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Abstract. The stratospheric polar vortex (SPV) is a phenomenon comprising
:::::::::
comprises strong westerly winds during winter in

both hemispheres
::::
each

::::::::::
hemisphere. Especially in the Northern Hemisphere (NH) the SPV is highly variable and is frequently

disrupted by sudden stratospheric warmings (SSWs). SPV dynamics are relevant because of both ozone chemistry and its

impact on tropospheric dynamics. In this study, we evaluate the capability of climate models to simulate the NH SPV by com-

paring large ensembles of historical simulations to the ERA5 reanalysis data. For this, we analyze geometric-based diagnostics5

at 3 pressure levels that describe SPV morphology. Moreover, we assess the ability of the models to simulate SSWs subdivided

into SPV split and displacement events. A rank histogram analysis reveals that no model exactly reproduces ERA5 in all diag-

nostics at all levels. Concerning SPV aspect ratio and centroid latitude, most models are biased to some extent, but the strongest

deviations can be found for the kurtosis. Some models underestimate the variability of the SPV area. Assessing the reliability

of the ensembles in distinguishing
::::
SSWs

::::::::::
subdivided

:::
into

:
SPV displacement and split events, we find large differences between10

the model ensembles. In general, SPV displacements are represented better than splits in the simulation ensembles, and high-

top models and models with finer vertical resolution perform better. A good performance in representing the geometric-based

diagnostics in rank histograms is found to be not necessarily connected to
::::
does

:::
not

:::::::::
necessarily

:::::
imply

:::::::::
reliability

:::
and

::::::::
therefore

a good performance in simulating displacements and splits. Understanding the biases and improving the
::::::::
Assessing

:::
the

::::::
model

:::::
biases

:::
and

::::
their

:
representation of SPV dynamics in climate model simulations can help

:
is
:::::::
needed to improve credibility of cli-15

mate projections, in particular with focus on polar stratospheric dynamics and ozone
:::::
model

::::::::::
projections,

::
for

::::::::
example

::
by

::::::
giving

:::::::
stronger

:::::::::
weightings

::
to

:::::
better

:::::::::
performing

:::::::
models.

1 Introduction

In winter the dynamics of the mid-latitude and polar stratosphere are dominated by the stratospheric polar vortex (SPV). The

SPV is a circumpolar band of usually strong westerly winds. It forms ,
::::::::

forming in autumn due to the cooling of the po-20

lar stratosphere. When the stratosphere warms again in spring, the temperature gradient reverses and easterly winds prevail

during summer (Holton, 1980). The SPV affects the concentration of ozone over the poles: strong winds are accompanied

by lower than average temperatures, that allow
:::::::
allowing the formation of polar stratospheric clouds, where ozone deplet-
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ing substances are activated (Langematz et al., 2014; Lawrence et al., 2020). Via stratosphere-troposphere coupling (Bald-

win and Dunkerton, 2001), the SPV can influence tropospheric circulation patterns, temperatures, and precipitation (Thomp-25

son et al., 2002; Butler et al., 2017; King et al., 2019). Due to the impact of the stratospheric circulation on the surface

weather
:::::
Hence, uncertainties associated with SPV relates to tropospheric uncertainties in

::
the

::::::::::::
representation

::
of

::::
SPV

::
in
:::::::
models

::::
relate

:::
to

:::::::::::
uncertainties

::
in

:::::::::::
tropospheric climate projections, in particular the windiness over Europe , winter precipitation in

::::
with

:::
the

:::::::
position

::
of
::::

the
::
jet

::::
and

:::
the

:::::::::::
precipitation

:::::::
patterns

:::::
over

::::::
Europe

::::
and

:
the Mediterranean region (Scaife et al., 2012;

Zappa and Shepherd, 2017) and
:
as

:::::
well

::
as

::::
with

:
sea level pressure over the Arctic (Simpson et al., 2018). Especially in the30

Northern Hemisphere (NH),
:::::
where the SPV is highly variable (Baldwin et al., 2021), the strongest changes happen during

so-called sudden stratospheric warmings (SSWs). SSWs are abrupt warmings of the stratosphere , connected with a zonal

wind reduction or even reversal during
::::::::
connected

:::::
with

:::::
zonal

:::::::
westerly

:::::
wind

:::::::::
reductions.

:::::::
During a so-called major SSW

:
,
:::
the

::::
wind

::::
even

:::::::
reverses

:::
to

:::::::
easterly. In the NH, SSWs occur on average about 6 times per decade (Charlton and Polvani, 2007).

They are much less frequent in the Southern Hemisphere, with only one recorded major SSW in 2002 since the beginning35

of the satellite era (Jucker et al., 2021). To distinguish a SSW from the final warming when the wind direction changes to

East for the entire summer, an SSW warming must be followed by at least 10 consecutive days of westerly winds (?).SSWs

can be categorized into two different kinds. Either the SPV is split into two separate SPVs or it is displaced to lower lati-

tudes
:
(Charlton and Polvani, 2007). It is still a matter of current research whether the pressure patterns before the event, and

especially the surface pressure response after the event are different depending on the type of SSW
::::
SSW

::::
type (Mitchell et al.,40

2013; Seviour et al., 2013; Maycock and Hitchcock, 2015). Particularly for exceptionally strong SPV conditions, dynamical

downward coupling from the stratosphere to the troposphere can be observed even influencing surface weather and climate

patterns (Black, 2002; Scaife et al., 2005; ?; Baldwin and Dunkerton, 2001). The skill of weather forecasts in the extratropical

troposphere is enhanced following an SSW (Sigmond et al., 2013; Tripathi et al., 2015).

Multiple studies have focused on analyzing whether climate change alters stratospheric dynamics
:
(Manzini et al., 2014;45

Ayarzagüena et al., 2020; Rao and Garfinkel, 2021). In the model simulations of the Climate Model Intercomparison Project

5 (CMIP5), the largest uncertainty between individual models regarding a change of stratospheric wind speeds is found at

60◦N and 10 hPa (Manzini et al., 2014), the region where the strength of the SPV
::::
SPV

:::::::
strength

:
and SSWs are commonly

diagnosed (Charlton and Polvani, 2007). In line with this uncertainty, there is no agreement among CMIP5 and CMIP6 models

on a possible change in frequency of SSW events
::::
trend

::
in
:::::
SSW

::::::::
frequency

:
(Ayarzagüena et al., 2018; Rao and Garfinkel, 2021).50

The multi-model mean suggests a slight increase in SSW frequency
::::
SSW

:::::::::
frequency

::::::::
increase, but the inter-model spread is

large, even in the historical simulations (Rao and Garfinkel, 2021). Ayarzagüena et al. (2018) used 12 Chemistry Climate Model

Initiative (CCMI) models for their analysis and found that most of them do not project a significant change in SSW frequency

::::
SSW

:::::::::
frequency

:::::
trend. Seviour et al. (2016) used two-dimensional diagnostics of the SPV

:::
SPV

::::::::::
diagnostics

:
to differentiate

between vortex splits and displacements and found that most CMIP5 models show some bias in simulating SSWs. Hall et al.55

(2021) made similar findings with CMIP6 models and found no notable improvement compared to CMIP5. They found that

:::::::::
Differences

::
in
:

the chemistry schemes used in the modelsmight influence the results. Other reasons for the large inter-model

spread are assumed to be the different
::
of

:::
the

:::::::
models,

:::
the mean SPV strengths and differences in upward-propagating

::
as

::::
well

::
as
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::
in

::::::
upward

::::::::::
propagating wave activity flux (Wu and Reichler, 2020)

::::
have

::::
been

::::::::
identified

::
as

:::::::
possible

:::::::
reasons

:::
for

:::
the

::::
large

::::::
spread

::
in

::::
SSW

:::::::::
frequency

:::
and

::
its

::::::
trends.60

The large inter-model spread and the uncertainties in the SPV response to climate change underline the need to investigate the

reliability of climate models in simulating the SPV
:
.
::::
This

:::::::
includes

::
its

:
form, strength and stability. Previous studies mostly

::::
Most

:::::::
previous

::::::::::
multi-model

:::::::
studies

::::
only used a single run from each climate model. Single-model realizations limit analysis as to

whether the differences between the models are caused by different model physics or by
::::::::
However,

:::::::::::
single-model

::::::::::
realizations

::::
limit

::::::::::
possibilities

::
in

:::::::::
attributing

:::::
model

:::::::::
differences

::
to

:::
the

:::::::::
underlying

:::::::
physics

::
or

::
to natural variability (Blanusa et al., 2023; Deser65

et al., 2020). Thus, particularly the high variability of the
::::::::::
Particularly

::
the

::::::
highly

:::::::
variable

:
wintertime NH stratosphere requires

analysis using a large ensemble size
::::
large

::::::::
ensemble

:::::
sizes (Deser et al., 2020). In the following, we aim to assess how reliable

::::::::
Therefore,

:::
we

::::
here

:::::
assess

:::
the

:::::::::
reliability

::
of recent large-ensemble model simulations are in representing the SPV and its spatial

variability. For this,
:::
after

::::::::::
introducing

::::
our

:::::::
methods

::
in
:::

in
::::
Sect.

::
2
:
we compare in Sect. 3 geometric SPV diagnostics in large

climate model ensembles with ERA5 reanalysis data using rank histograms (Matthewman et al., 2009; Seviour et al., 2013).70

Furthermore, the reliability of the ensembles in detecting SSWs separated into SPV splits and displacements will be
:
is
:
analyzed

in Sect. 4. Due to the large SPV variability and the high SSW frequency in the NH, we limit our analysis to the NH SPV. In

Sect. 5 we discuss our results with regard to possible reasons for the detected model differences and we finish the paper with

some concluding remarks in Sect. 6.
::::
Due

::
to

:::
the

:::::
large

::::
SPV

:::::::::
variability

:::
and

:::
the

::::
high

:::::
SSW

:::::::::
frequency

::
in

:::
the

::::
NH,

:::
we

::::
limit

::::
our

::::::
analysis

::
to
:::

the
::::
NH

::::
SPV.

:
75

2 Methods

2.1 Data

For this climate model assessment on SPV strength, form and stability, we use large climate model simulation ensembles.

