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 13 
Abstract 14 

Large uncertainties persist within current Biomass burning (BB) inventories, and the choice of 15 
these inventories can substantially impact model results when assessing the influence of BB aerosols 16 
on weather and climate. We evaluated discrepancies among BB emission inventories by comparing 17 
carbon monoxide (CO) and organic carbon (OC) emissions from seven major BB regions globally 18 
between 2013 and 2016. Mainstream bottom-up inventories, including Fire INventory from NCAR 19 
1.5 (FINN1.5) and Global Fire Emissions Database version 4s (GFED4s), along with top-down 20 
inventories Quick Fire Emissions Dataset 2.5 (QFED2.5) and VIIRS-based Fire Emission Inventory 21 
version 0 (VFEI0), were selected for this study.  22 

Global CO emissions range from 252 to 336 Tg, with regional disparities reaching up to a sixfold 23 
difference. Dry matter is the primary contributor to the regional variation in CO emissions (50-80%), 24 
with emission factors accounting for the remaining 20-50%. Uncertainties in dry matter often arise 25 
from biases in calculating bottom fuel consumption and burned area, influenced by vegetation 26 
classification methods and fire detection products. In the tropics, peatlands contribute more fuel 27 
loads and higher emission factors than grasslands. At high latitudes, increased cloud fraction 28 
amplifies the discrepancy in estimated burned area (or fire radiative power) by 20%. The global OC 29 
emissions range from 14.9 to 42.9 Tg, exhibiting higher variability than CO emissions due to the 30 
corrected emission factors in QFED2.5, with regional disparities reaching a factor of 8.7.  31 

Additionally, we applied these BB emission inventories to the Community Atmosphere Model 32 
version 6 (CAM6) and assessed the model performance against observations. Our results suggest 33 
that the simulations based on the GFED4s agree best with the MOPITT-retrieved CO. While 34 
comparing the simulation with Moderate Resolution Imaging Spectroradiometer (MODIS) and 35 
AErosol RObotic NETwork (AERONET) aerosol optical depth (AOD), our results reveal that there 36 
is no global optimal choice for BB inventories. In the high latitudes of the Northern Hemisphere, 37 
using GFED4s and QFED2.5 can better capture the AOD magnitude and diurnal variation. In 38 
equatorial Asia, GFED4s outperform others in representing day-to-day changes, particularly during 39 
intense burning. In Southeast Asia, we recommend using the OC emission magnitude from FINN1.5 40 
combined with daily variability from QFED2.5. In the Southern Hemisphere, the latest VFEI0 has 41 
performed relatively well. This study has implications for reducing the uncertainties in emissions 42 
or improving BB emission inventories in further studies. 43 
 44 
  45 
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 46 
1 Introduction 47 

  In recent years, extreme wildfire events have occurred frequently around the world (Balshi et al., 48 
2009; Knorr et al., 2016; Yang et al., 2019; Junghenn Noyes et al., 2022). The size of the fire has 49 
consistently broken records over the last decades (Westerling et al., 2006; Westerling and Bryant, 50 
2008; Brando et al., 2020), threatened lives and infrastructure, and continuously jeopardized the 51 
global economy. Wildfires are also one of the most important sources of biomass burning (BB) 52 
emissions, which can emit loads of gaseous and particulate pollutants (Ferek et al., 1998; Adams et 53 
al., 2019), detrimental to regional air quality and human health (Reid et al., 2005, Reid and Mooney, 54 
2016). Additionally, BB aerosols, predominantly black carbon (BC) and organic carbon (OC) can 55 
affect regional climate by absorbing/scattering solar radiation, acting as cloud condensation nuclei, 56 
and altering cloud albedo (Spracklen et al., 2011; Boucher et al. 2013). Recent studies have shown 57 
that aerosols produced by biomass burning can significantly affect changes in temperature, cloud 58 
fraction, precipitation, and even the circulation structure (Christian et al., 2019; Yang et al., 2019; 59 
Yu et al., 2019; Carter et al., 2020; Jiang et al.,2020; Ding et al., 2021; Huang et al., 2023). However, 60 
these changes in meteorology are sensitive to the choice of BB emission inventory. 61 
  Previous studies often found that there is a significant deviation between the gaseous or 62 
particulate pollutants simulated by the model and the satellite retrieval value (Bian et al., 2007; 63 
Chen et al., 2009; Carter et al., 2020), one of the most important reasons comes from the 64 
uncertainties in emission inventories. For example, Bian et al. (2007) applied six different BB 65 
emission inventories, GFED1 and GFED2 (Global Fire Emissions Database version 1 and 2) 66 
(GFED1 and GFED2), Arellano1, Arellano2, Duncan1, and Duncan2, to the Unified Chemistry 67 
Transport Model (UCTM). They reported that although the total global CO of the six BB emission 68 
inventories was within 30% of each other, the model results suggested that regional deviations can 69 
be much higher by 2-5 times, especially in the Southern Hemisphere. Therefore, bias in emission 70 
inventories can often significantly impact the direct and indirect effects of models on aerosol 71 
assessments (Liu et al., 2018; Ramnarine et al., 2019; Carter et al., 2020; Liu et al., 2020a). Carter 72 
et al. (2020) compared the simulated black carbon (BC) and organic carbon (OC) concentrations 73 
with measurements from IMPROVE (Interagency Monitoring of Protected Visual Environments) 74 
observation network from May to September. They suggested that using the FINN1.5 inventory 75 
(Fire INventory from NCAR 1.5) improves model results in eastern North America while using 76 
GFED4s, QFED2.4 (Quick Fire Emissions Dataset 2.4), and GFAS1.2 (Global Fire Assimilation 77 
System 1.2) inventories shows better agreement with observations in western North America. They 78 
also noted that population-weighted BB PM2.5 concentrations in Canada and the adjacent United 79 
States could vary between 0.5 and 1.6 𝜇g m-3 in 2012 by using different BB emissions. Liu et al. 80 
(2018) used the global model CAM5 (The Community Atmosphere Model 5) and three different 81 
BB emission inventories to analyze the uncertainties in the aerosol radiative effects in the 82 
Northeastern United States in early April 2009. They found that aerosols exhibited a stronger 83 
cooling effect when CAM5 used the QFED2.4 inventory than the GFED3.1 and GFED4s 84 
inventories, with additional cooling of -0.7 W m-2 and -1.2 W m-2 through aerosol direct radiative 85 
effect and the aerosol-cloud radiative effect, respectively. On a global basis, Ramnarine et al. (2019) 86 
used the global model GEOS-Chem-TOMAS (GEOS-Chem-TwO-Moment Aerosol Sectional), and 87 
found that the direct radiative effects and indirect effects of aerosols driven by the FINN1.5 emission 88 
inventory in 2010 were 70% and 10% lower than those driven by GFED4, respectively. Therefore, 89 



