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Abstract. The stratospheric polar vortex (SPV) comprises strong westerly winds during winter in each hemisphere. Especially

in the Northern Hemisphere (NH) the SPV is highly variable and is frequently disrupted by sudden stratospheric warmings

(SSWs). SPV dynamics are relevant because of both ozone chemistry and its impact on tropospheric dynamics. In this study, we

evaluate the capability of climate models to simulate the NH SPV by comparing large ensembles of historical simulations to the

ERA5 reanalysis data. For this, we analyze geometric-based diagnostics at 3 pressure levels that describe SPV morphology. A5

rank histogram analysis reveals that no model exactly reproduces ERA5 in all diagnostics at all levels. Concerning SPV aspect

ratio and centroid latitude, most models are biased to some extent, but the strongest deviations can be found for the kurtosis.

Some models underestimate the variability of the SPV area. Assessing the reliability of the ensembles in distinguishing SSWs

subdivided into SPV displacement and split events, we find large differences between the model ensembles. In general, SPV

displacements are represented better than splits in the simulation ensembles, and high-top models and models with finer vertical10

resolution perform better. A good performance in representing the geometric-based diagnostics in rank histograms does not

necessarily imply reliability and therefore a good performance in simulating displacements and splits. Assessing the model

biases and their representation of SPV dynamics is needed to improve credibility of climate model projections, for example by

giving stronger weightings to better performing models.

1 Introduction15

In winter the dynamics of the mid-latitude and polar stratosphere are dominated by the stratospheric polar vortex (SPV).

The SPV is a circumpolar band of usually strong westerly winds, forming in autumn due to the cooling of the polar strato-

sphere. When the stratosphere warms again in spring, the temperature gradient reverses and easterly winds prevail during

summer (Holton, 1980). The SPV affects the concentration of ozone over the poles: strong winds are accompanied by lower

than average temperatures, allowing the formation of polar stratospheric clouds, where ozone depleting substances are acti-20

vated (Langematz et al., 2014; Lawrence et al., 2020). Via stratosphere-troposphere coupling (Baldwin and Dunkerton, 2001),

the SPV can influence tropospheric circulation patterns, temperatures, and precipitation (Thompson et al., 2002; Butler et al.,

2017; King et al., 2019). Hence, uncertainties associated with the representation of SPV in models relate to uncertainties in
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tropospheric climate projections, in particular with the position of the jet and the precipitation patterns over Europe and the

Mediterranean region (Scaife et al., 2012; Zappa and Shepherd, 2017) as well as with sea level pressure over the Arctic (Simp-25

son et al., 2018). Especially in the Northern Hemisphere (NH), where the SPV is highly variable (Baldwin et al., 2021), the

strongest changes happen during so-called sudden stratospheric warmings (SSWs). SSWs are abrupt warmings of the strato-

sphere connected with zonal westerly wind reductions. During a so-called major SSW, the wind even reverses to easterly. In

the NH, SSWs occur on average about 6 times per decade (Charlton and Polvani, 2007). They are much less frequent in the

Southern Hemisphere, with only one recorded major SSW in 2002 since the beginning of the satellite era (Jucker et al., 2021).30

SSWs can be categorized into two different kinds. Either the SPV is split into two separate SPVs or it is displaced to lower

latitudes (Charlton and Polvani, 2007). It is still a matter of current research whether the pressure patterns before the event, and

especially the surface pressure response after the event are different depending on SSW type (Mitchell et al., 2013; Seviour

et al., 2013; Maycock and Hitchcock, 2015).

Multiple studies have focused on analyzing whether climate change alters stratospheric dynamics (Manzini et al., 2014;35

Ayarzagüena et al., 2020; Rao and Garfinkel, 2021). In the model simulations of the Climate Model Intercomparison Project

5 (CMIP5), the largest uncertainty between individual models regarding a change of stratospheric wind speeds is found at

60◦N and 10 hPa (Manzini et al., 2014), the region where the SPV strength and SSWs are commonly diagnosed (Charlton

and Polvani, 2007). In line with this uncertainty, there is no agreement among CMIP5 and CMIP6 models on a trend in

SSW frequency (Ayarzagüena et al., 2018; Rao and Garfinkel, 2021). The multi-model mean suggests a slight SSW frequency40

increase, but the inter-model spread is large, even in the historical simulations (Rao and Garfinkel, 2021). Ayarzagüena et al.

(2018) used 12 Chemistry Climate Model Initiative (CCMI) models for their analysis and found that most of them do not project

a significant SSW frequency trend. Seviour et al. (2016) used two-dimensional SPV diagnostics to differentiate between vortex

splits and displacements and found that most CMIP5 models show some bias in simulating SSWs. Hall et al. (2021) made

similar findings with CMIP6 models and found no notable improvement compared to CMIP5. Differences in the chemistry45

schemes of the models, the mean SPV strengths as well as in upward propagating wave activity flux (Wu and Reichler, 2020)

have been identified as possible reasons for the large spread in SSW frequency and its trends.

The large inter-model spread and the uncertainties in the SPV response to climate change underline the need to investigate the

reliability of climate models in simulating the SPV. This includes its form, strength and stability. Most previous multi-model

studies only used a single run from each climate model. However, single-model realizations limit possibilities in attributing50

model differences to the underlying physics or to natural variability (Blanusa et al., 2023; Deser et al., 2020). Particularly the

highly variable wintertime NH stratosphere requires analysis using large ensemble sizes (Deser et al., 2020). Therefore, we

here assess the reliability of recent large-ensemble model simulations in representing the SPV and its spatial variability. For

this, after introducing our methods in in Sect. 2 we compare in Sect. 3 geometric SPV diagnostics in large climate model

ensembles with ERA5 reanalysis data using rank histograms (Matthewman et al., 2009; Seviour et al., 2013). Furthermore, the55

reliability of the ensembles in detecting SSWs separated into SPV splits and displacements is analyzed in Sect. 4. In Sect. 5

we discuss our results with regard to possible reasons for the detected model differences and we finish the paper with some
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concluding remarks in Sect. 6. Due to the large SPV variability and the high SSW frequency in the NH, we limit our analysis

to the NH SPV.

