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Abstract. The stratospheric polar vortex (SPV) is-a-phenomenon-comprising-comprises strong westerly winds during winter in
both-hemisphereseach hemisphere. Especially in the Northern Hemisphere (NH) the SPV is highly variable and is frequently
disrupted by sudden stratospheric warmings (SSWs). SPV dynamics are relevant because of both ozone chemistry and its
impact on tropospheric dynamics. In this study, we evaluate the capability of climate models to simulate the NH SPV by com-
paring large ensembles of historical simulations to the ERAS reanalysis data. For this, we analyze geometric-based diagnostics
at 3 pressure levels that describe SPV morphology.
into-SPV-sphitand-displacementevents—A rank histogram analysis reveals that no model exactly reproduces ERAS in all diag-

nostics at all levels. Concerning SPV aspect ratio and centroid latitude, most models are biased to some extent, but the strongest

deviations can be found for the kurtosis. Some models underestimate the variability of the SPV area. Assessing the reliability
of the ensembles in distinguishing SSWs subdivided into SPV displacement and split events, we find large differences between
the model ensembles. In general, SPV displacements are represented better than splits in the simulation ensembles, and high-
top models and models with finer vertical resolution perform better. A good performance in representing the geometric-based
diagnostics in rank histograms is-found-to-be-not-necessarily-connected-to-does not necessarily imply reliability and therefore
a good performance in simulating displacements and splits. Understanding-the-biases-and-improving-the-Assessing the model
biases and their representation of SPV dynamics in-climate-model-simulations-ean-help-is needed to improve credibility of cli-
mate e eete s aethey with-foeus-on-polar-stratospherie-dynamies-and-ezenemodel projections, for example by giving
stronger weightings to better performing models.

1 Introduction

In winter the dynamics of the mid-latitude and polar stratosphere are dominated by the stratospheric polar vortex (SPV). The
SPV is a circumpolar band of usually strong westerly winds—Jtferms—, forming in autumn due to the cooling of the po-
lar stratosphere. When the stratosphere warms again in spring, the temperature gradient reverses and easterly winds prevail
during summer (Holton, 1980). The SPV affects the concentration of ozone over the poles: strong winds are accompanied

by lower than average temperatures, that-aow-allowing the formation of polar stratospheric clouds, where ozone deplet-
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ing substances are activated (Langematz et al., 2014; Lawrence et al., 2020). Via stratosphere-troposphere coupling (Bald-
win and Dunkerton, 2001), the SPV can influence tropospheric circulation patterns, temperatures, and precipitation (Thomp-
son et al., 2002; Butler et al., 2017; King et al., 2019). Due-to-the-impact-of-the-stratospheric-eireulation—on—the-surface
weatherHence, uncertainties associated with SPV-relates-to-tropospherie-uneertainties-in-the representation of SPV in models
relate to uncertainties in tropospheric climate projections, in particular the-windiness-ever-Europe——winter-preeipitation—in

with the position of the jet and the precipitation patterns over Europe and the Mediterranean region (Scaife et al., 2012;
Zappa and Shepherd, 2017) and-as well as with sea level pressure over the Arctic (Simpson et al., 2018). Especially in the

Northern Hemisphere (NH), where the SPV is highly variable (Baldwin et al., 2021), the strongest changes happen during
so-called sudden stratospheric warmings (SSWs). SSWs are abrupt warmings of the stratosphere ;—connected—with-a—zonal
wind-reduction-or-even-reversal-during-connected with zonal westerly wind reductions. During a so-called major SSW, the
wind even reverses to easterly. In the NH, SSWs occur on average about 6 times per decade (Charlton and Polvani, 2007).
They are much less frequent in the Southern Hemisphere, with only one recorded major SSW in 2002 since the beginning

of the satellite era (Jucker et al., 2021).

can be categorized into two different kinds. Either the SPV is split into two separate SPVs or it is displaced to lower lati-

tudes (Charlton and Polvani, 2007). It is still a matter of current research whether the pressure patterns before the event, and

especially the surface pressure response after the event are different depending on the-type-of-SSW-SSW type (Mitchell et al.,
2013; Seviour et al., 2013; Maycock and Hitchcock, 2015). %eulaﬂyfe%e*eep&eaaﬂy%&e&g%ll\#eeﬁdﬁmm—dynamwa}

Multiple studies have focused on analyzing whether climate change alters stratospheric dynamics (Manzini et al., 2014;

Ayarzagiiena et al., 2020; Rao and Garfinkel, 2021). In the model simulations of the Climate Model Intercomparison Project
5 (CMIPS), the largest uncertainty between individual models regarding a change of stratospheric wind speeds is found at
60°N and 10hPa (Manzini et al., 2014), the region where the strength-of-the- SPV-SPV strength and SSWs are commonly
diagnosed (Charlton and Polvani, 2007). In line with this uncertainty, there is no agreement among CMIP5 and CMIP6 models
ona i i trend in SSW frequency (Ayarzagiiena et al., 2018; Rao and Garfinkel, 2021).
The multi-model mean suggests a slight inerease-in-SSW-frequeney-SSW frequency increase, but the inter-model spread is
large, even in the historical simulations (Rao and Garfinkel, 2021). Ayarzagiiena et al. (2018) used 12 Chemistry Climate Model
Initiative (CCMI) models for their analysis and found that most of them do not project a significant ehange-in-SSW-frequeney
SSW frequency trend. Seviour et al. (2016) used two-dimensional diagnesties-of-the-SPV-SPV diagnostics to differentiate
between vortex splits and displacements and found that most CMIP5 models show some bias in simulating SSWs. Hall et al.
(2021) made similar findings with CMIP6 models and found no notable improvement compared to CMIPS. Fhey—found-that

