precipitation

:::::::
forcing

:::::::
between

:::
the

:::::
CRU

::::
and

:::
the

::::::
OSHD
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Figure 2. Comparisons of point-scale model simulations to observations of snow depth (HS) during the 2017/18
:::::
across

::
all

:::::::
simulated

:
snow

season
::::::
seasons (November-May

:::::::::
October-July) for combined (a) low elevation, (b) mid-elevation and (c) high elevation snow station locations.

Negative values depict under-estimations of the simulations. Means are shown by the white dots.The reference snow simulation (FSM2)

matches observations the closest, with negligible errors for low and mid-elevation points and slight underestimation for high elevation points.

CLM5 forced with OSHD data and based on high-resolution land-use information is the next best. For a more detailed assessment of seasonal

snow dynamics per station and simulation, refer to Figure ?? in the Appendix.
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Figure 3.
:::::
Wiggle

::::
plots

::::::::
comparing

:::::::::
point-scale

:::::
model

:::::::::
simulations

::
to

::::::::::
observations

::
of

::::
snow

:::::
depth

::::
(HS)

::::::::
throughout

:::
the

:::::::
2017/18

:::::
season

:::
for

:::
low

:::::::
elevation

:::
(a),

::::::::::
mid-elevation

:::
(b)

:::
and

::::
high

:::::::
elevation

:::
(c)

::::
point

:::::::
locations

:::::::
whereby

::::
blue

::::::
denotes

:::
too

:::::
much

:::
and

:::
red

:::
too

::::
little

::::
snow

::
in

:::
the

:::::
models

::::
when

::::::::
compared

::
to

::::::::::
observations.

::::
(d-f):

:::::::
Absolute

:::::::
difference

::
to
::::::::::
observations

:::
and

::::::
seasonal

::::
snow

:::::
depth

:::::::::
development

:::
for

:
3
:::::::
example

::::
point

:::::::
locations.

::::::
forcing

:::::::
dataset).

::::
The

::::::::::::
overestimation

:::
of

:::::
snow

::
at

::::
mid-

::::
and

::::
high

::::::::
elevations

:::
of

:::
the

::::::::
ClimCRU*::::::

dataset
::
is
::::::
hence

:
a
:::::
direct

:::::
result

:::
of

:::::::::::
overestimated

:::::::::::
precipitation

:::::
along

:::
the

::::
Alps.

:

The CLM5 model forced with OSHD data (ClimOSHD1km:::::OSHDpt+LUGl/HR 1km:::::::Gl/HR/nofor) demonstrated the best performance

across all three elevation bands, with only minor errors in low- and mid-elevation locations (e.g., RMSE/MAE of 0.25
::::
0.22/0.15

:::
0.11m415

for mid-elevation ClimOSHD1km :::::OSHDpt+LUHR 1km ::HR simulations). Results were consistent throughout all simulated years.
:::::
These

:::::::::
simulations

:::::::::
overcome

:::
the

:::
’too

:::::
much

:::::
solid

::::::::::
precipitation

::::::::
problem’

:::::::
outlined

::::::
above

::
as

:::
the

::::::
OSHD

::::::::::
precipitation

:::::::
forcing

::::::
dataset

::
is

::::::::
optimized

::
by

::::
data

:::::::::::
assimilation.

:::
The

::::::::::::::
underestimation

:
at
::::
high

:::::::::
elevations

::
is

::::
likely

::::
due

::
to

::::
snow

:::::::
process

:::::::::::
representation

::
in
:::
the

::::::
model
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:::::::::::
(combination

::
of

:::
too

:::
fast

:::::::
settling

:::
and

:::
too

::::::::
efficient

::::
melt,

:::
see

::::::
Figure

:::
3f).

:::::::::
Generally,

:::::
these

::::::
results

:::::::
indicate

:::
that

:::
the

::::::
CLM5

::::::
model

:::::
forced

::::
with

::::::
OSHD

::::
data

::::::::
approach

:::
the

:::::::
accuracy

::
of

::
a
::::::::
dedicated

:::::
snow

:::::
model

::::::::
(FSM2),

:
at
:::::
least

::::
when

::::::::
assessed

::
at

::::
point

:::::::::
locations.420

3.1.1 Snow dynamics using different land use information

:::::
Figure

::
3
::::::
further

::::::::
illustrates

:::::
these

::::::
results,

:::
as

::
it

::::::
features

:::::::
wiggle

::::
plots

::
as

::::
well

:::
as

:::::::
seasonal

:::::
snow

:::::::::::
development

:::
for

:::::::
selected

:::::
snow

:::::
station

:::::::
location

::::::::::
throughout

:::
the

:::::::
2017/18

::::::
winter

::::::
season.

::
It

::
is

:::::::
apparent

::::::
across

::
all

::::::::
elevation

:::::
bands

::::
that

:::::
FSM2

::::::::::
simulations

::::::
match

::::::::::
observations

:::
the

::::::
closest

:::::::::
(discussed

::
in

:::::
more

:::::
detail

::
in

:::::::
Section

::::::
3.1.1),

:::
and

::::
that

::::::
CLM5

:::::
forced

::::
with

::::::
OSHD

::::
data

::
is
:::
the

::::
next

:::::
best.

:::::
CLM5

::::
with

::::::
global

::::::::::::
meteorological

:::::::
forcing

:::
data

:::::::::::
(ClimCRUpt )

:::::::
performs

::::::
poorly

::::
with

:::::::
maximal

::::::
errors

::
of

::::
over

:::
3m.

:::::
These

::::::
biases

:::
are425

::::::::
persistent

:::::::::
throughout

:::
the

:::::
snow

::::::
season,

:::::::
whereas

:::::
snow

:::::
depth

:
is
::::::
mostly

::::::::::::
overestimated

::::::
below,

:::
and

:::::::::::::
underestimated

:::::
above

:::::::
2000m,

::::::::::
respectively.

Regarding the effects of the land-use information dataset, we observed that the choice of land-use information had a

smaller impact compared to the meteorological forcing data
:::
only

::::
had

:
a
:::::
small

::::::
impact

::
on

:::::::::
simulated

::::
snow

:::::
depth

:
(Figure 2).

:::
We

::::::
include

::::::::::
simulations

::::
using

:::
the

::::::
global,

:::
the

::::::::::::::
high-resolution,

::
as

::::
well

::
as

:::
the

::::::::::
non-forested

::::
land

::::
use

::::::
dataset

::::::
(LUGl,::::::

LUHR,
::::::::
LUnofor430

:::::::::::
respectively). While a slight improvement was seen when using the high-resolution land-use information dataset (LUHR1km::HR)

at high elevations for all three sets of meteorological forcing data (reducing RMSE by -0.13
::::
-0.06m/-0.02m/-0.06

::::
-0.11m for

ClimCRU1km::::CRUpt/ ClimCRU*1km ::::CRU*pt/ ClimOSHD1km :::::OSHDpt simulations, respectively), no significant
:::::::::
substantial

:
differences or

marginal decreases in model performance were observed for ClimOSHD1km, ClimCRU1km and ClimCRU*1km across all elevation

bands.
::
the

:::::
lower

::::
two

:::::::
elevation

::::::
bands.

::::
This

::
is

::::::
further

:::::::::
underlined

::
by

::::::
Figure

::::
3d-f.

:::::::::
Simulating

:::::
open,

:::::::::::
non-forested

::::
sites

:::::::::
(LUnofor)435

::::
only

:::
had

::::::::
marginal

::::::
effects

:::
on

::::::
model

:::::::::::
performance:

::::
For

::::
low

:::
and

:::::::::::::
mid-elevations

::
a

:::::
slight

::::::::
decrease

::
in

::::::
model

:::::::::::
performance

::
is

:::::::
apparent

:::
for

::
all

:::::
three

:::::::::::::
meteorological

::::::
forcing

::::::::
datasets,

:::::::
whereas

::
at

::::
high

:::::::::
elevations

:::::::::
differences

:::
are

::::::::
virtually

:::::::::::
non-existent.

::::
This

:::
can

::
be

::::::::
explained

:::
by

:::
the

:::::
larger

::::::
variety

:
in
::::::::
land-unit

:::::::::::
distributions

:
at
:::::
lower

:::::::::
elevations,

:::::
while

::
at

::::
high

::::::::
elevations

::::::::::
differences

:::::::
between

::
the

::::
two

:::::::
datasets

::::::::
remained

:::::
small.

:::::::::
Ultimately,

::
it

:::
can

::
be

::::
seen

::::
that,

::
at

::::::
coarse

:::::
model

:::::::::
resolution,

:::
the

:::::
effect

::
of

:::::::::::::
meteorological

::::::
forcing

:::
data

::
is
:::::::::::
substantially

:::::
larger

::
in

::::::::::
comparison

::
to

:::::::::
differences

::::::
arising

:::::
from

::
the

::::::
choice

::
of

::::
land

:::::::
surface

::::::::::
information.440

3.1.1 Accuracy of FSM2 point-scale simulations

Across all elevation bands, the FSM2 simulations closely matched the observations, with only minor errors at low and mid

elevations during the 2017/18 season (Figure 2). At high elevations, the FSM2 model slightly underestimated snow depths,

which can be assessed in more detail in Figure S1 in the supplementary material. Figure ?? in the Appendix features wiggle

plots as well as absolute difference and seasonal snow development for selected snow station locations, visualizing the
:
3.