2 Methods60

2.1 Data

For this climate model assessment on SPV strength, form and stability, we use large climate model simulation ensembles. Each

ensemble consists of multiple simulation members, which only differ by modified initial conditions, while the model physics

and setups are identical (Deser et al., 2020). In our analysis, we use climate models from the Multi-Model Large Ensemble

Archive (MMLEA) provided by the US CLIVAR (Climate and Ocean - Variability, Predictability, and Change) working group65

on large ensembles (Deser et al., 2020) as well as ensembles from the Coupled Model Intercomparison Project 6 (CMIP6,

Eyring et al., 2016). We use the historical simulations of those ensembles where all CMIP5- and CMIP6-class historical forc-

ings are included. Information about the 11 climate models used in our analysis are provided in table 1. The selection criteria

for our model database were firstly, availability of at least 10 ensemble members and secondly, availability of the geopotential

height at the pressure levels 10, 50 and 100 hPa to calculate the SPV moment diagnostics (see section 2.2). GFDL-CM3 is an70

exception, for this model data was available only at 100 hPa.

For reference, we compare the historical simulation ensembles with ERA5 reanalysis data (Hersbach et al., 2020), or in other

words, ERA5 data serves as ground truth in our analysis. In this regard, we emphasize that ERA5 is designated as a state-

of-the-art benchmark regarding its extensive horizontal and vertical resolution compared to other reanalyses (Hoffmann and

Spang, 2022), however, clearly not as an absolute truth. We apply the same geopotential height-based SPV diagnostics to the75

ERA5 reanalysis that we also apply to the model ensemble data.

The analysis is carried out for the period 1979–2014 covering years when as many observations as possible were assimilated

to ERA5 including satellite observations (Hersbach et al., 2020). Vokhmyanin et al. (2023) found 22 SSWs in these 36 years of

ERA5 data. We analyze daily data of the months from November through March in the NH, as this is when the SPV is usually

present and SSW disruptions happen.80

2.2 Polar vortex moment diagnostics

To assess spatio-temporal SPV characteristics, the following 2-dimensional moment diagnostics are calculated: aspect ratio,

kurtosis, centroid longitude and latitude, and objective area (for details of the calculation see Matthewman et al., 2009; Seviour

et al., 2013). The aspect ratio, i.e. the ratio of the major to the minor axis of the SPV ellipse, diagnoses how stretched the85

SPV is. High/low aspect ratio values indicate a stretched/circular SPV, and exceptionally high values are often associated with

SPV disturbances such as SSWs. The excess kurtosis is a measure for the distribution of geopotential height values inside

the SPV, constant geopotential height values lead to an excess kurtosis of 0. A low geopotential height center, i.e. a stable
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Table 1. Analyzed climate model ensembles from CMIP5 and CMIP6. Low-top models are above and high-top models are below the

horizontal line.

Model
Ensemble

members

Horizontal

resolution

(lat x lon)

Center of uppermost

level in the vertical

Number of levels

in the vertical
Reference

CanESM2∗ 50 2.8°x2.8° 1 hPa 35 Kirchmeier-Young et al. (2017)

CanESM5 35 2.8°x2.8° 1 hPa 49 Swart et al. (2019)

CESM2 49 0.9°x1.25° 2.26 hPa 32 Danabasoglu et al. (2020)

CNRM-CM6-1 26 1.4°x1.4° 86.4 km 91 Voldoire et al. (2019)

GFDL-CM3∗+ 20 2.0°x2.0° 86.4 km 48 Donner et al. (2011)

INM-CM5-0 10 2.0°x1.5° 0.2 hPa 73 Volodin and Gritsun (2018)

IPSL-CM6A-LR 32 2.5°x1.25° 80 km 79 Boucher et al. (2020)

MIROC6# 10 1.4°x1.4° 0.004 hPa 81 Tatebe et al. (2019)

MPI-ESM1-2-LR 50 1.5°x1.5° 0.01 hPa 47 Olonscheck et al. (2023)

MPI-ESM1-2-HR 10 0.4°x0.4° 0.01 hPa 95 Müller et al. (2018)

UKESM1-0-LL 16 1.25°x1.9° 85 km 85 Sellar et al. (2019)

∗Model is part of CMIP5, other models are part of CMIP6.

Only UKESM1-0-LL and CNRM-CM6-1 include full interactive chemistry, CNRM-CM6-1 has a simplified interactive chemistry scheme, the other models are run in

dynamics-only mode.
+Model data is only available at 100 hPa.
#Model is available for 10 ensemble members only. All 50 ensemble members only cover monthly mean data (Shiogama et al., 2023).

SPV, is represented by high kurtosis values and two separated areas of low geopotential height, i.e. a vortex split, is indicated

by a negative kurtosis. The SPV location is diagnosed by centroid latitude and longitude. A lower centroid latitude is often90

associated with a disrupted SPV and can indicate a displacement, centroid longitude values can additionally help determining

the SPV position. The objective SPV area is an indicator for SPV strength, as a large area of low geopotential height is often

connected with high wind speeds. More detailed descriptions are provided in Section S2 in the Supplement. In contrast to

Matthewman et al. (2009) who described their method using potential vorticity, we here use the geopotential height to define

the SPV edge, as suggested by Seviour et al. (2013). For this, the algorithms from Seviour et al. (2013) have been modified95

accordingly, the updated versions can be accessed from Kuchar and Öhlert (2024).