Differences in the chemistry schemes s

spread-are-assumed-to-be-the-differentof the models, the mean SPV strengths &ﬁd—dfﬁefenees—m—up’vvafd-pfepagaﬂﬂgas well as
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in upward propagating wave activity flux (Wu and Reichler, 2020) have been identified as possible reasons for the large spread

in SSW frequency and its trends.
The large inter-model spread and the uncertainties in the SPV response to climate change underline the need to investigate the

reliability of climate models in simulating the SPV. This includes its form, strength and stability. Previous-studies-mosthy-Most
revious multi-model studies only used a single run from each climate model. Si izati imi i

vHowever, single-model realizations
limit possibilities in attributing model differences to the underlying physics or to natural variability (Blanusa et al., 2023; Deser
et al., 2020). Thus;particalarly-the-high-variability-of-the-Particularly the highly variable wintertime NH stratosphere requires

analysis using a-targe-ensemble-sizelarge ensemble sizes (Deser et al., 2020). In-the-following-we-aim-to-assess-how-reliable
Therefore, we here assess the reliability of recent large-ensemble model simulations are-in representing the SPV and its spatial

variability. For this, after introducing our methods in in Sect. 2 we compare in Sect. 3 geometric SPV diagnostics in large
climate model ensembles with ERAS reanalysis data using rank histograms (Matthewman et al., 2009; Seviour et al., 2013).
Furthermore, the reliability of the ensembles in detecting SSWs separated into SPV splits and displacements will-be-is analyzed
in Sect. 4. i i i

Sect. 5 we discuss our results with regard to possible reasons for the detected model differences and we finish the paper with

some concluding remarks in Sect. 6. Due to the large SPV variability and the high SSW frequency in the NH, we limit our
analysis to the NH SPV.

2 Methods
2.1 Data

For this climate model assessment on SPV strength, form and stability, we use large climate model simulation ensembles.

Each ensemble consists of multiple simulation members, which only differ by modified initial conditions, etherwise-while the

model physics and setups are identical (Deser et al., 2020).

ensemble-members—In our analysis, we use climate models from the Multi-Model Large Ensemble Archive (MMLEA) pro-
vided by the US CLIVAR (Climate and Ocean - Variability, Predictability, and Change) working group on large ensembles
(Deser et al., 2020) as well as ensembles from the Coupled Model Intercomparison Project 6 (CMIP6, Eyring et al., 2016). We
use the historical simulations of these-those ensembles where all CMIP5- and CMIP6-class historical forcings are included.
Information about the 11 climate model-ensembles—we-tsed-for-our-anatysis—ecan-befound-models used in our analysis are
provided in table 1. The selection criteria for our model database were firstly, availability of at least 10 ensemble members
and secondly, availability of the geopotential height at the pressure levels 10, 50 and 100 hPa to calculate the SPV moment

diagnostics (see section 2.2)at-the-pressure-levels10,50-and-. GFDL-CM3 is an exception, for this model data was available
only at 100 hPa.HewevernotalHevels-are-available-in-al-models:

For reference, we compare the s-historical simulation ensembles with ERA5 reanaly-
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Table 1. Analyzed climate model ensembles from CMIP5 and CMIP6. Low-top models are above and high-top models are separated-by-

below the horizontal line.

Horizontal
Ensemble Center of uppermost Number of levels
Model resolution Reference
members level in the vertical in the vertical
(lat x lon)
CanESM22* 50 2.8°x2.8° 1 hPa 35 Kirchmeier-Young et al. (2017)
CanESM5 35 2.8°x2.8° 1 hPa 49 Swart et al. (2019)
CESM2 49 0.9°x1.25° 2.26 hPa 32 Danabasoglu et al. (2020)
CNRM-CM6-1 26 1.4°x1.4° 86.4 km 91 Voldoire et al. (2019)
GFDL—CM3§:£ 20 2.0°x2.0° 86.4km 48 Donner et al. (2011)
INM-CMS5-0 10 2.0°x1.5° 0.2hPa 73 Volodin and Gritsun (2018)
IPSL-CM6A-LR 32 2.5°x1.25° 80km 79 Boucher et al. (2020)
MIROC6f 10 1.4°x1.4° 0.004 hPa 81 Tatebe et al. (2019)
MPI-ESM1-2-LR 3650 1.5°x1.5° 0.01 hPa 47 Maheret-al~2649)Olonscheck et al. (2023
MPI-ESM1-2-HR 10 0.4°x0.4° 0.01 hPa 95 Miiller et al. (2018)
UKESM1-0-LL 16 1.25°x1.9° 85km 85 Sellar et al. (2019)

*Model is part of CMIP5, other models are part of CMIP6.
Only UKESM1-0-LL and CNRM-CM6-1 include full interactive chemistry, CNRM-CM6-1 has a simplified interactive chemistry scheme, the other models are run in dynamics-only mode.
*Model data is only available at 100 hPa.

#Model is available for 10 ensemble members only. All 50 ensemble members only cover monthly mean data (Shiogama et al., 2023).

sis data (Hersbach et al., 2020)—a—, or in other words, ERA5 data serves as ground truth in our analysis. We—tse-In this

regard, we emphasize that ERAS is designated as a state-of-the-art benchmark regarding its extensive horizontal and vertical
resolution compared to other reanalyses (Hoffmann and Spang, 2022), however, clearly not as an absolute truth. We apply the

same geopotential height-based SPV diagnostics for-the-to the ERAS reanalysis that we also apply to the model ensemble data.

The analysis is carried out for the period 1979-2014 covering years when as many observations as possible were assimilated in
to ERAS including satellite observations (Hersbach et al., 2020). Vokhmyanin et al. (2023) found 22 SSWs in these 36 years of
ERAS5 data. We analyze daily data of the months from November through March in the NH, as this is when the SPV is usually

present and SSW disruptions happen.

2.2 Polar vortex moment diagnostics

To assess spatio-temporal SPV characteristics, the following 2-dimensional moment diagnostics are calculated: aspect ratio,

kurtosis, centroid longitude and latitude, and objective area (for details of the calculation see Matthewman et al., 2009; Seviour

et al., 2013). The aspect ratio, i.e. the ratio of the major to the minor axis of the SPV ellipse, diagnoses how stretched the
SPV is. High/low aspect ratio values indicate a stretched/circular SPV, and exceptionally high values are often associated with
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SPV disturbances such as SSWs. The excess kurtosis is a measure for the distribution of geopotential height values inside the
SPV, constant geopotential height values lead to an excess kurtosis of 0. A low geopotential height center, i.e. a stable SPV,
is represented by high kurtosis values and two separated areas of low geopotential height, i.e. a vortex split, is indicated by a
negative kurtosis. The SPV location is diagnosed by centroid latitude and longitude. A lower centroid latitude is often associated
with a disrupted SPV and can indicate a displacement, centroid longitude values can additionally help determining the SPV.
position. The objective SPV area is an indicator for SPV strength, as a large area of low geopotential height is often connected

with high wind speeds. More detailed descriptions are provided in Section S2 in the Supplement. In contrast to Matthewman
et al. (2009) who described their method using potential vorticity, we witt-here use the geopotential height to define the

SPV edge, as suggested by Seviour et al. (2013). 3 s-indies 15— e
have been modified accordingly. the updated versions can be accessed from Kuchar and Ohlert (2024).