::::::
Figure445

:
3
::::::::
visualizes

:::
the

:
superior performance of FSM2 in comparison to various

::
all CLM5 model experiments, further justifying using

FSM2 model simulations as our ground truth for the gridded simulation comparisons in Section 3.1.4
::
3.2.

3.1.2 Spatially distributed snow cover

3.2
:::::::::

Evaluation
::
of

:::::::
gridded

:::::
snow

::::::::::
simulations
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Figure 4. Taylor plots (Taylor, 2001) for comparisons of simulated snow-depth (HS) between all 12 different CLM5 configurations and the

reference snow simulation (FSM2, dark grey) during (a) early accumulation season (1-Dec), (b) mid-accumulation period (1-Feb) and (c)

ablation period (1-Apr) throughout four winter seasons (2015/16, 2016/17, 2017/18, 2018/19). The plotted statistical metrics allow for evalu-

ation and quantification of CLM5 model experiments performance
:
, based on centered RMSE (directly proportional to the distance away from

the reference (=FSM2)), correlation coefficients (azimuthal position) and the spatial/temporal standard deviation (radial position from the ori-

gin) which determines overestimation or underestimation of the models. An increase in resolution results in improved representation of snow

for all 3 time periods and across all meteorological/land-use information combinations. Simulations with high-resolution meteorological

forcing data substantially outperform global meteorological forcing cases, whereas simulations with different land-use information only

differ marginally. ClimOSHD1km+LUGl1km performs closest to the reference FSM2 simulation during all 3 time periods. The global case

simulations (e.g., ClimCRU0.5◦+LUGl0.5◦ ) do not perform well with low correlations and high standard deviations. See Figure 1(ii) and (iii) for

the various combination setups.

Here we investigate all 3
:::
The

:::::::::::
comparison

::
of

:::::::
gridded

::::::::::
simulations

::::
with

::::::
CLM5

::
to

::::::
FSM2

::::::::
reference

::::::::::
simulations

::::::
allows

::
us

:::
to450

:::::::::
investigate

::
all

:::::
three

:
facets of this study: Effects of resolution, effects of meteorological forcing data, and effects of land-

use information data. We focus on
::
To

:::
this

::::
end,

:::
we

::::::::
consider gridded simulations of snow depth from all 12 different CLM5

configurations (see Figure 1(ii) and (iii)) and compare them to FSM2 simulations .
::::::
(Figure

::
4).

::::
Our

:::::::
analysis

:
is
:::::::::
performed

::::::
across

::
all

::::
four

:::::
snow

:::::::
seasons,

:::
and

::
at
::::
0.25◦

:
.
:::::::::::
Additionally

::
we

::::::::::
investigate

::::
how

:::
the

:::::::
accuracy

::
of
::::::

CLM5
::::::
varies

::
as

:
a
::::::::
function

::
of

::::::::
elevation

::
by

:::::::::
comparing

:::
all

::::
1km

:::::::::
simulations

::::::
against

::::::
FSM2

::::::
(Figure

::
5)

:::
for

:::
the

:::::::
2018/19

::::::
season.

::::
For

::::
both

:::::::
analysis

::
we

:::::::::::
differentiate

:::::::
between455

::::
early

:::::::::::
accumulation

::::::
period

:::
(1st

::::::::::
December),

:::::::::::::::
mid-accumulation

::::::
period

:::
(1st

:::
of

::::::::
February)

:::
and

:::::::
ablation

::::::
period

:::
(1st

:::
of

:::::
April).

:

Increasing the level of detail in meteorological forcing data plays the largest role in modulating
::
has

:::
the

::::::
largest

:::::
effect

:::
on ac-

curacy of simulated seasonal snow cover
:
,
::::::::
especially

:::::
when

:::::::::
simulating

::
at

::::
1km. CLM5 runs with OSHD-based input data outper-

form all CRU- and CRU*-based simulations at all three points in time during winter (e.g., RMSE ClimOSHD1km+LUGl1km: 0.13,

0.28, 0.32
::::
0.07,

::::
0.14,

::::
0.18m vs. RMSE ClimCRU*1km+LUGl1km: 0.19, 0.47, 0.59

::::
0.12,

::::
0.29,

::::
0.37m vs. RMSE ClimCRU1km+LUGl1km460

: 0.23, 0.62, 0.79
::::
0.15,

::::
0.41,

::::
0.53m for early, mid, and end-winter respectively).
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When running CLM5 with global-based forcing data, increasing spatial resolution in isolation (e.g., regridding) only has a

marginal effect on accuracy of simulated seasonal snow cover during early and mid-winter, with a bit more of a pronounced

effect of increases to 1km during the ablation period(see difference between ClimCRU0.5◦+LUGl0.5◦ (red dots),
:
;
::::::
Figure

::
4))

:::
as

::::::::
compared

::
to

:::::
FSM2

::::::::::
simulations.

::::
The

:::::::
postitive

::::::
effects

::
of

::::::::
lapse-rate

::::::::
corrected

::::::::::
temperatures

:::
on

:::::
model

:::::::::::
performance

:
(ClimCRU0.25◦+LUGl0.25◦465

(dark red dots) and
:::::CRU1km:::

vs.
:::::::::::
ClimCRU*1km)

:::
are

::::::::::
pronounced

:::::
during

:::::::::::::::
mid-accumulation

::::
and

:::::::
ablation

::::::
period,

:::::
where

:::::::::::
performance

:
is
:::::::::::
substantially

:::::::::
enhanced,

:::::
while

:::::
during

:::::
early

:::::::::::
accumulation

::::
only

::::::::::
correlation

:::
and

:::::::
standard

::::::::
deviation

::
is

::::::::
improved

:::::
when

:::::::
moving

::::
from

:
ClimCRU1km +LUGl1km (orange dots) in Figure 4 a,b,c). The marginal effect can be attributed to the fact that increasing

spatial resolution in itself (e.g., simple regridding) does not bring any added value as in better representation of topography.

However, when using the down-scaled global temperature data as well as the OSHD
::
to

:::::::::::
ClimCRU*1km.

:::
The

::::::
reason

::::::
behind

::::
this470

:
is
::::
that

::::::
during

::::
early

::::::
season

:::::
snow

:::::
height

:::::
tends

::
to

:::
be

:::::
small

::::::::
anyways,

:::
but

::::
once

:::::
snow

:::::::
amounts

:::::::
become

:::::::::
substantial

:::
the

:::::
effect

::
of

::
a

::::::::
lapse-rate

::::::::
correction

:::
in

:::
the

::::::
context

::
of

::::::::::
partitioning

:::::::::::
precipitation

::::
into

:::
rain

::::
and

:::::::
snowfall

::::::::
becomes

::::
more

:::::::
evident,

::::
and

:::::::::
simulation

:::::
results

:::::::
diverge.

::
A

::::::
simple

::::
lapse

::::
rate

::::::::
correction

::::
that

:::::::
accounts

:::
for

::::::::::::
high-resolution

::::::::::
topography

:::::
hence

::::::
already

::::::
brings

:
a
:::
lot

::
of

::::::
benefit

::::::
relative

::
to

:
a
:::::::::::::::
coarse-resolution

::::::
dataset.

:

:::::
Figure

::
5

::::::
further

::::::::
illustrates

:::::
these

:::::::
findings:

::::::::
Focusing

::
in

::
on

::::
only

::::
one

:::::::::::
representative

::::::
season

:::::::::
(2018/19)

:::
and

:::::::
looking

:
at
:::::::::
simulated475

:::::::::
snow-depth

::
as

::
a

:::::::
function

::
of

::::::::
elevation,

:::::::::
elevational

::::::::
behaviour

::
of

::::::
FSM2

:
is
:::::::
matched

::::::
closest

:::
by

:::::
CLM5

::::::::::
simulations

:::::
using

:::::::::::
OSHD-based

forcing data, there is a substantial reduction in accuracy between the 1km and the 0.5/0.25simulations (Figure 4), implying

that a coarse resolution negates the benefit
:::
with

:::::
most

:::::::::::
discrepancies

:::::::::
occurring

::::::
during

:::
the

:::::::
ablation

::::::
period

::
at

::::
high

:::::::::
elevation.

:::::::::::
Downscaling

::::::::::
temperature

:::
has

::
a
:::::::::
substantial

:::::
effect

:::
on

::::::::::::
performance,

:::::::
allowing

:::::::::::
ClimCRU*1km::

to
:::::::

closely
:::::
match

:::::::::::
performance

:::
of

:::::::::::
ClimOSHD1km.480

::::::::
However,

:::
the

::::::
benefits

:
of a higher level of detail in the meteorological forcing .

Similarly to
::
are

:::::::
negated

::::
when

::::::
model

::::::::
resolution

:::::
itself

:
is
:::::::::
decreased.

::::::::::
Comparing

:::::
results

::
of

::::::
CLM5

::::::::::::
configurations

:::
that

:::::::
differed

::
in

::::::::
resolution

::::
only,

::
a
::::
large

::::::::
decrease

::
in

:::::::
accuracy

::
is

::::::
evident

:::
for

:::
the

:::::::
OSHD-

:::
and

:::::::::::
CRU*-based

::::
runs

::::
when

:::::::
moving

::::
from

::::
1km

::
to
::::::
0.25°,

::::
while

::::::
further

:::::::::
coarsening

::
to
::::
0.5°

::::
only

:::
has

::
a
:::::::
marginal

::::::
effect.