Each ensemble consists of multiple simulation members, which only differ by modified initial conditions, otherwise
:::::
while the

model physics and setups are identical (Deser et al., 2020). The advantage of an ensemble in comparison to a climate model80

with only one realization is that we can estimate the internal variability of a variable from the spread among the individual

ensemble members. In our analysis, we use climate models from the Multi-Model Large Ensemble Archive (MMLEA) pro-

vided by the US CLIVAR (Climate and Ocean - Variability, Predictability, and Change) working group on large ensembles

(Deser et al., 2020) as well as ensembles from the Coupled Model Intercomparison Project 6 (CMIP6, Eyring et al., 2016). We

use the historical simulations of these
:::::
those ensembles where all CMIP5- and CMIP6-class historical forcings are included.85

Information about the 11 climate model ensembles we used for our analysis can be found
::::::
models

::::
used

::
in

:::
our

::::::::
analysis

:::
are

:::::::
provided

:
in table 1. The selection criteria for our model database were

:::::
firstly, availability of at least 10 ensemble members

and
:::::::
secondly,

::::::::::
availability

::
of

:
the geopotential height

:
at
:::
the

::::::::
pressure

:::::
levels

:::
10,

:::
50

:::
and

:::::::
100 hPa

:
to calculate the SPV moment

diagnostics (see section 2.2)at the pressure levels 10, 50 and
:
.
::::::::::
GFDL-CM3

::
is
:::
an

:::::::::
exception,

::
for

::::
this

:::::
model

::::
data

::::
was

::::::::
available

::::
only

::
at
:

100 hPa.However, not all levels are available in all models.90

For reference, we compare the ensembles of the historical simulations
::::::::
historical

:::::::::
simulation

:::::::::
ensembles with ERA5 reanaly-
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Table 1. Analyzed climate model ensembles from CMIP5 and CMIP6. Low-top
:::::
models

:::
are

::::
above

:
and high-top models are separated by

::::
below

:
the horizontal line.

Model
Ensemble

members

Horizontal

resolution

(lat x lon)

Center of uppermost

level in the vertical

Number of levels

in the vertical
Reference

CanESM25∗ 50 2.8°x2.8° 1 hPa 35 Kirchmeier-Young et al. (2017)

CanESM5 35 2.8°x2.8° 1 hPa 49 Swart et al. (2019)

CESM2 49 0.9°x1.25° 2.26 hPa 32 Danabasoglu et al. (2020)

CNRM-CM6-1 26 1.4°x1.4° 86.4 km 91 Voldoire et al. (2019)

GFDL-CM35
::

∗+ 20 2.0°x2.0° 86.4 km 48 Donner et al. (2011)

INM-CM5-0 10 2.0°x1.5° 0.2 hPa 73 Volodin and Gritsun (2018)

IPSL-CM6A-LR 32 2.5°x1.25° 80 km 79 Boucher et al. (2020)

MIROC6
:

# 10 1.4°x1.4° 0.004 hPa 81 Tatebe et al. (2019)

MPI-ESM1-2-LR 30
::
50 1.5°x1.5° 0.01 hPa 47 Maher et al. (2019)

::::::::::::::::::
Olonscheck et al. (2023)

MPI-ESM1-2-HR 10 0.4°x0.4° 0.01 hPa 95 Müller et al. (2018)

UKESM1-0-LL 16 1.25°x1.9° 85 km 85 Sellar et al. (2019)

∗Model is part of CMIP5, other models are part of CMIP6.

Only UKESM1-0-LL and CNRM-CM6-1 include full interactive chemistry, CNRM-CM6-1 has a simplified interactive chemistry scheme, the other models are run in dynamics-only mode.
+Model data is only available at 100 hPa.
#Model is available for 10 ensemble members only. All 50 ensemble members only cover monthly mean data (Shiogama et al., 2023).

sis data (Hersbach et al., 2020). In ,
::
or

:::
in other words, ERA5 data serves as ground truth in our analysis. We use

::
In

::::
this

::::::
regard,

::
we

:::::::::
emphasize

::::
that

::::::
ERA5

::
is

:::::::::
designated

::
as

:
a
:::::::::::::
state-of-the-art

:::::::::
benchmark

:::::::::
regarding

::
its

::::::::
extensive

:::::::::
horizontal

:::
and

:::::::
vertical

::::::::
resolution

::::::::
compared

::
to
:::::
other

:::::::::
reanalyses

::::::::::::::::::::::::
(Hoffmann and Spang, 2022),

::::::::
however,

::::::
clearly

:::
not

::
as

:::
an

:::::::
absolute

:::::
truth.

:::
We

:::::
apply the

same geopotential height-based SPV diagnostics for the
:
to
:::
the

::::::
ERA5 reanalysis that we also apply to the model ensemble data.95

The analysis is carried out for the period 1979–2014 covering years when as many observations as possible were assimilated in

::
to ERA5 including satellite observations (Hersbach et al., 2020). Vokhmyanin et al. (2023) found 22 SSWs in these 36 years of

ERA5 data. We analyze daily data of the months from November through March in the NH, as this is when the SPV is usually

present and SSW disruptions happen.

100

2.2 Polar vortex moment diagnostics

To assess spatio-temporal SPV characteristics, the following 2-dimensional moment diagnostics are calculated: aspect ratio,

kurtosis, centroid longitude and latitude, and objective area (for details of the calculation see Matthewman et al., 2009; Seviour

et al., 2013).
:::
The

::::::
aspect

:::::
ratio,

:::
i.e.

:::
the

::::
ratio

:::
of

:::
the

:::::
major

::
to
:::

the
::::::

minor
::::
axis

::
of

:::
the

:::::
SPV

::::::
ellipse,

:::::::::
diagnoses

::::
how

::::::::
stretched

:::
the

::::
SPV

::
is.

::::::::
High/low

:::::
aspect

:::::
ratio

:::::
values

:::::::
indicate

:
a
:::::::::::::::
stretched/circular

::::
SPV,

::::
and

:::::::::::
exceptionally

::::
high

:::::
values

:::
are

:::::
often

:::::::::
associated

::::
with105
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::::
SPV

::::::::::
disturbances

::::
such

:::
as

:::::
SSWs.

::::
The

::::::
excess

:::::::
kurtosis

::
is

:
a
:::::::
measure

:::
for

:::
the

::::::::::
distribution

::
of

::::::::::
geopotential

::::::
height

:::::
values

::::::
inside

:::
the

::::
SPV,

:::::::
constant

:::::::::::
geopotential

:::::
height

::::::
values

::::
lead

::
to

:::
an

:::::
excess

:::::::
kurtosis

:::
of

::
0.

::
A

:::
low

:::::::::::
geopotential

:::::
height

::::::
center,

:::
i.e.

::
a
:::::
stable

:::::
SPV,

:
is
::::::::::
represented

:::
by

::::
high

:::::::
kurtosis

:::::
values

::::
and

:::
two

::::::::
separated

:::::
areas

::
of

::::
low

::::::::::
geopotential

::::::
height,

:::
i.e.

::
a
:::::
vortex

:::::
split,

::
is

::::::::
indicated

::
by

::
a

:::::::
negative

:::::::
kurtosis.

:::
The

::::
SPV

:::::::
location

::
is

::::::::
diagnosed

:::
by

:::::::
centroid

::::::
latitude

:::
and

:::::::::
longitude.

::
A

:::::
lower

:::::::
centroid

::::::
latitude

::
is

::::
often

:::::::::
associated

::::
with

:
a
::::::::
disrupted

::::
SPV

::::
and

:::
can

:::::::
indicate

::
a
:::::::::::
displacement,

::::::::
centroid

::::::::
longitude

:::::
values

::::
can

::::::::::
additionally

::::
help

::::::::::
determining

:::
the

:::::
SPV110

:::::::
position.

::::
The

:::::::
objective

::::
SPV

::::
area

::
is

::
an

::::::::
indicator

:::
for

::::
SPV

:::::::
strength,

:::
as

:
a
::::
large

::::
area

::
of

::::
low

::::::::::
geopotential

::::::
height

::
is

::::
often

:::::::::
connected

::::
with

::::
high

::::
wind

:::::::
speeds.

:::::
More

::::::
detailed

:::::::::::
descriptions

:::
are

:::::::
provided

:::
in

:::::::::
Section S2

::
in

:::
the

::::::::::
Supplement.

:
In contrast to Matthewman

et al. (2009) who described their method using potential vorticity, we will
:::
here

:
use the geopotential height to define the

SPV edge, as suggested by Seviour et al. (2013). These metrics indicate whether the SPV is stretched, filamented as well as

longitudinally and latitudinally displaced, and describe its area, respectively.
:::
For

:::
this,

:::
the

:::::::::
algorithms

::::
from

::::::::::::::::::
Seviour et al. (2013)115

::::
have

::::
been

::::::::
modified

::::::::::
accordingly,

:::
the

:::::::
updated

:::::::
versions

:::
can

::
be

::::::::
accessed

::::
from

::::::::::::::::::::::
Kuchar and Öhlert (2024).

:

:::
We

::::
show

:::
the

:::::::::::
geopotential

::::::
height

::::::::::
climatology

::
at

::::::
10 hPa

:
(
::::
gh10

:
)
::
of

:::
all

:::::::
analyzed

::::::
model

:::::::::
ensembles

:::
and

::::::
ERA5

:::
for

:::
the

::::::
period

:::::::::
1979–2014

::
in

::::::
Fig. 1.

::::
The

:::::
figure

::::::
shows

::::
that

:::::
some

::::::
models

:::
do

::::
not

:::::::
simulate

:::::
gh10

:::
well

::
in
:::::::::::

comparison
::
to

::::::
ERA5

::::::::::
(CanESMs,

::::::::
CESM2).

:::
On

:::
the

::::
other

:::::
hand,

::::::
visual

::::::::::
resemblance

:::::::
between

::::::
ERA5

:::
and

:::::
other

::::::
models

::::
(e.g.

::::::::::::::
UKESM1-0-LL)

::::
can

::::::
clearly

::
be

:::::
seen,

:::
too.

::::::::
However,

::::::
details

:::::
about

:::
the

:::::::::
reliability

::
of

:::::
these

::::::::::::
large-ensemble

::::::
model

::::::::::
simulations

::
in

:::::::::::
representing

:::
the

::::
SPV

:::
and

:::
its

::::::
spatial120

::::::::
variability

::::::
cannot

:::
be

::::::::::
decomposed

:::::
based

:::
on

::::
such

::::::::::
depictions.