 4 

to better estimate regional aerosol-radiation/aerosol-cloud interactions in wildfire regions, it is 90 
necessary to understand the differences in emission inventories from biomass combustion and the 91 
main drivers of uncertainties. 92 
  In general, BB emission inventories are based on bottom-up or top-down methods to infer the 93 
emission source intensity. The bottom-up approach, also known as the fire detection and/or burned 94 
area method, estimates emissions based on surface data such as fuel loading, active fire counts, 95 
and/or burned area. Currently, the widely used BB inventories based on the bottom-up approach 96 
include Duncan (Duncan, 2003), GFED (van der Werf et al., 2006, 2010, 2017), FINN 97 
(Wiedingmyer et al., 2011), Global Inventory for Chemistry-Climate Studies-GFED4S (G-G) 98 
(Mieville et al., 2010). The top-down approach uses satellite observations of fire radiative power 99 
(FPR), a method to measure the radiative energy release rate of burning vegetation, to estimate 100 
emissions by fuel consumption. The BB inventories based on the top-down method include Arellano 101 
(Arellano Jr et al., 2004; Arellano Jr and Hess, 2006), GFAS (Kaiser et al., 2012), Fire Energetics 102 
and Emission Research (FEER) (Ichoku and Ellison, 2014), QFED (Darmenov et al., 2015), the 103 
Fire Emissions Estimate Via Aerosol Optical Depth (FEEV-AOD) (Paton-Walsh et al., 2012) and 104 
the recently released VIIRS-based Fire Emission Inventory version 0 (VFEI0) (Ferrada et al., 2022). 105 
On a global scale, the average annual BB emissions of CO and OC can differ by a factor of 3 to 4, 106 
with the global emissions fluctuating in the range of 280-580 Tg yr-1 and 13-50 Tg yr-1 respectively. 107 
The bias may be even greater when focusing on emissions in specific regions (Bian et al., 2007; 108 
Liousse et al., 2010; Williams et al., 2012; Carter et al., 2020; Lin et al., 2020b; Liu et al., 2020b). 109 
For example, the estimated CO emission of Arellano inventory in South America during the burning 110 
peak season of September 2000 is four times greater than that of GFED1 inventory (Bian et al., 111 
2007). A recent study even found that since 2008, OC emissions from QFED2.5 in the Middle East 112 
are approximately 50 times larger than those from GFED3 and GFED4 (Pan et al., 2020).  113 
  Several previous studies have analyzed the reason for the huge emission bias. According to 114 
Darmenov et al. (2015), the emissions Ei (mass of pollutant i) is the sum of the products of the 115 
emission factor (EF) and the dry matter (DM) for each biome. While earlier studies suggested that 116 
the uncertainty in BB emissions arises mainly from differences in emission factors (e.g., Alvarado 117 
et al., 2010; Akagi et al., 2011; Urbanski et al., 2011), more recent studies point out that uncertainty 118 
in dry matter also plays an important role (Paton-Walsh et al., 2010; 2012; Carter et al., 2020). For 119 
example, Paton-Walsh et al. (2012) assessed the difference in CO emissions from the February 2009 120 
Australian fire and found that total CO emissions in GFED3.1 were roughly three times higher than 121 
that in FINN1, with DM contributing up to 80%. Carter et al. (2020) evaluated emissions from 122 
various North American BB inventories over the period 2004-2016 and found that changes in DM 123 
were very close to the emission trend, suggesting that uncertainty in potential DM across North 124 
America was the primary factor, rather than EF.  125 