::::
This

::
is

::::::
because

:::
the

::::::::
evolution

::
of

:::::
snow

:::::
cover

::
is

::::::
shaped

::
by

:::::::::
non-linear

::::::
process

::::::::::
interactions

:::::
(e.g.,

::::::::::
temperature

:::::
fields

:::::
affect

::::
both

:::::::::
snowpack

::::::::
energetics

::::
and

::
its

:::::
mass

:::::::
balance

::
by

::::::::
dictating

:::::::::::
precipitation485

:::::
phase)

::::
that

:::
are

:::::
’lost’

::::
when

:::::::::::::
meteorological

:::::
input

::
is

:::::::
averaged

::::::::
spatially.

::::
Our

:::::::::
simulations

:::::::
suggest

::::
that

:
a
::::::
model

::::::::
resolution

::::::
higher

:::
than

:::::
0.25°

::
is

::::::::
essential

::
to

::::::
capture

:::
the

::::::
spatial

:::::::::::
heterogeneity

::
of

:::::
snow

:::::
cover

::::::::
evolution

::::::::
processes

::
in

:::
the

::::::::
complex

:::::
terrain

:::::::
present

::
in

:::
our

:::::
study

:::::::
domain.

::
In

:::::::::
accordance

::::
with

::::
this

::::::
finding,

:::::::::
resolution

:::
did

:::
not

::::
have

:::::
much

::::::
impact

:::
on

:::
the

::::::::::
performance

::
of
:
the point-scale

simulations at the snow station locations, the choice of land-use information only had a marginal influence on the simulation

accuracy of seasonal snow-cover development.
::::::::::
CRU-based

::::
runs,

:::::
since

::::::
simple

:::::::::
regridding

::::::
without

:::::::::
additional

:::::::::::
consideration

:::
of490

::::::::::
topographic

:::::
effects

:::
on

:::
the

::::::::::::
meteorological

::::::
drivers

::::
does

:::
not

:::::
bring

:::
any

:::::
added

::::::
values

::
in

:::::::
capturing

:::
the

:::::::::
non-linear

::::::::
processes

:::::::
shaping

::::
snow

:::::
cover

::::::::
dynamics

::
in

::::::::
complex

::::::
terrain.

Ultimately, throughout the 4
::::
four modeled years, and averaged over the model domain, substantial differences in simulated

snow-cover between the various CLM5 configurations are prevalent
::::::
evident

:
(Figure 4). In a similar manner to the point-

scale CLM5 simulations, results revealed vast
::::::::::
considerable

:
improvements in simulated snow cover accuracy when using high-495

confidence forcing data (Figure 2, Figure 4), with CLM5 in our best-effort scenario (ClimOSHD1km+LUHR1km simulation) almost
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Figure 5. Spatial comparison
::::::::
Simulated

::::
snow

::::
depth

::::
(HS)

::
as

:
a
::::::
function

:
of CLM5-simulated

:::::::
elevation

:::::
during

:
(a) GPP and b

::::
early

::::::::::
accumulation

:::::
season

:::::
(1-Dec)Evapotranspiration for the following cases: i) denotes the reference case, with “best”climate (ClimOSHD1km:b) + global land-use

info
:::::::::::::
mid-accumulation

:::::
period

:
(LUHR1km ::::

1-Feb) , ii
::
and

::
(c) singles out

::::::
ablation

:::::
period

::::::
(1-Apr)

::
for the effect

::::::
2018/19

:::::
winter

::::::
season.

:::
We

::::::
contrast

::::::::
elevational

:::::::::
dependency

:
of land-use information and iii

:::::
FSM2

::::
(dark

::::
grey) shows the combined effect climate and land-use info

::::
with

::
all

:::
six

:::
1km

:::::
CLM5

:::::::::::
configurations. For the residual plots,

:::
The

::::
dark blue indicates underestimation and red indicates overestimation with regards to

:::::
dashed

:::
line

::::::::
represents

:::::::::
hypsometry

:::::
across the reference case

:::::
model

:::::
domain

::::::::::::
(Switzerland+).

reaching the level of a dedicated snow model
:::
also

::
in

:
a
:::::::
gridded

:::::::::
application. This becomes especially apparent when looking at

the high correlation coefficient of the ClimOSHD1km+LUHR1km simulation in Figure 4.
::::::::
However,

:::::::
degraded

::::::
model

:::::::::::
performance

:::::::
between

:::
the

::::
1km

:::
and

:::
the

:::::
0.25◦

:::::::::::
configurations

:::::::
suggests

::::
that

::
in

:::::
order

::
to

:::::::
actually

::::::
benefit

:::::
from

:::
the

:::::
added

:::::
value

::
of

:::::::::::
high-quality

::::::
forcing

::::
data,

:
a
::::::::::
sufficiently

::::
high

:::::
model

:::::::::
resolution

::::::
remains

:::::::::
necessary

::::
when

::::::::
applying

::::::
CLM5

::
in

:::::::::::::
topographically

:::::::
complex

:::::::
regions.500

3.3 Simulation of ecophysiological parameters

::
In

::::
order

::
to

:::::
better

:::::::::
understand

::::
why

:::
the

:::::
effect

::
of

:::::::
land-use

::::
data

::
in

:::
our

::::::
results

:::
was

::::::::
minimal,

::
we

::::::
further

::::::::::
investigated

:::
the

::::
link

:::::::
between

::::::
changes

::
in
::::::::
land-use

::::::::::
information

:::
and

::::::::
simulated

::::::::::
snow-cover

:::
for

::::::::::
non-forested

:::
vs.

::::::::::::::
forest-dominated

::::::::
grid-cells.

::::::
Figure

::
6

::::::::
compares

:::::::::
differences

::
in

::::
PAI

::::::::
(averaged

::::::
across

::
all

::::::
PFTs,

:::::::
averaged

::::::::
between

:::::::::::::
January-March)

:::::
across

:::
the

::::::
model

:::::::
domain

:::::::
between

::::::::
LUHR1km505

:::
and

:::
the

:::::::
LUGl1km::::

with
::::::::
simulated

:::::
snow

:::::
height

:::
for

:::::::::::
1-Feb-2018.

:::
We

::::
show

::::
that

:::
the

:::::::
majority

::
of

::::::::::::::
snow-dominated

:::::
pixels

::::::::::
correspond

::
to

:::::
pixels

::::
with

::::
little

::::::
change

::
in

::::
PAI

:::::::
between

:::
the

::::::::::::
high-resolution

::::
and

:::
the

:::::
global

:::::::
land-use

:::::::
datasets

::::
(e.g.

:::::::::::
non-forested

:::::
areas).

::::::
Pixels

::::
with

::::
large

:::::::
changes

:::
in

:::
PAI

:::
on

:::
the

::::::::
contrary

::::
tend

::
to

:::
be

::::::
located

::
in

:::
the

:::::::::
lowlands,

::::
with

::::
little

:::::
snow

::::::::::
throughout

:::
the

::::::
season.

:::::
This

:::::::::::
demonstrates

:::
that

:::
the

::::::
impact

::
of

:::::::
land-use

::::
data

::
is
:::::::
masked

::
by

:::
the

:::::
many

:::::
pixels

::::
with

:::::
much

:::::
snow

:::
but

::::
little

:::::::
change

::
in

::::
PAI.

:::
The

::::
low

::::::::
sensitivity

:::
we

::::
find

::::
with

::::::
regards

::
to

:::::::
land-use

::::::
forcing

::
is
:::::
hence

::::::
mostly

::
a

:::::::
symptom

:::
of

:::
the

::::::
limited

::::::
overlap

:::::::
between

:::::
snow

:::::::::
dominated510

:::
and

:::::::
forested

::::
areas

::
in
::::
our

:::::
model

:::::::
domain.

:
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Figure 6.
::::
Links

:::::::
between

:::::
change

::
in

::::::
land-use

:::
and

::::::::
simulated

::::
snow

:::::
cover:

::
(a)

:::
PAI

::::::::
difference

::::::
between

:::
the

::::::
LUHR1km:::

and
::::::
LUGl1km::::::

dataset,
:::::::
whereby

:::
PAI

::::::::
(LAI+SAI)

::
is
:::::::
averaged

:::::
across

::
all

:::::
PFTs

::
as

:::
well

::
as

:::::::
between

::::::
January

:::
and

::::::
March.

::
(b)

:::::
Snow

::::
depth

:::
on

:::::::::
1-Feb-2018

::
as

:::::::
simulated

::
by

::::::
CLM5

:::::::::::::::::
ClimOSHD1km+LUHR1km.

::
(c)

::::::::::
Comparison

::
of

::::
snow

:::::
height

:::::::::
distributions

::
on

:::::::::
1-Feb-2018

:::
for

:::::::::::::::::
ClimOSHD1km+LUHR1km :::

and
::::::::::::::::
ClimOSHD1km+LUGl1km

,
::::
each

::
for

:::::
pixels

::::
with

:
a
::::
large

::::::
change

:
in
::::::
overall

:::
PAI

::::::
(>0.25)

:::
and

:
a
::::
small

::::::
change

::
in

:::::
overall

:::
PAI

:::::::
(<0.25).