We show the geopotential height climatology at 10 hPa (gh/0) of all analyzed model ensembles and ERAS for the period
CESM2). On the other hand, visual resemblance between ERAS and other models (e.g. UKESM1-0-LL) can clearly be seen
too. However, details about the reliability of these large-ensemble model simulations in representing the SPV and its spatial
variability cannot be decomposed based on such depictions. Hence, moment diagnostic analyses are needed to shed light on
the SPV and its properties in large ensemble simulations.

2.3 Rank histograms

We-ereaterank-histograms-consisting- The rank histogram (RH) is a tool used in ensemble forecast verification to determine the

reliability of ensemble forecasts and to diagnose errors in its mean and spread. RHs consist of n-+1 bins, where n is the number
of model ensemble members. For this;-the-values-of-the-ensemble-of-a-certain-each time step and variable, the ensemble values

are sorted in ascending order—Forreference;-, and the ERAS reanalysis value at this-that particular time step is placed into this
set at position k. The histogram counts of all bins greater or-eqtial-than or equal to k are then increased by one—This-, and this
procedure is repeated for all-available-time-steps-each time step (for details of the calculation see Hamill, 2001; Wilks, 2011).
For a reliable (calibrated) ensemble, the counts should be uniformly distributed over all bins. If the ensemble deviates from the
reanalysis, the shape of the histogram can be used to find out why (Wilks, 2011). For example, if the historical simulations are
biased, there will be a linear trend in the histogram. When the counts of the bins are higher on the left and lower on the right of
the histogram, the ensemble simulates the variable to be higher disproportionately often, which is called overforecasting bias.
The opposite would be an underforecasting bias. If the ensemble under-/overestimates the variability, the ranks at the sides
edges of the histogram have higher/lower counts than in the midetecenter, which is called under-/overdispersion.

For objective assessment of the results, various-measures-can-be-considered;such-as-we consider an additional diagnostic in
our study, namely the x? statistic. This diagnostic quantifies how close the rank-histogramRH is to an ideal uniform distribu-
tion. A perfectly flat histogram would produce a x? value of 0. Jolliffe and Primo (2008) introduced a method to split the 2

statistic into multiple metrics, where each one describes a particttarshape-of-the-histogram-certain histogram shape. The linear



31000

30500

30000

ghl10 [m]

29500

29000

28500

Figure 1. Geopotential height climatology at 10 hPa (gh/0) of all analyzed model ensembles: CanESM2 (A), CanESMS5 (B), CESM2 (C)
CNRM-CM6-1 (D), INM-CM5-0 (E), IPSL-CM6A-LR (F), MIROC6 (G), UKESM1-0-LL (H), MPI-ESM1-2-HR (I) and MPI-ESM1-2-LR
J), and ERAS5 (K) for the period 1979-2014. The black and purple line represents contour of 30000 m in ERAS5 and in a particular model

2

respectively.
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trend ean-be-is used as a bias indicator and the-a U-shape indicates over- or underdispersion (spread). These metrics can be
especially helpful when both bias and over- or underdispersion are present in an ensemble, as this can be difficult to distinguish
fromrthe rank-histogram-atone-visually from the RH alone, The contributions of these two components to the total x? statistic
are presented along all RHs in our assessment. These statistics should serve in relation to the other models instead of defining

2.4 Perfect model range

Due to internal Vanab1l1ty, it is possible that a faﬂk—htsfegf&mRH has a somewhat uneven distribution;even-thoughthe-ensemble

2 To determine which deviations from a uniform

distribution can be attributed to internal variability, Suarez-Gutierrez et al. (2021) suggested the use of ’a perfect model range’.
To obtain this range, a rank histogram is created for each ensemble member where this specific member is treated as a reference
(i.e., as if it was the reanalysis). This results in slightly different values for each bin in the rank-histogramsRHs, depending on
the member in question. The perfect model rank range is then defined by the range where 90% (5th - 95th percentile) of the
bin counts are found. Since a member from the ensemble can never be higher or lower than all ensemble members, the values

for the rank range in the first and last bin are ignored.
2.5 SSW diagnostics

SSWs-SSW events can be subdivided into SPV splits and displacements and can be detected by means of the metrics described
i es-As
W%WMMW&@ h1gher than 2.4te-be-a-split. For a displacement,
the centroid latitude is arguably the best indicator. Here, Seviouret-al(2013)-defined-that-a-displacement-hastaken-place-as
defined by Seviour et al. (2013) a displacement is detected if the centroid latitude is lower than 66°N.

To assess how well the probability of these events is represented in the model simulation ensembles, the receiver operating
characteristics (ROC) curves are used (see Figs. S1 and S2 and their description in Section S3 in the Supplement). The area
under the ROC curve (AUC) indicates how well an ensemble is able to discriminate between SSW and non-SSW events using

the thresholds above (with reference to ERAS)-¥t. AUC ranges from 0 to 1. A—value-Values of land-, 0.5 indicates—perfeet

skittand 0 indicate perfect skill, random guessing, respeetively-—and no skill, respectively. As an example, we show ROC for
displacements and splits in Fig. 2 for the CanESMS ensemble. Bin values indicated along ROC are probabilities of whether
the model simulates displacements and splits across its ensemble members, respectively. These values then serve as inputs
for the calculation of dichotomous contingency tables which includes true and false positive rates displayed on y- and x-axis,

respectively. Fig. 2B demonstrates that CanESMS5 cannot discriminate split events better than random guessing (see Sect. 4.2).
To determine the uncertainty of the AUC, we provide error bars using the approach of the perfect model range, where we

above.

assume each ensemble member as-an observation.
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Figure 2. Receiver operating characteristics (ROC) curves for displacements (A) and splits (B) in CanESMS. Bin values indicated alon
ROC are probabilities whether model simulates displacements and splits across its ensemble members, respectively. Area under the ROC
curve (AUC) is visualized and also specified in the figure. The dashed line represents random discrimination skill, i.e. AUC=0.5.

We also reproduce the methodology from Hall et al. (2021) as previously applied in Mitchell et al. (2011) and based on Se-
viour et al. (2013) to examine relationships between modal centroid latitude and aspect ratio and displacement and split SSW
frequency, respectively. The frequencies of ERAS SSW split and displacement events determined with this method are within
- We provide the list of ERAS SSW split and displacement events in Tab. S2 in the Supplement to document this agreement.

