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Abstract. Accurate predictions of environmental controls on ecosystem photosynthesis are essential for understanding the

impacts of climate change and extreme events on the carbon cycle and the provisioning of ecosystem services. Using time-

series measurements of ecosystem fluxes paired with measurements of meteorological variables from a network of globally

distributed sites and remotely sensed vegetation indices, we train a recurrent deep neural network (Long-Short-Term Memory,

LSTM), a simple deep neural network (DNN), and a mechanistic, theory-based photosynthesis model with the aim to predict5

ecosystem gross primary production (GPP). We test these models’ ability to spatially and temporally generalise across a wide

range of environmental conditions. Both neural network models outperform the theory-based model considering leave-site-out

cross-validation (LSOCV). The LSTM model performs best and achieves a mean R2 of 0.78 across sites in the LSOCV and an

average R2 of 0.82 across relatively moist temperate and boreal sites. This suggests that recurrent deep neural networks provide

a basis for robust data-driven ecosystem photosynthesis modelling in respective biomes. However, limits to global model10

upscaling are identified using cross-validation by vegetation types and by continents. In particular, our model performance is

weakest at relatively arid sites where unknown vegetation exposure to water limitation limits model reliability.

1 Introduction

CO2 assimilation by photosynthesis is the “engine” of the carbon cycle and provides energy for ecosystem processes. Under-

standing its controls and variations across time and space is key for accurate predictions of climate impacts on the terrestrial15

biosphere and Earth system feedbacks. Gross primary production (GPP), the ecosystem-level photosynthetic CO2 assimilation,

varies across different scales, reflecting variations in the environment across Earth’s biomes (Wang et al., 2014), across diurnal

and seasonal cycles, between years (Ahlström et al., 2015), and in response to climate extremes (Ciais et al., 2005) and their

legacies at longer time scales (days to years) (Bastos et al., 2020).

GPP variations are driven by multiple, simultaneously varying environmental factors and the physiological and structural20

responses of plants. Solar radiation supplies the energy for photosynthesis. Together with the canopy structure, determining
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light absorption, it acts as a dominant driver of GPP (Monteith, 1972). Temperature, light, and water availability trigger phe-

nological changes and govern seasonal cycles of active leaf surface area and are thus underlying seasonal changes in light

absorption. Air temperature affects leaf temperatures, which in turn govern enzymatic rates and photosynthesis. Low moisture

availability across the rooting zone, in combination with a high vapour pressure deficit of air at the leaf surface, determines25

the effects of water stress and can lead to GPP reductions (Stocker et al., 2018a; Novick et al., 2016). GPP is also affected by

gradual physiological changes evolving over daily to seasonal time scales (Jiang et al., 2020), long-term effects of past stress

(Bastos et al., 2020; Yu et al., 2022), and the amount of active foliage area deployed to intercept solar radiation and harvest its

energy. Physiological changes are caused, e.g., by the seasonal acclimation of the photosynthetic apparatus to varying levels of

radiation inputs and temperature (Kumarathunge et al., 2019a; Luo and Keenan, 2020a; Jiang et al., 2020).30

Continuous GPP estimates can be obtained from eddy covariance measurements of ecosystem gas exchange (Baldocchi,

2020) and capture surface-atmosphere exchange fluxes, integrated over a radius on the order of a kilometre around the site of

measurement (Chu et al., 2021). A large volume of such data, standardised, and measured in parallel with a comprehensive set

of meteorological variables and soil conditions (temperature and moisture), are made available through different networks and

initiatives (e.g., Ameriflux, ICOS, OzFlux). The FLUXNET2015 dataset was created using standardized processing of eddy35

covariance measurements of a large number of sites from multiple regional networks and has been made openly accessible

in a standardized format (Pastorello et al., 2020a). Its large data volume gives rise to opportunities for data-driven machine

learning methods for predicting spatiotemporal variations of ecosystem-atmosphere exchange fluxes, modelled on the basis

of environmental covariates (Jung et al., 2020, 2011). Thanks to the combination of temporally resolved data, available from

a large number of sites, covering a wide envelope of environmental conditions, spatial generalisation can be attempted. That40

is, predictive methods may be developed to model ecosystem fluxes at geographical locations from which no data was used

during model training. Such spatially upscaled estimates are valuable for estimating temporal variations of C and water fluxes

across larger areas and carbon cycle impacts by climate extremes (Jung et al., 2010). Spatio-temporally upscaled, data-driven

estimates are widely used for estimating fluxes of the global carbon cycle and for benchmarking mechanistic models (Wiltshire

et al., 2020; Peng et al., 2015; Sun et al., 2018).45

However, concerns have been raised about the reliability of spatial upscaling using data-driven models that are trained on

ecological data that is typically representative of a limited geographical and environmental space (Ploton et al., 2020; Meyer and

Pebesma, 2022). Parameter-rich, but “data-hungry” machine learning models appear to be successful at predicting ecological

quantities when trained and tested against the limited available data. However, their flexibility and risk of overfitting may come

at the expense of poor model generalisability to conditions that are poorly or not at all represented in the training data.50

GPP can be conceived as a function of a set of environmental covariates, whereby models are formulated assuming indepen-

dent and identically distributed (IID) observations. However, this assumption is violated by the non-stationarity of relationships

between GPP and the environment. Such non-stationarities arise from multiple processes. e.g., plant hydraulic processes in-

duce a temporal hysteresis effect over the course of diurnal cycles (Tuzet et al., 2003). Seasonally varying physiological and

phenological changes alter relationships between GPP and the abiotic environment (Kumarathunge et al., 2019a; Luo and55

Keenan, 2020a). Stress by extreme environmental conditions in the past can cause long-lasting effects, caused by impaired
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transpiration and reduced assimilation (Barber and Andersson, 1992; McDowell et al., 2022). Some of these limitations to

modelling GPP under the IID assumption may be relieved by temporal aggregation of modelled data to daily-monthly time

scales and by pairing data with additional, remotely sensed observations that capture phenological changes and variations in

the amount of active, light-intercepting foliage area (Baldocchi, 2018). Satellite data products of the surface reflectance are60

widely used for providing information about spatially and seasonally varying vegetation structure and light absorption (Ryu

et al., 2019). However, additional physiological changes that affect the efficiency of light utilization for CO2 assimilation at

the leaf level are more challenging to capture by remotely sensed reflectance data (Gamon et al., 2016). As a consequence,

substantial unexplained GPP variation is expected to remain, in particular at the seasonal time scale.