3.3
:::::::::
Simulation

::
of

::::::::::::::
ecophysiological

:::::::::
variables

A relative
:::::
While

:::
the

:::::::
previous

:::::::
sections

:::::::
focused

::
on

:::
the

::::::::::::
representation

::
of

::::
snow

::::::
cover,

::
an

::::
asset

::
of

::::::
LSMs

::::::
relative

::
to

::::::::
dedicated

:::::
snow

::::::
models

::::
such

::
as
::::::

FSM2
::
is
::::
that

::::
they

:::::::
include

:
a
:::::
more

:::::::::::::
comprehensive

:::::::::
description

:::
of

::::
land

::::::
surface

::::::::
processes

::::
and

::::
state

:::::::::
variables,

:::::::
allowing

:::
the

::::::::::
interaction

:::::::
between

:::::
these

::
to
:::

be
:::::::::::
investigated.

::
In
::::

this
:::::

final
::::
part

::
of

:::
our

::::::::
analysis,

:::
we

:::::
thus

::::::
extend

:::
our

:::::
focus

:::
to515

::::::::::::::
ecophysiological

:::::::::
parameters

::
to

::::::::
showcase

::::::
effects

::
of

:::::
spatial

:::::::::
resolution,

:::::::::::::
meteorological

::::::
forcing

:::
and

::::::::
land-use

:::::::::
information

:::::::
beyond

::::
snow

::::::
cover.

::
In

::::
lack

::
of

::
a
::::::::
reference

::::::
model

:::
for

:::::::::
evaluation,

:::
we

:::::::
present

:
a
:::::::
relative comparison between spatially distributed (a)

simulated mean total peak (July+August) growing season GPP for 2017
:::
GPP

:::
for

::::::::::
2016-2019 as well as (b) total ET during

2017 is shown in Figure 7. In each
::
To

:::::
single

:::
out

:::
the

::::::
impact

:::
of

::::
each

::::
facet

::
of
::::

our
:::::
study,

::
in

::::
each

:
plot ClimOSHD1km+LUGl1km is
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Figure 7.
:::::
Spatial

:::::::::
comparison

::
of
::::::::::::::

CLM5-simulated
::
a)

:::::
yearly

::::
GPP

:::::
(mean

::::::::::
2016-2019)

:::
and

::
b)

:::::::::::::::
Evapotranspiration

:::
for

:
4
:::::::

different
::::::

CLM5

::::::::::
configurations

::
of
::::

this
:::::
study,

::::::
showing

:::::::
absolute

:::::
values

::
as

::::
well

::
as

::::::
relative

:::::::::
differences

::
to

::::::::
investigate

:::
the

::::
effect

:::
of

::::::
land-use

::::::::::
information,

:::
the

::::
effect

::
of

:::::::::::
climatological

:::::
forcing

:::
and

:::
the

:::::
effect

::
of

:::::
spatial

::::::::
resolution.

compared with the ClimOSHD1km+LUHR1km simulation (effect of land-use information), with the ClimCRU1km+LUGl1km (effect520

of meteorological forcing) as well as with the ClimOSHD0.5◦+LUGl0.5◦ simulation (effect of spatial resolution). Figures ??-D2

in the Appendix show this relative comparison for all remaining CLM5 model configurations used in this study, while Figure

?? shows monthly values for the full simulation period, averaged over the model domain.

For GPP, effects
::::::::
sensitivity

:
of land-use information are pronounced, with a mix of over- underestimations across the

model domain. Meteorological forcingdata had a slightly smaller with relative overestimations of GPP throughout
::::::::::
outweighed525

::::::::
sensitivity

::
of

:::::::::::::
meteorological

:::::::
forcing.

::::::
Higher

:::::
level

::
of

:::::
detail

::
in

:::
the

::::
land

:::
use

::::
data

::::::
caused

:::::
both

::::::::
increases

:::
and

::::::::
decreases

::
in
:::::

GPP

:::::
across the model domain(up to 14% during peak growing season when averaged over the model domain, see Figure ??). For the

coarse-scale runs, we see that non-resolved surface heterogeneity (e.g., lakes) has a large effecton simulated GPP, underlying

the effect of resolution
:
,
:::::
while

::::::::
improved

::::::::::::
meteorological

:::::
input

:::
had

::
a

::::
more

:::::::::
systematic

:::::
effect.

The choice of land surface information datasets, on the other hand, only showed marginal effects on simulated ET, but the530

effect of meteorological forcing results in substantial differences in simulated ET (up to 26% when averaged over the entire

model domain, see Figure ?? in the Appendix). This effect is especially pronounced along the Swiss Alps, where complex

terrain leads to differences in precipitation patterns captured by the two forcings (see Figure ?? in the Appendix for a direct
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::::::
Figures

:::
C2,

::::
C4,

::
C3

::
in

:::
the

::::::::
appendix

:::
for comparison of precipitation patterns in the forcing datasets). Similarly to GPP, the effect

of
::::::::::
Temperature

::::::::::
differences

:::::::
between

:::
the

:::
two

:::::::
forcing

:::::::
datasets

::::::
further

:::::::::
contributed

::
to

:::
the

::::::::::
differences,

::
as

::
it
::
is

::::::::
precisely

:::::
along

:::
the535

:::::
Swiss

::::
Alps

:::::
where

::::::::::
ClimCRU1km::::

does
:::
not

:::::::
capture

::::::::::
topographic

::::::
effects

::
on

:::::::::::
temperature.

:::
For

::::
both

::::
GPP

::::
and

:::
ET,

::::::
model

:
resolution in isolation strongly affects the patterns of simulated ET

:::::
spatial

:::::::
patterns

:
due to

non-resolved surface heterogeneity , but is
::
at

:::::
coarse

:::::::::
resolution.

::::::::::::
Discrepancies

:::::::
between

:::
the

::::::::::
simulations

:::
are less directional and

hence difficult to quantify.
:

3.4 Seasonal snow cover development and ecophysiological variables540

a-b and c-d: Spatial comparison of differences in CLM5 simulations highlighting the cascading effects of changes in snow cover

development to changes in ecophysiological variables. We compare our best-effort reference case (ClimOSHD1km+LUHR1km) and

ClimCRU1km+LUHR1km for 2017 showing a) monthly-averaged GPP in May and June 2017, b) number of days with more than

2cm of snow on the ground between January and July 2017, d) yearly sum of Evapotranspiration between October 2016 and

September 2017, and e) yearly cumulative sum of Snow Water Equivalent (SWE) between October 2016 and September 2017545

(total positive SWE increments; ‘how much water is stored in total’). c) and f) show the correlation between GPP and number

of snow days and ET and total SWE for 3 elevation bands (<1000m = yellow, 1000-2000m = blue, >2000m = grey) including

regression lines. The dashed red line in c) and f) is the overall regression line. For the residual (scatter) plots, blue (negative)

indicates underestimation and red (positive) indicates overestimation with regards to the reference case.

Substantial differences in simulated snow-cover550

4
:::::::::
Discussion

::::
This

:::::
study

::::
used

::::::
CLM5

:::
to

::::
offer

::
a
::::::::::
multi-scale

:::::::::
assessment

:::
of

:::
the

::::::::::::
representation

:::
of

:::::::
seasonal

:::::
snow

:::
in

:::::::
complex

:::::::::::
topographic

::::::
terrain,

::
by

:::::::::
evaluating

::::::::
simulated

:::::
snow

:::::
depth

::::::
against

:
a
::::::
wealth

::
of

::::::
station

::::
data,

:
as well as in simulated ecophysiological variables

persist between the various
:::::::
gridded

:::::
FSM2

::::::::::
simulations.

::::
The

::::::::::::::
multi-resolution

::::
setup

::::
and

:
a
:::::
suite

::
of

::::::
model

::::::::::
experiments

:::::::
allowed

:::::::::
assessment

::
of

:::::::
several

::::::
aspects

:::::::
(impact

::
of

:::::::::
resolution

:::
and

:::::
input

::::::::
datasets),

:::
in

:::::::
spatially

::::
and

:::::::::
temporally

:::::::
resolved

::::::::
manner,

:::::
while555

::::::::
leveraging

:::::::
diverse

:::::::
reference

::::::::
datasets.

:::::::::
Evaluation

::::::
against

:::::
station

::::
data

:::::::
showed

:::
that CLM5 configurations (see Section 3.1 and 3.2, respectively). These demonstrated

differences raise the question of the link between these discrepancies, more specifically whether corresponding changes in

growing season length arising from differences in simulated snow-cover have substantial impacts on the simulated terrestrial

carbon cycle and water budget. Here, we focus on differences between the best-effort simulation (Clim
::::
itself

::
is
:::::::

capable
:::

of560

::::::::
achieving

:::::::::::
performance

::::::
similar

::
to

::
a
::::::::
dedicated

:::::
snow

::::::
model

:::::
when

:::::::
applied

::
in
:::::

point
::::::

mode
:::
and

:::::
with

:::
the

::::
best

::::::::
available

:::::
input

:::
data

:::::
(land

::::
use

::::
info

:::
and

:::::::::::::
meteorological

:::::::
forcing;

:::::
ClimOSHD1km+LUHR1km) and the

::
).

::::::::::
Differences

::
to

::::::
station

::::
data

::::
are

::::::
largest

:
at
:::::

high
::::::::
elevation,

::::::
where CLM5 configuration with global meteorological forcingdata (ClimCRU1km+LUHR1km ::::::::::::

underestimates

::::
snow

::::::
cover.