::::::
Hence,

:::::::
moment

:::::::::
diagnostic

:::::::
analyses

:::
are

::::::
needed

:::
to

::::
shed

::::
light

:::
on

::
the

:::::
SPV

:::
and

:::
its

:::::::::
properties

::
in

::::
large

::::::::
ensemble

:::::::::::
simulations.

2.3 Rank histograms

We create rank histograms consisting
:::
The

::::
rank

:::::::::
histogram

::::
(RH)

::
is

:
a
::::
tool

::::
used

::
in

::::::::
ensemble

:::::::
forecast

:::::::::
verification

::
to
:::::::::
determine

:::
the

::::::::
reliability

::
of

::::::::
ensemble

:::::::
forecasts

::::
and

::
to

:::::::
diagnose

:::::
errors

::
in

:::
its

::::
mean

::::
and

::::::
spread.

::::
RHs

::::::
consist of n+1 bins, where n is the number125

of model ensemble members. For this, the values of the ensemble of a certain
::::
each time step and variable,

:::
the

::::::::
ensemble

::::::
values

are sorted in ascending order. For reference, ,
::::
and the ERA5 reanalysis value at this

:::
that

::::::::
particular

:
time step is placed into this

set at position k. The histogram counts of all bins greater or equal
::::
than

::
or

:::::
equal

::
to k are then increased by one. This

:
,
:::
and

::::
this

procedure is repeated for all available time steps
::::
each

::::
time

::::
step (for details of the calculation see Hamill, 2001; Wilks, 2011).

For a reliable (calibrated) ensemble, the counts should be uniformly distributed over all bins. If the ensemble deviates from the130

reanalysis, the shape of the histogram can be used to find out why
:
(Wilks, 2011). For example, if the historical simulations are

biased, there will be a linear trend in the histogram. When the counts of the bins are higher on the left and lower on the right of

the histogram, the ensemble simulates the variable to be higher disproportionately often, which is called overforecasting bias.

The opposite would be an underforecasting bias. If the ensemble under-/overestimates the variability, the ranks at the sides

:::::
edges of the histogram have higher/lower counts than in the middle

:::::
center, which is called under-/overdispersion.135

For objective assessment of the results, various measures can be considered, such as
::
we

:::::::
consider

::
an

:::::::::
additional

:::::::::
diagnostic

::
in

:::
our

:::::
study,

::::::
namely

:
the χ2 statistic. This

::::::::
diagnostic quantifies how close the rank histogram

:::
RH is to an ideal uniform distribu-

tion. A perfectly flat histogram would produce a χ2 value of 0. Jolliffe and Primo (2008) introduced a method to split the χ2

statistic into multiple metrics
:
, where each one describes a particular shape of the histogram

:::::
certain

:::::::::
histogram

:::::
shape. The linear
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::::::::::
Geopotential

:::::
height

:::::::::
climatology
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CNRM-CM6-1

:
(
:
D
:
),
::::::::::
INM-CM5-0

:
(
:
E
:
),
:::::::::::::
IPSL-CM6A-LR

:
(
:
F
:
),
:::::::
MIROC6

:
(
::
G

:
),

:::::::::::
UKESM1-0-LL

:
(
::
H

:
),
:::::::::::::
MPI-ESM1-2-HR

:
(
:
I
:
)
:::
and

:::::::::::::
MPI-ESM1-2-LR

:
(J
::
),

:::
and

:::::
ERA5

:
(
:
K

:
)
::
for

:::
the

:::::
period

:::::::::
1979–2014.

:::
The

:::::
black

:::
and

:::::
purple

:::
line

::::::::
represents

::::::
contour

::
of

:::::::
30000 m

::
in

:::::
ERA5

:::
and

::
in

:
a
:::::::
particular

::::::
model,

:::::::::
respectively.

6



trend can be
:
is

:
used as a bias indicator and the

:
a U-shape indicates over- or underdispersion

::::::
(spread). These metrics can be140

especially helpful when both bias and over- or underdispersion are present in an ensemble, as this can be difficult to distinguish

from the rank histogram alone.
:::::::
visually

::::
from

:::
the

:::
RH

:::::
alone.

::::
The

:::::::::::
contributions

::
of

:::::
these

:::
two

::::::::::
components

::
to
:::
the

::::
total

:::
χ2

:::::::
statistic

::
are

:::::::::
presented

:::::
along

::
all

::::
RHs

::
in

:::
our

::::::::::
assessment.

::::::
These

:::::::
statistics

::::::
should

:::::
serve

::
in

::::::
relation

::
to
:::
the

:::::
other

::::::
models

::::::
instead

:::
of

:::::::
defining

:::
any

::::::::
threshold

:::
for

:
a
::::::
"good"

::
or

:::::
"bad"

::::::
model.

145

2.4
::::::

Perfect
:::::
model

::::::
range

Due to internal variability, it is possible that a rank histogram
:::
RH has a somewhat uneven distribution, even though the ensemble

is covering the probabilities correctly. This can even result in an insignificant χ2. To determine which deviations from a uniform

distribution can be attributed to internal variability, Suarez-Gutierrez et al. (2021) suggested the use of ’a perfect model range’.

To obtain this range,
:
a rank histogram is created for each ensemble member where this specific member is treated as

:
a reference150

(i.e., as if it was the reanalysis). This results in slightly different values for each bin in the rank histograms
::::
RHs, depending on

the member in question. The perfect model rank range is then defined by the range where 90% (5th - 95th percentile) of the

bin counts are found. Since a member from the ensemble can never be higher or lower than all ensemble members, the values

for the rank range in the first and last bin are ignored.

2.5 SSW diagnostics155

SSWs
::::
SSW

:
events can be subdivided into SPV splits and displacements and can be detected by means of the metrics described

above. Seviour et al. (2013) suggested that an SPV split can be detected by using the aspect ratio and they defined values
::
As

::::::::
suggested

:::
by

:::::::::::::::::
Seviour et al. (2013),

:::
we

:::::
detect

:::::
SPV

:::::
splits

::
by

:::
an

::::::
aspect

::::
ratio higher than 2.4to be a split. For a displacement,

the centroid latitude is arguably the best indicator. Here, Seviour et al. (2013) defined that a displacement has taken place
::
as

::::::
defined

::
by

::::::::::::::::::
Seviour et al. (2013)

:
a

:::::::::::
displacement

::
is

:::::::
detected if the centroid latitude is lower than 66oN.160

To assess how well the probability of these events is represented in the model simulation ensembles, the receiver operating

characteristics (ROC) curves are used
:::
(see

::::::::
Figs. S1

:::
and

:::
S2

:::
and

:::::
their

:::::::::
description

::
in

:::::::::
Section S3

:::
in

:::
the

:::::::::::
Supplement). The area

under the ROC curve (AUC) indicates how well an ensemble is able to discriminate between SSW and non-SSW events using

::
the

:
thresholds above (with reference to ERA5): It

:
.
::::
AUC

:
ranges from 0 to 1. A value

::::::
Values of 1and

:
, 0.5 indicates perfect

skilland
:
0
:::::::
indicate

::::::
perfect

:::::
skill, random guessing, respectively.

::
and

:::
no

:::::
skill,

::::::::::
respectively.

:::
As

:::
an

:::::::
example,

:::
we

:::::
show

:::::
ROC

:::
for165

:::::::::::
displacements

::::
and

:::::
splits

::
in

:::::
Fig. 2

:::
for

:::
the

:::::::::
CanESM5

:::::::::
ensemble.

:::
Bin

::::::
values

::::::::
indicated

:::::
along

:::::
ROC

:::
are

::::::::::
probabilities

:::
of

:::::::
whether

::
the

::::::
model

::::::::
simulates

::::::::::::
displacements

::::
and

:::::
splits

::::::
across

::
its

::::::::
ensemble

:::::::::
members,

:::::::::::
respectively.

:::::
These

::::::
values

::::
then

:::::
serve

::
as

::::::
inputs

::
for

:::
the

::::::::::
calculation

::
of

:::::::::::
dichotomous

::::::::::
contingency

:::::
tables

::::::
which

:::::::
includes

::::
true

:::
and

::::
false

:::::::
positive

::::
rates

:::::::::
displayed

::
on

::
y-

::::
and

::::::
x-axis,

::::::::::
respectively.

:::::
Fig. 2

:
B

::::::::::
demonstrates

::::
that

:::::::::
CanESM5

::::::
cannot

::::::::::
discriminate

::::
split

:::::
events

:::::
better

::::
than

:::::::
random

::::::::
guessing

:::
(see

:::::::::
Sect. 4.2).

To determine the uncertainty of the AUC, we provide error bars using the approach of the perfect model range, where we170

assume each ensemble member as
::
an observation.
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Figure 2.
::::::
Receiver

:::::::
operating

:::::::::::
characteristics

::::::
(ROC)

:::::
curves

:::
for

::::::::::
displacements

::
(
:
A)

::::
and

::::
splits

:
(
:
B
:
)
::
in

:::::::::
CanESM5.

:::
Bin

:::::
values

:::::::
indicated

:::::
along

::::
ROC

::
are

::::::::::
probabilities

::::::
whether

:::::
model

::::::::
simulates

:::::::::::
displacements

:::
and

::::
splits

:::::
across

::
its

::::::::
ensemble

:::::::
members,

::::::::::
respectively.

::::
Area

:::::
under

:::
the

::::
ROC

::::
curve

:::::
(AUC)

::
is

::::::::
visualized

:::
and

:::
also

:::::::
specified

::
in

::
the

::::::
figure.

:::
The

:::::
dashed

:::
line

::::::::
represents

::::::
random

:::::::::::
discrimination

::::
skill,

:::
i.e.

:::::::
AUC=0.5.