Published machine-learning (ML) based GPP models used for spatiotemporal modelling typically rely on the IID assumption65

(Yang et al., 2007; Beer et al., 2010; Xiao et al., 2010; Jung et al., 2011, 2020; Tramontana et al., 2016) and thus lack the capac-

ity to learn temporal dependencies. This limitation may be relieved by "time-aware" ML algorithms that learn non-stationary

relationships and temporal dependencies. Recurrent neural networks with Long Short-Term Memory (LSTM) cells have been

shown to be highly successful at tasks where memory effects across a range of temporal scales are involved (Hochreiter and

Schmidhuber, 1997). Today, such models underlie most solutions for language-related tasks and time series modelling (D. and70

L., 2013; Elsworth and Güttel, 2020).

The aim of this paper is twofold and addresses the following two research questions:

– Are machine-learning models that learn temporal structure in the data suitable for predicting GPP? To address this

question, we evaluate the performance of an LSTM model on unseen test sites (leave-site-out cross-validation) and

compare it with the results of a non-recurrent DNN that relies on the IID assumption, and with a theory-based GPP75

model, the P-model (Stocker et al., 2015; Wang et al., 2017; Prentice et al., 2014) that models the acclimation of leaf

physiology and relies on a very small number of model parameters.

– How well can we up-scale fluxes for mapping GPP time series for temporal flux time series mapping? To address this

question, we assess the generalisability of the LSTM-based GPP model in geographic and environmental space, and in

terms of generalisations to new vegetation types.80

2 Methods

2.1 The prediction challenge

The general structure of a model f for spatial generalisations of time series data can be described as

yi,t+N = f(xi,t+(M..N),zi) , (1)

where y is the target variable (here GPP), x is a vector of temporally resolved covariates (predictors), z is a vector of time-85

invariant information (e.g., vegetation type), index i refers to a location in geographical space, and t is the time step. As

formulated here, the prediction of y for a future time step t+N depends on the history of environmental covariates (t+(M..N)).
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Models using the IID assumption neglect this history and can be described as yi,t = f(xi,t,zi). Note that in both cases, no

spatial context xj or zj (i 6= j), nor explicit information about the geographical location (yi = f(i, ...)) is used for modelling

yi.90

2.2 Data selection

For training and testing the model, we use FLUXNET2015 data at the daily resolution (Pastorello et al., 2020b). We used GPP

based on the night-time flux partitioning (Reichstein et al., 2005), and the variable u∗-threshold method (GPP_NT_VUT_REF

in the dataset). The daily FLUXNET2015 data is based on sums of half-hourly data. We used only data from days where more

than 80% of the underlying half-hourly data was good-quality, measured data (not gap-filled). We used the following temporally95

resolved metereological covariates, measured in parallel at eddy covariance sites and provided as part of the FLUXNET2015

dataset as daily means, unless specified otherwise (variable name given in brackets): air temperature (TA_F), daytime mean air

temperature (TA_F_DAY), nighttime mean air temperature (TA_F_NIGHT), shortwave incoming radiation (SW_IN_F), long-

wave incoming radiation (LW_IN_F), vapour pressure deficit (VPD_F), atmospheric pressure (PA_F), daily total precipitation

(P_F), and wind speed (WS_F). Soil water content data was unavailable for many sites and missing particularly for deep soil100

layers. For this reason, we used soil moisture modelled using a simple water balance model, forced with observed precipitation

and modelled evapotranspiration (Davis et al., 2017; Stocker et al., 2015).

To complement site-level measurements, we used remotely sensed estimates for the fraction of absorbed photosynthetically

active radiation (fAPAR), extracted from the MODIS FPAR MCD15A3H collection 6 product (Myneni et al., 2015). fAPAR

captures variations in phenology and the amount of solar radiation absorbed by the canopy and usable for photosynthesis. fA-105

PAR data is extracted for the center pixel (500 m lateral extent), surrounding each measurement site. fAPAR data cleaning was

implemented to keep only good quality data (i.e., derived using the main data retrieval algorithm) and data that are not affected

by significant clouds. fAPAR data are provided at a 4-day resolution and were interpolated to a daily time step using a LOESS

spline. All fAPAR data download and processing is implemented using the ingestr and MODISTools R packages (Stocker and

Hufkens, 2021; Tuck et al., 2014). As time-invariant information, we used information about the dominant vegetation type at110

respective sites (see Table 1), obtained through the FLUXNET2015 dataset.

We selected data from 53 sites (Fig. 1, Tab. 1) where data from at least 500 days was available, and where a previous analysis

yielded robust (site-specific) relationships between GPP and a similar set of environental covariates (Stocker et al., 2018b).

2.3 Data pre-processing

All pre-processing steps (imputation and standardization) were done for each site separately. This avoids data leakage, arising115

from applying data transformation with parameters derived from the testing portion of the data. We imputed missing GPP

values (16.5%) using K-Nearest Neighbors (KNN) imputation with all available environmental covariates (see above). Time

series of daytime and nighttime mean air temperature had a very small portion of missing values (0.002%) and were also filled

with KNN imputation, using daily mean temperature and shortwave incoming radiation as predictors. We also had to drop
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Figure 1. Locations of selected sites in geographical space (a) and environmental space (b). Colors of points in (a) indicate the predominant

vegetation type present at respective sites (GRA: grasslands, SAV: savannah, WSA: woody savannah, ENF: evergreen needleleaved forest,

EBF: evergreen broadleaved forest, DBF: deciduous broadleaved forest, CSH: closed shrubland, WET: wetland, CRO: cropland, MF: mixed

forest). In (b), axes indicate the environmental space and are defined by the mean annual precipitation and temperature and colors delineate

biomes defined by (Whittaker, 1962), plotted using the plotbiomes R library (Stefan and Levin, 2023).
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the site "CN-Cng" because meta-data information was missing. The categorical time-invariant predictor (vegetation type) was120

one-hot encoded.

2.4 Model architectures

We evaluated two different machine learning algorithms to compare the suitability of different model architectures for the

spatiotemporal prediction task at hand. To account for temporal dependencies in the data, we used a deep neural network with

a Long Short-Term Memory (LSTM) cell implemented in PyTorch. LSTMs belong to the class of recurrent neural networks.125

Applying such a model architecture to the present prediction task enables the modelling of GPP in an autoregressive manner

(see Equation 1). The architecture implemented here consists of a single LSTM cell, combined with a multilayer perceptron

(MLP, Fig. 2). The MLP architecture consisted of four linear, fully-connected layers with 11, 64, 32 and 16 nodes, respectively.