The accuracy of BB inventories is influenced by land cover and land use (LULC) data, impacting 126 
both EFs and DM (Wiedinmyer et al., 2006; Ferrada et al., 2022). In a study by Wiedinmyer et al. 127 
(2006), three distinct LULC products were employed to drive a regional BB emissions model. The 128 
variations in LULC products led to discrepancies in fuel consumption, resulting in an annual bias 129 
of up to 26% in North and Central America. Moreover, EFs are closely tied to different biomes,  130 
introducing uncertainty into BB emission inventories with varied biome classifications (Ferrada et 131 
al., 2022). In addition to LULC products, uncertainties are introduced by fire detection products 132 
(such as FRP and burned area products), affected by factors such as satellite transit time and cloud 133 
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obscuration. For example, Paton-Walsh et al. (2012) found that in an Australian fire called "Black 134 
Friday" in February 2009, the burned areas of FINN1 were barely half of that of GFED3.1. Liu et 135 
al. (2020b) reported that compared with the active fire area used in FINN1.5, the burned area product 136 
selected by GFED4s is less sensitive to the satellite overpass time and cloud obscuration. These 137 
results indicate that LULC and fire detection products are key factors leading to bias in BB emission 138 
estimation. 139 
  Although previous work has generated biomass burning emission inventories and attempted to 140 
reduce their uncertainties (Duncan, 2003; Arellano Jr et al., 2004; Arellano Jr and Hess, 2006; van 141 
der Werf et al., 2006, 2010, 2017; Bian et al., 2007; Mieville et al., 2010; Wiedingmyer et al., 2011; 142 
Kaiser et al., 2012; Paton-Walsh et al., 2012; Ichoku and Ellison, 2014; Darmenov et al., 2015; Liu 143 
et al., 2018; Ramnarine et al., 2019; Carter et al., 2020; Lin et al., 2020b; Liu et al., 2020b; Pan et 144 
al., 2020; Zhang et al., 2020; Ferrada et al., 2022), they did not analyze the reasons why DM and 145 
EF exhibited large differences among various emission inventories, which may vary over time and 146 
location. Here, this study aims to explore the underlying reasons for the differences in BB emission 147 
inventories in major combustion regions around the world, thereby attempting to reduce the 148 
uncertainties of the impact of BB emission inventories on model results. To minimize the 149 
interference of anthropogenic emissions on model results, we selected combustion regions 150 
satisfying the following conditions: (1) regional BB CO emissions above 20 Tg yr-1; (2) BB CO 151 
emissions contribute more than 70% of the total. We ultimately selected seven major burning areas 152 
as shown in Fig. 1, including Boreal North America (BONA), Southern Hemispheric South America 153 
(SHSA), Northern Hemispheric Africa (NHAF), Southern Hemispheric Africa (SHAF), Boreal Asia 154 
(BOAS), Southeast Asia and India (SEAS), and Equatorial Asia (EQAS). 155 
  In this study, we compare several widely used datasets (FINN1.5, GFED4s, and QFED2.5) and 156 
the recently released VFEI0. The former two datasets are based on the bottom-up method, while the 157 
latter two are based on the top-down method. Specific details of these BB inventories are described 158 
in Section 2. In section 3, we explore the differences in CO and OC emissions among the four 159 
inventories, examining the contributions of DM and EFs to these differences, respectively. For the 160 
first time, we evaluate the biases of CO column concentrations and AOD driven by BB inventories 161 
in the CESM2-CAM6 model. Based on our findings, we provide recommendations on which 162 
inventory should be adopted across various regions. Section 4 presents the conclusion and 163 
discussion, and our research is expected to offer insights into reducing the uncertainties with BB 164 
emission datasets.  165 
 166 
2 Data and Methodology 167 

2.1 Biomass Burning emission inventories 168 

  We simultaneously diagnosed the differences between two bottom-up approach inventories and 169 
two top-down approach inventories, including FINN1.5, GFED4s, and QFED2.5, which are 170 
commonly used in the current atmospheric model, as well as the recently released VFEI0. Details 171 
about the emission inventories and the satellite products they use are listed in Table 1 and Text S1 172 
in supplementary. 173 