We also reproduce the methodology from Hall et al. (2021) as previously applied in Mitchell et al. (2011) and
:::::
based

:::
on Se-

viour et al. (2013) to examine relationships between modal centroid latitude and aspect ratio and displacement and split SSW

frequency, respectively.
:::
The

::::::::::
frequencies

::
of

::::::
ERA5

:::::
SSW

::::
split

:::
and

:::::::::::
displacement

::::::
events

:::::::::
determined

::::
with

::::
this

::::::
method

:::
are

::::::
within

::
the

::::::::::
uncertainty

::
of

::::
other

::::::::
methods

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(∼6.94 events per decade, ∼6.66 events per decade including displacement and splits events only, displacement/split ratio equals to 1.4; Gerber et al., 2022)175

:
.
:::
We

::::::
provide

:::
the

:::
list

::
of

::::::
ERA5

::::
SSW

::::
split

::::
and

:::::::::::
displacement

:::::
events

::
in

:::::::
Tab. S2

::
in

:::
the

::::::::::
Supplement

::
to

::::::::
document

::::
this

:::::::::
agreement.

3 Analysis of geometric polar vortex diagnostics

In the following, the agreement between the ERA5 reanalysis and the historical simulations of the climate model ensembles

will be compared by means of the SPV moment diagnostics that were introduced in section 2.2. Rank histograms
:::::::::
introduced

::
in

::::
Sect.

::::
2.2.

:::
For

::::
this,

::::
RHs

:
are discussed for all available models at 10, 50 and 100 hPa, however, the figures for 50 hPa and180

for 100 hPa are shown in the Supplement.
:::
We

:::
also

::::::::::
summarize

:::
bias

::::
and

:::::
spread

::::
from

:::::
these

::::::
figures

::
in

:::::::
Table S1

::
in

:::
the

::::::::::
Supplement.

:

3.1 Aspect ratio

The aspect ratio is
::
of

:::
the

::::
SPV

:
is
::::::::::
determined

::
by

:::
the

::::
ratio

:::
of

:::
the

:::::
major

::
to

:::
the

:::::
minor

::::::
ellipse

::::
axis.

:::::
Thus,

:
it
::::::::
measures

::::
how

::::::::
stretched

::
the

:::::
SPV

:
is
::::::::
providing

::::
high

::::::
values

:::
for

:::::::
stretched

::::
and

:::
low

:::::
values

:::
for

:::::
more

::::::
circular

:::::
SPVs.

::::::::::::
Exceptionally

::::
high

:::::
aspect

::::
ratio

::::::
values

:::
are185

of particular interest for SPV dynamics because it is an indicator for vortex
::
as

:::
they

:::
are

:::::
often

:::::::::
associated

::::
with

::::
SPV

:::::::::::
disturbances,

::
in

::::::::
particular

:::::::::
indicating splitting events (Seviour et al., 2013). Fig. 3 shows rank histograms

:::
RHs

:
of the aspect ratio for all

analyzed climate model ensembles together with the above explained
::::::::
introduced

:
statistical values χ2, bias and spread at

8



10 hPa, the level that is most commonly used to detect SPV splits. As indicated in Sect. 2, interpretation of all results here are

with reference to ERA5 reanalysis data, which is considered as ground truth for the analysis. .
:

190

All models succeed to simulate the spread of the aspect ratio, but most models are biased to some extent. At 10 hPa, four

models are biased simulating
:::
and

:::::::
simulate

:
lower aspect ratios more frequently than the reanalysis (CanESM2, CanESM5,

CESM2 and CNRM-CM6-1) and four
::::
three

:
models show a high

:::::::::::::
overforecasting

:
bias (IPSL-CM6A-LR , MIROC6, and

both MPI-ESM1-2 ensembles). Only two
::::
three models show no significant

::::::::::
considerable bias (INM-CM5-0,

:::::::
MIROC6

::::
and

UKESM1-0-LL).195

The strongest biases are found in the CanESM2
::::::::
CanESM5

:
and CESM2 ensembles . Such strong biases can have implications

for the simulation of SPV splits. Frequent simulation of low aspect ratios points towards an
:::
(see

::::
also

::::::
Tab. S1

::
in

:::
the

:::::::::::
Supplement).

:::::
These

::::::::
relatively

::::::
strong

::::::
aspect

::::
ratio

::::::
biases

:::
(as

::::::::
compared

:::
to

:::
the

:::::
other

:::::::
models)

:::::
point

:::::::
towards

:
underestimation of SPV split

probability, which will further be investigated in
:::
but

:::
see Section 4.2 .

::
for

::::::
further

:::::::::::
investigation

::
on

::::
this

:::::::::
connection.

:

The
::::
With

:::
the rank histograms at 50 and 100 hPa can be found in the supplement (Figs. S1, S6). The models generally

:::
(see200

::::::::::::
supplementary

:::::::
Figs. S3,

::::
S8),

:::
the

:::::::
models can be separated into three

:::
two

:
groups according to their behavior compared to

::
in

::::::
relation

::
to
::::

the
:::::
results

:::
at 10 hPa. One group of models shows larger biases at lower altitudes (CanESM2, INM-CM5-0 and

UKESM1-0-LL). In INM-CM5-0 and UKESM1-0-LL the low bias in aspect ratios appears only at the two lower levels. In

the other
:::
the

:::::
other

:::::
model ensembles the bias is weaker at lower altitudes

:::::::::
(CanESM5,

::::::::
CESM2,

:::::::::::
INM-CM5-0,

:::::::::::::::
IPSL-CM6A-LR,

:::::::
MIROC6

::::
and

::::::::::
MPI-ESMs).205

3.2 Centroid latitude

Fig. 4 shows the rank histograms
:::
RHs

:
of the centroid latitude for all analyzed climate model ensembles at 10 hPa.

:::
The

:::::::
centroid

::::::
latitude

::
is

::
a
:::::::
measure

:::
of

::::
how

:::
far

:::
the

:::::
polar

:::::
vortex

:::
is

::::::
shifted

::::
from

::::
the

:::::
North

:::::
Pole;

::::::::::
untypically

:::
low

::::::::
latitudes

:::::::
indicate

::::::
vortex

:::::::::::
displacements

::::::::::::::::::
(Seviour et al., 2013).

:
Most ensembles show a bias in centroid latitude, but the spread is generally represented

well. This is similar to the results of
:::
for the aspect ratio. The direction of the biases is not consistent among the models.210

The CanESM2, IPSL-CM6A-LR and MPI-ESM1-2 ensembles simulate a high
:::
low latitude bias with regard to the reanalysis,

while the CESM2, INM-CM5-0 and MIROC6 ensembles show a low
::::
high latitude bias. Only CanESM5, CNRM-CM6-1 and

UKESM1-0-LL do not show any notable bias or spread, i.e.
:
, the corresponding statistical diagnostics show low values. Here,

CanESM5 (see Fig. 4B) shows a notable improvement compared to its earlier version CanESM2 (see Fig. 4A). The combination

of biases towards higher centroid latitudes and lower aspect ratios
::::
high

:::::::
centroid

:::::::
latitude

:::
bias

::::
and

:::
low

::::::
aspect

::::
ratio can only be215

seen in CESM2 (see Fig. 4C), which can explain the general underestimation of SSWs in this model (see Sect. 4 and 5).

The rank histograms
::::
RHs of the centroid latitude at the two lower pressure

::::::
altitude

:
levels are shown in Figs. S2 and S7

::
S4

:::
and

:::
S9

::
in

:::
the

::::::::::
Supplement. In most models

:
, the bias is similar at the different levels , which means

::
all

:::::::
analyzed

:::::
levels

::::
(10,

:::
50

:::
and

::::::::
100 hPa),

:::::::
showing that the performance of most ensembles with respect to centroid latitude is not very sensitive to altitude.

Only in CanESM5a bias towards lower latitudes
:
,
:
a
::::
low

:::::::
latitudes

::::
bias

:
appears at the two lower levels

:::::::
altitudes. In MIROC6220

the bias to simulate lower latitudes
:::
low

:::::::
latitude

::::
bias

:
is only present at 10 and 50 hPa;

:
,
:::::
while

:
at 100 hPa the bias vanishes

completely and the histogram is almost perfectly flat
:::::
model

:::::
shows

::::::
almost

::
no

::::
bias

:::
and

::::
thus

::
a

:::::
nearly

::::::::
perfectly

:::
flat

::::::::
histogram.

9



10 20 30 40 50
0

50

100

A

CanESM2
2: 201.74 

 Bias: 148.61  Spread: 7.10

5 10 15 20 25 30 35
0

200

B

CanESM5
2: 980.93 

 Bias: 772.06  Spread: 140.74

10 20 30 40 50
0

100

200
C

CESM2
2: 798.55 

 Bias: 576.90  Spread: 127.07

5 10 15 20 25
0

100

200

D

CNRM-CM6-1
2: 168.11 

 Bias: 108.77  Spread: 0.28

2 4 6 8 10
0

200

400

E

INM-CM5-0
2: 10.35 

 Bias: 0.65  Spread: 1.80

5 10 15 20 25 30
0

100

200

F

IPSL-CM6A-LR
2: 499.20 

 Bias: 450.04  Spread: 2.55

2 4 6 8 10
0

200

400

G

MIROC6
2: 52.23 

 Bias: 19.07  Spread: 6.55

2 4 6 8 10 12 14 16
0

200

H

UKESM1-0-LL
2: 14.48 

 Bias: 0.33  Spread: 0.27

2 4 6 8 10
0

200

400

I

MPI-ESM1-2-HR
2: 131.64 

 Bias: 116.15  Spread: 0.01

10 20 30 40 50
0

50

100

J

MPI-ESM1-2-LR
2: 294.71 

 Bias: 242.95  Spread: 7.78

aspect ratio 10hPa

Figure 3. Rank histograms of aspect ratio at 10 hPa of all analyzed climate
::::
model

:
ensembleswith their respective statistics

:
:
::::::::
CanESM2

(see Sect. 2
:
A

:
),
::::::::
CanESM5

:
(
::
B

:
),

::::::
CESM2

:
(
::
C

:
),

:::::::::::
CNRM-CM6-1

::
(
:
D

:
),
::::::::::
INM-CM5-0

:
(
:
E
:
),
:::::::::::::

IPSL-CM6A-LR
:
(
:
F
::
),

:::::::
MIROC6

:
(
::
G

:
),

::::::::::::
UKESM1-0-LL

:
(
:
H

:
),
::::::::::::::
MPI-ESM1-2-HR

:
(
:
I)
:::
and

::::::::::::::
MPI-ESM1-2-LR

:
(
:
J). Blue bars show counts for the individual bins, the black dashed line corresponds to

the expected value for a flat histogram, gray dashed lines indicate the perfect model range
:::
(see

::::
Sect.