For each timestep, the output of the LSTM is passed through an MLP to obtain the final value. The combination of the LSTM

and MLP is chosen to introduce additional nonlinearity in the LSTM output and reduce the bias of the output sequence. The130

weights of the MLPs are shared between all timesteps.

In addition to the LSTM, we trained a deep neural network (henceforth referred to as ’DNN’) as an MLP using PyTorch

(Paszke et al., 2019). The model architecture consisted of four linear, fully-connected layers with 11, 64, 32 and 16 nodes,

respectively. ReLu functions were used as the activation function between each layer. We trained the DNN model using an

Adam optimizer with a learning rate of 3× 10−4 and a batch size of one and considered the mean squared error as the loss135

function.

The theory-based photosynthesis model is the P-model (Prentice et al., 2014; Wang et al., 2017; Stocker et al., 2020). The

P-model combines established theory for C3 photosynthesis following the Farquhar-von Caemmerer-Berry (FvCB) model with

the least cost hypothesis for the optimal balancing of water loss and carbon gain (Prentice et al., 2014), and the coordination hy-

pothesis (Maire et al., 2012; Wang et al., 2017) which states that the light and Rubisco-limited assimilation rates (as described140

by the FvCB model) are equal for representative daytime environmental conditions. Based on these theoretical foundations,

GPP can be modelled as the product of absorbed photosynthetically active radiation, specified by the locally measured photo-

synthetically active radiation (PAR) and remotely sensed fAPAR, and the theory-based prediction of the ecosystem-level light

use efficiency, as described in more detail by (Stocker et al., 2020). For the analyses presented here, we used model outputs

of the leave-site-out cross-validation presented in(Stocker et al., 2020) (referred to as ‘out-of-sample evaluation’ therein) with145

the model setup that included a soil moisture stress function and a temperature-dependent quantum yield (which acts as a

linear scalar on ecosystem light use efficiency), corresponding to the simulation setup ‘FULL’ in (Stocker et al., 2020). For

these simulations, three model parameters for calibrated to GPP data from FLUXNET: one parameter specifying the apparent

ecosystem-level quantum yield and two parameters specifying the soil moisture stress function and how it varies with mean

site aridity. The calibration was implemented as a parameter optimization, minimising the root mean square error, using the150

generalised simulated annealing algorithm implemented by the GenSA R package (Yang Xiang et al., 2013).

6

https://doi.org/10.5194/egusphere-2023-1826
Preprint. Discussion started: 5 September 2023
c© Author(s) 2023. CC BY 4.0 License.



2.5 LSTM and DNN model training

We trained the models using an Adam optimizer with a learning rate of 3×10−4 and considered the mean squared error as the

loss function. Because the sequences (number of data points per site) had very different lengths, we used a batch size of one to

avoid zero-padding or decimating the long sequences. To reduce the model overfitting, we used dropout as a regularizer with155

probability 0. The models were implemented using PyTorch (Paszke et al., 2019).

Figure 2. Architecture of the LSTM model. Inputs x0..n are vectors of predictors at each time step and are used as inputs to the LSTM cell.

The output of the LSTM cell is a vector (illustrated by multiple, boxed circles) and used as input to the MLP, which uses shared weights

across time steps. The outputs y0..n receive the value from the output node of the MLP and constitute the model prediction of the target

variable - here GPP.

2.6 Model evaluation

Model evaluation was based on leave-site-out-cross-validation (LSOCV) and leave-group-out-cross-validation (LGOCV). In

LSOCV, we trained on all but one site and tested predictions for the remaining site. In LGOCV, we trained on all but one group

and tested predictions on the remaining group. The groups we used for testing were vegetation types and continents (sites in160

the US and outside the US). LGOCV, where sites are grouped by vegetation types, assesses the generalization performance

for out-of-sample vegetation types. Poor performance, for LGOCV determined as the model bias, indicates that relationships

between y and x are substantially modulated by vegetation type-specific properties, e.g., due to differences in canopy radiation

transfer and absorption between broadleaved and coniferous forests. LGOCV, where sites are grouped by continents, assesses
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the generalization performance of spatial upscaling across large geographic scales, and potentially to ecosystems with different165

floral compositions on different continents.

For the LSOCV, we computed evaluation metrics (coefficient of determination, R2; root mean squared error, RMSE) on

predictions for the left-out site, pooled from all sites, and as the mean across evaluation metrics determined on predictions for

sites separately. For the LGOCV, we quantified the bias (difference between predicted and observed GPP) and the RMSE.

In addition to deriving performance metrics from the LSOCV based on daily data, we aggregated predictions and observa-170

tions to different scales (mean seasonal cycle, annual, site-level) and pooled predicted and observed values from all sites before

calculating performance metrics. This measures complimentary aspects of model performance and enables comparability to

other studies. The mean seasonal cycle was determined as the mean by day-of-year for each site separately. Daily anomalies

were derived as the difference of daily values to the site-specific mean seasonal cycle. Additionally, we evaluated the mean

seasonal cycle per climate zone, where sites were grouped based on a global map of Koeppen-Geiger climate classes (Beck175

et al., 2018). Annual anomalies were determined as the annual values by site minus the mean across years by site.

To interpret the link between out-of-sample prediction skill and site characteristics, we investigated the relationships of site-

specific R2 of modelled versus observed GPP from the LSOCV with a set of variables that characterise the site conditions

(moisture index, vegetation type, climate zone). The moisture index was defined as the ratio of mean annual precipitation

over potential evapotranspiration (PET), derived from locally measured precipitation and PET estimated based on Priestly-180

Taylor (Priestley and Taylor, 1972) as implemented in the SPLASH ecosystem water balance model (Davis et al., 2017). The

site’s dominant vegetation type was identified based on meta-information provided through FLUXNET2015 (Pastorello et al.,

2020a). The site’s climate zone was identified based on the Koeppen-Geiger classification with information extracted from a

global map by (Beck et al., 2018).