3 Analysis of geometric polar vortex diagnostics

In the following, the agreement between the ERAS reanalysis and the historical simulations of the climate model ensembles
will be compared by means of the SPV moment diagnostics

180 in Sect. 2.2. For this, RHs are discussed for all available models at 10, 50 and 100 hPa, however, the figures for 50 hPa and
for 100 hPa are shown in the Supplement. We also summarize bias and spread from these figures in Table S1 in the Supplement.

s-introduced

3.1 Aspectratio

The aspect ratio is-of the SPV is determined by the ratio of the major to the minor ellipse axis. Thus, it measures how stretched

185 the SPV is providing high values for stretched and low values for more circular SPVs. Exceptionally high aspect ratio values are
of particular interest for SPV dynamics beeause-itis-an-indicatorforvertex-as they are often associated with SPV disturbances

in particular indicating splitting events (Seviour et al., 2013). Fig. 3 shows rank-histograms-RHs of the aspect ratio for all

analyzed climate model ensembles together with the above explained-introduced statistical values 2, bias and spread at
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10 hPa, the level that is most commonly used to detect SPV splits. As indicated in Sect. 2, interpretation of all results here are
with reference to ERAS5 reanalysis data;-which-is-considered-as-ground-truth-for-the-analysis—. _

All models succeed to simulate the spread of the aspect ratio, but most models are biased to some extent. At 10hPa, four
models are biased simulating-and simulate lower aspect ratios more frequently than the reanalysis (CanESM2, CanESMS5,
CESM2 and CNRM-CM6-1) and feur-three models show a high-overforecasting bias (IPSL-CM6A-LR -MIROE6;-and
both MPI-ESM1-2 ensembles). Only two-three models show no significant-considerable bias (INM-CM5-0, MIROC6 and
UKESMI1-0-LL).

The strongest biases are found in the CanESM2-CanESMS5 and CESM2 ensembles —Such-strong-biases-can-haveimplieations
These relatively strong aspect ratio biases (as compared to the other models) point towards underestimation of SPV split
probability, which-will-further be-investigatedin-but see Section 4.2 —for further investigation on this connection,

The-With the rank histograms at 50 and 100 hPa ean-be-found-in-the-supplement(Figs—S1-56)—The-models-generally-(see

supplementary Figs. S3, S8), the models can be separated into three-two groups according to their behavior eompared-to-in
relation to the results at 10 hPa. One group of models shows larger biases at lower altitudes (CanESM2, INM-CM5-0 and

UKESM1-0-LL). In NM
the-other-the other model ensembles the bias is weaker at lower altitudes (CanESMS5, CESM2, INM-CMS5-0, IPSL-CM6A-LR

MIROC6 and MPI-ESMs).

3.2 Centroid latitude

Fig. 4 shows the rank-histograms-RHs of the centroid latitude for all analyzed climate model ensembles at 10 hPa. The centroid
latitude is a measure of how far the polar vortex is shifted from the North Pole; untypically low latitudes indicate vortex
displacements (Seviour et al., 2013). Most ensembles show a bias in centroid latitude, but the spread is generally represented
well. This is similar to the results of-for the aspect ratio. The direction of the biases is not consistent among the models.
The CanESM2, IPSL-CM6A-LR and MPI-ESM1-2 ensembles simulate a high-low latitude bias with regard to the reanalysis,
while the CESM2, INM-CM5-0 and MIROC6 ensembles show a tow-high latitude bias. Only CanESMS5, CNRM-CM6-1 and
UKESM1-0-LL do not show any notable bias or spread, i.e., the corresponding statistical diagnostics show low values. Here,
CanESMS (see Fig. 4B) shows a notable improvement compared to its earlier version CanESM2 (see Fig. 4A). The combination
of biases-towards-higher-centroid-atitudes-and-lower-aspeetratios-high centroid latitude bias and low aspect ratio can only be
seen in CESM2 (see Fig. 4C), which can explain the general underestimation of SSWs in this model (see Sect. 4 and 5).

The rank-histograms-RHs of the centroid latitude at the two lower pressure-altitude levels are shown in Figs. S2-and-S754
and S9 in the Supplement. In most models, the bias is similar at the-differenttevels—which-means-all analyzed levels (10, 50
and 100 hPa), showing that the performance ef-mostensembles-with respect to centroid latitude is not very sensitive to altitude.
Only in CanESM5a-bias-towardstowertatitudes—, a low latitudes bias appears at the two lower levelsaltitudes. In MIROC6
the bias-to-simulate-towertatitudes-low latitude bias is only present at 10 and 50 hPa;—, while at 100 hPa the bias—vanishes

completely-and-the-histogram-is-almostperfeetlyflatmodel shows almost no bias and thus a nearly perfectly flat histogram.
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Figure 3. Rank histograms of aspect ratio at 10hPa of all analyzed elimate-model ensembleswith-theirrespeetivestatisties—: CanESM2
(H), MPLESM1-2-HR (I) and MPI-ESM1-2-LR (J). Blue bars show counts for the individual bins, the black dashed line corresponds to
the expected value for a flat histogram, gray dashed lines indicate the perfect model range (see Sect. 2.4). The x-axis shows the ensemble

member number and the y-axis shows the count of the bins. The contributions of bias and spread to the total x* statistic are provided above
the rank histograms for each model (see Sect. 2).
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Figure 4. As Fig. 3, but for centroid latitude at 10 hPa of all analyzed model ensembles: CanESM2 (A), CanESMS (B), CESM2 (C)
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3.3 Centroid longitude

The centroid longitude in the climate models ranges from -180° to +180°, the negative values lie in the Western Hemisphere
and the positive ones in the Eastern Hemisphere. The centroid longitude rank-histegrams-RHs (Fig. 5) show where the climate
models over- or underestimate the position of the SPV. When the counts are lower/greater than average, the ensemble simulates
the SPV center more/less frequently at the respective longitude. The centroid longitude is depicted best by the CNRM-CM6-
1 (see Fig.5D) and INM-CM5-0 (see Fig. SE) ensembles. Other-The other ensembles show notable deviations from a flat
histogram, but i i tations—¢ fferent these deviations are not consistent among the
models. The CanESM2, CESM2 and UKESM1-0-LL ensembles simulate the SPV center in the Eastern Hemisphere more
frequently than the reanalysis. The IPSL-CM6A-LR and MIROC6 ensembles show the opposite bias. The rank-histograms RHs
of CanESMS5 (see Fig. 5B) and the MPI-ESMs (see Fig. 5I-J) show lower counts on both ends, indicating that the ensembles
simulate the SPV more frequently in and around the region of the Bering Strait and Alaska (the meridian of +180/-180°) than
the reanalysis. Fherank-histograms-of-the-centrotd-longitude-at-