::::
2.4). The x-axis shows the ensemble

member number and the y-axis shows the count of the bins.
::
The

::::::::::
contributions

::
of

::::
bias

:::
and

:::::
spread

::
to

::
the

::::
total

:::
χ2

::::::
statistic

::
are

:::::::
provided

:::::
above

::
the

::::
rank

::::::::
histograms

:::
for

:::
each

:::::
model

::::
(see

::::
Sect.

::
2).
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Figure 4. As Fig. 3, but for centroid latitude
:

at
:::::
10 hPa

:::
of

::
all

:::::::
analyzed

:::::
model

:::::::::
ensembles:

::::::::
CanESM2

:
(
::
A

:
),

::::::::
CanESM5

:
(
::
B

:
),

::::::
CESM2

:
(
::
C

:
),

:::::::::::
CNRM-CM6-1

:
(
:
D
:
),
::::::::::
INM-CM5-0

:
(
:
E
:
),
:::::::::::::
IPSL-CM6A-LR

:
(
:
F
:
),
:::::::
MIROC6

:
(
::
G

:
),

:::::::::::
UKESM1-0-LL

:
(
::
H

:
),
:::::::::::::
MPI-ESM1-2-HR

:
(
:
I
:
)
:::
and

:::::::::::::
MPI-ESM1-2-LR

:
(J
:
).
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3.3 Centroid longitude

The centroid longitude in the climate models ranges from -180° to +180°, the negative values lie in the Western Hemisphere

and the positive ones in the Eastern Hemisphere. The centroid longitude rank histograms
::::
RHs (Fig. 5) show where the climate225

models over- or underestimate the position of the SPV. When the counts are lower/greater than average, the ensemble simulates

the SPV center more/less frequently at the respective longitude. The centroid longitude is depicted best by the CNRM-CM6-

1 (see Fig. 5D) and INM-CM5-0 (see Fig. 5E) ensembles. Other
:::
The

:::::
other ensembles show notable deviations from a flat

histogram, but there is no consistency in the deviations among the different
::::
these

:::::::::
deviations

:::
are

::::
not

::::::::
consistent

:::::::
among

:::
the

models. The CanESM2, CESM2 and UKESM1-0-LL ensembles simulate the SPV center in the Eastern Hemisphere more230

frequently than the reanalysis. The IPSL-CM6A-LR and MIROC6 ensembles show the opposite bias. The rank histograms
::::
RHs

of CanESM5 (see Fig. 5B) and the MPI-ESMs (see Fig. 5I-J) show lower counts on both ends, indicating that the ensembles

simulate the SPV more frequently in and around the region of the Bering Strait and Alaska (the meridian of +180/-180°) than

the reanalysis. The rank histograms of the centroid longitude at

::
At

:
50 and 100 hPa are shown in

:
(Figs. S3 and S8. Some models show a change in the direction of bias or

::
S5

:::
and

::::
S10

::
in

:::
the235

:::::::::::
Supplement),

::::
some

:::::::
models

::::
show

::::::
biases

::
of

:::::::
opposite

::::
sign

::::
than

::
at

::::::
10 hPa,

::
or

::::
even

::
a
::::::
general

:
dispersion at the

:
3
:
different pressure

levels (e.g. CanESM2, IPSL-CM6A-LR, MIROC6). This could not be seen for the centroid latitude. In most models both bias

and spread are present at least in
:
at
:
some pressure levels. Only CNRM-CM6-1 produces a flat histogram where almost all

counts lie inside the perfect model range in all three
:
3 pressure levels. The UKESM1-0-LL and MPI-ESM1-2 ensembles show

flat histograms at 50 and 100 hPa.240

3.4 Kurtosis

The excess kurtosis is a measure for how the values of geopotential height are distributed within the SPV region (Matthewman

et al., 2009). Mitchell et al. (2011) proposed that this diagnostic can be used to detect both SPV split and displacement events.

They showed that exceptionally low values are often a sign
::
an

:::::::::
indication that an SPV split has occurred, high .

:::::
High positive

values on the other hand can occur after splits and displacements (see their Figs. 2 and 5). The rank histograms
::::
RHs for the245

excess kurtosis at 10 hPa are shown in Fig. 6. Four models show similar rank histograms
:::
RHs

:
with much higher counts on

the left side of the histogram, namely CanESM2, CanESM5, CESM2 and CNRM-CM6-1. These ensembles underestimate the

variability of the kurtosis and additionally simulate a kurtosis high
::::::
positive bias. The result is that very low values of the kurtosis

are simulated much less frequently in the models than they occur in the reanalysis. Therefore, these models likely underestimate

:::
this

::::
may

:::::::::
contribute

::
to

:::
the

:::::::::::::
underestimation

:::
of the SPV split frequency. This is in line with the aspect ratio low bias in these250

models (see Sect. 3.1), except for CNRM-CM6-1 (see Fig. 6D). The UKESM1-0-LL (see Fig. 6H) ensemble shows a similar

kurtosis behavior as the four model ensembles from
::::::::
mentioned

:
above, but the deviations are by far not as pronounced. Even

though the UKESM1-0-LL ensemble shows a good representation of the aspect ratio, it simulates low values of the kurtosis

less frequently. This is in line with the results by (Hall et al., 2021),
::::
who

::::::::
reported that the model simulates too few split

events. The MIROC6 and INM-CM5-0 ensembles perform best in representing the kurtosis, in particular at 10 hPa. Despite255
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Figure 5. As Fig. 3, but for centroid longitude
::
at

:::::
10 hPa

::
of

:::
all

:::::::
analyzed

:::::
model

::::::::
ensembles:

:::::::::
CanESM2

:
(
:
A

:
),
::::::::
CanESM5

:
(
::
B

:
),

::::::
CESM2

:
(
::
C

:
),

:::::::::::
CNRM-CM6-1

:
(
:
D
:
),
::::::::::
INM-CM5-0

:
(
:
E
:
),
:::::::::::::
IPSL-CM6A-LR

:
(
:
F
:
),
:::::::
MIROC6

:
(
::
G

:
),

:::::::::::
UKESM1-0-LL

:
(
::
H

:
),
:::::::::::::
MPI-ESM1-2-HR

:
(
:
I
:
)
:::
and

:::::::::::::
MPI-ESM1-2-LR

:
(J
:
).
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the differences in vertical and horizontal resolution, there is no substantial difference between the two
::::
Both

:
MPI-ESM1-

2 simulations . However, we conclude that if the spatial model resolution has a substantial influence on the representation

of the SPV, dedicated experiments with systematic resolution changes will be needed in future studies.
:::::::
contains

::::
bias

:::
but

::
a

:::::::::::
dome-shaped

:::
RH

::
in

:::::::::::::::
MPI-ESM1-2-LR

:::::::
indicates

:::::
large

::::::::
ensemble

::::::
spread.

:

At the two lower altitudes (Figs. S4 and S9
::
S6

::::
and

::::
S11

::
in

:::
the

:::::::::::
Supplement), most ensembles underestimate the kurtosis260

variability (CanESM2, CanESM5, CESM2, INM-CM5-0 and UKESM1-0-LL and GFDL-CM3 at 100 hPa). Only the IPSL-

CM6A-LR and both MPI-ESM1-2 ensembles overestimate it. The MPI-ESM1-2 ensembles show almost flat rank histograms

::::
RHs at 100 hPa. Generally, in comparison with centroid latitude or aspect ratio most models do not

::::
most

::::::
models

:
simulate

the kurtosis well with respect to ERA-5
:::
less

:::::
well

::::
than

:::::::
centroid

::::::
latitude

:::
or

:::::
aspect

:::::
ratio, in particular at 10 hPa. This suggests

that centroid latitude and aspect ratio seem to be
::
are

:
more reliable indicators for SPV split and displacement

::::
SSW

:
frequency265

estimates than the kurtosis
:
is.

3.5 Objective area

The objective area is of interest because a larger/smaller area of low geopotential height is often related to a stronger/weaker

SPV with higher/lower wind speeds. Multiple ensembles (INM-CM5-0, IPSL-CM6A-LR, MIROC6 and both high and low

resolution MPI-ESM1-2 ensembles) simulate a strong small SPV
:::::::
negative bias at 10 hPa (Fig. 7). In addition to that, these270

models underestimate the variability of the objective area. This combination results in a strong underestimation of a large SPV

occurence. The CanESM2 (see Fig. 7A) ensemble also shows this combination, but not as pronounced as the above-mentioned

models. The CanESM5, CESM2 , CNRM-CM6-1 and UKESM1-0-LL
:::
and

:::::::::::::
CNRM-CM6-1

:
ensembles simulate a large SPV

::::::
positive

::::
SPV

::::
area

:
bias, which is likely connected to too high wind speeds.

At the lower altitudes (see Figs. S5 and S10
::
S7

::::
and

:::
S12

::
in

:::
the

::::::::::
Supplement) most models are biased in the same direction as at275

10 hPa, but in some models the strength of the bias varies with height. Only INM-CM5-0 shows a small SPV
:::
area

:
bias at 10 hPa

(see Fig. 7F) and a large SPV
::::
area bias at 50 hPa. At 100 hPa barely any bias can be detected in INM-CM5-0. Models with a

large SPV
:::
area bias at 100 hPa , also simulate a low aspect ratio bias at 10 hPa (CanESM2, CanESM5, CESM2) and vice versa

(IPSL-CM6A-LR and both MPI-ESM1-2 ensembles - except for MIROC6). Models without any notable bias (irrespective of

the spread) for the objective area show a good representation of the aspect ratio (CNRM-CM6-1, INM-CM5-0, UKESM1-280

0-LL). A connection between lower
::::::
weaker stratospheric winds and SPV split frequency in the CMIP6 models was already

noted by Hall et al. (2021). They found that the frequency of SPV splits was related to the wind speeds at 100 hPa, because

higher wind speeds hinder the upward propagation of wave number 2 planetary waves into the stratosphere. Similarly, Wu

and Reichler (2020) showed that the highest uncertainty in the frequency of SSWs
::::
SSW

:::::::::
frequency comes from an uncertainty

in lower stratospheric wind speeds. Most
::
In

:::::::
general,

::::
most

:
models do not succeed to simulate the objective area of the SPV285

adequately
:::
SPV

::::
area

:::::
well. Most commonly, they underestimate the variability and additionally a biasis often present. The

best representation at
::::
often

::::::::
simulate

:
a
:::::
bias.