3 Results185

3.1 Leave-site-out cross-validation

The LSTM outperforms other models in predicting GPP. For daily values, the mean R2, determined as a mean across sites from

the LSOCV, is 0.78 for the LSTM, 0.73 for the DNN, and 0.64 for the P-model (Tab. 3). Model performances vary substantially

across sites (Fig. 3) and the weakest model performance is evident for the same sites for all models. The improvement of model

performance of the LSTM over the P-model is evident for almost all sites, except a few (mostly dry) sites. We also compared the190

performance of the "standard" LSTM against an LSTM model trained with both time-invariant and time-dependent variables

but did not find any significant improvement when adding the time-invariant features to the learning problem (not shown).

3.2 Model performance across scales

The LSTM outperforms other models across all scales (Tab. 3). The somewhat higher R2 derived for pooled daily values,

compared to the LSOCV-mean, reflects the fact that relatively poor model performance tends to be found at sites for which195
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Figure 3. Benchmarking of the LSTM (a) and DNN (b) models against the P-model. R2 of predicted versus observed daily values from the

LSOCV are shown for the LSTM and the DNN models along the y-axis and for the P-model along the x-axis. Points lying above the dotted

(1:1) line indicate that the LSTM (DNN) model outperforms the P-model for the respective site. Selected site names are indicated by grey

labels.

fewer data is available. The superior performance of the LSTM model over the DNN appears to be linked to its superior

performance in capturing seasonal effects, spatial variations, and daily, but not annual anomalies. The good performance of the

LSTM on seasonal variations reflects the ability of the LSTM to effectively learn temporal dependencies at weekly to monthly

scales. Compared to variations at other scales, seasonal variations are confidently predicted by all models and respective R2

values are higher compared to values from evaluations on other scales.200

A clearer distinction of model performance for simulating the seasonal course of GPP is revealed by the visualisation of

modelled and observed mean seasonal cycles by climate zone Fig. 4. The LSTM performs better than the DNN in multiple

aspects, including the peak (wet)-season GPP for tropical savannah (’Aw’), and the timing of GPP increases in early spring

in sites with a mesic temperate or a boreal climate (’Cfa’, and ’Dfb’). The evaluation of GPP on sites located in climates that

are marked with a warm and arid summer (’Csa’, ’Csb’) reveals a substantial bias for both the LSTM and the DNN models.205

However, also here, the LSTM performs better than the DNN in capturing the seasonal course of GPP.
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Figure 4. Mean seasonal cycle of GPP by climate zone, separated into zones in the northern and southern hemisphere. Predictions extracted

from the LSOCV for DNN and LSTM are compared against observations (’obs.’). Climate zone information is extracted per site from

Beck et al. (2018). ’Aw’ is tropical savannah, ’Bsh’ is arid hot steppe, ’Bsk’ is arid cold steppe, ’Cfa’ is warm temperate fully humid with

hot summer, ’Cfb’ is warm temperate fully humid with warm summer, ’Csa’ is warm temperate with dry and hot summer, ’Csb’ is warm

temperate with dry and warm summer, ’Dfb’ is cold fully humid with warm summer, ’Dfc’ is cold fully humid with cold summer.

3.3 Patterns in out-of-sample prediction skill

Overall, the LSTM yielded the best out-of-sample predictions for relatively moist, temperate or cool sites, and particularly

for those with a deciduous vegetation type. For a moisture index of P/PET> 1.25, the average LSOCV-R2 of predicted versus

observed GPP was 0.82. For sites with deciduous broadleaved forest vegetation, the average LSOCV-R2 was 0.91. The average210

LSOCV-R2 was 0.86 for sites with a temperature-controlled, but not water-limited growing season (climate zones ’Cfa’, ’Dfc’,

’Dfb’).

In contrast, we found that all sites with relatively poor out-of-sample prediction skill (LSOCV-R2 < 0.7) were located in

relatively dry climates (P/PET < 1.0), except for AU-How and CH-Oe1, where the LSOCV-R2 was < 0.7 while PET was
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> 1.0. However, a dry climate was not sufficient to yield poor out-of-sample prediction performance. For several dry sites,215

the LSTM performed well (e.g., AU-ASM, US-SRM, US-SRG, AU-Stp). There was a clear pattern between out-of-sample

prediction skill and vegetation type. The LSTM’s out-of-sample prediction skill was relatively poor (LSOCV-R2 < 0.6) for

savannah, closed shrubland, and evergreen broadleaved forest sites (except for AU-Wom). All sites for which the LSOCV-R2

was < 0.7 belonged to either temperate climate zones with a warm and/or dry summer (’Cfb’ and ’Csa’, the latter being a

mediterranean climate) or to a tropical savannah climate (’Aw’).220
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Figure 5. Patterns in out-of-sample prediction skill, measured by the R2 of modelled vs. observed GPP from the LSTM model, determined

from the LSOCV. (a) LSOCV-R2 versus the moisture index, defined as the ratio of precipitation over potential evapotranspiration (P/PET).

The color of points indicates the dominant vegetation type at the respective site. ’CRO’ are croplands, ’CSH’ are closed shrublands, ’DBF’

are deciduous broadleaved forests, ’EBF’ are evergreen broadleaved forests, ’ENF’ are evergreen needleleaved forests, ’GRA’ are grasslands,

’MF’ are mixed forests, ’SAV’ are savannahs, ’WET’ are wetlands, ’WSA’ are woody savannahs. (b) LSOCV-R2 by vegetation types, (c)

LSOCV-R2 by climate zones. See the caption of Fig. 4 for an explanation of abbreviations of climate zones.

3.4 Generalisability across vegetation types

The LGOCV with vegetation types shows that models trained with data from sites of a certain, single vegetation type perform

best when predicting GPP on the same vegetation type (Fig. 6). In contrast, predictions made for a vegetation type that was not

represented in the training data are poorer. This is most clearly expressed for grassland vs. non-grassland model training and

testing (Fig. 6b), where models trained on sites with forest vegetation yield predictions that tend to be positively biased and225

have a higher RMSE (2.23 - 4.15 gC m−2 d−1) when predicting on grassland sites. In contrast, the model trained on grassland

data achieves an RMSE of 1.98 gC m−2 d−1 when predicting on (out-of-sample) grassland sites. However, the model that

is trained on data from all vegetation types achieves good performance on all vegetation types - similar to the model that is
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trained and tested on the same vegetation type (measured by predictions from the LSOCV). For the case of mixed forests and

for grasslands, the model trained on data from all vegetation types yields even better performance than the model trained on230

data from only MF, or only GRA, respectively (Fig. 6 b and d).