We show the geopotential height climatology at 10 hPa (gh10) of all analyzed model ensembles and ERA5 for the period

1979–2014 in Fig. 1. The figure shows that some models do not simulate gh10 well in comparison to ERA5 (CanESMs,

CESM2). On the other hand, visual resemblance between ERA5 and other models (e.g. UKESM1-0-LL) can clearly be seen,

too. However, details about the reliability of these large-ensemble model simulations in representing the SPV and its spatial100

variability cannot be decomposed based on such depictions. Hence, moment diagnostic analyses are needed to shed light on

the SPV and its properties in large ensemble simulations.
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Figure 1. Geopotential height climatology at 10 hPa (gh10) of all analyzed model ensembles: CanESM2 (A), CanESM5 (B), CESM2 (C),

CNRM-CM6-1 (D), INM-CM5-0 (E), IPSL-CM6A-LR (F), MIROC6 (G), UKESM1-0-LL (H), MPI-ESM1-2-HR (I) and MPI-ESM1-2-LR

(J), and ERA5 (K) for the period 1979–2014. The black and purple line represents contour of 30000 m in ERA5 and in a particular model,

respectively.
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2.3 Rank histograms

The rank histogram (RH) is a tool used in ensemble forecast verification to determine the reliability of ensemble forecasts and

to diagnose errors in its mean and spread. RHs consist of n+1 bins, where n is the number of model ensemble members. For105

each time step and variable, the ensemble values are sorted in ascending order, and the ERA5 reanalysis value at that particular

time step is placed into this set at position k. The histogram counts of all bins greater than or equal to k are then increased

by one, and this procedure is repeated for each time step (for details of the calculation see Hamill, 2001; Wilks, 2011). For

a reliable (calibrated) ensemble, the counts should be uniformly distributed over all bins. If the ensemble deviates from the

reanalysis, the shape of the histogram can be used to find out why (Wilks, 2011). For example, if the historical simulations are110

biased, there will be a linear trend in the histogram. When the counts of the bins are higher on the left and lower on the right of

the histogram, the ensemble simulates the variable to be higher disproportionately often, which is called overforecasting bias.

The opposite would be an underforecasting bias. If the ensemble under-/overestimates the variability, the ranks at the edges of

the histogram have higher/lower counts than in the center, which is called under-/overdispersion.

For objective assessment of the results, we consider an additional diagnostic in our study, namely the χ2 statistic. This di-115

agnostic quantifies how close the RH is to an ideal uniform distribution. A perfectly flat histogram would produce a χ2 value

of 0. Jolliffe and Primo (2008) introduced a method to split the χ2 statistic into multiple metrics, where each one describes a

certain histogram shape. The linear trend is used as a bias indicator and a U-shape indicates over- or underdispersion (spread).

These metrics can be especially helpful when both bias and over- or underdispersion are present in an ensemble, as this can

be difficult to distinguish visually from the RH alone. The contributions of these two components to the total χ2 statistic are120

presented along all RHs in our assessment. These statistics should serve in relation to the other models instead of defining any

threshold for a "good" or "bad" model.

2.4 Perfect model range

Due to internal variability, it is possible that a RH has a somewhat uneven distribution. To determine which deviations from125

a uniform distribution can be attributed to internal variability, Suarez-Gutierrez et al. (2021) suggested the use of ’a perfect

model range’. To obtain this range, a rank histogram is created for each ensemble member where this specific member is treated

as a reference (i.e., as if it was the reanalysis). This results in slightly different values for each bin in the RHs, depending on

the member in question. The perfect model rank range is then defined by the range where 90% (5th - 95th percentile) of the

bin counts are found. Since a member from the ensemble can never be higher or lower than all ensemble members, the values130

for the rank range in the first and last bin are ignored.

2.5 SSW diagnostics

SSW events can be subdivided into SPV splits and displacements and can be detected by means of the metrics described above.

As suggested by Seviour et al. (2013), we detect SPV splits by an aspect ratio higher than 2.4. For a displacement, the centroid
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Figure 2. Receiver operating characteristics (ROC) curves for displacements (A) and splits (B) in CanESM5. Bin values indicated along

ROC are probabilities whether model simulates displacements and splits across its ensemble members, respectively. Area under the ROC

curve (AUC) is visualized and also specified in the figure. The dashed line represents random discrimination skill, i.e. AUC=0.5.

latitude is arguably the best indicator. Here, as defined by Seviour et al. (2013) a displacement is detected if the centroid latitude135

is lower than 66oN.

To assess how well the probability of these events is represented in the model simulation ensembles, the receiver operating

characteristics (ROC) curves are used (see Figs. S1 and S2 and their description in Section S3 in the Supplement). The area

under the ROC curve (AUC) indicates how well an ensemble is able to discriminate between SSW and non-SSW events using

the thresholds above (with reference to ERA5). AUC ranges from 0 to 1. Values of 1, 0.5 and 0 indicate perfect skill, random140

guessing, and no skill, respectively. As an example, we show ROC for displacements and splits in Fig. 2 for the CanESM5

ensemble. Bin values indicated along ROC are probabilities of whether the model simulates displacements and splits across

its ensemble members, respectively. These values then serve as inputs for the calculation of dichotomous contingency tables

which includes true and false positive rates displayed on y- and x-axis, respectively. Fig. 2B demonstrates that CanESM5 cannot

discriminate split events better than random guessing (see Sect. 4.2). To determine the uncertainty of the AUC, we provide error145

bars using the approach of the perfect model range, where we assume each ensemble member an observation.