Bottom-up (Burned Area) inventories 174 

  In this study, both FINN1.5 and GFED4s adopt a bottom-up approach (also called the Burned 175 
Area method), and the details are shown in Table 1. FINN1.5 uses the MODIS (Moderate Resolution 176 
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Imaging Spectroradiometer) product MCD14DL for burned area calculations. This active fire 177 
detection product monitors real-time fire points larger than 0.05 km2. However, it is important to 178 
note that if a fire occurs when the satellite is not in transit or is obscured by clouds during transit, it 179 
will not be detected (Firms, 2017). Additionally, FINN1.5 assumes that every fire detected at the 180 
equator (30°N-30°S) will persist the next day at half the size of the previous day (Table 1). However, 181 
this assumption may not accurately reflect real-world conditions (Wiedinmyer et al., 2011; Pan et 182 
al., 2020). The land cover classification in FINN1.5 is based on MCD12Q1 (IGBP, version 2005). 183 
According to the IGBP land cover classification, each fire is initially assigned to one of 16 land 184 
use/land cover (LULC) classes, and then lumped into six generic categories including tropical forest, 185 
temperate forest, boreal forest, savanna and grasslands, woody savannas and shrublands, and 186 
cropland (Fig. S1, Wiedingmyer et al., 2011). Emission factors (EFs) for various gaseous and 187 
particulate species are determined from a dataset compiled by Akagi et al. (2011) and Andreae and 188 
Merlet (2001), with these EFs varying for different LULC types. Currently, FINN1.5 provides daily 189 
global emissions from biomass burning since 2002, including 41 species, with a spatial resolution 190 
of 1 km2 (Table 1). 191 
  GFED4s differs in that it primarily uses the MCD64A1 Collection 5.1 burned area product (Giglio 192 
et al., 2013; Randerson et al., 2018), capable of detecting fires larger than 500 m × 500 m. For small 193 
fire areas, GFED4s incorporate active fire detection products (MOD14A1 and MYD14A1), 194 
compensating to some extent for the lower spatial resolution of the original product MCD64A1 (van 195 
der Werf et al., 2017).  In general, burned area products reduce uncertainty in fire detection due to 196 
satellite non-transit and cloud/smoke obscuration when a burn occurs by identifying day-to-day 197 
surface variations, such as charcoal and ash deposition, vegetation migration, and changes in 198 
vegetation structure (Boschetti et al., 2019). Similar to FINN1.5, each fire in GFED4s is initially 199 
assigned to one of 16 LULC subcategories and then lumped into six categories, with the inclusion 200 
of an additional biome, peatland (Fig. S1). EFs for various species follow Akagi et al. (2011) and 201 
Andreae and Merlet (2001), varying across different biome categories. Currently, GFED4s provide 202 
daily global emissions from biomass burning since 1997, including 27 species, with a spatial 203 
resolution of 0.25° × 0.25° (Table 1). However, since 2017, the DM provided by GFED4s is derived 204 
from a linear relationship between past emissions and MODIS FRP data for the period 2003-2016. 205 

 206 

Top-down (Fire Radiative Power) inventories 207 

  In this study, both QFED2.5 and VFEI0 use a top-down approach known as the Fire Radiative 208 
Power (FRP) method. In contrast to the bottom-up approach, the top-down approach relies on 209 
satellite products detecting fire-radiated power rather than fire point detection. QFED2.5 uses 210 
MODIS Collection 6 MOD14/MYD14 level 2 products to estimate fire radiative power and pinpoint 211 
fire locations using MOD03/MYD03 (Darmenov and Silva 2015; Liu et al., 2020b). The FRPs are 212 
integrated over time to obtain fire radiative energy (FRE), which is converted to DM using an 213 
empirical coefficient α. The initial α values are obtained from Kaiser et al. (2009) and are adjusted 214 
monthly based on global emissions of GFED2 in 2003–2007. QFED2.5 classifies land cover using 215 
the International Geosphere-Biosphere Programme (IGBP-INPE) dataset, aggregating 17 land 216 
cover classes into four broad vegetation types (Fig. S1, Darmenov and da Silva 2015). Initially, EFs 217 
for various species in QFED2.5 also follow Akagi et al. (2011) and Andreae and Merlet (2001). But 218 
for certain species, including organic carbon (OC), black carbon (BC), ammonia (NH3), sulfur 219 
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dioxide (SO2), and particulate matter diameter < 2.5𝜇m (PM2.5), QFED2.5 incorporates a scaling 220 
factor to enhance the EFs. QFED2.5 provides daily global BB emissions since 2000, including 17 221 
species, with a spatial resolution of 0.1° × 0.1° (Table 1). 222 
  VFEI0 also adopts the top-down method but uses VNP14IMG.001 FRP product from VIIRS I-223 
band (Visible Infrared Imaging Radiometer). This product has a higher resolution (375 m at nadir) 224 
compared to MODIS (1 km resolution at nadir), enabling the detection of smaller and colder flames 225 
(Ferrada et al., 2022). VFEI0 uses an empirical coefficient α derived from the linear regression of 226 
GFED3.1 DM and VIIRS FRP to convert detected FRE into DM. VFEI0 uses MCD12C1 (IGBP, 227 
version 2015) as the underlying LULC data, supplemented by Köppen climate classification (Beck 228 
et al., 2018), defining ten subcategories in VFEI0 (Fig. S1). VFEI0 groups these subcategories into 229 
six biomes, corresponding to EFs provided by Andreae (2019). Currently, VFEI0 offers daily BB 230 
emission since 20 January 2012, covering 46 emitted species with a horizontal resolution of 0.005° 231 
× 0.005° (Table 1). 232 
 233 

2.2 The calculation for EFs and DMs 234 

To calculate regional EFs and DMs, we adopt the approach outlined by Carter (2020). Initially, 235 
we divide CO emissions per grid by the EF applied to each biome, yielding DM: 236 
                              𝐷𝑀!,# = 𝐶𝑂!,#/𝐸𝐹!                            	(1) 237 

where b represents one of the seven biomes in Fig. S1, and x represents the location grid. This 238 
calculation of DM using CO is reasonably representative, given that the inventories are not adjusted 239 
for CO emission factors. After calculating DMb,x for each grid, we derive a regional average 240 
emission factor by dividing total CO emissions by total DM for each major BB region:  241 
                               𝐸𝐹$% = ∑ 𝐶𝑂!,# /∑ 𝐷𝑀!,# 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2) 242 
These calculations enable us to discern the influence of LULC classification on BB emission 243 
inventories. For a specific biome type within a given region, we calculate EF by dividing the CO 244 
emissions of that particular biome classification by the sum of the value from each biome in the 245 
respective region: 246 
                               𝐸𝐹! = 𝐶𝑂!/∑ 𝐷𝑀! 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (3) 247 
where b represents one of the seven biome classifications in this study (Fig. S1). 248 
Furthermore, for the two bottom-up inventories, we invert the fuel consumption for each vegetation 249 
biome b within a given area: 250 
                                  𝐹𝐶! = 𝐷𝑀! 𝐵𝐴⁄                              (4) 251 
Here, the DM corresponding to each biome in FINN1.5 and GFED4s is obtained using equation (1), 252 
and BA represents the total burned area derived from the emission inventory. 253 
 254 