RMSE, trained on
ALL: 2.11
DBF: 1.75
ENF: 2.44
GRA: 2.51
MF: 2.65

0.0

0.2

0.4

−15 −10 −5 0 5 10

GPP bias (gC m−2d−1)

de
ns

ity

Trained on

ALL

DBF

ENF

GRA

MF

Bias on DBF sitesa

RMSE, trained on
ALL: 1.81
DBF: 3.36
ENF: 2.23
GRA: 1.98
MF: 4.15

0.0

0.2

0.4

−10 −5 0 5 10

GPP bias (gC m−2d−1)

de
ns

ity

Trained on

ALL

DBF

ENF

GRA

MF

Bias on GRA sitesb

RMSE, trained on
ALL: 1.54
DBF: 1.99
ENF: 1.48
GRA: 1.77
MF: 2.03

0.0

0.2

0.4

−10 −5 0 5 10

GPP bias (gC m−2d−1)

de
ns

ity

Trained on

ALL

DBF

ENF

GRA

MF

Bias on ENF sitesc

RMSE, trained on
ALL: 1.62
DBF: 1.98
ENF: 1.67
GRA: 1.88
MF: 1.92

0.0

0.2

0.4

−10 −5 0 5 10

GPP bias (gC m−2d−1)

de
ns

ity

Trained on

ALL

DBF

ENF

GRA

MF

Bias on MF sitesd

Figure 6. LGOCV for vegetation types. Shown are the distributions of the bias of daily GPP predictions for sites belonging to a given

vegetation type, performed with a model trained on data from individual, other vegetation types, or from all vegetation types combined

(’ALL’). ’DBF’ is deciduous broadleaved forest, ’MF’ is mixed forest, ’GRA’ is grassland, ’ENF’ is evergreen needle-leaved forest.

3.5 Generalisability across continents

The LGOCV with continents shows that model predictions for US sites have a smaller RMSE and average bias when the model

is trained on only data from US sites (RMSE = 1.42 gC m−2 d−1), than when the model is trained on only non-US sites’ data

(RMSE = 1.84 gC m−2 d−1, Fig. 7). Note that the leave-site-out CV scheme was applied also for training and predicting within235

the same continent. Similarly, predictions for European sites are better for the model trained on only European sites (RMSE

= 1.74 gC m−2 d−1), compared to the model trained on data from non-European sites (RMSE = 2.23 gC m−2 d−1). However,

predictions of the model trained on data from sites of all continents (’ALL’, RMSE = 1.74 gC m−2 d−1) are equally good

as within-Europe training and predictions. The distribution of the bias exhibits distinct patterns for the different models. For
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example, for predictions on US sites with the model trained on non-US sites, the distribution is skewed to the right, indicating240

that GPP is often overestimated by that model.
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Figure 7. LGOCV for continents. Shown are the distributions of the bias of daily GPP predictions for sites belonging to a given continent,

performed with a model trained on data from outside this continent, or from data of all continents (’ALL’). ’DBF’ is a deciduous broadleaved

forest, ’MF’ is a mixed forest, ’GRA’ is grassland, and ’ENF’ is an evergreen needle-leaved forest. Distribution of the bias of predictions on

sites of the "left-out continent", where the model was trained on all sites of one continent and tested on all sites from the other continent.

’EU’ stands for Europe, and ’US’ for the United States.

4 Discussion

4.1 Recurrent neural networks are suitable for modeling GPP

LSTMs are suitable for modelling GPP, better than a DNN, and achieve better predictions for the sites investigated here than

a theory-based model. This is shown by the almost unanimous improvement of out-of-sample predictions for all sites by the245

LSTM model compared to the DNN and compared to the P-model (Fig. 3).

The LSTM’s power in modelling GPP reflects its ability to learn temporal structure in the data and memory effects in the data-

generating system (the ecosystem). Examples of known processes that introduce memory effects in environment-ecosystem

flux relationships include the acclimation of plant physiology, in particular photosynthesis, to seasonally varying temperatures

and light (Mäkelä et al., 2004; Luo and Keenan, 2020b; Jiang et al., 2020; Kumarathunge et al., 2019b), or root-zone mois-250

ture dynamics (Seneviratne et al., 2010; Teuling et al., 2006). The two processes differ in that they affect either the plants’

abiotic environment (soil water potentials across the rooting profile) or the process responsible for the vegetation-atmosphere

exchange itself (acclimation of photosynthesis). The former could, in principle, be continuously monitored and resulting in-

formation could be used for GPP modelling. However, practical and conceptual obstacles exist. Conceptual challenges include

unknown effective rooting depth and spatial heterogeneity of plant water availability in the footprint of the flux tower. Recur-255

rent neural networks offer a way to implicitly learn the actual, memory-dependent environment experienced by plants - even
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in the absence of direct measurements of the same. The state of acclimation of plant physiology is probably more challenging

to monitor. However, remotely sensed spectral canopy reflectance data reflects abiotic effects on plant physiology (Magney

et al., 2019; D’Odorico et al., 2021) and may yield useful information for modelling respective effects on ecosystem fluxes.

Such information may be particularly useful for modelling fluxes with non-recurrent neural networks and other algorithms that260

assume data to be IID.

We found a relatively poor performance of all models in simulating annual anomalies. Notably, also the recurrent neural

network (the LSTM) performed weakly in capturing long-term dependencies, e.g., legacy effects of vegetation stress. This is

possibly due to the limited length of training data from individual sites, or unexplained variations stemming from measurement

uncertainty (e.g., sensor replacements) or stand development for which no information is captured by the predictors used here.265

The LSTM also outperformed the theory-based model. This reflects the power of machine learning models to effectively

exploit information in the data for an (often narrowly defined) prediction task, here GPP as a single target variable. This

effectiveness stems from the machine learning models’ flexibility in representing functional dependencies and their large

number of parameters. In contrast, the theory-based model used here relies on a priori specified functional dependencies, a

simplified representation of some processes (e.g., the radiative transfer in the canopy or plant hydraulics are not explicitly270

simulated in the model applied here), and relies on a very small number of parameters (here three), limiting the model to

exploit the information contained in the data. The parameter-richness of deep neural networks comes with a risk of overfitting

to the training data and poor generalisability to new data - here, new sites, geographic locations, environmental conditions, or

vegetation types that are not represented in the training data. However, the LSOCV strategy applied here suggests that potential

overfitting did not compromise the deep learning models’ ability to accurately predict GPP. Yet, the environmental space in275

which the LSOCV was performed is limited and doesn’t cover several major biomes and climate zones (Fig. 1). Furthermore,

superior predictions of machine learning models come at the cost of limited model interpretability and the narrow scope of

predictions of a single quantity (here GPP) for which training data is (and has to be) abundant. In contrast, the theory-based

model applied here yields corollary predictions for connected ecosystem and plant states, traits, and rates (e.g., photosynthetic

capacities (Smith et al., 2019) or leaf respiration rates (Wang et al., 2020)), that may be relevant in other modelling contexts280

(e.g., as a component of a land surface or Earth system model) but have different and often very limited direct observational

constraints and calibration target data.