We also reproduce the methodology from Hall et al. (2021) as previously applied in Mitchell et al. (2011) and based on

Seviour et al. (2013) to examine relationships between modal centroid latitude and aspect ratio and displacement and split

SSW frequency, respectively. The frequencies of ERA5 SSW split and displacement events determined with this method are

within the uncertainty of other methods (∼6.94 events per decade, ∼6.66 events per decade including displacement and splits150

events only, displacement/split ratio equals to 1.4; Gerber et al., 2022). We provide the list of ERA5 SSW split and displacement

events in Tab. S2 in the Supplement to document this agreement.
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3 Analysis of geometric polar vortex diagnostics

In the following, the agreement between the ERA5 reanalysis and the historical simulations of the climate model ensembles

will be compared by means of the SPV moment diagnostics introduced in Sect. 2.2. For this, RHs are discussed for all available155

models at 10, 50 and 100 hPa, however, the figures for 50 hPa and for 100 hPa are shown in the Supplement. We also summarize

bias and spread from these figures in Table S1 in the Supplement.

3.1 Aspect ratio

The aspect ratio of the SPV is determined by the ratio of the major to the minor ellipse axis. Thus, it measures how stretched160

the SPV is providing high values for stretched and low values for more circular SPVs. Exceptionally high aspect ratio values

are of particular interest for SPV dynamics as they are often associated with SPV disturbances, in particular indicating splitting

events (Seviour et al., 2013). Fig. 3 shows RHs of the aspect ratio for all analyzed climate model ensembles together with the

above introduced statistical values χ2, bias and spread at 10 hPa, the level that is most commonly used to detect SPV splits. As

indicated in Sect. 2, interpretation of all results here are with reference to ERA5 reanalysis data.165

All models succeed to simulate the spread of the aspect ratio, but most models are biased to some extent. At 10 hPa, four

models are biased and simulate lower aspect ratios more frequently than the reanalysis (CanESM2, CanESM5, CESM2 and

CNRM-CM6-1) and three models show a overforecasting bias (IPSL-CM6A-LR and both MPI-ESM1-2 ensembles). Only

three models show no considerable bias (INM-CM5-0, MIROC6 and UKESM1-0-LL). The strongest biases are found in the

CanESM5 and CESM2 ensembles (see also Tab. S1 in the Supplement). These relatively strong aspect ratio biases (as compared170

to the other models) point towards underestimation of SPV split probability, but see Section 4.2 for further investigation on this

connection.

With the rank histograms at 50 and 100 hPa (see supplementary Figs. S3, S8), the models can be separated into two groups

according to their behavior in relation to the results at 10 hPa. One group of models shows larger biases at lower altitudes

(CanESM2, INM-CM5-0 and UKESM1-0-LL). In the other model ensembles the bias is weaker at lower altitudes (CanESM5,175

CESM2, INM-CM5-0, IPSL-CM6A-LR, MIROC6 and MPI-ESMs).

3.2 Centroid latitude

Fig. 4 shows the RHs of the centroid latitude for all analyzed climate model ensembles at 10 hPa. The centroid latitude is a

measure of how far the polar vortex is shifted from the North Pole; untypically low latitudes indicate vortex displacements

(Seviour et al., 2013). Most ensembles show a bias in centroid latitude, but the spread is generally represented well. This180

is similar to the results for the aspect ratio. The direction of the biases is not consistent among the models. The CanESM2,

IPSL-CM6A-LR and MPI-ESM1-2 ensembles simulate a low latitude bias with regard to the reanalysis, while the CESM2,

INM-CM5-0 and MIROC6 ensembles show a high latitude bias. Only CanESM5, CNRM-CM6-1 and UKESM1-0-LL do not

show any notable bias or spread, i.e., the corresponding statistical diagnostics show low values. Here, CanESM5 (see Fig. 4B)
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Figure 3. Rank histograms of aspect ratio at 10 hPa of all analyzed model ensembles: CanESM2 (A), CanESM5 (B), CESM2 (C), CNRM-

CM6-1 (D), INM-CM5-0 (E), IPSL-CM6A-LR (F), MIROC6 (G), UKESM1-0-LL (H), MPI-ESM1-2-HR (I) and MPI-ESM1-2-LR (J).

Blue bars show counts for the individual bins, the black dashed line corresponds to the expected value for a flat histogram, gray dashed lines

indicate the perfect model range (see Sect. 2.4). The x-axis shows the ensemble member number and the y-axis shows the count of the bins.

The contributions of bias and spread to the total χ2 statistic are provided above the rank histograms for each model (see Sect. 2).
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shows a notable improvement compared to its earlier version CanESM2 (see Fig. 4A). The combination of high centroid185

latitude bias and low aspect ratio can only be seen in CESM2 (see Fig. 4C), which can explain the general underestimation of

SSWs in this model (see Sect. 4 and 5).

The RHs of the centroid latitude at the two lower altitude levels are shown in Figs. S4 and S9 in the Supplement. In most

models, the bias is similar at all analyzed levels (10, 50 and 100 hPa), showing that the performance with respect to centroid

latitude is not very sensitive to altitude. Only in CanESM5, a low latitudes bias appears at the two lower altitudes. In MIROC6190

the low latitude bias is only present at 10 and 50 hPa, while at 100 hPa the model shows almost no bias and thus a nearly

perfectly flat histogram.

3.3 Centroid longitude

The centroid longitude in the climate models ranges from -180° to +180°, the negative values lie in the Western Hemisphere

and the positive ones in the Eastern Hemisphere. The centroid longitude RHs (Fig. 5) show where the climate models over-195

or underestimate the position of the SPV. When the counts are lower/greater than average, the ensemble simulates the SPV

center more/less frequently at the respective longitude. The centroid longitude is depicted best by the CNRM-CM6-1 (see

Fig. 5D) and INM-CM5-0 (see Fig. 5E) ensembles. The other ensembles show notable deviations from a flat histogram, but

these deviations are not consistent among the models. The CanESM2, CESM2 and UKESM1-0-LL ensembles simulate the

SPV center in the Eastern Hemisphere more frequently than the reanalysis. The IPSL-CM6A-LR and MIROC6 ensembles200

show the opposite bias. The RHs of CanESM5 (see Fig. 5B) and the MPI-ESMs (see Fig. 5I-J) show lower counts on both

ends, indicating that the ensembles simulate the SPV more frequently in and around the region of the Bering Strait and Alaska

(the meridian of +180/-180°) than the reanalysis.