::
At

:
10 hPa is shown by the UKESM1-0-LL ensemble . For

::::::::
represents

:::
the

:::::
SPV

:::
area

:::::
best.

::
At

:
the two lower levels

:::::::
altitudes, CNRM-CM6-1 is the closest to a perfect representation, confirmed

:::::
shows

:::
the

::::
best

::::::::::::
representation,

:::::::
depicted

:
by the lowest values of the χ2-statistic.
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Figure 6. As Fig. 3, but for kurtosis
:
at
::::::
10 hPa

::
of

::
all

:::::::
analyzed

:::::
model

::::::::
ensembles:

::::::::
CanESM2

:
(
:
A
:
),
::::::::
CanESM5

:
(
::
B

:
),

::::::
CESM2

:
(
:
C
:
),
::::::::::::
CNRM-CM6-1

:
(
:
D

:
),
::::::::::
INM-CM5-0

:
(
:
E

:
),
:::::::::::::
IPSL-CM6A-LR

:
(
:
F

:
),

:::::::
MIROC6

:
(
:
G
::
),

:::::::::::
UKESM1-0-LL

::
(
:

H
:
),
:::::::::::::
MPI-ESM1-2-HR

:
(
:
I
:
)
:::
and

:::::::::::::
MPI-ESM1-2-LR

:
(
:
J
:
).
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Figure 7. As Figure 3, but for objective area
:
at

:::::
10 hPa

:::
of

::
all

:::::::
analyzed

:::::
model

:::::::::
ensembles:

::::::::
CanESM2

::
(
:

A
:
),
::::::::
CanESM5

:
(
::
B

:
),

::::::
CESM2

:
(
::
C

:
),

:::::::::::
CNRM-CM6-1

:
(
:
D
:
),
::::::::::
INM-CM5-0

:
(
:
E
:
),
:::::::::::::
IPSL-CM6A-LR

:
(
:
F
:
),
:::::::
MIROC6

:
(
::
G

:
),

:::::::::::
UKESM1-0-LL

:
(
::
H

:
),
:::::::::::::
MPI-ESM1-2-HR

:
(
:
I
:
)
:::
and

:::::::::::::
MPI-ESM1-2-LR

:
(J
:
).
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4 Sudden stratospheric warming analysis290

When studying the NH SPV, a particular focus lies on events when the SPV is disrupted
:
A

::::::::
particular

:::::
focus

::
in

:::
NH

:::::
SPV

::::::
studies

:::
lies

::
on

::::::::
disruptive

:::::
SPV

:::::
events, so called sudden stratospheric warmings (SSWs). We here assess the ability of the climate models

to distinguish between SSWs and steady SPV conditions. While the rank histograms
::::
RHs reveal reliability (consistency), they

do not evaluate statistical resolution (the degree to which a forecast sorts the observed events into different groups), so our

study needs to be accompanied with other tools such as the ROC (Hamill, 2001). Using the ROC we can analyze how well295

the different models are able to simulate SSW events through diagnostics of the SPV morphology. The applied method allows

us to individually diagnose displacement- and split-type SSWs. Hence,
:
we conduct two separate analyses here, as it has been

shown that these events, as well as their surface impact, fundamentally differ (Baldwin et al., 2021, and references therein).

4.1 Displacement events

Fig. 8 shows the areas under the ROC curves (AUC) of the analyzed climate models for detection of SPV splits and displacements.300

All models reach a value of greater than 0.5 which means their performance is better than randomly guessing. As hypothesized (Hall et al., 2021)

, SPV displacements (see Fig. 8A) may be less frequent in models that simulate a high centroid latitude bias.However, the ROC

diagram is insensitive to certain types of biases (Kharin and Zwiers, 2003), since a biased model may still have good statistical

resolution. However, the ROC can still be considered as a potential skill when the model is correctly calibrated (Wilks, 2011)

.This fact can also explain the differences between CanESM2 and CanESM5. According to the AUC, CanESM2 distinguishes305

between displacement events and stable SPV conditions better than CanESM5. This is remarkable as CanESM5 was performing

much better in the rank histogram analysis for the centroid latitude at 10
:::
and

:::::
splits

::::
(see

:::
Fig. hPa compared to CanESM2

:
8
::
B

:
).

:::
For

::
all

:::::
ROC

::::::
curves

:::
see

:::::::
Figs. S1

:::
and

:::
S2

::
in

:::
the

::::::::::
Supplement.

::::
We

:::
also

::::::::::
summarize

::::
AUC

::::::
values

::::
from

:::::
these

::::::
figures

::
in

::::::::
Table S1

::
in

::
the

::::::::::
Supplement.

All
::
In

:::::::
general,

:::
the

:
low-top models (see Tab. 1) generally reveal lower AUC values than the high-top models,

:
with the310

exception of MPI-ESM1-2-HR. In fact, MPI-ESM1-2-HR has the lowest value of all analyzed models. Additionally, the AUC

for the MPI-ESM1-2-HR ensemble is slightly lower than for its low resolution counterpart : MPI-ESM1-2-LR. The CNRM-

CM6-1 ensemble shows the best performance regarding the simulation of SPV displacement events. This model also has one of

the best representations of the centroid latitude at 10 hPa in the rank histograms
:::
RHs. In fact, the rank histogram

:::
RH

:
was similar

to CanESM5
:
, for which a rather weak performance in the ROC curves was found. A reasonable performance is shown by the315

INM-CM5-0 ensemble, which in fact has the second highest AUC. IPSL-CM6A-LR , MIROC6 and MPI-ESM1-2-LR
:::
and

:::::::
MIROC6

:
show similar values for the AUC. The UKESM1-0-LL ensemble shows an average

:::
and

:::::::::::::::
MPI-ESM1-2-LR

:::::::::
ensembles

::::
show

:::
an

::::::::::::
above-average

:
performance compared to the other climate models. Again, this stands

:::::
partly

:
in contrast to the rank

histograms where this
::
the

::::::::::::::
UKESM1-0-LL ensemble was closest to a flat histogram

::
of

:::::::
centroid

:::::::
latitude with the lowest χ2

statistic of all models.320

These results demonstrate that even if the rank histogram
::
RH

:
implies a good representation, i.e. a reliable ensemble, it can

show a comparatively low statistical resolution in distinguishing between displacements and non-displacements (e.g CanESM5)
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Figure 8. Area under the curve for the ROC curves of the analyzed climate ensembles for displacement (left
:
A) and split (right

:::::
textbf

:
B) events.

Grey line lies at 0.5, the value at which the simulation is not better than randomly guessing. Low-top models are separated on the left with a

black line. Error bars indicate 5th and 95th percentile estimated by using the perfect model range.

:::
and

::::
vice

::::
versa

:::::
(e.g.

:::::::
CESM2). Generally, for most of the ensembles the AUC lies in a narrow region around 0.6, implying that

the simulation of displacement events can still be improved in the climate ensembles, e.g. by calibration.
::::::::::::
(Wilks, 2011).

:

It has been suggested by Seviour et al. (2016) and Hall et al. (2021) that models with a bias in centroid latitude also have325

a bias in displacement frequency in the respective direction. However, Fig. S11 shows that we could not reproduce a clear

:::::
While

:::
we

::::::::
reproduce

::::
this

:::::::
negative

:
relationship between number of displacements and modal centroid latitude from Fig. 3a in

Hall et al. (2021) . As centroid latitude diagnoses the climatological mean position, and the displacements particular extreme

events of this position, it is reasonable that there is no clear relation, although the diagnostics are connected.
::
in

:::
our

:::::
Fig. 9

:
A
:
,
:::
we

::::::
observe

:::::::
models

:::
that

::::::
despite

:::::
their

:::::
biases

::
in
::::::

modal
:::::::
centroid

:::::::
latitude

:::::::
simulate

::
a
::::::::::
comparable

::::::::
frequency

:::
of

:::::::::::
displacement

::::::
SSWs.330

:::
The

:::::::::::::
CNRM-CM6-1

::::::::
ensemble

::
is

:::::
again

:::
the

:::::::::::::
best-performing

::::
one

::
in

:::::
terms

::
of

:::
the

:::::::::
frequency

::
of

:::::::::::
displacement

::::::
SSWs

::::::::::
comparable

::
to

:::::
ERA5

:::::::::
(∼4 events

:::
per

:::::::
decade).

4.2 Split events

In general, the climate model ensembles do not simulate SPV splits (see Fig. 8B) as well as SPV displacements (see Fig. 8A)In

fact
:
.
::::::
Indeed,

:
all models except for IPSL-CM6A-LR have lower AUCs for split events than for displacements. Overall, a weaker335

performance of the low-top models can be detected, which is particularly obvious for CanESM5. As in the displacement

analysis, CanESM2 performs better than its newer counterpart CanESM5. In the latter the AUC is even lower than
:::
The

::::::::
ensemble

:::::::
performs

::::::
worse

::::
than

::
its

:::::
older

:::::::::
counterpart

:::::::::
CanESM2

:::
and

::::::
shows

:
a
:::::
ROC

::::
area

::
of

:::::
below

:
0.5meaning that in CanESM5
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Figure 9.
:::::
Scatter

::::
plots

::
of
:::::

modal
:::::::

centroid
::::::
latitude [

::
deg]

:::
and

::::::::
frequency

::
of

::::::::::
displacement

:::::
SSWs

:
(
:
A

:
),
:::
and

:::::
modal

:::::
aspect

::::
ratio

:::
and

::::::::
frequency

::
of

:::
split

:::::
SSWs

:
(
:
B
:
) [

::
per

::::::
decade]

:
in

::::
large

::::::::
ensembles

:::::::
compared

::::
with

:::::
ERA5.