:::
As

:::
this

::::
bias

:::::::
persists

::::::::::
throughout

:::
the

::::::
season, ‘effect of meteorological forcing data’)where large differences in
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the snow-based evaluation were evident (see Section 3.1), asking whether these differences are correlated with simulation565

differences in gross primary production and evapotranspiration.

Simulation differences in monthly-averaged GPP during May and June are shown to be negatively correlated with simulation

differences in snow duration (number of days with more than 2cm of snow on the ground between January and June, Figure

??a-c), which becomes apparent when visually comparing spatially explicit differences (Figure ??a-b): It is evident that

locations with lower differences in GPP production coincide with a larger difference in snow duration and vice-versa. This570

relationship is strong for elevations above 2000m (R2 = 0.74) and relatively strong between 1000 and 2000m (R2 = 0.51).

Expectedly, for pixels below 1000m this relationship is less pronounced, which can be attributed to the reduced effect of

snow-cover in low elevations. More generally we confirm the hypothesis that seasonal snow cover is important for determining

productivity during the growing seasonlength, with a negative correlation between snow and GPP (see Figure ??).

Shifting from the terrestrial carbon cycle to the water budget, we focus on simulation differences in yearly evapotranspiration575

(ET) and the total yearly amount of water contained within the snow-pack (snow water equivalent, SWE) to investigate

whether differences in ET can be explained by snow on the ground in addition to differences in precipitation input itself.

Evapotranspiration differences are shown to be negatively correlated with total SWE differences across all elevationbands

(Figure ??d-f), underlining the importance of snow for quantifying water feedbacks to the atmosphere with
:
it
::
is

:::::
likely

::::
due

::
to

:
a
:::::::::::
combination

::
of

::::::::::::
accumulation

:::
and

:::::::
internal

:::::::::
snowpack

::::::::
properties

:::::
(e.g.

:::
the

::::::
settling

:::::::::::::::
parameterization)

::::
and

::::
melt

:::::::::
processes.580

:::::::
Tracking

:::::
down

:::
the

:::::
exact

::::::::::
mechanism

:::::
would

:::::::
require

:
a
:::::::::::
process-level

::::::::::
comparison

:::::::
beyond

:::
the

:::::
scope

::
of

::::
this

:::::
study,

:::
but

::
it

::::::
should

::
be

:::::
noted

::::
that

::
in

::::::
FSM2

::
as

:::
set

:::
up

:::
by

::::::
OSHD

:::::::::
parameters

:::::
such

::
as

:::
the

::::::::
effective

:::::::::
roughness

:::::
length

::::
and

:::::
fresh

::::
snow

:::::::
albedo

::::
vary

:::::::
spatially

::::
(e.g.

::::
with

:::::::::
elevation);

:::::
future

::::::
studies

:::::
could

:::::
assess

:::::::
whether

::::
such

:::::::
spatially

:::::::
variable

::::::::::
parameters

::::
could

::::::
benefit

:
CLM5

::::
snow

:::::::::
simulations

::
as

::::
well.

A summary statistic of the four discussed variables in this section (GPPMayJune, number of snow days, total ET, total SWE)585

for all
::::::
Rather

::::
than

:::::::::
point-mode

:::::::::::
applications,

::::::::
however,

::::
CLM

::
is
::::::::
intended

::
for

:::::::
gridded

::::::::::
applications

::::
over

::::
large

::::::
areas.

::::
This

:
is
::::::
where

:::
our

::::::::
modelling

:::::::::::
experiments

:::::::
provided

:::::::::
interesting

:::::::
insights

::::
into

:::
the

:::::::::::
performance

::
of

:::::::
different

:
CLM5 configurations of this study

is provided in Figure D3 (Appendix), which underlines that our best-effort reference case (ClimOSHD1km+LUHR1km) exhibits

a wider spread in simulated GPPMayJune and total ET when compared to remaining CLM5 configuration simulations, which

reflects the wider spread of snow-duration. Figure ?? additionally shows summary statistics for GPPJulyAugust, which when590

compared to Figure D3c) (GPPMayJune) suggests that snow cover impacts on GPP are mainly visible in the beginning of the

growing season, further explaining why GPPMayJune was used here.

5 Discussion

In this study, we used a multi-resolution modeling setup to examine how input data and spatial resolution affect the accuracy of

seasonal snow cover simulations and their impact on ecophysiologial variables, with the focus being gross primary production595

(GPP) and evapotranspiration (ET). Availability of a wealth of snow station data in combination with operational FSM2 results

provided a unique opportunity to systematically assess snow cover simulation accuracy across elevations, in a spatially and
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temporally explicit manner.
::::::::::::
configurations.

:
We found that the most accurate snow cover simulations for Switzerland, with

results comparable to those of the operational snow-hydrological model
::::::
(FSM2), were achieved using high-resolution mete-

orological forcing data (OSHD) and a 1km resolution that fully resolved landscape heterogeneityconfirming our hypothesis1,600

which aligns with
:
.
::::
This

::::::::
confirmed

:::
our

::::::::::
hypothesis,

:::::
which

:::::
stated

:::
that

::::
with

:::::::::
increasing

::::::
spatial

::::::::
resolution

:::
and

::::::
quality

::
of

:::::::::::::
meteorological

:::
and

::::
land

::::::
surface

:::::
input

:::::::
datasets,

:::
the

:::::::::::
representation

:::
of

::::
snow

:::::
cover

::::::::
dynamics

:::
and

:::
its

::::::::
associated

::::::::
variables

::
in

::::::
CLM5

:::
can

::::::
achieve

:::
an

:::::::
accuracy

::::::::::
comparable

::
to

::::
that

::
of

:
a
::::::::
dedicated

:::::
snow

::::::
model.

::::::
These

:::::::
findings

::::
align

::::
with

:
previous studies (e.g., Lüthi et al. (2019)).

Simulation performance

::::::::::
Performance

:
of snow-cover simulations were dictated

::
is

::::
thus

::::::::::
constrained by the capability of the meteorological input to605

capture topographic effects (e.g., improved estimation of precipitation phase due to the high resolution temperature fields)

and precipitation patterns, which is a function of both input type (e.g., OSHD vs. CRU
::::::::
ClimOSHD:::

vs.
::::::::
ClimCRU) and model

resolution(.
:::::::
Indeed,

:::
the

:::
fact

::::
that aggregating OSHD-based forcing data for coarser resolution simulations drastically reduced

simulation accuracy )
::::::::
evidenced

:::
the

::::
need

:::
for

::::::::::
resolutions

:::::
higher

:::::
than

::::
0.25◦

::
for

:::::
snow

::::::::::
simulations

::
in

:::::::::::::
topographically

::::::::
complex

:::::
terrain.610

We observed a negative correlation between differences in growing season length (quantified as number of snow-free

days) and GPP estimates across the model domain, highlighting the significance of accurate snow cover simulations for the

carbon budget, and confirming hypothesis 2. The link between snow duration and GPP was
:::
The

:::::::::
lapse-rate

::::::::
corrected

::::::
results

:::::::::
(ClimCRU*)

::::::
suggest

::::
that

::
in

:::
the

:::::::
absence

::
of

::::::
native

::::::::::::
high-resolution

:::::
input

::::
data,

:::::::::
increasing

::::::
model

::::::::
resolution

:::::::
through

:::::::::::
interpolation

::
of

:::::
input

:::::
fields

::::
with

::
a

::::::
simple

::::::::
lapse-rate

:::::::::
correction

:::
of

::::::::::
temperature

:::::
fields

:::
can

:::::::
already

:::::::
account

:::
for

:::
an

::::::::
important

:::::::::::
topographic615

:::::
effect

:::
and

::::
thus

:::::::::
positively

::::::
impact

::::::
model

:::::::
results.

::::
This

::::::::
approach, however, much stronger during the early growing season

(May-June), as compared to peak growing season (July-August), suggesting that additional differences between the CLM5

model configurations that happen in the summer period confound the effect of snow alone. Such differences can arise e.g.

due to discrepancies in summer precipitation captured by the different meteorological forcings, or because inconsistencies in

vegetation parameters derived from different land use datasets result in different magnitudes of ecophysiological processes.620

The variations in estimated peak summer GPP between different CLM5 configurations exceeded 200 gC m-2 month-1,

equivalent to a 8,810 tC month-1 difference in peak growing season GPP across Switzerland. These differences are noteworthy

because errors in simulated GPP can propagate through LSMs and introduce additional errors in simulated biomass and

other fluxes (Schaefer et al., 2012). They have substantial implications for climate predictions and underline the challenges

that current LSMs face in predicting carbon exchanges (Beer et al., 2010; Zaehle et al., 2014). Our findings regarding GPP625

modeling uncertainties are consistent with a recent study that showed CLM5 overestimated summer GPP by up to 40% in

an arctic boreal environment compared to observational data (Birch et al., 2021). This study emphasizes the importance of

regional model analysis and development.

Another crucial variable in linking global water, carbon, and energy cycles in LSMs is ET. ET is important for the water

budget, while at the same time being a relevant process for energy balance (e.g., latent heat flux) . We detected large effects630

of spatial resolution and choice of input data on ET estimates over the model domain, with the choice of meteorological

forcing data having the largest effect. Compared to the mountainous, high-elevation areas of Switzerland, increased ET
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was shown to occur in the low-lands, in line with other studies which showed increased evapotranspiration as temperature

increases (Zhao and Dai, 2015; Cheng et al., 2017). As ET is further limited by
:::::
cannot

:::::::
provide

:::
the

::::::::::
high-quality

:::::::::::
precipitation

:::
data

::::::::
achieved

::::
with

::::
data

::::::::::
assimilation

:::::
based

:::::::::
techniques

::
(as

::::
used

::
in
:::
the

::::::
OSHD

:::::::
forcing).