At 50 and 100 hPa (Figs. S5 and S10 in the Supplement), some models show biases of opposite sign than at 10 hPa, or even

a general dispersion at the 3 different pressure levels (e.g. CanESM2, IPSL-CM6A-LR, MIROC6). This could not be seen for205

the centroid latitude. In most models both bias and spread are present at least at some pressure levels. Only CNRM-CM6-1

produces a flat histogram where almost all counts lie inside the perfect model range in all 3 pressure levels. The UKESM1-0-LL

and MPI-ESM1-2 ensembles show flat histograms at 50 and 100 hPa.

3.4 Kurtosis

The excess kurtosis is a measure for how the values of geopotential height are distributed within the SPV region (Matthewman210

et al., 2009). Mitchell et al. (2011) proposed that this diagnostic can be used to detect both SPV split and displacement events.

They showed that exceptionally low values are often an indication that an SPV split has occurred. High positive values on the

other hand can occur after splits and displacements (see their Figs. 2 and 5). The RHs for the excess kurtosis at 10 hPa are

shown in Fig. 6. Four models show similar RHs with much higher counts on the left side of the histogram, namely CanESM2,

CanESM5, CESM2 and CNRM-CM6-1. These ensembles underestimate the variability of the kurtosis and additionally simu-215

late a kurtosis positive bias. The result is that very low values of the kurtosis are simulated much less frequently in the models

than they occur in the reanalysis. Therefore, this may contribute to the underestimation of the SPV split frequency. This is in
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Figure 4. As Fig. 3, but for centroid latitude at 10 hPa of all analyzed model ensembles: CanESM2 (A), CanESM5 (B), CESM2 (C), CNRM-

CM6-1 (D), INM-CM5-0 (E), IPSL-CM6A-LR (F), MIROC6 (G), UKESM1-0-LL (H), MPI-ESM1-2-HR (I) and MPI-ESM1-2-LR (J).
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Figure 5. As Fig. 3, but for centroid longitude at 10 hPa of all analyzed model ensembles: CanESM2 (A), CanESM5 (B), CESM2 (C),
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line with the aspect ratio low bias in these models (see Sect. 3.1), except for CNRM-CM6-1 (see Fig. 6D). The UKESM1-0-LL

(see Fig. 6H) ensemble shows a similar kurtosis behavior as the four model ensembles mentioned above, but the deviations

are by far not as pronounced. Even though the UKESM1-0-LL ensemble shows a good representation of the aspect ratio, it220

simulates low values of the kurtosis less frequently. This is in line with the results by (Hall et al., 2021), who reported that the

model simulates too few split events. The MIROC6 and INM-CM5-0 ensembles perform best in representing the kurtosis, in

particular at 10 hPa. Both MPI-ESM1-2 simulations contains bias but a dome-shaped RH in MPI-ESM1-2-LR indicates large

ensemble spread.

At the two lower altitudes (Figs. S6 and S11 in the Supplement), most ensembles underestimate the kurtosis variability225

(CanESM2, CanESM5, CESM2, INM-CM5-0 and UKESM1-0-LL and GFDL-CM3 at 100 hPa). Only the IPSL-CM6A-LR

and both MPI-ESM1-2 ensembles overestimate it. The MPI-ESM1-2 ensembles show almost flat RHs at 100 hPa. Generally,

most models simulate the kurtosis less well than centroid latitude or aspect ratio, in particular at 10 hPa. This suggests that

centroid latitude and aspect ratio are more reliable indicators for SSW frequency estimates than the kurtosis is.

3.5 Objective area230

The objective area is of interest because a larger/smaller area of low geopotential height is often related to a stronger/weaker

SPV with higher/lower wind speeds. Multiple ensembles (INM-CM5-0, IPSL-CM6A-LR, MIROC6 and both high and low

resolution MPI-ESM1-2 ensembles) simulate a negative bias at 10 hPa (Fig. 7). In addition to that, these models underestimate

the variability of the objective area. The CanESM2 (see Fig. 7A) ensemble also shows this combination, but not as pronounced

as the above-mentioned models. The CanESM5, CESM2 and CNRM-CM6-1 ensembles simulate a positive SPV area bias,235

which is likely connected to too high wind speeds.

At the lower altitudes (see Figs. S7 and S12 in the Supplement) most models are biased in the same direction as at 10 hPa,

but in some models the strength of the bias varies with height. Only INM-CM5-0 shows a small SPV area bias at 10 hPa (see

Fig. 7F) and a large SPV area bias at 50 hPa. At 100 hPa barely any bias can be detected in INM-CM5-0. Models with a large

SPV area bias at 100 hPa also simulate a low aspect ratio bias at 10 hPa (CanESM2, CanESM5, CESM2) and vice versa (IPSL-240

CM6A-LR and both MPI-ESM1-2 ensembles - except for MIROC6). Models without any notable bias (irrespective of the

spread) for the objective area show a good representation of the aspect ratio (CNRM-CM6-1, INM-CM5-0, UKESM1-0-LL). A

connection between weaker stratospheric winds and SPV split frequency in the CMIP6 models was already noted by Hall et al.

(2021). They found that the frequency of SPV splits was related to the wind speeds at 100 hPa, because higher wind speeds

hinder the upward propagation of wave number 2 planetary waves into the stratosphere. Similarly, Wu and Reichler (2020)245

showed that the highest uncertainty in the SSW frequency comes from an uncertainty in lower stratospheric wind speeds.