2.3 Quantitative statistical methods 255 

  As described in section 2.1, fire detection is greatly affected by cloud/smoke obscuration in the 256 
bottom-up approach. For example, if there are clouds/smoke at high altitudes while fire occurs on 257 
the ground, the MCD14DL active fire detection product used in FINN1.5 may miss these fire points. 258 
In addition, the combustion that is too small in size and too low in temperature, cannot be effectively 259 
monitored due to the low brightness temperature contrast with the surrounding environment. In 260 
contrast, the burned area product (mainly MCD64A1) used by GFED4s determines the burning 261 
information based on the changes such as surface albedo, and is, therefore, less affected by 262 
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clouds/smoke. For inventories based on the top-down approach, the emission inventories also differ 263 
to a large extent due to the cloud/smoke obscuration, since QFED2.5 uses a “sequential method” to 264 
correct for missing FRPs during cloud/smoke obscuration, whereas VFEI0 does not. Thus, in this 265 
study, the symmetrical mean absolute percentage error (SMAPE) and Pearson's R are used to assess 266 
the difference in sensitivity to clouds/smoke between the two BB products based on the bottom-up 267 
(or top-down) approach. The specific algorithm is as follows: 268 

																																											SMAPE	 = 	 &''%
)
	∑ |+,-|

(|+|/|-|)/2
,																																																							)

34&   (5) 269 

																																																						R = ∑ |(+,+6)∙(-,-6)|!
"#$

8∑ (+,+6)%!
"#$ ∙∑ (-,-6)%!

"#$

,                          (6) 270 

where X and Y are fire detection data from two different datasets (e.g. burned area from FINN1.5 271 
and GFED4s or FRP from VFEI0 and QFED2.5). We divided these fire detection data into three 272 
groups according to the cloud fractions less than 0.4, 0.4-0.7, and greater than 0.7, and the number 273 
n represents valid samples in different cloud fraction groups. SMAPE ranges from 0% to 200%, 274 
with smaller values indicating smaller differences, while Pearson's R ranges from 0 to 1, with 275 
smaller values implying less correlation. 276 
  In order to quantify the effect of cloud obscuration on BB datasets, we selected the most intensely 277 
burning regions in BONA in July for this study. For consistency, we re-interpolated the fire 278 
detection data used in the four BB datasets, as well as the MODIS MCD06 cloud fraction data, to 279 
the same horizontal resolution (0.25° × 0.25°). Considering the continuity of combustion, we took 280 
every 5° × 5° as a sample area in the northern U.S. to ensure that if a large burn occurred, the area 281 
would be detected to some extent, avoiding errors due to differences between the inventories. At 282 
the same time, we excluded the samples in the same time and location, where the emissions are all 283 
zero. Finally, a total of 1888 samples were obtained for the burned area group, with 534, 541, and 284 
813 samples for low (<0.4), medium (0.4-0.7), and high (>0.7) cloud fraction, respectively. A total 285 
of 1,682 samples were obtained for the FRP group, with 860, 390, and 432 samples under low, 286 
medium, and high cloud fraction, respectively. It is worth noting that we use the average FRP of 287 
MOD and MYD for QFED2.5 since the VFEI0 FRP is the average between day and nighttime 288 
observations. Moreover, our approach cannot rule out the case of missing measurements when two 289 
sets of BB inventories are both obscured by the cloud. However, the main goal of this paper is to 290 
explore the causes of uncertainties in emission inventories, the specific case of omission due to 291 
cloud obscuration depends on the development of satellite detection technology and is not part of 292 
the purpose of this study. 293 
 294 

2.4 CESM2-CAM6 model 295 

  The Community Earth System Model version 2.1 (CESM2) is a new generation of the coupled 296 
climate/Earth system models developed by National Center for Atmospheric Research (NCAR). In 297 
this study, we used the global Community Atmosphere Model version 6 (CAM6) (Danabasoglu et 298 
al., 2020). Gas-phase chemistry was represented by the Model for Ozone and Related chemical 299 
Tracers tropospheric chemistry (MOZART-T1, Emmons et al., 2020). The wet deposition of soluble 300 
gaseous compounds in CAM6-Chem is based on the scheme of Neu and Prather (2012), which 301 
describes the process of in-cloud cleaning and under-cloud cleaning. The formation of secondary 302 
organic aerosols (SOA) is from a volatility basis set (VBS) approach developed by Tilmes (2019). 303 