::::::
Model

:::::
errors

:::
are

::::
thus

::::::::
inherently

::::::
linked

::
to635

:::::::::
uncertainty

::
in

::::::::::
precipitation

::::::
input,

:::::
which

:::
can

:::::
cause

::::
both

::::
over

:::
and

::::::::::::::
underestimations

::
of

:::::
snow

::
(in

:
the amount of available moisture

in the soil, and hence related to precipitation input
::::
case

::
of

:::
the

::::::::
evaluation

::
at
:::
the

:::::::
stations,

::::::
errors

::
in

::::::::::
precipitation

::::::::::::::
(overestimation)

::::::::::::::
overcompensated

:::
the

:::::::::::::
underestimation

::::
seen

::
in
:::
the

:::::::::
ClimOSHD :::::::::

simulations
:::
for

:::
the

:::::::
highest

:::::::
elevation

::::::
band).

:::::
Where

::::::
model

:::::::::
simulations

::
at
::::
high

:::::::::
resolution

:::
are

::::::::
unfeasible

::::
(e.g.

::::::
limited

:::
by

::::::::::::
computational

::::::::::
constraints),

::::::
results

::::
from

:::
our

:::::
study

::::::
suggest

::::
that

:::::::::
developing

:
a
::::::::
sub-grid

:::::::::::::
parametrization

:::
that

::::::::
accounts

:::
for

:::
the

::::::
impact

::
of

:::::::::
topography

:::
on

:::::::::::
precipitation

::::::::::
partitioning as640

well as to seasonal snow, we compared differences in ET to differences in precipitation input itself, as well as to differences in

total snow water. We were able to link differences in simulated ET between model configurations with regards to meteorological

forcing datato differences in total snow water, highlighting the importance of rain-snow transitions for ET calculations and

further underlining results from Kraft and McNamara (2022). We were, however, not able to directly link differences between

model configurations to differences in precipitation input. Significant positive correlation between precipitation and ET has645

been shown to predominantly occur in dry climates, where ET processes are controlled by water availability in the root zone or

shallow surface (Shi et al., 2013), which is not the case in Switzerland. While some previous studies with CLM5
::
on

::::::::::
temperature

::::
could

:::
be

:
a
:::::::::
promising

::::::::
approach.

:

:::::
Snow

::::::::::
simulations

::::
were

:::
not

::::::::
sensitive

:::
to

:::::::
land-use

:::::
data,

:::
but

::::
this

::
is

:::::
likely

::::
due

::
to

:::
the

::::::::::
distribution

:::
of

::::::::
land-units

::::::
within

::::
our

:::::
model

:::::::
domain,

:::
as

::::
most

::::::::::::::
snow-dominated

::::::::
grid-cells

:::::
only

:::
saw

:::::
small

:::::::
changes

::::::
when

::::::
moving

:::::
from

:::
the

::::::
global

::::::::
(LUGl1km)

:::
to

:::
the650

::::::::::::
high-resolution

::::
land

:::
use

:::::::
dataset

:::::::::
(LUHR1km).

::::::::
Previous

:::::::::::::
mulit-resolution

::::::
studies

::::
with

::::::
FSM2 have shown that spatial distribution

and interannual variability of ET is captured well in CLM5, when compared to observations (Shi et al., 2013), and despite

considerable progress in modelling terrestrial evapotranspiration in recent years, large uncertainties still exist (e.g., Miralles et al. (2016); Mueller et al. (2011)

). The large differences we find in ET estimates across CLM5 configurations reflect this fact.

The finding that high resolution simulations improve the accuracy of seasonal snow cover development should thus not be655

interpreted as the main conclusion of our study. Instead, we have shown how biases in snow cover development can propagate

through the model and affect ecophysiological calculations. These findings are underlining local-scale results of e.g., Harpold

(2016), which demonstrate the importance of snow-disappearance date for water stress across 62 sites in the Western US. They

are further consistent with observations of greening as a result of reduced snow cover in Arctic (Myers-Smith et al., 2020) and

Alpine (Rumpf et al., 2022) regions. At the same time, there is evidence that longer growing season is not always associated660

with increased productivity (Phoenix and Bjerke, 2016), highlighting the relevance of processes beyond the snow season

diagnosed in our analysis as well. Our study thus suggests the potential of LSMs applied at high spatial resolutions and fed with

accurate input datasets to complement observational studies, as they allow us to quantify and better understand these still poorly

constrained process dependencies across larger spatial and temporal extents, including predictions of future conditions
:::::::
land-use

:::
data

:::::
does

:::::
indeed

:::::
affect

:::::::::
simulated

::::
snow

:::::::::
dynamics

::::::::::::::::::
(Mazzotti et al., 2021).

:::::::::
However,

::
for

:::::
other

::::::::::::::
ecophysiological

::::::::
variables

:::::
(GPP665

::
in

:::
this

:::::
case)

:::
we

::::::
showed

::
a
:::::
large

:::::
effect

::
of

:::::::
land-use

:::::
data.

::::::
Today,

:
a
::::::::
plenitude

:::
of

::::
new

::::::
detailed

:::::
land

:::::
cover

:::::::
datasets

:::
are

::::::::
emerging

:::::
thanks

::
to

::::::::
advances

::
in

:::::::
satellite

::::::
remote

::::::
sensing

::::::::
datasets,

:::::
which

::::::
should

::
be

::::::::
exploited

:::
for

::::
land

::::::
surface

:::::::::
modelling.
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To gain a more comprehensive understanding, it would be beneficial to repeat such a model experiment in an arctic environ-

ment rather than just an alpine one, as high latitudes are critical components of the rapidly changing climate system.
:::::::
Changes

::
in

:::::::
land-use

:::::::
datasets

:::
are

:::::
likely

::
to
:::::

have
:
a
::::::
greater

::::::
effect

::
in

::::
such

::::::::::::
environments,

::
as

::::::
larger

::::::
extents

::
of

:::::::
forested

:::::
areas

:::::::
overlap

::::
with670

::::::::
seasonally

::::::::::::
snow-covered

:::::
areas.

:

Additionally, it is important to note that all simulations in this work were conducted in satellite phenology mode.
:::::
Direct

::::::::::
assessments

::
of

::::::::
linkages

:::::::
between

:::::::::
simulated

:::::
snow

:::::
cover

:::
and

:::::::::::::::
ecophysiological

:::::::::
parameters

:::::
were

::::::
hence

:::
not

::::::::
possible.

:
Future

studies should also compare CLM5 simulations with prognostic vegetation and biogeochemistry modes turned on to enable a

more detailed analysis of the terrestrial carbon and nitrogen cycles, as well as evapotranspiration fluxes.675

Uncertainty remains in LSM projections of climate change
::::::
climate

::::::
change

::::::
impact

::::::::::
assessments

:::::
using

:::::
LSM

:::::::::
projections

:
(e.g.,

Shrestha et al. (2022); Yuan et al. (2021, 2022)), with two major sources of uncertainty being the effects of resolution and the

quality of meteorological input data (especially precipitation, Peters-Lidard et al. (2008)) on LSM simulation outputs. Quanti-

fying such uncertainties is imperative to further increase the predictive power of climate impact models. Furthermore, given the

complexity of state-of-the art LSMs, an understanding of the ways different parts/modules of LSMs interact with each other680

is more important than ever, as climate change impacts are not isolated, but highly interconnected processes (Zscheischler

et al., 2018; Ridder et al., 2021). It is therefore of great importance to investigate how exchanges and interactions between

model components are represented, rather than assessing process representation for each model component separately (Blyth

et al., 2021), which ultimately requires multidisciplinary community efforts (Ciscar et al., 2019). Multi-resolution modelling

frameworks as used for this study have large potential to help with such endeavors and provide critical insights into ecosys-685

tem responses to environmental change. More specifically, it can help identify both the key processes for which high spatial

resolution and high-fidelity input data are necessary, as well as quantify the minimum resolution needed to resolve these pro-

cesses accurately. Such modelling experiments should be prioritized in the future, ideally in combination with experimental

manipulations (e.g., increase the availability of nitrogen or carbon dioxide in the system) as suggested by Wieder et al. (2019).

5 Conclusions690

Using multi-resolution modeling experiments to quantify and potentially constrain uncertainties in land surface modeling,

we highlight the importance of input data quality and spatial resolution in accurately representing processes
:::::::
seasonal

:::::
snow

::::
cover

:
across scales. By using regionally optimized datasets, we enhance the accuracy and applicability of LSM simulations,

enabling a more comprehensive understanding of ecosystem responses to environmental changes. We could demonstrate the

accuracy of simulated snow-cover in
::
We

::::::
found

:::
that

:
CLM5 simulations based on high-quality/high resolution

::
is

::::::
capable

:::
of695

::::::::
achieving

::::::::::
performance

:::::::
similar

::
to

:
a
:::::::::

dedicated
:::::
snow

:::::
model

:::::
when

:::::
using

:::::::::::::
high-resolution

:
meteorological forcing data and with

landscape heterogeneity fully resolved at 1km and show how performancedifferences between different CLM5 configurations

propagate through the model to result in substantial differences in gross primary production as well as evapotranspiration.
:
a

::::
1km

::::::::
resolution

::::
that

::::::::::
represented

::::::::
landscape

::::::::::::
heterogeneity

:::::
well.