In general, most models do not simulate the objective SPV area well. Most commonly, they underestimate the variability

and often simulate a bias. At 10 hPa the UKESM1-0-LL ensemble represents the SPV area best. At the two lower altitudes,

CNRM-CM6-1 shows the best representation, depicted by the lowest values of the χ2-statistic.
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Figure 6. As Fig. 3, but for kurtosis at 10 hPa of all analyzed model ensembles: CanESM2 (A), CanESM5 (B), CESM2 (C), CNRM-CM6-1

(D), INM-CM5-0 (E), IPSL-CM6A-LR (F), MIROC6 (G), UKESM1-0-LL (H), MPI-ESM1-2-HR (I) and MPI-ESM1-2-LR (J).
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Figure 7. As Figure 3, but for objective area at 10 hPa of all analyzed model ensembles: CanESM2 (A), CanESM5 (B), CESM2 (C), CNRM-

CM6-1 (D), INM-CM5-0 (E), IPSL-CM6A-LR (F), MIROC6 (G), UKESM1-0-LL (H), MPI-ESM1-2-HR (I) and MPI-ESM1-2-LR (J).
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4 Sudden stratospheric warming analysis250

A particular focus in NH SPV studies lies on disruptive SPV events, so called sudden stratospheric warmings (SSWs). We

here assess the ability of the climate models to distinguish between SSWs and steady SPV conditions. While the RHs reveal

reliability (consistency), they do not evaluate statistical resolution (the degree to which a forecast sorts the observed events

into different groups), so our study needs to be accompanied with other tools such as the ROC (Hamill, 2001). Using the ROC

we can analyze how well the different models are able to simulate SSW events through diagnostics of the SPV morphology.255

The applied method allows us to individually diagnose displacement- and split-type SSWs. Hence, we conduct two separate

analyses here, as it has been shown that these events, as well as their surface impact, fundamentally differ (Baldwin et al., 2021,

and references therein).

4.1 Displacement events

Fig. 8 shows the areas under the ROC curves (AUC) of the analyzed climate models for detection of SPV displacements (see260

Fig. 8A) and splits (see Fig. 8B). For all ROC curves see Figs. S1 and S2 in the Supplement. We also summarize AUC values

from these figures in Table S1 in the Supplement.

In general, the low-top models (see Tab. 1) reveal lower AUC values than the high-top models, with the exception of MPI-

ESM1-2-HR. In fact, MPI-ESM1-2-HR has the lowest value of all analyzed models. Additionally, the AUC for the MPI-ESM1-

2-HR ensemble is slightly lower than for its low resolution counterpart MPI-ESM1-2-LR. The CNRM-CM6-1 ensemble shows265

the best performance regarding the simulation of SPV displacement events. This model also has one of the best representations

of the centroid latitude at 10 hPa in the RHs. In fact, the RH was similar to CanESM5, for which a rather weak performance

in the ROC curves was found. A reasonable performance is shown by the INM-CM5-0 ensemble, which in fact has the second

highest AUC. IPSL-CM6A-LR and MIROC6 show similar values for the AUC. The UKESM1-0-LL and MPI-ESM1-2-LR

ensembles show an above-average performance compared to the other climate models. Again, this stands partly in contrast to270

the rank histograms where the UKESM1-0-LL ensemble was closest to a flat histogram of centroid latitude with the lowest χ2

statistic of all models.

These results demonstrate that even if the RH implies a good representation, i.e. a reliable ensemble, it can show a compara-

tively low statistical resolution in distinguishing between displacements and non-displacements (e.g CanESM5) and vice versa

(e.g. CESM2). Generally, for most of the ensembles the AUC lies in a narrow region around 0.6, implying that the simulation275

of displacement events can still be improved in the climate ensembles, e.g. by calibration (Wilks, 2011).

It has been suggested by Seviour et al. (2016) and Hall et al. (2021) that models with a bias in centroid latitude also have

a bias in displacement frequency in the respective direction. While we reproduce this negative relationship between number

of displacements and modal centroid latitude from Fig. 3a in Hall et al. (2021) in our Fig. 9A, we observe models that despite

their biases in modal centroid latitude simulate a comparable frequency of displacement SSWs. The CNRM-CM6-1 ensemble280

is again the best-performing one in terms of the frequency of displacement SSWs comparable to ERA5 (∼4 events per decade).
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Figure 8. Area under the curve for the ROC curves of the analyzed climate ensembles for displacement (A) and split (textbfB) events. Grey

line lies at 0.5, the value at which the simulation is not better than randomly guessing. Low-top models are separated on the left with a black

line. Error bars indicate 5th and 95th percentile estimated by using the perfect model range.

4.2 Split events

In general, the climate model ensembles do not simulate SPV splits (see Fig. 8B) as well as SPV displacements (see Fig. 8A).

Indeed, all models except for IPSL-CM6A-LR have lower AUCs for split events than for displacements. Overall, a weaker

performance of the low-top models can be detected, which is particularly obvious for CanESM5. The ensemble performs285

worse than its older counterpart CanESM2 and shows a ROC area of below 0.5, which means that the false positive rate

for detecting split events is higher than the true positive rate. In fact, CanESM5 is the only model that produces an AUC of

lower than 0.5 for split events (see also Fig. 2), even when considering the error bars. Although the CESM2 ensemble shows a

similarly strong aspect ratio bias as CanESM5, it has a better representation of split events according to the ROC plots.