::::
Blue

::::
solid

::::::
dashed

:::
lines

:::
are

:::::::
ordinary

:::
least

:::::
square

:::::::::
regressions

:::
and

::::
their

:::
95%

::::::::
confidence

:::::::
intervals

::
for

:::
all

::::::
models,

::::
while

::::
grey

:::
lines

::
in

::::
panel

:
(
::
B)

::::
show

::::::::
regression

::::
lines

:::
and

::::::::
confidence

:::::::
intervals

::
for

:::::::
high-top

:::::
models

::::
only

:::
(i.e.

:::::
except

::::::
CESM2

:::
and

:::::::::
CanESM2).

::::::
Dotted

:::
lines

:::::::
represent

::::::
results

::
for

::::::
ERA5.

::::::::
Horizontal

::::::
shading

:::::::
indicates

::
the

::::::::
frequency

::
of

::::::::::
displacement

::
or

:::
split

:::::
events

:::
and

::::::::
represents

:::
the

::
1σ

:::::
range,

:::::::
assuming

::
a
:::::::
binomial

::::::::
distribution

::
of
::::::
events.

::::::
Vertical

::::::
shading

:::
was

::::::::
calculated

::::
using

:::::::::::
bootstrapping

::
of

:::::
ERA5

:::
time

:::::
series

:::
and

::::::::
represents

::
the

:::
1σ

:::::
range.

:::
The

::::
error

:::
bars

:::::::
represent

:::::::
standard

:::::::
deviation

::::::
through

::::::::
ensemble

:::::::
members

:::::
shown

::
as

::::
dots.

::::
R2

adj

:::::::
represents

:::::::
adjusted

::::::::
coefficient

::
of

:::::::::::
determination.

:::
The

::::::
asterisks

::::
flag

::::
levels

::
of

:::::::::
significance

::::
with

:
a
::::::
p-value

:::
less

::::
than

::::
0.01.

:
,
:::::
which

::::::
means

:::
that

:
the false positive rate for detecting split events is higher than the true positive rate. In fact, CanESM5 is

the only model that produces an AUC of lower than 0.5 for split events
:::
(see

::::
also

::::::
Fig. 2), even when considering the error340

bars. A reason for this might be the strong bias to lower aspect ratio at 10 hPa that is likely resulting in underestimation of the

frequency of SPV splits, which are associated with exceptionally high aspect ratios. The
::::::::
Although

::
the

:
CESM2 ensemble shows

a similarly strong bias compared to
:::::
aspect

::::
ratio

:::
bias

:::
as CanESM5but

:
,
:
it
:
has a better representation of split events according to

the ROC plots.

::
As

:::
for

::::::::::::
displacement

::::::
events,

:
CNRM-CM6-1 reaches

:::
also

:::::::
reaches

::::
one

::
of

:
the largest AUC as was already seen for the345

displacement events
::
for

:::::
splits

::::
after

:::::::::::::::
MPI-ESM1-2-LR

::::
(see

:::
also

:::::::
Tab. S1

::
in

:::
the

::::::::::
Supplement). Thus, this model can be regarded to

have the best representation of SPV displacements as well as splits and likely SSW events in general
:::
(see

::::
also

:::::
Fig. 9). The AUC

of the INM-CM5-0 ensemble reaches a value of slightly above 0.5, indicating that the simulation of splits is only marginally
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better than randomly guessing their occurrence. This result stands in contrast to the fact that this ensemble has shown one of

the best performances in the rank histogram
::
RH

:
analysis for the aspect ratio without any significant bias or spread. This again350

corresponds to the insensitivity of the ROC to certain biases as discussed above. The IPSL-CM6A-LR ensemble on the other

hand almost reaches the performance of CNRM-CM6-1 in spite of its bias to predict higher aspect ratio more
:::::
ratios

:::
too often.

MIROC6 , MPI-ESM1-2-LR and UKESM1-0-LL show similar AUC that lie between the best and weakest performing ensem-

bles. The high resolution MPI-ESM1-2 ensemble is showing a lower AUC than the low resolution version
:::::::::::::::
MPI-ESM1-2-LR,

as it was already seen for displacement events, but it still remains well above the value of 0.5.355

Similar to displacement events,
::
In

:::::::::
accordance

:::::
with

:::
the

::::::
results

::
by

:
Seviour et al. (2016) and Hall et al. (2021)found that

:
,

::
we

:::::
tried

::
to

::::::::
reproduce

::::::::
whether models showing a strong bias to lower aspect ratios in our analysis indeed underestimate the

SPV split frequency.
:::::::
However,

::::::
results

::
in
:

Fig. S12
:
9
::
B

:::
are

:::::
more

::::::::
dispersed

:::::::::
compared

::
to

::::::::::::::
Hall et al. (2021)

:
.
::
It reveals that the

linear relationship between number of splits and modal aspect ratio from Fig. 3b in Hall et al. (2021) cannot be reproduced in

::
the

:
large ensemble simulations of

::
the

::::
here

:::::
used high-top models, only .

::
It
::::
only

::::::
works

::
to

:::::
some

::::::
degree when low-top models360

are included. This underlines our results
::::::
Unlike

::::
their

::::::
results,

:::
the

:::::::::
reanalysis

::::::
values

::
lie

::::::
within

:::
the

::::
95%

::::::::::
confidence

::::::
interval

:::
of

::
the

::::::::
ordinary

::::
least

:::::::
squares

:::
fit.

:::
As

:::
we

:::
can

::::
rule

:::
out

::::
that

:::
the

::::
size

::
of

:::::::::
ensemble

::::::::
members

:::::
might

:::
not

:::
be

:::::::::
sufficiently

:::::
large

::
in
::::

our

:::::
study,

:::
we

:::::
argue

:::
that

:::
the

::
fit

::::
may

:::
not

:::
be

::
so

::::::
robust

::
for

::::
split

::::::
SSWs

:::::::
because

:
a
:::::::::
stretching

:::::::
tendency

:::
of

::::
polar

::::::
vortex

::
is

:::::::::::
accompanied

::::
with

:
a
::::::::::::::
centroid-latitude

:::::::
tendency

::
to
:::::::::::
equatorward

::::::
values

::::::::::::::::::
(Mitchell et al., 2011).

::::
This

::::::
finding

::::
also

:::::::::
underlines

:::
our

::::::::
statement

:
that

good performance in representing the geometric-based diagnostics in rank histograms
::::
RHs is not necessarily connected to365

::::
with a good performance in simulating displacements and splits. Wu and Reichler (2020) also demonstrated that bias-corrected

models for vortex strength may not consistently align with reanalyses in terms of revealing SSW frequency.

5 Discussion
::::::::
Summary and Outlook

:::::::::
discussion

We assessed the SPV in large CMIP5 and CMIP6 climate model ensembles using rank histograms
:::
RHs

:
with reference to ERA5

reanalysis data. The performance of the models varies depending on the analyzed variables and pressure levels. No model370

ensemble can be highlighted as having the best or worst performance over all variables and pressure levels. If the general

performance over all levels and variables is regarded, the CNRM-CM6-1 and UKESM1-0-LL ensembles can be considered to

be representing SPV form and variability best. These two models produce a flat rank histogram
:::
RH for most of the geometric

variables at most altitudes, which means that the simulated SPV in these models agrees well with that of ERA5. The flat rank

histrogram
:::
RH is a necessary but not a sufficient condition for concluding reliability in SPV simulation.375

Furthermore, we used the ROC analysis in order to assess the ability of the ensembles regarding SPV displacement and

split frequencies. As all models reach an area under the ROC curve of more than 0.5 (see Fig. 8A), they distinguish between

SPV displacements and non-displacements better than random guessing. The
:
In

:::::::
general,

:::
the

:
ensembles represent displacement

events better than split eventsin general. The best representation of both SPV splits and displacements has CNRM-CM6-1.

This model performs well in the rank histogram
::
RH

:
analysis as well. However, a general rule of thumb that connects the380

rank histogram
:::
RH with the ROC analyses could not be found here. This is due to the insensitivity of the ROC to biases in
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the forecast. The ROC diagram can be considered as a measure of potential usefulness when a model ensemble is correctly

calibrated
:::::::::::
(Wilks, 2011)

:
.
::::
This

:::
can

::::
lead

::
to
::
a
:::::
more

::::::
reliable

:::::::
forecast

:::::
while

::::::::::
maintaining

:::::
good

::::::::::::
discrimination. A joint analysis of

variety diagnostics provides the bigger picture about the quality of large-ensemble model simulations.

The model top height seems to be a key factor. Low-top models reveal strong biases for most variables, in particular CESM2.385

Low-top models were already found to simulate fewer SSWs than in the reanalysis and a lower
:::::::::::::::::::::::
Charlton-Perez et al. (2013)

:::
and

:::::::::::::::
Hall et al. (2021)

::::::
already

:::::
found

::::
that

::::::
low-top

:::::::
models

:::::::
simulate

:::
too

::::
few

::::::
SSWs

:::
and

::
a
:::
too

::::
low variability of the SPV wind

speeds (Charlton-Perez et al., 2013; Hall et al., 2021). A better vertical resolution also improves the simulation of the SSW

frequency (Wu and Reichler, 2020). The models with the finest spatial resolution (INM-CM5-0 and MIROC6) showed a

good performance, especially for the aspect ratio and kurtosis at 10 hPa. Overall, this means that the downward influence390

of the upper stratosphere and mesosphere has a large influence on the SPV and on SSWs (Hitchcock and Simpson, 2014)

::::::::::::::::::::::::::::::::
(see e.g. Hitchcock and Simpson, 2014). This is not surprising

:::::::::
unexpected, as large amounts of wave drag are deposited at high

altitudes, which strongly influences middle atmosphere dynamics. In the low-top models, this influence is not adequately rep-

resented. Models with more levels in the vertical
:::::
vertical

::::::
levels in the stratosphere generally perform better

::
in

:::
our

:::::::
analysis.

CNRM-CM6-1, which has the second-highest number of levels in the vertical, does not only have a good representation of most395

variables but also the best results in detecting splits and displacements. The MPI-ESM1-2 ensembles on the other hand produce

similar results even though they differ in
::
As

:::::
stated

:::
in

::::::::::::::::::::
(Wu and Reichler, 2020)

:
,
:
a
::::
finer

:::::::
vertical

:::::::::
resolution

::::
also

::::::::
improves

:::
the

::::::::
simulation

:::
of

:::
the

::::
SSW

:::::::::
frequency.