At 50 and 100 hPa are-shewn-in-(Figs. S3-and-S8—Some-models-show-achange-tn-the-direetion-of bias-or-S5 and S10 in the

Supplement), some models show biases of opposite sign than at 10 hPa, or even a general dispersion at the 3 different pressure
levels (e.g. CanESM2, IPSL-CM6A-LR, MIROC6). This could not be seen for the centroid latitude. In most models both bias

and spread are present at least in-at some pressure levels. Only CNRM-CM6-1 produces a flat histogram where almost all
counts lie inside the perfect model range in all three-3 pressure levels. The UKESM1-0-LL and MPI-ESM1-2 ensembles show
flat histograms at 50 and 100 hPa.

3.4 Kurtosis

The excess kurtosis is a measure for how the values of geopotential height are distributed within the SPV region (Matthewman
et al., 2009). Mitchell et al. (2011) proposed that this diagnostic can be used to detect both SPV split and displacement events.
They showed that exceptionally low values are often a-siga-an indication that an SPV split has occurred;-high-. High positive
values on the other hand can occur after splits and displacements (see their Figs.2 and 5). The rank-histograms-RHs for the
excess kurtosis at 10hPa are shown in Fig. 6. Four models show similar rank-histegrams-RHs with much higher counts on
the left side of the histogram, namely CanESM2, CanESM5, CESM2 and CNRM-CM6-1. These ensembles underestimate the
variability of the kurtosis and additionally simulate a kurtosis high-positive bias. The result is that very low values of the kurtosis
are simulated much less frequently in the models than they occur in the reanalysis. Therefore, these-medelstikely-underestimate
this may contribute to the underestimation of the SPV split frequency. This is in line with the aspect ratio low bias in these
models (see Sect. 3.1), except for CNRM-CM6-1 (see Fig. 6D). The UKESM1-0-LL (see Fig. 6H) ensemble shows a similar
kurtosis behavior as the four model ensembles frem-mentioned above, but the deviations are by far not as pronounced. Even
though the UKESM1-0-LL ensemble shows a good representation of the aspect ratio, it simulates low values of the kurtosis
less frequently. This is in line with the results by (Hall et al., 2021), who reported that the model simulates too few split
events. The MIROC6 and INM-CMS5-0 ensembles perform best in representing the kurtosis, in particular at 10 hPa. Despite
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Figure 5. As Fig. 3, but for centroid longitude at 10 hPa of all analyzed model ensembles: CanESM2 (A), CanESMS (B), CESM2 (C)
CNRM-CM6-1 (D), INM-CM5-0 (E), IPSL-CM6A-LR (F), MIROC6 (G), UKESM1-0-LL (H), MPI-ESM1-2-HR (I) and MPI-ESM1-2-LR
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dome-shaped RH in MPI-ESM1-2-LR indicates large ensemble spread.
At the two lower altitudes (Figs. S4-and-S9S6 and S11 in the Supplement), most ensembles underestimate the kurtosis

variability (CanESM2, CanESMS5, CESM2, INM-CMS5-0 and UKESM1-0-LL and GFDL-CM3 at 100 hPa). Only the IPSL-
CM6A-LR and both MPI-ESM1-2 ensembles overestimate it. The MPI-ESM1-2 ensembles show almost flat rank-histograms

RHs at 100 hPa. Generally, incomparison-with-centroid-tatitude-or-aspeet-ratio-mest-models-do-not-most models simulate
the kurtosis well-with-respeetto-ERA-5Sless well than centroid latitude or aspect ratio, in particular at 10 hPa. This suggests
that centroid latitude and aspect ratio seem-to-be-are more reliable indicators for SPV-split-and-displacement-SSW frequency

estimates than the kurtosis is.
3.5 Objective area

The objective area is of interest because a larger/smaller area of low geopotential height is often related to a stronger/weaker
SPV with higher/lower wind speeds. Multiple ensembles (INM-CM5-0, IPSL-CM6A-LR, MIROC6 and both high and low
resolution MPI-ESM1-2 ensembles) simulate a strong—smal-SPV-negative bias at 10 hPa (Fig. 7). In addition to that, these
models underestimate the variability of the objective area. This-combinationresultsin-a-strong-underestimation-of-atarge-SPV
oeceurence—The CanESM2 (see Fig. 7A) ensemble also shows this combination, but not as pronounced as the above-mentioned
models. The CanESMS5, CESM2 -ENRM-EM6-1-and-UKESM1-0-El-and CNRM-CM6-1 ensembles simulate a large-SPV
positive SPV area bias, which is likely connected to too high wind speeds.

At the lower altitudes (see Figs. S5-and-S+0S7 and S12 in the Supplement) most models are biased in the same direction as at
10 hPa, but in some models the strength of the bias varies with height. Only INM-CMS5-0 shows a small SPV area bias at 10 hPa
(see Fig. 7F) and a large SPV area bias at 50hPa. At 100 hPa barely any bias can be detected in INM-CM5-0. Models with a
large SPV area bias at 100 hPa ;-also simulate a low aspect ratio bias at 10 hPa (CanESM2, CanESM5, CESM2) and vice versa
(IPSL-CM6A-LR and both MPI-ESM1-2 ensembles - except for MIROC6). Models without any notable bias (irrespective of
the spread) for the objective area show a good representation of the aspect ratio (CNRM-CM6-1, INM-CMS5-0, UKESM1-
0-LL). A connection between tewer-weaker stratospheric winds and SPV split frequency in the CMIP6 models was already
noted by Hall et al. (2021). They found that the frequency of SPV splits was related to the wind speeds at 100 hPa, because
higher wind speeds hinder the upward propagation of wave number 2 planetary waves into the stratosphere. Similarly, Wu
and Reichler (2020) showed that the highest uncertainty in the frequeney-of-SSWs-SSW frequency comes from an uncertainty
in lower stratospheric wind speeds. Mest-In general, most models do not suceeed-to-simulate the objective area-of-the-SPV

adequatelySPV_area well. Most commonly, they underestimate the variability and additionatly-a-biasis—often—present—The
best-representation—at-often simulate a bias. At 10 hPa is-shewn-by-the UKESM1-0-LL ensemble —Fer-represents the SPV

area best. At the two lower levelsaltitudes, CNRM-CM6-1 is-the-closest-to-a-perfectrepresentation;confirmed-shows the best
representation, depicted by the lowest values of the x2-statistic.