As for displacement events, CNRM-CM6-1 also reaches one of the largest AUC for splits after MPI-ESM1-2-LR (see also290

Tab. S1 in the Supplement). Thus, this model can be regarded to have the best representation of SPV displacements as well as

splits and SSW events in general (see also Fig. 9). The AUC of the INM-CM5-0 ensemble reaches a value of slightly above 0.5,

indicating that the simulation of splits is only marginally better than randomly guessing their occurrence. This result stands in

contrast to the fact that this ensemble has shown one of the best performances in the RH analysis for the aspect ratio without

any significant bias or spread. This again corresponds to the insensitivity of the ROC to certain biases as discussed above.295

The IPSL-CM6A-LR ensemble on the other hand almost reaches the performance of CNRM-CM6-1 in spite of its bias to

predict higher aspect ratios too often. MIROC6 and UKESM1-0-LL show similar AUC that lie between the best and weakest
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split SSWs (B) [per decade] in large ensembles compared with ERA5. Blue solid dashed lines are ordinary least square regressions and their

95% confidence intervals for all models, while grey lines in panel (B) show regression lines and confidence intervals for high-top models only
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represents adjusted coefficient of determination. The asterisks flag levels of significance with a p-value less than 0.01.

performing ensembles. The high resolution MPI-ESM1-2 ensemble is showing a lower AUC than the low resolution version

MPI-ESM1-2-LR, as it was already seen for displacement events, but it still remains well above the value of 0.5.

In accordance with the results by Seviour et al. (2016) and Hall et al. (2021), we tried to reproduce whether models showing300

a strong bias to lower aspect ratios in our analysis indeed underestimate the SPV split frequency. However, results in Fig. 9B

are more dispersed compared to Hall et al. (2021). It reveals that the linear relationship between number of splits and modal

aspect ratio from Fig. 3b in Hall et al. (2021) cannot be reproduced in the large ensemble simulations of the here used high-top

models. It only works to some degree when low-top models are included. Unlike their results, the reanalysis values lie within

the 95% confidence interval of the ordinary least squares fit. As we can rule out that the size of ensemble members might305

not be sufficiently large in our study, we argue that the fit may not be so robust for split SSWs because a stretching tendency

of polar vortex is accompanied with a centroid-latitude tendency to equatorward values (Mitchell et al., 2011). This finding
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also underlines our statement that good performance in representing the geometric-based diagnostics in RHs is not necessarily

connected with a good performance in simulating displacements and splits. Wu and Reichler (2020) also demonstrated that

bias-corrected models for vortex strength may not consistently align with reanalyses in terms of revealing SSW frequency.310

5 Summary and discussion

We assessed the SPV in large CMIP5 and CMIP6 climate model ensembles using RHs with reference to ERA5 reanalysis data.

The performance of the models varies depending on the analyzed variables and pressure levels. No model ensemble can be

highlighted as having the best or worst performance over all variables and pressure levels. If the general performance over all

levels and variables is regarded, the CNRM-CM6-1 and UKESM1-0-LL ensembles can be considered to be representing SPV315

form and variability best. These two models produce a flat RH for most of the geometric variables at most altitudes, which

means that the simulated SPV in these models agrees well with that of ERA5. The flat RH is a necessary but not a sufficient

condition for concluding reliability in SPV simulation.

Furthermore, we used the ROC analysis in order to assess the ability of the ensembles regarding SPV displacement and split

frequencies. As all models reach an area under the ROC curve of more than 0.5 (see Fig. 8A), they distinguish between SPV320

displacements and non-displacements better than random guessing. In general, the ensembles represent displacement events

better than split events. The best representation of both SPV splits and displacements has CNRM-CM6-1. This model performs

well in the RH analysis as well. However, a general rule of thumb that connects the RH with the ROC analyses could not be

found here. This is due to the insensitivity of the ROC to biases in the forecast. The ROC diagram can be considered as a

measure of potential usefulness when a model ensemble is correctly calibrated (Wilks, 2011). This can lead to a more reliable325

forecast while maintaining good discrimination. A joint analysis of variety diagnostics provides the bigger picture about the

quality of large-ensemble model simulations.

The model top height seems to be a key factor. Low-top models reveal strong biases for most variables, in particular CESM2.

Charlton-Perez et al. (2013) and Hall et al. (2021) already found that low-top models simulate too few SSWs and a too low

variability of the SPV wind speeds. Overall, this means that the downward influence of the upper stratosphere and mesosphere330

has a large influence on the SPV and on SSWs (see e.g. Hitchcock and Simpson, 2014). This is not unexpected, as large

amounts of wave drag are deposited at high altitudes, which strongly influences middle atmosphere dynamics. In the low-top

models, this influence is not adequately represented. Models with more vertical levels in the stratosphere generally perform

better in our analysis. CNRM-CM6-1, which has the second-highest number of levels in the vertical, does not only have a good

representation of most variables but also the best results in detecting splits and displacements. As stated in (Wu and Reichler,335

2020), a finer vertical resolution also improves the simulation of the SSW frequency. While the models with the modest spatial

(vertical and horizontal) resolution (INM-CM5-0 and MIROC6) show a good performance, especially for the aspect ratio

and kurtosis at 10 hPa, the MPI-ESM1-2-LR ensemble produce better results despite its vertical and horizontal resolution.