::::::
Results

::::::
further

:::::::
showed

::::
that

:
a
::::::
simple

:::::::::
lapse-rate

::::::::
correction

:::
of

::::::::::
temperature

::::
fields

::::
can

::::::
already

:::::::
account

:::
for

::
an

:::::::::
important

::::::::::
topographic

:::::
effect

::
on

:::::::::::
precipitation

::::::::::
partitioning

:::
and

:::
has

:::::
large

:::::::
positive700
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::::::
impacts

:::
on

:::::
model

:::::::::::
performance.

:::::::::::
Aggregating

::::::::::::
high-resolution

::::::
forcing

::::
data

:::
for

::::::
coarser

:::::::::
resolution

:::::::::
simulations

:::::::::
drastically

:::::::
reduced

::::::::
simulation

:::::::::
accuracy,

::::::
further

::::::::::
underlining

:::
the

::::
need

:::
for

::::::::::
resolutions

::::::
higher

::::
than

::::
0.25◦

::
for

:::::
snow

::::::::::
simulations

::
in
::::::::::::::

topographically

:::::::
complex

::::::
terrain.

:::::
Snow

::::::::::
simulations

::::
were

::::
less

:::::::
sensitive

::
to

:::::::
land-use

::::
data

::::::::
compared

::
to

:::::::::::::
meteorological

::::
data,

:::
but

:::::::::::::::
eco-physiological

:::::::
variables

::::::
(GPP)

:::
are

:::::::
strongly

:::::::
affected

::
by

:::
the

::::::
choice

::
of

:::::::
land-use

:::::::
forcing.

:
The results clearly demonstrate the use

::::
utility

:
of high

spatial resolution and regionally detailed forcings in land surface models to better quantify and constrain the uncertainties in the705

represented processes, with profound implications for climate impact studies. More generally, this study highlights the utility of

multi-resolution modeling experiments which bridge the gap between point-scale and spatially distributed land surface model-

ingwhen aiming to evaluate and improve process-based representation of variables in land surface models. Comparing process

representation accuracy across a hierarchy of spatial scales, while preserving model architecture is therefore recommended for

future land surface model developments.
:
.710

Code and data availability. All scripts used for simulation setup and analysis can be found at https://github.com/johanna-malle/CLM5_CH.

FSM2 snow simulation results can be downloaded from https://www.envidat.ch/dataset/seasonal-snow-data-wy-2016-2022. Upon publica-

tion, all CLM5 simulation results presented in this study will be available from the WSL data repository Envidat at their website under

https://www.envidat.ch/.
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Appendix A: Point-scale CLM5 model simulations at snow stations715

Site Name Latitude (CH1903) Longitude (CH1903) Elevation [m a.s.l.]

BSG Brissago 108390 698200 280

FRI Frick 262700 643353 345

ALT Altdorf 191700 690960 449

CBS Chaebles 186320 552495 589

ABG Labergement 178770 527540 645

MAS Marsens 167220 571440 718

7BR Brusio 126780 807070 800

DEH Degersheim 247600 732600 830

SON Sonogno 134050 703640 925

WHA Wildhaus 229570 746130 1000

APT Alpthal 212930 696860 1031

AIR Airolo 153400 688910 1139

1LC LaComballaz 136580 572640 1360

4MS Muenster 148900 663420 1410

7ZN Zernez 175259 802751 1475

5DF DavosFluelastr 187400 783800 1560

6SB SanBernardino 147290 734110 1640

YBR2 Ybrig 210311 705399 1701

7ZU Zuoz 164590 793350 1710

7SD Samedan 156400 786210 1750

ARO Arosa 183320 770730 1840

LAU2 LauenenTruettlisbergpass 141633 595482 1970

VLS2 ValsAlpCalasa 170764 735166 2064

OBM2 OberMeielGrossStand 141183 582760 2097

FRA2 FrascoEfra 132853 708906 2100

VAL2 VallasciaSchneestation 155980 690126 2268

CMA2 CrapMasegnSchneestation 189875 733050 2330

OFE2 OfenpassMurtaroel 168460 818233 2359

JUL2 JulierVairana 149949 773049 2426

DAV3 DavosHanengretji 184616 778292 2455

TRU2 TrubelbodenSchneestation 135519 611306 2459

5WJ Weissfluhjoch 189230 780845 2540

DAV2 DavosBaerentaelli 174726 782062 2558

ZNZ2 ZernezPuelschezza 175078 797312 2677

LAG2 PizLagrevSchneestation 147050 777150 2730

GOR2 GornergratSchneestation 92900 626700 2950

Table A1. Name, location and elevation of all snow station locations used in this study.
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Appendix B:
::::::::
Land-use

::::::::::
information

:::::
data

:::
sets

Figure B1. a-c feature wiggle plots, which visualize the absolute difference in snow depth between observations and FSM2, CLM5

ClimOSHD1km+LUHR1km, CLM5 ClimCRU*1km+LUHR1km and CLM5 ClimCRU1km+LUHR1km simulations,
::::
Land

:::
unit

:::::::::
distribution

:::
per

:::
grid

:::
cell

:
for

a selection of stations at elevations lower than 1000m (a), between 1000m and 2000m (b) and above 2000m (c). It is apparent across all

elevation bands that FSM2 simulations match observations the closest, and that CLM5 forced with 1km OSHD data and based on a high-

resolution
:::
1km

:
land surface

::
use

:
dataset is the next best. CLM5 with global meteorological forcing data (ClimCRU1km+LUHR1km) performs

poorly with regards to modelling seasonal snow development, with maximal errors of over 3m, but model performance is improved when

using the down-scaled global meteorological dataset to obtain meteorological input data (ClimCRU*1km+LUHR1km) with particularly dramatic

improvements at low elevations. d-f each focus on one station and show the absolute difference to observations as well as seasonal snow

depth development of the respective model runs
::::
used

::
in

:::
this

:::::
study. In addition to the 3

::
The

::
5
:
CLM5 configurations shown in a-c, in the

first row of d-f, we also show CLM5 ClimOSHD1km, ClimCRU*1km and ClimCRU1km with global land surface information (LUGl1km). For these 3

selected examples, the HighRes case performs better for the low and high station location all 3 shown station locations, whereas the global

case shows slightly better performance during the melt period for the mid-elevation station. Ultimately, it can be seen though that the effect

of meteorological forcing data is substantially larger in comparison
:::
units

::::
sum

::
up

:
to differences arising from the choice of land surface

information
::::::
exactly

::::
100%.

Appendix C: Point-scale CLM5 validation at FLUXNET stations

The FLUXNET network (, Pastorello et al. (2020)) provides observations of ecosystem carbon, water, and energy fluxes at sites

across the globe. A total of 6 FLUXNET site locations fall within our model domain and overlap with our modeling timespan,

including a mixed forest, a coniferous forest, alpine and lowland grasslands as well as a crop site. This analysis is placed in the720

supplementary material since 4 out of the 6 FLUXNET station locations were lower than 1000m in elevation, and hence not
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Figure B2.
:::
Land

::::
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::::::::
distribution

:::
per

::::
grid

:::
cell

::
for

:::
the

:::::
global

::::
1km

:::
land

:::
use

::::::
dataset

:::::::
(LUGl1km)

::
as
::::

used
::
in

:::
this

:::::
study.

:::
The

::
5
:::::
CLM5

::::
land

::::
units

:::
sum

::
up

::
to

::::::
exactly

:::::
100%.

within the nival zone, preventing an extensive investigation of the link between snow cover and ecophysiological parameters at

these locations. Additionally, the sensor fetch of the 35m high CH-Dav as well as the CH-Lae station towers integrates a large,

heterogeneous area in complex terrain (e.g. including houses etc. for the CH-Dav site) with highly variable winds depending on

the time of the day. Nevertheless we believe this analysis might still be of interest to some readers, as it validates our PTCLM725

simulations from a ecophysiological perspective.

Details on the sites, including information on how the prevalent vegetation types translated into CLM5 plant functional

types can be found in Table ??. Observational data for the FLUXNET tower locations were acquired from the European

research infrastructure Integrated Carbon Observation System (ICOS) data product (Team and Centre, 2022), and consists of

standardized observations at half-hourly temporal resolution. Gaps in the data were filled and data was quality controlled730

according to the FLUXNET data processing protocol (Pastorello et al., 2020). We focus on the effects of spatial resolution and
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Figure B2.
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global
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dataset
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Figure B3.
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dataset
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as
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in
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this
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study.
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Figure B6.
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Appendix C:
:::::::::::::
Meteorological

::::::
forcing

::::
data

::::
This

::::::
section

:::::
shows

:::::::::
supporting

::::::::::
information

::::::::
regarding

:::
the meteorological forcing data as we compare CLM5 simulations forced

with 0.5and 1km of ClimCRU, ClimCRU*, and ClimOSHD::::::::
presented

::
in

:::
the

::::
main

::::
part

::
of

::::
the

::::::::::
manuscript.