14



Figure 6. As Fig. 3, but for kurtosis at 10 hPa of all analyzed model ensembles: CanESM2 (A), CanESMS (B), CESM2 (C), CNRM-CM6-1
G), UKESM1-0-LL (H), MPI-ESM1-2-HR (I) and MPI-ESM1-2-LR (J).
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Figure 7. As Figure 3, but for objective area at 10 hPa of all analyzed model ensembles: CanESM2 (A), CanESMS (B), CESM2 (C)
CNRM-CM6-1 (D), INM-CM5-0 (E), IPSL-CM6A-LR (F), MIROC6 (G), UKESM1-0-LL (H), MPI-ESM1-2-HR (I) and MPI-ESM1-2-LR
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290 4 Sudden stratospheric warming analysis

edA particular focus in NH SPV studies
lies on disruptive SPV events, so called sudden stratospheric warmings (SSWs). We here assess the ability of the climate models

to distinguish between SSWs and steady SPV conditions. While the rank-histograms-RHs reveal reliability (consistency), they

do not evaluate statistical resolution (the degree to which a forecast sorts the observed events into different groups), so our

295 study needs to be accompanied with other tools such as the ROC (Hamill, 2001). Using the ROC we can analyze how well
the different models are able to simulate SSW events through diagnostics of the SPV morphology. The applied method allows
us to individually diagnose displacement- and split-type SSWs. Hence, we conduct two separate analyses here, as it has been

shown that these events, as well as their surface impact, fundamentally differ (Baldwin et al., 2021, and references therein).

4.1 Displacement events

300 Fig. 8 shows the areas under the ROC curves (AUC) of the analyzed climate models for detection of SPV splits-and-displacements:

A mode a I a of oragte han-0O hich - mean he nerformanece hatta han ndom oHe no— A chunothe ad-(H-
v oreq a W a a d d y-2HEeSE &7 X Y 2 d

305

much-better-in-the-rank-histogram-analysis-for-the-centroid-latitude-at10and splits (see Fig. hPa-compared-to-CanESM28B).
For all ROC curves see Figs. S1 and S2 in the Supplement. We also summarize AUC values from these figures in Table S1 in

the Supplement.
310 Ad-In general, the low-top models (see Tab. 1) generatty-reveal lower AUC values than the high-top models, with the

exception of MPI-ESM1-2-HR. In fact, MPI-ESM1-2-HR has the lowest value of all analyzed models. Additionally, the AUC
for the MPI-ESM1-2-HR ensemble is slightly lower than for its low resolution counterpart -~MPI-ESM1-2-LR. The CNRM-
CMG6-1 ensemble shows the best performance regarding the simulation of SPV displacement events. This model also has one of
the best representations of the centroid latitude at 10 hPa in the rank-histogramsRHs. In fact, the rank-histogram-RH was similar
315 to CanESMS, for which a rather weak performance in the ROC curves was found. A reasonable performance is shown by the
INM-CM5-0 ensemble, which in fact has the second highest AUC. IPSL-CM6A-LR --MIROC6-and-MPI-ESMI-2-ER-and
MIROC6 show similar values for the AUC. The UKESM1-0-LL ensembie-shows-anaverage-and MPI-ESM1-2-LR ensembles
show an above-average performance compared to the other climate models. Again, this stands partly in contrast to the rank
histograms where this-the UKESM1-0-LL ensemble was closest to a flat histogram of centroid latitude with the lowest x?

320 statistic of all models.
These results demonstrate that even if the rank-histogram-RH implies a good representation, i.e. a reliable ensemble, it can

show a comparatively low statistical resolution in distinguishing between displacements and non-displacements (e.g CanESMS5)
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Figure 8. Area under the curve for the ROC curves of the analyzed climate ensembles for displacement (feftA) and split (righttextbfB) events.
Grey line lies at 0.5, the value at which the simulation is not better than randomly guessing. Low-top models are separated on the left with a

black line. Error bars indicate Sth and 95th percentile estimated by using the perfect model range.

and vice versa (e.g. CESM2). Generally, for most of the ensembles the AUC lies in a narrow region around 0.6, implying that
the simulation of displacement events can still be improved in the climate ensembles, e.g. by calibration— (Wilks, 2011).

It has been suggested by Seviour et al. (2016) and Hall et al. (2021) that models with a bias in centroid latitude also have
a bias in displacement frequency in the respective direction. However,Fie-SH-—shews-that-we-could-notreproduce—a-—clear
While we reproduce this negative relationship between number of displacements and modal centroid latitude from Fig. 3a in
Hall et al. (2021) —As-—centroidJatitude-diagnoses-the-climatological-meanpesition; i i §

An our Fig. 9A, we

observe models that despite their biases in modal centroid latitude simulate a comparable frequency of displacement SSWs.
The CNRM-CM6-1 ensemble is again the best-performing one in terms of the frequency of displacement SSWs comparable
to ERAS (~4 events per decade).

4.2 Split events

In general, the climate model ensembles do not simulate SPV splits (see Fig. 8B) as well as SPV displacements (see Fig. Ay
faet. Indeed, all models except for IPSL-CM6A-LR have lower AUC:s for split events than for displacements. Overall, a weaker

performance of the low-top models can be detected, which is particularly obvious for CanESMS5. As-in-the-displacement
i an—The

ensemble performs worse than its older counterpart CanESM?2 and shows a ROC area of below 0.5meaning-thatin-CanESMS
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Figure 9. Scatter plots of modal centroid latitude [deg] and frequency of displacement SSWs (A), and modal aspect ratio and frequency of

split SSWs (B) [per decade] in large ensembles compared with ERAS. Blue solid dashed lines are ordinary least square regressions and their

95% confidence intervals for all models, while grey lines in panel (B) show regression lines and confidence intervals for high-top models onl

i.e. except CESM2 and CanESM2). Dotted lines represent results for ERAS. Horizontal shading indicates the frequency of displacement or

split events and represents the 1o range, assuming a binomial distribution of events. Vertical shading was calculated using bootstrapping of

ERAS5 time series and represents the 1o range. The error bars represent standard deviation through ensemble members shown as dots. B>,

represents adjusted coefficient of determination. The asterisks flag levels of significance with a p-value less than 0.01.