 9 

Properties and processes of aerosol species of black carbon (BC), primary organic aerosols (POA), 304 
SOA, sulfate, dust, and sea salt are calculated by Modal Aerosol Module (MAM4) described by Liu 305 
(2016). CAM6 uses a horizontal resolution of nominal 1° (1.25° × 0.9° , longitude by latitude) and 306 
32 vertical levels from the surface to 2.26 hPa (~40 km). 307 
  In this study, four BB emission inventories (FINN1.5, GFED4s, QFED2.5, and VFEI0) are 308 
regridded to a horizontal resolution of 1.25° (longitude) × 0.9° (latitude), and then applied to the 309 
model. All simulations are performed for five years, while horizontal winds and temperature are 310 
nudged toward the Modern-Era Retrospective analysis for Research and Applications, version 2 311 
(MERRA-2) reanalysis data (GMAO, 2015) for every 6 h. Simulations are conducted for 2012-312 
2016, with the first year used for initialization and model spin-up. Daily BB emissions are applied 313 
in this study, whereas the vertical distribution of fire emissions is followed Freitas et al. (2006, 2010). 314 
Anthropogenic and biogenic emissions in this study are from the Community Emissions Data 315 
System (CEDS) and Model of Emissions of Gases and Aerosols from Nature version 2.1 316 
(MEGANv2.1), respectively, at 2010 levels (Guenther et al.,2012; Hoesly et al., 2018). 317 
 318 

2.5 Measurement data 319 

  The Tropospheric Pollution Measurement Instrument (MOPITT) is aboard the Earth Observing 320 
System (EOS)/Terra satellite launched by NASA (Warner, et al., 2001). MOPITT is the first 321 
instrument to observe the global concentration and currently provides column concentration and 322 
volume mixing ratio of global carbon monoxide (CO) since 1999. We used MOPITT CO gridded 323 
monthly means (Near and Thermal Infrared Radiances) V009 (MOP03JM_9; NASA Langley 324 
Atmospheric Science Data Center DAAC, retrieved from 325 
https://doi.org/10.5067/TERRA/MOPITT/MOP03JM.009), which has a horizontal resolution of 1°   326 
× 1°. It should be noted that to compare the CO column concentration simulated by CESM2-CAM6 327 
with MOPITT CO, we calculated the simulated CO column concentrations by cumulative 328 
integration from 900 hPa to 100 hPa isobaric height (Deeter et al., 2022). We also used the daily 329 
AOD (550 nm) and cloud fraction data from MODIS products MOD08_D3 (MODIS/Terra Aerosol 330 
Cloud Water Vapor Ozone Daily L3; Platnick et al. 2015) and MCD06COSP (MODIS (Aqua/Terra) 331 
Cloud Properties Level 3 daily, Webb et al., 2017), respectively.  332 
  The observations of AERONET (http://AERONET.gsfc.nasa.gov/; Holben et al., 1998) from 12 333 
sites are used in this study. These AERONET stations were selected since they are close to BB 334 
source regions. As marked in Figure 1b, these sites include sites in BONA (Yellowknife_Aurora 335 
(62.5°N, 114.4°W), Pickle Lake (51.4°N, 90.2°W)), BOAS (Tiksi (71.6°N, 128.9°E), Yakutsk 336 
(61.7°N, 129.4°E)), SHAF (Namibe (15.2°S, 12.2°E), Mongu Inn (15.3°S, 23.1°E)), SHSA (Alta 337 
Floresta (9.9°S, 56.1°W), Rio Branco (9.9°S, 67.9°W)), EQAS (Palangkaraya (2.2°S, 113.9°E), 338 
Jambi (1.6°S, 103.6°E)), SEAS (Omkoi (17.8°N, 98.4°E), Ubon Ratchathani (15.2°N, 104.9°E)).  339 
  All observed AOD represent real atmospheric conditions and therefore, in addition to BB aerosols, 340 
biogenic aerosols, anthropogenic aerosols, dust, and sea salts are also integrated in MODIS and 341 
AERONET datasets. 342 
 343 
3 Comparative analysis of emission inventories 344 

  CO and OC are the main species emitted from biomass burning (Westerling et al., 2010; van der 345 
Werf et al., 2010; Carter et al., 2020) but emissions vary widely. In this study, we compare the 346 
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differences in CO and OC emissions (representing gaseous and particulate pollutants, respectively) 347 
in four BB inventories, and investigate in detail the key reasons for the differences in emission 348 
inventories. 349 