Dedicated model experiments with simulations in various horizontal and vertical resolutions are needed to systematically

assess the impact of resolution on SPV representation.340
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An additional source of uncertainty might be the gravity wave (GW) parameterizations (e.g. Eichinger et al., 2020a; Karami

et al., 2022; Eichinger et al., 2023). Events with strong gravity wave drag can affect the refractive index in the lower strato-

sphere (Kuchar et al., 2022). A higher refractive index results in stronger upward propagating wave activity and thus the SPV is

disrupted more easily. Wu and Reichler (2020) found that the uncertainty of the refractive index in the lower stratosphere above

the tropospheric jet plays an important role for the uncertainty in the simulated SSW frequency. Therefore, these uncertainties345

in the models may be attributed to different GW parameterizations (Sigmond and Shepherd, 2014). Recently, Hájková and

Šácha (2023) showed that the SPV climatologies in CMIP6 models are largely insensitive to high latitude wave drag, but also

state that SSW simulation can be sensitive to small nuances in model dynamics. Dedicated analyses are needed to fully assess

the impact of various wave drag mechanisms on SPV geometry and SSWs, including consideration of the non-linear feedbacks

between wave drag and mean flow. For example, Sigmond et al. (2023) have attributed the difference in simulated SSW fre-350

quency between CanESM2 (overestimation) and CanESM5 (underestimation) of the number of SSWs, especially splits as seen

in Fig. 9B) to changes in settings of GW tuning.

Apart from model resolution and GW parameterizations and their tuning parameters, Morgenstern et al. (2022) revisited

the influence of stratospheric ozone chemistry on the SPV and SSW frequency. Several additional studies demonstrated the

importance of interactive ozone chemistry for representing temperature variability and extremes in the Arctic polar strato-355

sphere (Haase and Matthes, 2019; Rieder et al., 2019; Oehrlein et al., 2020). Therefore, the way how atmospheric chemistry is

treated in the model may be another factor for model skill in representing the SPV, in particular the feedback of stratospheric

ozone on dynamics via radiation. CNRM-CM6-1 has a simplified but still interactive chemistry (Voldoire et al., 2019). The

only analyzed model with a complete interactive chemistry is UKESM1-0-LL and overall it performs well. However, a detailed

analysis of its impact on spatio-temporal SPV variability would be needed for conclusive statements.360

Models that were found to simulate well the alternating easterlies and westerlies in the tropics by Richter et al. (2020) (the

quasi-biennial oscillation, QBO), mostly perform better in our analysis (e.g., CNRM-CM6-1, IPSL-CM6A-LR, UKESM1-0-

LL). On the other hand, models with poor QBO representation (CanESM2, CanESM5, CESM2) show a weaker performance

in the RHs and the representation of splits and displacements. The SPV is influenced via teleconnection associated with the

QBO, via the so-called Holton-Tan mechanism (HTM; Holton and Tan, 1980; Baldwin et al., 2001). Rao et al. (2020) analyzed365

which models have a good representation of the HTM, but here we find no clear connection of a good HTM representation

with a good representation of SPV variability.

While a relatively long period was regarded in the RH analysis, it cannot be ruled out that an ensemble might show different

performances during this time (Bothe et al., 2013). An option could be to analyze individual months separately, since differ-

ences in the model performance might for example occur between mid-winter, where the highest variability in wind speeds is370

observed, and early as well as late winter.

Furthermore, the thresholds used for the definition of the events could be varied. Other values might lead to better resolution

between steady and unsteady SPV conditions. The thresholds we used here were chosen based on the reanalysis dataset by

Seviour et al. (2013) as stated in Sec. 2.5. Another important question is whether the number of ensemble members is sufficient

for evaluation of the highly variable SPV representation. In particular, the INM-CM5-0, MIROC6 and MPI-ESM1-2-HR375

20



ensembles may not be large enough to fully cover effective dimension of SPV (Christiansen, 2021). This is a topic for detailed

future investigation.

6 Conclusions

In this study, we assess the stratospheric polar vortex (SPV) form and variability as well as the ability to distinguish different

morphologies of sudden stratospheric warmings (SSWs) in large CMIP5 and CMIP6 climate model ensembles. We analyze380

the SPV by means of rank histograms (RHs) and the SSWs separated into splits and displacements by receiver operating

characteristics curves and use ERA5 reanalysis data as reference. These analyses reveal strongly varying performances of

the individual models over all SPV moment diagnostics and pressure levels. The two models that overall simulate the SPV

and SSWs closest to ERA5 are CNRM-CM6-1 and UKESM1-0-LL. In contrast, results of CanESM5 and CESM2 should be

handled with particular care in SPV studies, as these models did not perform well in our analysis. In general, the ensembles385

show a better ability in simulating displacement-type SSW events than split-type events. As SSWs represent extreme events,

this model skill, however, is not always connected with representing well the geometry-based SPV diagnostics centroid latitude

and aspect ratio, which diagnose SPV climatologies.

For the SPV centroid latitude and aspect ratio most ensembles are biased to some extent, but with no consistent direction

among the ensembles. While regression of these geometric SPV biases indicates also biases in split and displacement frequency390

as in Seviour et al. (2016) and Hall et al. (2021), this does not necessarily imply that bias-corrected models simulate split and

displacement frequencies according to the reanalyses (Wu and Reichler, 2020). Out of all analyzed diagnostics, the kurtosis

appears to be the hardest one to simulate correctly. Most of the ensembles underestimate the variability of the kurtosis. Strong

biases and an underestimation of the variability is found for the SPV area as well. Overall, this may be constituted by the

difficulty of models to simulate the well-known non-linearity of stratospheric dynamics (Matthewman and Esler, 2011; Cohen395

et al., 2014; Eichinger et al., 2020b) and calls for caution when using these diagnostics as SSW proxies.

We conclude that usually models with a higher lid and models with a finer vertical resolution generally simulate the SPV and

SSWs better with reference to ERA5. However, many factors influence SPV properties and SSW frequency, such as interactive

chemistry, gravity wave parameterizations and other dynamical processes that differ in the individual models. It is therefore

not clearly assignable from this study which model characteristics are the decisive ones for representing well the SPV and its400

variability.

Knowledge of how well different climate models perform in simulating the SPV spatial variability and SSWs correctly is of

utmost importance for tuning and calibrating to improve their performance, as well as for assessing their reliability in future

climate projections. The latter is particularly important with regard to polar stratospheric ozone and its evolution across the

21st century.405
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