» which means that the false positive rate for detecting split events is higher than the true positive rate. In fact, CanESMS is

the only model that produces an AUC of lower than 0.5 for spht events LsAeNevavl§gVIi1\gW) even when considering the error

bars.

Although the CESM2 ensemble shows
a similarly strong bias-compared-to-aspect ratio bias as CanESM5but, it has a better representation of split events according to
the ROC plots.

As for displacement events, CNRM-CM6-1 reaches-also reaches one of the largest AUC as—was—alreadyseen—for-the

displacementeventsfor splits after MPI-ESM1-2-LR (see also Tab. S1 in the Supplement). Thus, this model can be regarded to
have the best representation of SPV displacements as well as splits and tikely-SSW events in general (see also Fig. 9). The AUC

of the INM-CMS5-0 ensemble reaches a value of slightly above 0.5, indicating that the simulation of splits is only marginally
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better than randomly guessing their occurrence. This result stands in contrast to the fact that this ensemble has shown one of
the best performances in the rank-histogram-RH analysis for the aspect ratio without any significant bias or spread. This again
corresponds to the insensitivity of the ROC to certain biases as discussed above. The IPSL-CM6A-LR ensemble on the other
hand almost reaches the performance of CNRM-CM6-1 in spite of its bias to predict higher aspect ratio-more-ratios too often.
MIROCG6 - MPI-ESMHI-2-ER-and UKESM1-0-LL show similar AUC that lie between the best and weakest performing ensem-
bles. The high resolution MPI-ESM1-2 ensemble is showing a lower AUC than the low resolution version MPI-ESM1-2-LR,

as it was already seen for displacement events, but it still remains well above the value of 0.5.

Similar-to-displacement-events;In accordance with the results by Seviour et al. (2016) and Hall et al. (2021)found-that-,
we tried to reproduce whether models showing a strong bias to lower aspect ratios in our analysis indeed underestimate the

SPV split frequency. However, results in Fig. S1+2-9B are more dispersed compared to Hall et al. (2021). It reveals that the
linear relationship between number of splits and modal aspect ratio from Fig. 3b in Hall et al. (2021) cannot be reproduced in
the large ensemble simulations of the here used high-top models;-onty-. It only works to some degree when low-top models
are included. Fhis-tmderlines-our results- Unlike their results, the reanalysis values lie within the 95% confidence interval of

the ordinary least squares fit. As we can rule out that the size of ensemble members might not be sufficiently large in our
study, we argue that the fit may not be so robust for split SSWs because a stretching tendency of polar vortex is accompanied
with a centroid-latitude tendency to equatorward values (Mitchell et al., 2011). This finding also underlines our statement that

good performance in representing the geometric-based diagnostics in rank-histograms-RHs is not necessarily connected to
with a good performance in simulating displacements and splits. Wu and Reichler (2020) also demonstrated that bias-corrected

models for vortex strength may not consistently align with reanalyses in terms of revealing SSW frequency.

S Diseussion-Summary and Outleokdiscussion

We assessed the SPV in large CMIP5 and CMIP6 climate model ensembles using rank-histograms-RHs with reference to ERAS
reanalysis data. The performance of the models varies depending on the analyzed variables and pressure levels. No model
ensemble can be highlighted as having the best or worst performance over all variables and pressure levels. If the general
performance over all levels and variables is regarded, the CNRM-CM6-1 and UKESM1-0-LL ensembles can be considered to
be representing SPV form and variability best. These two models produce a flat rank-histogram-RH for most of the geometric
variables at most altitudes, which means that the simulated SPV in these models agrees well with that of ERAS. The flat rank
histrogram-RH is a necessary but not a sufficient condition for concluding reliability in SPV simulation.

Furthermore, we used the ROC analysis in order to assess the ability of the ensembles regarding SPV displacement and
split frequencies. As all models reach an area under the ROC curve of more than 0.5 (see Fig. 8A), they distinguish between
SPV displacements and non-displacements better than random guessing. The-In general, the ensembles represent displacement
events better than split eventsin—general. The best representation of both SPV splits and displacements has CNRM-CM6-1.
This model performs well in the rank-histogram-RH analysis as well. However, a general rule of thumb that connects the
rank-histogram-RH with the ROC analyses could not be found here. This is due to the insensitivity of the ROC to biases in
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the forecast. The ROC diagram can be considered as a measure of potential usefulness when a model ensemble is correctly

calibrated (Wilks, 2011). This can lead to a more reliable forecast while maintaining good discrimination. A joint analysis of

variety diagnostics provides the bigger picture about the quality of large-ensemble model simulations.

The model top height seems to be a key factor. Low-top models reveal strong biases for most variables, in particular CESM2.

er-Charlton-Perez et al. (2013)
and Hall et al. (2021) already found that low-top models simulate too few SSWs and a too low variability of the SPV wind

of the upper stratosphere and mesosphere has a large influence on the SPV and on SSWs (Hiteheoek-and-Simpsen;20H4)
(see e.g. Hitchcock and Simpson, 2014). This is not sturprisingunexpected, as large amounts of wave drag are deposited at high
altitudes, which strongly influences middle atmosphere dynamics. In the low-top models, this influence is not adequately rep-
resented. Models with more levels-in-the-vertieal-vertical levels in the stratosphere generally perform better in our analysis.

CNRM-CMB6-1, which has the second-highest number of levels in the vertical, does not only have a good representation of most

variables but also the best results in detecting splits and displacements. The-MPI-ESMI-2-ensembles-on-the-otherhand-produce
similar results-even-though-they-differ in-As stated in (Wu and Reichler, 2020), a finer vertical resolution also improves the
and MIROC6) show a good performance, especially for the aspect ratio and kurtosis at 10 hPa, the MPLESM1-2-LR ensemble

produce better results despite its vertical and horizontal resolution. Dedicated model experiments with simulations in various
horizontal and vertical resolutions are needed to systematically assess the impact of resolution on SPV representation.