3.1 The contribution of dry matter and emission factors to the difference in CO 350 
emission 351 

  The total global CO emissions from the four BB emission inventories selected for this study are 352 
in the range of 252-336 Tg, with GFED4s being the highest and FINN1.5 the lowest. To quantify 353 
the differences in CO emissions among four datasets, we use the standard deviation (SD) to 354 
characterize the absolute difference, and the coefficient of variation (cv, calculated as the ratio of 355 
SD to the mean) to characterize the relative differences (Fig. 2a). The larger the cv, the greater the 356 
difference between emission inventories. We have ranked the major seven BB regions in the world 357 
according to the differences in CO emissions between the four sets of inventories, with the 358 
differences being, in descending order, EQAS, BONA, SEAS, SHAF, NHAF, BOAS, and SHSA. 359 
  This study points to a high variability of different BB emission inventories in EQAS, which is 360 
inconsistent with previous studies (Liu et al., 2020b; Pan et al., 2020). Previous studies mainly 361 
focused on emission differences of particulate pollutants, such as BC and OC (Bian et al., 2007; 362 
Paton-Walsh et al., 2012; Carter et al., 2020; Lin et al., 2020b; Pan et al., 2020), thus assuming that 363 
the inventory differences in Equatorial Asia are smaller than those in Southern Hemispheric Africa 364 
and Northern Hemispheric Africa. In contrast, this study analyzes the differences between 365 
particulate and gaseous pollutant emissions separately when comparing the differences in BB 366 
emission inventories. For example, GFED4s classify a large portion of EQAS land cover as peatland 367 
(Kasischke and Bruhwiler, 2002; Stockwell et al., 2016; van der Werf et al., 2006, 2010, 2017) and 368 
suggest that this organic matter-rich soil emits a large amount of CO when burned. The other three 369 
inventories either do not include peatland (FINN1.5 and QFED2.5) or only consider peatlands as a 370 
small fraction of the burned area in EQAS (VFEI0), thus estimating CO emissions much smaller 371 
than GFED4s. In addition, the extent of peatland fires in EQAS increased significantly during the 372 
strong El Niño event (Page et al., 2002). Considering that a strong El Niño event also occurred in 373 
2015-2016, these increases in peatland fires further amplify the discrepancy between GFED4s and 374 
other emission inventories on CO estimates. 375 
  As shown in Fig. 2, the distribution pattern of DM differences is very similar to that of CO 376 
emission differences, indicating that DM is the main reason for dominating the difference in the 377 
four emission inventories. In comparison, the difference in DM contributes 50-80% to the regional 378 
CO emission differences, and the comprehensive EFs contributes the remaining 20-50%. However, 379 
in EQAS, BONA, and BOAS, the contribution of comprehensive EFs to BB emission differences 380 
in four datasets is comparable to that of DM (Fig. 2). In the following sections, we will further 381 
analyze the main causes of the differences for DM and EFs. 382 

3.2 Primary causes of DM inconsistency in the bottom-up inventories 383 

  To investigate the underlying causes of the differences in DM, we first compared DM between 384 
emission inventories produced by the bottom-up and up-down approaches. The difference in DM 385 
estimated by the top-down method is small, and the DM ratio of QFED2.5 to VFEI0 does not exceed 386 
two times in different regions. However, DM estimated by the bottom-up approach varied widely, 387 
with DM ratio as high as 4.7 in BONA for GFED4s and FINN1.5 during the 2013-2016 fire season. 388 
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Therefore, we need to focus on the main reasons for DM variance in emission inventories based on 389 
the bottom-up approach. 390 
  According to Eq. (2), DM equals the product of the burned area, fuel load, and FB in the bottom-391 
up inventories, with the product of the last two terms being fuel consumption. Fig. 3 compares the 392 
burned area and fuel consumption of GFED4s and FINN1.5 emission inventories for the seven 393 
largest BB regions. The ratio GFED4s/FINN1.5 represents the relative difference in burned area or 394 
fuel consumption between the two emission inventories. In general, the difference in burned area 395 
between the two inventories varies greatly with latitude, and the ratio of GFED4s to FINN1.5 396 
fluctuates in the range of 0.28-1.94. In contrast, differences in fuel consumption between the two 397 
inventories were more consistent, with GFED4s consistently having higher fuel consumption than 398 
FINN1.5 in all regions except SEAS. In the next sections, we discuss the main reasons for the 399 
differences in burned area and fuel consumption between the two datasets. 400 

3.2.1 Effect of land cover on burned area 401 

  As shown in Fig. 3a, the differences in the burned area between the bottom-up emission 402 
inventories are highly variable. At high latitudes, the burned area of GFED4s is significantly higher 403 
than that of FINN1.5, especially in BONA, where the burned area of GFED4s is twice that of 404 
FINN1.5. In contrast, the burned area of GFED4s in the equatorial region is much lower than that 405 
of FINN1.5, and even 60% smaller in EQAS. This is a result of the difference in fire detection 406 
between the two datasets. As shown in Table 1, FINN1.5 uses the MCD14 DL fire point product, 407 
while GFED4s uses the hybrid burned area product, mainly using MCD64A1 combined with fire 408 
point products MOD14A1/MYD14A1 to enhance the detection of small fires.  409 
  These two sets of products have their advantages in detection ability under different vegetation 410 
type conditions. The hybrid burned area product detects burned areas over a period of time (up to 411 
days), while the fire point product detects burned areas primarily in near real-time (Roy et al., 2008). 412 
In addition, the burned area used in GFED4s (hybrid burned area product) is not affected by the 413 
vegetation canopy when the leaf area index (LAI) is less than 5. Therefore, a higher burned area is 414 
estimated in GFED4s in BONA and BOAS than in FINN1.5. However, in areas with more broadleaf 415 
forests and grasslands such as EQAS, SEAS, and SHSA (Fig. S2), the MCD14DL fire point product 416 
used in FINN1.5 performed better in capturing understory fires that occurred in closed canopies 417 
(Cochrane and Laurance, 2002; Cochrane, 2003; Alencar et al., 2005; Roy et al., 2008). It also has 418 
an advantage in capturing sporadic and fragmented small fires in grasslands and agricultural fields 419 
due to its high resolution (Liu et al., 2020b). Furthermore, FINN1.5 assumes that each detected fire 420 
in the equatorial region will continue to burn for 2 days, and that the next day’s fire will continue to 421 
be half the size of the previous day (Table 1). Thus, the burned area of FINN1.5 in the tropical zone 422 
is 2.6 times higher than that of GFED4s, which is consistent with previous studies (Wiedinmyer et 423 
al., 2011; Pan et al., 2020). At the equator, the burned area in grassland/agricultural fields and forests 424 
estimated by FINN1.5 is 1-3 and 4-6 times higher than in GFED4s, respectively (not shown). 425 
  It is worth noting that in Africa (NHAF and SHAF), although the dominant burnable vegetation 426 
is grassland (Fig. S2), unlike the sporadic small fires that occur in grassland in the other five regions, 427 
large continuous fires often occur in African Savannas (Liu et al., 2020b). Therefore, the hybrid 428 
burned area product used in GFED4s is more effective in detecting all fire events occurring over 429 
time, with 10-20% higher burned area than FINN1.5. 430 
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3.2.2 Effect of cloud obscuration on burned area 431 