It should be noted that all the LSTM and DNN models were trained on data from years when atmospheric CO2 was around

380-400 ppm, without actually considering ambient CO2 as a predictor. Since CO2 is known to affect photosynthesis, these

models’ applicability is thus limited to conditions with similar atmospheric CO2 concentrations and CO2-driven multi-annual285

GPP trends cannot be captured.

4.2 Challenges in modelling GPP at some, but not all dry sites

The various out-of-sample evaluation strategies applied here yield a nuanced picture of model generalisability and its limita-

tions. The leave-site-out cross-validation indicated that GPP can be modelled confidently in seasonally radiation and temperature-

limited and relatively moist temperate and boreal forests, where the LSTM achieved an R2 in the LSOCV test of >0.9 at several290
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sites (Tab. 1). The dominant radiation-control of GPP implies a very regular seasonal cycle, determined largely by the site’s

latitude and the Earth’s orbit, which can be confidently modelled.

Although the model skill found for moist temperate and boreal sites indicates good performance overall, distinct patterns

in the model bias persist also at these sites. For example, a positive GPP bias in the early spring is found for many, but not

all sites (Fig. 4). This reflects similar findings made in the evaluation of the P-model in simulating the seasonal GPP course295

in boreal and moist temperate sites (Stocker et al., 2020) and may be related to delayed effects of freezing temperatures and

a slow recovery of photosynthetic activity after the temperature-limited dormant season (Mäkelä et al., 2008). Notably, the

LSTM model doesn’t “learn” such seasonal GPP dynamics in spite of its potential capacity to model temporal dependencies.

This is possibly due to the fact that such dynamics are not operating at all sites and insufficient information (e.g., the identity of

dominant species) is contained in the predictors for the model to “learn” where the slow spring-time recovery of photosynthesis300

is effective.

The LSOCV indicated poor model performance in predicting GPP at several, but not all (seasonally) dry sites. This sug-

gests that the main source of out-of-sample prediction error is related to the uncertain effects of water limitation across sites.

Although water and energy inputs (precipitation and net radiation), atmospheric water demand (vapour pressure deficit), and

vegetation greenness are known from observations and used as model predictors here, there appears to be insufficient informa-305

tion for modelling the actual exposure of the vegetation to water stress. The very variable LSOCV model skill across relatively

dry sites (ranging from an R2 of 0.50 for AU-DaS to 0.86 for AU-ASM, Fig. 3) indicates that the relationship between ecosys-

tem water and radiation inputs and water stress exposure is highly variable and insufficient information is provided through

the predictors used for modelling here. Variable water stress exposure is likely linked to unknown rooting structure, soil wa-

ter holding capacity and depth, and the presence (or absence) of extensive plant-accessible belowground water stores (lateral310

subsurface flow, groundwater or a perched water table) that enable (or prevent) sustained vegetation activity during long dry

periods (Stocker et al., 2023; Fan et al., 2017; Trugman et al., 2021; Callahan et al., 2022).

4.3 Limitations to model generalisability

The basic rationale for spatial up-scaling of temporal or static ecological data is that training samples, although potentially

geographically clustered, cover a wide enough environmental space to model relationships between the environment and the315

ecological target variable across a larger spatial domain. Since environmental variables (climate, soil, elevation, etc.) can be

obtained from datasets with global coverage, the ecological target variable can be mapped globally, based on relationships

learned from data obtained from a limited number of sites (e.g., Hengl et al. (2014); Ma et al. (2021); Dechant et al. (2023)).

An additional premise of this approach (often considered but sometimes violated) is that the relationship between the ecological

target variable and environmental predictors has no explicit dependency on the geographical location and that longitude and320

latitude are not included as predictors in the model. Thus, spatial autocorrelations in the predicted quantity can only arise due

to (true) spatial autocorrelation in the environment, but not due to an (artefactual) autocorrelation resulting from geographical

proximity of training and test sites. Here, we did not use geographical coordinates as model predictors and we investigated

spatial generalisability by separating training and test sites by continents. This corresponds to a spatial cross-validation strategy,
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which has been advocated (Roberts et al., 2017) (but also questioned (Sweet et al., 2023)) for similar spatial generalisation325

tasks.

We found that the far-range spatial model generalisability (across continents) was indeed hampered (Fig. 7). However, this

finding may reflect limitations to the representativity of environmental conditions and biotic features, not geographical space,

when limiting model training data to sites from a single continent. Yet, limited representativity of biotic features could also

stem from distinct floral compositions across continents which reflects evolutionary history and constraints to species migration330

across geographical space. This would be a case in which geographical space has an explicit influence on environment-GPP

relationships, but this interpretation remains speculative.

A further limitation to model generalisability was found with respect to vegetation types. Unless a certain vegetation type

is represented in the training data, model predictions for the same deteriorate (Fig. 6). Due to limited data availability from

savannah and shrub vegetation, we could only assess this form of generalisability for (evergreen, deciduous, and mixed) forests335

and grasslands. Also, moist tropical forests, characterised by particularly high foliage areas and tall tree statures, were not

represented here. We also trained an LSTM model that had access to both temporally varying and time-invariant predictors.

Time invariant predictors included vegetation type identity. Surprisingly, the LSTM variant exhibited no improvement in its

predictions over the LSTM that was forced with only temporally varying predictors (not shown). This indicates that time series,

most likely that of fAPAR, encode sufficient information for the model to discriminate between vegetation types, and/or that340

dependencies of fluxes on the environment (given fAPAR information) are similar across vegetation types - possibly a reflection

of the common basic processes and controls that drive (mostly C3) photosynthesis across the sites and species represented in

our dataset.