::::
First,

:::
we

:::::
show

:::
the

::::
two735

:::::
DEMs

:::::
used

:::
for

::::
lapse

::::
rate

:::::::::
calculation

:::
in

:::
this

:::::
study.

::::
We

::::::
further

:::::
show

:::::::::
differences

::
in
::::::

yearly
::::
and

:::::::
monthly

:::::::::::
precipitation

:::
for

:::
the

:::::::::::
OSHD-based

:::
and

::::::::::
CRU-based

::::::
dataset,

::
as

::::
well

::
as

:::::::::
differences

::
in

:::::::
monthly

:::::::::::
temperatures

:::::::
between

:::
the

:::::::::::
OSHD-based,

:::
the

::::::::::
CRU-based

:::
and

:::
the

:::::
CRU*

::::::
datset.

Name, Location, site characteristics and the selected CLM5 plant functional type for each FLUXNET site used for model

performance evaluation.

Figure C1.
::::::::
Comparison

::
of
:::::
digital

:::::::
elevation

:::::
model

::::::
(DEM)

::
at

::
(a)

::::
1km

:::
and

::
(b)

:::
0.5◦

:
as
::::

used
:::
for

::::
lapse

:::
rate

::::::::
correction

::
in

:::
this

::::
study.

740

The FLUXNET tower sites were used to evaluate the performance of the various CLM5 configurations regarding evapotranspiration

(latent heat flux) and ecosystem carbon balance (gross primary production). For each FLUXNET site in Switzerland, we used

the absolute error over all time-steps between observations and CLM5 simulations for (a) latent heat flux (LH), and (b) gross

primary production (GPP). Additionally, we perform a one-way analysis of variance (ANOVA) to test for differences in absolute

error between simulation results using different spatial resolution forcings. To test for the significance in differences in absolute745

errors we further performed a Tukey’s Honestly Significant Difference (HSD) post-hoc test (Abdi and Williams, 2010) for each

FLUXNET location. Additionally, in order to investigate significance across all sites we fitted a linear mixed effects model

(Bates et al., 2015) with absolute error of either LH or GPP as a response and the tower site location as random effects.

Generally, performance differences between the various CLM5 simulations are small (Figure ??), especially when compared

to the pronounced effects for the snow-cover development shown in Figure 2 in the main manuscript. However, an ANOVA750

reported p-values <0.001 for LH and GPP at all sites, revealing significant differences in performance (absolute error) means

between CLM5 configurations. A Tukey post-hoc test confirmed this (Figure ??).

For LH, we see small improvements when using OSHD-based input data at five out of the six locations, while at CH-Cha

a marginal decrease in performance when using ClimOSHD compared to ClimCRU is noticeable (Figure ??). However, a linear

mixed effects model to assess performance differences between the different CLM5 simulations revealed a significant increase755
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Figure C2.
:::
Total

:::::
yearly

::::::::::
precipitation

::::
input

::
for

:::
the

::::
year

::::
2017:

:::::::::::
OSHD-based,

::::::::::::
CRUJRA-based

:::
and

:
a
::::::::
differential

::::
plot.

in performance with regards to latent heat flux when moving from ClimCRU over ClimCRU* to ClimOSHD (plot below boxplot

in Figure ??a), whereby performance was further slightly enhanced when using 1km rather than 0.5forcing data (effect of

resolution). Error in GPP simulations showed little variation with the different resolutions and meteorological input datasets,

including overlapping extents of the confidence intervals between the different configurations.
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Figure C3. Direct comparisons of FLUXNET observations
::::
Total

::::::
monthly

::::::::::
precipitation

:::::
input

::
as

:::::::
averaged

:::::::
between

:::::
2014 and CLM5

simulations of (a) latent heat flux and (b) gross primary production at six tower locations within Switzerland (see Table ??
::::
2019 for details on

the respective sites)
:::::::::
ClimOSHD

:::::
forcing

::::::
dataset.Gray lines in the boxplots indicate median error, while mean error is shown with white dots.

Plots below the boxplots show the coefficient estimates of a linear mixed effects model with absolute error as response, the various CLM5

configurations (ClimCRU0.5◦ , ClimCRU1km, ClimCRU*0.5◦ , ClimCRU*1km, ClimOSHD0.5◦ ClimOSHD1km) as predictor, and the site location (CH-Aws,

CH-Cha, CH-Dav, CH-Fru, CH-Lae, CH-Oe2) as random effects. Coefficients are in relation to the performance of ClimCRU0.5◦ , whereby

negative values indicate an increase in performance and positive values indicate a decrease in performance. Extent of lines indicates the

confidence interval (with a likelihood of 95%).
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Figure C4. The ANOVA reported p-values <0.001 for latent heat as well as for gross primary production, indicating differences
:::::::::
Differences

:
in
::::
total

::::::
monthly

::::::::::
precipitation

::::
input between the CLM5 simulations, hence a Tukey’s post-hoc test was performed to investigate more into the

differences. Tukey’s post-hoc test results: Multiple comparisons at all 6 FLUXNET sites between different CLM5 configurations. Here we

focus the comparison of the ClimOSHD1km configuration (‘best-case’ after the snow-evaluation) to all remaining ones (‘effect of meteorological

forcing’). We show absolute differences to observations (FLUXNET towers) across all time-steps for (a) latent heat
:::::::::
ClimOSHD and (b)

gross primary production. Dots indicate mean absolute errors and extents of each line show the confidence intervals (95%); any overlaps

indicate a non-significant difference between CLM5 simulations (grey/black dots and lines). Green indicates a significant improvement when

using OSHD-based
::::::::
ClimCRU forcing data, red indicates a worsening in performance

:::::
dataset.Plots with only black indicate a non-significant

difference in performance between OSHD-based and CRU-based CLM5 simulations.
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Figure C5.
::::
Mean

::::::
monthly

::::::::::
temperatures

::
for

:::
the

:::::::::
ClimOSHD

::::::
forcing

::::::
dataset.
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Figure C6.
::::::::
Differences

::
in

::::
mean

:::::::
monthly

:::::::::
temperatures

:::::::
between

::
the

:::::::::
ClimOSHD

:::
and

:::
the

::::::::
ClimCRU

:::::
forcing

::::::
dataset.
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Figure C7.
::::::::
Differences

::
in

::::
mean

:::::::
monthly

:::::::::
temperatures

:::::::
between

::
the

:::::::::
ClimOSHD

:::
and

:::
the

::::::::
lapse-rate

:::::::
corrected

::::::::
ClimCRU*

::::::
forcing

::::::
dataset.
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Appendix D: Spatially distributed CLM5 model simulations760

This section shows supporting analyses for the spatially distributed CLM5 model simulations presented in the main part of

the manuscript. Spatial comparison of monthly-averaged gross primary production (GPP) during July and August 2017: The

reference case (ClimOSHD1km+LUHR1km) is compared with simulations of all other CLM5 configurations used in this study. For

the residual plots, blue indicates underestimation and red indicates overestimation with regards to the reference case.

Spatial comparison of total Evapotranspiration (ET) during the calendar year 2017: The reference case (ClimOSHD1km+LUHR1km)765

is compared with simulations of all other CLM5 configurations used in this study. For the residual plots, blue indicates

underestimation and red indicates overestimation with regards to the reference case.

Violin plot showing distribution of all 12 CLM5 configurations across the entire model domain: monthly-averaged GPP

during July and August 2017.
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Figure D1. Spatial comparison of number of days with more than 2cm snow on the ground between January and June 2017: The reference

case (ClimOSHD1km+LUHR1km) is compared with simulations of all other CLM5 configurations used in this study. For the residual plots, blue

indicates underestimation and red indicates overestimation with regards to the reference case.
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Figure D2. Spatial comparison of melt-out date (day of year) during 2017: The reference case (ClimOSHD1km+LUHR1km) is compared with

simulations of all other CLM5 configurations used in this study. For the residual plots, blue indicates underestimation and red indicates

overestimation with regards to the reference case.
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Comparison of monthly gross primary production (GPP) and monthly Evapotranspiration (ET) spatially averaged across model domain for

all pixels below 2000m and for all 12 CLM5 model configurations. (a) shows 3 yearly cycles between 2017 and 2020, and (b) zooms into

the 2018 peak growing season period (dashed blue vertical lines in a).

Total yearly precipitation input for the year 2017: OSHD-based, CRUJRA-based and a differential plot.

Spatial plot of a) monthly-averaged GPP in July and August 2017 and b) number of days with more than 2cm of snow between January and

July 2017 as simulated with our best-effort ClimOSHD1km+LUHR1km simulation. c) Correlation between number of days with more than 2cm

of snow between January and July 2017 and monthly-averaged GPP in July and August 2017 as simulated with our best-effort

ClimOSHD1km+LUHR1km simulation. Looking at vegetated areas across our entire modelling domain, we see that an increased number in days

with more than 2cm of snow on the ground is negatively correlated with peak growing season GPP.

Figure D3. Violin-plots showing comparison of all 12 CLM5 model configurations for the year 2017 across the entire model domain: (a)

number of days with >2cm of snow between January and June 2017, (b) cumulative SWE (total positive SWE increments; ‘how much water

is stored in total’) during the hydrological year 2017 (1.10.2016 - 30.09.2017), (c) monthly-averaged GPP during May and June 2017and (d)

total Evapotranspiration during the 2017 hydrological year. In addition to information obtained from a box plot (25th + 75th percentiles and

median), the violin plots show a kernel density estimate of the data.
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