An additional source of uncertainty might be the gravity wave (GW) parameterizations (e.g. Eichinger et al., 2020a; Karami
et al., 2022; Eichinger et al., 2023). Events with strong gravity wave drag can affect the refractive index in the lower strato-
sphere (Kuchar et al., 2022). A higher refractive index results in stronger upward propagating wave activity and thus the
SPV is disrupted more easily. Wu and Reichler (2020) found that the uncertainty of the refractive index in the lower strato-
sphere above the tropospheric jet plays an important role for the uncertainty in the simulated SSW frequency. Therefore,
different-gravity-wave parameterizations-these uncertainties in the models may be attributed to these-uneertaintiesdifferent GW.
parameterizations (Sigmond and Shepherd, 2014). Recentl HAjjkovA; and A Ajcha (2023) showed that the SPV climatologies

in CMIP6 models are largely insensitive to high latitude wave drag, but also state that SSW simulation can be sensitive to small
nuances in model dynamics. Dedicated analyses are needed to fully assess the impact of various wave drag mechanisms on
SPV geometry and SSWs, including consideration of the non-linear feedbacks between wave drag and mean flow. For example,
Sigmond et al. (2023) have attributed the difference in simulated SSW_frequency between CanESM2 (overestimation) and
CanESMS (underestimation) of the number of SSWs, especially splits as seen in Fig. 9B) to changes in settings of GW tuning.

Apart from model resolution and GW parameterizations and their tuning parameters, Morgenstern et al. (2022) revisited the

influence of stratospheric ozone chemistry influenee-on the SPV and SSW frequency. Several additional studies demonstrated
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the importance of interactive ozone chemistry for representing temperature variability and extremes in the Arctic polar strato-
sphere (Haase and Matthes, 2019; Rieder et al., 2019; Oehrlein et al., 2020). Therefore, the way how atmospheric chemistry is
treated in the model may be another factor for model skill in representing the SPV, in particular the feedback of stratospheric
ozone on dynamics via radiation. CNRM-CM6-1 has a simplified but still interactive chemistry (Voldoire et al., 2019). The
only analyzed model with a complete interactive chemistry is UKESM1-0-LL and overall it performs well. However, a detailed
analysis of its impact on spatio-temporal SPV variability would be needed for conclusive statements.

Models that were found to simulate well the alternating easterlies and westerlies in the tropics by Richter et al. (2020) (the
quasi-biennial oscillation, QBO), mostly perform better in our analysis (e.g., CNRM-CM6-1, IPSL-CM6A-LR, UKESM1-0-
LL). On the other hand, models with poor QBO representation (CanESM2, CanESM5, CESM2) show a weaker performance
in the rank-histograms—RHs and the representation of splits and displacements. The SPV is influenced via teleconnection
associated with the QBO, via the so-called Holton-Tan mechanism (HTM; Holton and Tan, 1980; Baldwin et al., 2001). Rao
et al. (2020) analyzed which models have a good representation of the HTM, but here we find no clear connection of a good
HTM representation with a good representation of SPV variability.

While a relatively long period was regarded in the rank-histogram-RH analysis, it cannot be ruled out that an ensemble might
show different performances during this time (Bothe et al., 2013). An option could be to analyze individual months separately,

since differences in the model performance might for example occur between mid-winter, where the highest variability in wind

speeds is observed, and early as well as late winter.

Furthermore, the thresholds used for the definition of the events could be varied. Other values might lead to better resolution

between steady and unsteady SPV conditions. The thresholds we used here were chosen based on the reanalysis dataset by
Seviour et al. (2013) as stated in Sec. 2.5. Another important question is whether the number of ensemble members is sufficient
for evaluation of the highly variable SPV representation. In particular, the INM-CM5-0, MIROC6 and MPI-ESM1-2-HR
ensembles may not be large enough to fully cover effective dimension of SPV (Christiansen, 2021). This is a topic for detailed

future investigation.

6 Conclusions

In this study, we assess the stratospheric polar vortex (SPV) form ;-stability-and variability as well as the ability to distinguish
different morphologies of sudden stratospheric warmings (SSWs) in large CMIP5 and CMIP6 climate model ensembles. We
analyze the SPV by means of rank histograms (RHs) and the SSWs separated into splits and displacements by receiver operating

characteristics curves and use ERAS reanalysis data as reference. These analyses reveal strongly varying performances of the
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450 individual models over all SPV moment diagnostics and pressure levels. The two models that overall simulate the SPV and

SSWs closest to ERAS are CNRM-CM6-1 and UKESM1-0-LL. In contrast, results of CanESM5 and CESM2 should be

AAAAAAAARAAAAAAARIATRIAARRAANAAARIRIAARAAAANRARARA

handled with particular care in SPV studies, as these models did not perform well in our analysis. In general, the ensembles

show a better ability in simulating displacement-type SSW events than split-type events. As SSWs represent extreme events,

this model skill, however, is not always connected with representing well the geometry-based SPV diagnostics centroid latitude
455 and aspect ratio, which diagnose SPV climatologies.

For the SPV centroid latitude and aspect ratio most ensembles are biased to some extent, but with no consistent direction
among the ensembles. Our-While regression of these biases-did-notindicate-robust-geometric SPV biases indicates also biases
in split and displacement frequency as in Seviour et al. (2016) and Hall et al. (2021)--Of, this does not necessarily imply that

460 all analyzed diagnostics, the kurtosis appears to be the hardest one to simulate correctly. Most of the ensembles underestimate
the variability of the kurtosis. Strong biases and an underestimation of the variablity-variability is found for the SPV area as well.
Overall, this may be constituted by the difficulty of models to simulate the well-known non-linearity of stratospheric dynam-
2014; Eichinger et al., 2020b)

ics Matthewman and Esler, 2011; Cohen et al.,

and calls for caution when using these diagnostics as SSW proxies.

465 We ean-conectude-that-conclude that usually models with a higher lid and models with a finer vertical resolution generally
simulate the SPV and SSWs better with reference to ERAS. However, many factors influence the-SPV properties and the
SSW frequency, such as interactive chemistry, gravity wave parameterizations and other dynamical processes that differ in the

individual models. It is therefore not clearly assignable from this study which model characteristics are the decisive ones for

representing well the SPV and its
470 i

variability.
Knowledge of how well different climate models perform in simulating the SPV spatial variability and SSWs correctly is

of utmost importance for finding-the-adjustment-serews-tuning and calibrating to improve their performance, as well as for
assessing their reliability in future climate projections. The latter is particularly important with regard to polar stratospheric

475 ozone and its evolution across the 21st century.

Code availability. The code that was used to produce all plots in this study is available via Zenodo (Kuchar and Ohlert, 2024).

Data availability. All processed data files for this study are provided via Mendeley Data (Kuchar, 2023).
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