Nevertheless, although the environmental space of the Earth’s land surface is (and will always be) sparsely sampled by

ecosystem flux measurement networks (Papale et al., 2015; Villarreal and Vargas, 2021), our results of the LSOCV suggests345

that there is sufficient data for models to learn from available observations and predict to new sites that were not “seen” during

model training, and thus to “fill in” the un-sampled environmental domain - at least under conditions where water limitation is

not a major driver of fluxes. However, the large domain of the environmental space that lies beyond what is covered by the site

network (Fig. 1), in combination with the limits to model generalisability identified here, suggests considerable limitations to

global upscaling on the basis of the site network used here.350

4.4 Comparison to previous publications

The clearly superior model performance of the LSTM versus the non-recurrent DNN for simulating GPP found here contrasts

with the findings reported by Besnard et al. (2019) who simulated net ecosystem exchange (NEE) with an LSTM. These authors

found no clear improvement over predictions from non-recurrent models and interpreted their finding as an indication of either

negligible signals of long-term legacy effects of stressors, limited temporal resolution of the data (monthly), or limited data355

quality (frequent cloud contamination and unreliable information for capturing disturbances and spatial context in the remote

sensing data) (Besnard et al., 2019).
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Contrasting model performances for predicting NEE versus GPP with a similar model trained on similar data may also be

linked to smaller seasonal and spatial signals in NEE, compared to GPP time series. Smaller signals may be expected in view

of compensating effects by ecosystem respiration (Reco, NEE = Reco - GPP), which exhibits similar frequencies, magnitudes,360

and timings of variations as GPP.

Further model improvements may be achieved by the use of more extensive training data that has recently become available,

covering additional sites and years, the inclusion of additional remote sensing-based predictors that reflect environmental

stressors on plant physiology (e.g., multi-spectral reflectance, sun-induced fluorescence, land surface temperature), and/or the

consideration of other time-invariant data that encode information, useful for modelling water stress exposure or vegetation365

type and canopy structure. The relatively narrow selection of training (and testing) sites considered here is a limitation that

may easily be relieved in future studies.

5 Conclusions

Taken together, we demonstrated that an LSTM - a recurrent deep neural network - is suitable for predicting ecosystem GPP,

given observations of a set of meteorological variables and remotely sensed estimates of the fraction of radiation absorbed by370

the vegetation canopy. The LSTM performs superior compared to a non-recurrent DNN and a relatively simple, parameter-

sparse theoretical model. We have also demonstrated that the LSTM performs well at new sites, not “seen” during model

training - suggesting the model’s ability to spatially upscale GPP estimates across larger spatial domains on the basis of

spatially mapped meteorological and remotely sensed covariates.

However, cross-validation by vegetation types and across continents indicated limits to far-range up-scalability (spatial375

generalisability) across a global domain with widely varying vegetation types, floral compositions, and climate conditions that

are not or only very sparsely sampled by a subset of the eddy covariance measurement network used here.
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Site Lon. Lat. Period Veg. Clim. N LSTM DNN P-model Reference

AU-ASM 133.25 -22.28 2010-2013 ENF BSh 1461 0.86 0.687 0.348 (Cleverly et al., 2013)

AU-DaP 131.32 -14.06 2007-2013 GRA Aw 2557 0.81 0.798 0.415 (Beringer et al., 2011a)

AU-DaS 131.39 -14.16 2008-2014 SAV Aw 2557 0.50 0.442 0.093 (Hutley et al., 2011)

AU-Fog 131.31 -12.55 2006-2008 WET Aw 1095 0.73 0.012 0.162 (Beringer et al., 2013)

AU-How 131.15 -12.49 2001-2014 WSA Aw 5113 0.62 0.506 0.039 (Beringer et al., 2007)

AU-Stp 133.35 -17.15 2008-2014 GRA BSh 2557 0.78 0.632 0.431 (Beringer et al., 2011b)

AU-Whr 145.03 -36.67 2011-2014 EBF Cfb 1461 0.50 0.382 0.556 (McHugh et al., 2017)

AU-Wom 144.09 -37.42 2010-2012 EBF Cfb 1095 0.73 0.729 0.788 (Hinko-Najera et al., 2017)

BE-Bra 4.52 51.31 1996-2014 MF Cfb 6940 0.81 0.760 0.733 (Carrara et al., 2004)

BE-Vie 6.00 50.31 1996-2014 MF Cfb 6940 0.88 0.828 0.741 (Aubinet et al., 2001)

CH-Fru 8.54 47.12 2005-2014 GRA Cfb 3652 0.79 0.779 0.715 (Imer et al., 2013)

CH-Lae 8.37 47.48 2004-2014 MF Cfb 4018 0.71 0.691 0.647 (Etzold et al., 2011)

CH-Oe1 7.73 47.29 2002-2008 GRA Cfb 2557 0.66 0.653 0.603 (Ammann et al., 2009)

CN-Qia 115.06 26.74 2003-2005 ENF Cfa 1096 0.83 0.826 0.705 (Wen et al., 2010)

CZ-wet 14.77 49.02 2006-2014 WET Cfb 3287 0.85 0.754 0.722 (Dušek et al., 2012)

DE-Geb 10.91 51.10 2001-2014 CRO Cfb 5113 0.67 0.688 0.648 (Anthoni et al., 2004)

DE-Gri 13.51 50.95 2004-2014 GRA Cfb 4018 0.76 0.784 0.719 (Prescher et al., 2010a)

DE-Hai 10.45 51.08 2000-2012 DBF Cfb 4749 0.92 0.867 0.792 (Knohl et al., 2003)

DE-Kli 13.52 50.89 2004-2014 CRO Cfb 4018 0.71 0.710 0.664 (Prescher et al., 2010b)

DE-Obe 13.72 50.78 2008-2014 ENF Cfb 2557 0.90 0.859 0.781 NA

DE-RuR 6.30 50.62 2011-2014 GRA Cfb 1461 0.80 0.774 0.662 (Post et al., 2015)

DE-Spw 14.03 51.89 2010-2014 WET Cfb 1826 0.93 0.868 0.834 NA

DE-Tha 13.57 50.96 1996-2014 ENF Cfb 6940 0.84 0.871 0.751 (Grünwald and Bernhofer, 2007)