:::::
While

:::
the

:::::::
models

::::
with

:::
the

::::::
modest

::::::
spatial

:::::::
(vertical

:::
and

::::::::::
horizontal)

::::::::
resolution

::::::::::::
(INM-CM5-0

:::
and

::::::::
MIROC6)

:::::
show

:
a
:::::
good

:::::::::::
performance,

::::::::
especially

:::
for

:::
the

::::::
aspect

::::
ratio

:::
and

:::::::
kurtosis

::
at

::::::
10 hPa,

:::
the

:::::::::::::::
MPI-ESM1-2-LR

::::::::
ensemble

::::::
produce

::::::
better

:::::
results

:::::::
despite

::
its

:
vertical and horizontal resolution. Dedicated model experiments with simulations in various400

horizontal and vertical resolutions are needed to systematically assess the impact of resolution on SPV representation.

An additional source of uncertainty might be the gravity wave (GW) parameterizations (e.g. Eichinger et al., 2020a; Karami

et al., 2022; Eichinger et al., 2023). Events with strong gravity wave drag can affect the refractive index in the lower strato-

sphere (Kuchar et al., 2022). A higher refractive index results in stronger upward propagating wave activity and thus the

SPV is disrupted more easily. Wu and Reichler (2020) found that the uncertainty of the refractive index in the lower strato-405

sphere above the tropospheric jet plays an important role for the uncertainty in the simulated SSW frequency. Therefore,

different gravity wave parameterizations
::::
these

::::::::::
uncertainties

:
in the models may be attributed to these uncertainties

:::::::
different

::::
GW

::::::::::::::
parameterizations (Sigmond and Shepherd, 2014).

::::::::
Recently,

::::::::::::::::::::::::::
HÃ¡jkovÃ¡ and Å Ã¡cha (2023)

::::::
showed

::::
that

::
the

:::::
SPV

:::::::::::
climatologies

::
in

::::::
CMIP6

::::::
models

:::
are

::::::
largely

:::::::::
insensitive

::
to

::::
high

::::::
latitude

:::::
wave

::::
drag,

:::
but

::::
also

::::
state

::::
that

::::
SSW

:::::::::
simulation

:::
can

:::
be

:::::::
sensitive

::
to

:::::
small

::::::
nuances

:::
in

:::::
model

:::::::::
dynamics.

:::::::::
Dedicated

:::::::
analyses

:::
are

:::::::
needed

::
to

::::
fully

::::::
assess

:::
the

::::::
impact

::
of

:::::::
various

::::
wave

:::::
drag

::::::::::
mechanisms

:::
on410

::::
SPV

::::::::
geometry

:::
and

::::::
SSWs,

::::::::
including

:::::::::::
consideration

::
of

:::
the

:::::::::
non-linear

::::::::
feedbacks

:::::::
between

:::::
wave

::::
drag

:::
and

:::::
mean

::::
flow.

:::
For

::::::::
example,

::::::::::::::::::
Sigmond et al. (2023)

::::
have

::::::::
attributed

:::
the

:::::::::
difference

::
in
:::::::::

simulated
:::::
SSW

:::::::::
frequency

:::::::
between

:::::::::
CanESM2

::::::::::::::
(overestimation)

::::
and

::::::::
CanESM5

:::::::::::::::
(underestimation)

::
of

:::
the

:::::::
number

::
of

::::::
SSWs,

::::::::
especially

:::::
splits

::
as

::::
seen

::
in

:::::
Fig. 9

:
B
:
)
::
to

:::::::
changes

::
in

:::::::
settings

::
of

::::
GW

::::::
tuning.

Apart from model resolution and GW parameterizations and their tuning parameters, Morgenstern et al. (2022) revisited
:::
the415

:::::::
influence

:::
of stratospheric ozone chemistry influence on the SPV and SSW frequency. Several additional studies demonstrated
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the importance of interactive ozone chemistry for representing temperature variability and extremes in the Arctic polar strato-

sphere (Haase and Matthes, 2019; Rieder et al., 2019; Oehrlein et al., 2020). Therefore, the way how atmospheric chemistry is

treated in the model may be another factor for model skill in representing the SPV, in particular the feedback of stratospheric

ozone on dynamics via radiation. CNRM-CM6-1 has a simplified but still interactive chemistry (Voldoire et al., 2019). The420

only analyzed model with a complete interactive chemistry is UKESM1-0-LL and overall it performs well. However, a detailed

analysis of its impact on spatio-temporal SPV variability would be needed for conclusive statements.

Models that were found to simulate well the alternating easterlies and westerlies in the tropics by Richter et al. (2020) (the

quasi-biennial oscillation, QBO), mostly perform better in our analysis (e.g., CNRM-CM6-1, IPSL-CM6A-LR, UKESM1-0-

LL). On the other hand, models with poor QBO representation (CanESM2, CanESM5, CESM2) show a weaker performance425

in the rank histograms
::::
RHs

:
and the representation of splits and displacements. The SPV is influenced via teleconnection

associated with the QBO, via the so-called Holton-Tan mechanism (HTM; Holton and Tan, 1980; Baldwin et al., 2001). Rao

et al. (2020) analyzed which models have a good representation of the HTM, but here we find no clear connection of a good

HTM representation with a good representation of SPV variability.

While a relatively long period was regarded in the rank histogram
:::
RH

:
analysis, it cannot be ruled out that an ensemble might430

show different performances during this time (Bothe et al., 2013). An option could be to analyze individual months separately,

since differences in the model performance might for example occur between mid-winter, where the highest variability in wind

speeds is observed, and early as well as late winter.

As has been investigated before (Hamill, 2001; Bröcker, 2008; Siegert et al., 2012), a flat rank histogram is only a necessary

but not a sufficient criterion to conclude that ensemble simulations are reliable (calibrated). Due to the unknown and undersampled435

nature of initial-condition distributions and unavoidable simplifications and errors in the dynamical formulation, we cannot

expect raw ensembles to be calibrated (?). This can be achieved via calibration (??) which can likely reduce uncertainty in

climate projections (Tett et al., 2022).

Furthermore, the thresholds used for the definition of the events could be varied. Other values might lead to better resolution

between steady and unsteady SPV conditions. The thresholds we used here were chosen based on the reanalysis dataset by440

Seviour et al. (2013) as stated in Sec. 2.5. Another important question is whether the number of ensemble members is sufficient

for evaluation of the highly variable SPV representation. In particular, the INM-CM5-0, MIROC6 and MPI-ESM1-2-HR

ensembles may not be large enough to fully cover effective dimension of SPV (Christiansen, 2021). This is a topic for detailed

future investigation.

6 Conclusions445

In this study, we assess the stratospheric polar vortex (SPV) form , stability and variability as well as the ability to distinguish

different morphologies of sudden stratospheric warmings (SSWs) in large CMIP5 and CMIP6 climate model ensembles. We

analyze the SPV by means of rank histograms
:::::
(RHs)

:
and the SSWs separated into splits and displacements by receiver operating

characteristics curves and use ERA5 reanalysis data as reference. These analyses reveal strongly varying performances of the
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individual models over all SPV moment diagnostics and pressure levels. The two models that overall simulate the SPV and450

SSWs closest to ERA5 are CNRM-CM6-1 and UKESM1-0-LL. In
::::::
contrast,

::::::
results

:::
of

:::::::::
CanESM5

::::
and

:::::::
CESM2

::::::
should

:::
be

::::::
handled

::::
with

:::::::::
particular

::::
care

::
in

::::
SPV

:::::::
studies,

::
as

:::::
these

::::::
models

:::
did

:::
not

:::::::
perform

:::::
well

::
in

:::
our

:::::::
analysis.

:::
In general, the ensembles

show a better ability in simulating displacement-type SSW events than split-type events. As SSWs represent extreme events,

this model skill, however, is not always connected with representing well the geometry-based SPV diagnostics centroid latitude

and aspect ratio, which diagnose SPV climatologies.455

For the SPV centroid latitude and aspect ratio most ensembles are biased to some extent,
:

but with no consistent direction

among the ensembles. Our
:::::
While regression of these biases did not indicate robust

::::::::
geometric

:::::
SPV

:::::
biases

::::::::
indicates

:::
also

:
biases

in split and displacement frequency as in Seviour et al. (2016) and Hall et al. (2021). Of
:
,
:::
this

::::
does

::::
not

:::::::::
necessarily

:::::
imply

::::
that

:::::::::::
bias-corrected

:::::::
models

:::::::
simulate

::::
split

:::
and

:::::::::::
displacement

::::::::::
frequencies

::::::::
according

::
to

:::
the

::::::::
reanalyses

:::::::::::::::::::::
(Wu and Reichler, 2020).

::::
Out

::
of

all analyzed diagnostics
:
, the kurtosis appears to be the hardest

:::
one

:
to simulate correctly. Most of the ensembles underestimate460

the variability of the kurtosis. Strong biases and an underestimation of the variablity
::::::::
variability

:
is found for the SPV area as well.

Overall, this may be constituted by the difficulty of models to simulate the well-known non-linearity of stratospheric dynam-

ics (Matthewman and Esler, 2011; Cohen et al., 2014; ?)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Matthewman and Esler, 2011; Cohen et al., 2014; Eichinger et al., 2020b)

and calls for caution when using these diagnostics as SSW proxies.

We can conclude that
:::::::
conclude

::::
that

::::::
usually

:
models with a higher lid and models with a finer vertical resolution generally465

simulate the SPV and SSWs better with reference to ERA5. However, many factors influence the SPV properties and the

SSW frequency, such as interactive chemistry, gravity wave parameterizations and other dynamical processes that differ in the

individual models. It is therefore not clearly assignable from this study which model characteristics are the decisive ones for

representing well the SPV and its behaviour. However, our findings set the basis for sensitivity experiments with individual

models changing individual model components, such as vertical/horizontal resolution, gravity wave scheme, chemistry etc.470

:::::::::
variability.

Knowledge of how well different climate models perform in simulating the SPV
:::::
spatial

:::::::::
variability

:
and SSWs correctly is

of utmost importance for finding the adjustment screws
:::::
tuning

::::
and

:::::::::
calibrating

:
to improve their performance, as well as for

assessing their reliability in future climate projections. The latter is particularly important with regard to polar stratospheric

ozone and its evolution across the 21st century.475
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