DK-Sor 11.64 55.49 1996-2014 DBF Cfb 6940 0.90 0.873 0.827 (Pilegaard et al., 2011)

FI-Hyy 24.30 61.85 1996-2014 ENF Dfc 6940 0.93 0.887 0.805 (Suni et al., 2003)

FI-Sod 26.64 67.36 2001-2014 ENF Dfc 5113 0.76 0.746 0.788 (Thum et al., 2007)

FR-Fon 2.78 48.48 2005-2014 DBF Cfb 3652 0.91 0.830 0.749 (Delpierre et al., 2015)

FR-LBr -0.77 44.72 1996-2008 ENF Cfb 4749 0.73 0.715 0.657 (Berbigier et al., 2001)

FR-Pue 3.60 43.74 2000-2014 EBF Csa 5479 0.55 0.496 0.391 (Rambal et al., 2004)

IT-Cp2 12.36 41.70 2012-2014 EBF Csa 1096 0.55 0.535 0.477 (Fares et al., 2014)

IT-Isp 8.63 45.81 2013-2014 DBF Cfb 730 0.90 0.851 0.835 (Ferréa et al., 2012)

IT-Lav 11.28 45.96 2003-2014 ENF Cfb 4383 0.78 0.759 0.626 (Marcolla et al., 2003)

IT-MBo 11.05 46.01 2003-2013 GRA Dfb 4018 0.86 0.849 0.790 (Marcolla et al., 2011)

IT-Noe 8.15 40.61 2004-2014 CSH - 4018 0.53 0.315 0.262 (Papale et al., 2014)
Table 1. Sites used for evaluation and LSOCV results. Lon. is longitude, negative values indicate west longitude; Lat. is latitude, positive val-

ues indicate north latitude; Veg. is vegetation type: deciduous broadleaf forest (DBF); evergreen broadleaf forest (EBF); evergreen needleleaf

forest (ENF); grassland (GRA); mixed deciduous and evergreen needleleaf forest (MF); savanna ecosystem (SAV); shrub ecosystem (SHR);

wetland (WET). Columns ’LSTM’, ’DNN’, and ’P-model’ contain the R2 of predictions from the LSOCV.
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Site Lon. Lat. Period Veg. Clim. N LSTM DNN P-model Reference

IT-PT1 9.06 45.20 2002-2004 DBF Cfa 1095 0.92 0.917 0.856 (Migliavacca et al., 2009)

IT-SR2 10.29 43.73 2013-2014 ENF Csa 730 0.84 0.825 0.814 (Hoshika et al., 2017)

IT-SRo 10.28 43.73 1999-2012 ENF Csa 5114 0.62 0.620 0.565 (Chiesi et al., 2005)

IT-Tor 7.58 45.84 2008-2014 GRA Dfc 2557 0.89 0.848 0.782 (Galvagno et al., 2013)

JP-SMF 137.08 35.26 2002-2006 MF Cfa 1826 0.72 0.712 0.517 (Matsumoto et al., 2008)

NL-Hor 5.07 52.24 2004-2011 GRA Cfb 2922 0.86 0.828 0.774 (Jacobs et al., 2007)

NL-Loo 5.74 52.17 1996-2013 ENF Cfb 6574 0.87 0.821 0.762 (Moors, 2012)

RU-Fyo 32.92 56.46 1998-2014 ENF Dfb 6209 0.86 0.833 0.741 (Kurbatova et al., 2008)

US-GLE -106.24 41.37 2004-2014 ENF Dfb 4018 0.83 0.791 0.789 (Frank et al., 2014)

US-Ha1 -72.17 42.54 1991-2012 DBF Dfb 8036 0.84 0.819 0.763 (Urbanski et al., 2007)

US-Me2 -121.56 44.45 2002-2014 ENF Csb 4748 0.73 0.721 0.703 (Irvine et al., 2008)

US-MMS -86.41 39.32 1999-2014 DBF Cfa 5844 0.92 0.867 0.761 (Dragoni et al., 2011)

US-PFa -90.27 45.95 1995-2014 MF Dfb 7305 0.86 0.777 0.759 (Desai et al., 2015)

US-SRG -110.83 31.79 2008-2014 GRA BSk 2557 0.79 0.724 0.534 (Scott et al., 2015)

US-SRM -110.87 31.82 2004-2014 WSA BSk 4018 0.82 0.718 0.507 (Scott et al., 2009)

US-Ton -120.97 38.43 2001-2014 WSA Csa 5113 0.67 0.634 0.488 (Baldocchi et al., 2010)

US-UMB -84.71 45.56 2000-2014 DBF Dfb 5479 0.93 0.906 0.865 (Gough et al., 2013a)

US-UMd -84.70 45.56 2007-2014 DBF Dfb 2922 0.94 0.891 0.824 (Gough et al., 2013b)

US-Var -120.95 38.41 2000-2014 GRA Csa 5479 0.65 0.616 0.304 (Ma et al., 2007)
Table 2. Sites used for evaluation and LSOCV results. Lon. is longitude, negative values indicate west longitude; Lat. is latitude, positive val-

ues indicate north latitude; Veg. is vegetation type: deciduous broadleaf forest (DBF); evergreen broadleaf forest (EBF); evergreen needleleaf

forest (ENF); grassland (GRA); mixed deciduous and evergreen needleleaf forest (MF); savanna ecosystem (SAV); shrub ecosystem (SHR);

wetland (WET). Columns ’LSTM’, ’DNN’, and ’P-model’ contain the R2 of predictions from the LSOCV.

Model Daily* Daily Seasonal* Seasonal Spatial Daily anom.* Ann. anom.*

LSTM 0.78 0.82 0.91 0.92 0.88 0.37 0.34

DNN 0.73 0.77 0.86 0.88 0.78 0.32 0.34

P-model 0.64 0.64 0.78 0.74 0.35 0.29 0.36

Table 3. R2 computed on predictions aggregated at different temporal scales. The ’*’ marks that the metrics are determined as a mean across

site-level R2, determined based on predictions from the LSOCV. All other metrics are derived from modelled and observed values pooled

across all sites. ’Seasonal’ refers to values aggregated by day-of-year and site. ’Spatial’ refers to an evaluation of site-level means. ’Daily

anom.’ refers to the anomaly of daily values relative to a mean seasonal cycle. ’Ann. anom.’ refers to the anomaly of annual means relative

to the multi-year mean by site.
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