  In addition to the vegetation, cloud occlusion can likewise bias the satellite detection of burned 432 
area. Figure S3 shows the time series of AOD measured by satellite or ground-based data at the 433 
Pickle Lack site of BONA from June to August 2013. In contrast to the high AOD values observed 434 
for the AERONET network, MODIS AOD often in missing measurements when the MODIS cloud 435 
fraction is larger than 0.5. Furthermore, AERONET AOD varies dramatically over a short period, 436 
suggesting that different detection principles (such as detecting fire points in near real-time during 437 
satellite overpass time, or estimating the accumulation of burned area over time through changes in 438 
surface albedo over multiple satellite overpass times) can significantly affect the burned area 439 
product under high cloud fraction/smoke conditions (Paton-Walsh et al., 2012; Liu et al., 2020b; 440 
Pan et al., 2020). Although some assumptions are made in FINN1.5 in the equatorial regions as 441 
described above to improve the effect of cloud obscuration on burned area detection, these 442 
assumptions are not used for mid- and high-latitudes. GFED4s uses a hybrid burned area product 443 
and is relatively unaffected by cloud obscuration. By fusing the MCD64A1 with 444 
MOD14A1/MYD14A1 products with multi-temporal satellite data, GFED4s is able to determine 445 
the approximate date and extent of fires through post-fire ash deposition, vegetation migration, and 446 
land surface changes (van der Werf et al., 2017; Boschetti et al., 2015, 2019).  447 
  To quantitatively assess the impact of cloud obscuration on different emission inventory estimates, 448 
we perform analyses in areas with high cloud fraction (Fig. S4), intense biomass burning, and 449 
unaffected by the smoothing hypothesis used in FINN1.5. We selected the regions of North America 450 
with the most intense biomass burning (Alberta and Saskatchewan, Canada, 50°-70°E, 100°-130°W, 451 
Fig. S5), and analyzed the relationship between the burned area and cloud fraction for bottom-up 452 
inventories in July from 2013 to 2016 (Fig. S6). As shown in Fig. 4, with the increase in cloud 453 
fraction, the SMAPE of the two bottom-up emission inventories increases from 150% to 180%, 454 
while the Pearson correlation declines from 0.85 to around 0.75. These results demonstrate that the 455 
uncertainty in the burned area for two bottom-up emission inventories increases by ~20% during 456 
high cloud fraction compared to low cloud fraction conditions.  457 

3.2.3 Causes of Fuel Consumption differences 458 

  Fuel consumption is another factor that affects DM differences between two BB emission 459 
inventories. As shown in Fig. 3b, the fuel consumption of GFED4s is 30-75% higher than that of 460 
FINN1.5 in almost all BB areas except SEAS. The difference in fuel consumption between the two 461 
emission inventories is larger in the tropics than in the high latitudes. As shown in Fig. 5, at high 462 
latitudes (e.g., BONA and BOAS), and in the equatorial region (such as EQAS), relatively high fuel 463 
consumption comes from peatlands in GFED4s. According to previous studies, peatlands, a type of 464 
soil rich in organic matter, store large amounts of carbon underground (van der Werf et al., 2010, 465 
2017; Gibson et al., 2018; Kiely et al., 2021; Vetrita et al., 2021), and emit large amounts of CO 466 
when burned. Peatlands contribute 30-60% of the total fuel consumption in BONA, BOAS, and 467 
EQAS (Fig. 5a-c).  468 
  Besides peatlands, GFED4s tends to have higher fuel consumption than FINN1.5 due to forest 469 
contributions. Forests (including tropical, temperate, and boreal forests) account for more than 50% 470 
of the fuel consumption in all burning regions except EQAS, where peatlands dominate the fuel 471 
consumption. Moreover, forest fuel consumption in GFED4s is generally much higher than in 472 
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FINN1.5 except in BOAS and SEAS (Fig. 5). Since fuel consumption is equal to the product of fuel 473 
load and FB (the percentage of specific plants that can be adequately burned, Eq. 2), different 474 
vegetation classifications may be responsible for large differences in fuel consumption between 475 
emission inventories. For example, for woody vegetation such as forests, GFED4s assumes a range 476 
of FB between 40-60% for temperate and tropical forests and 20-40% for boreal forests, while 477 
FINN1.5 assumes that all woody vegetation burns no more than 30% (van der Werf et al., 2010; 478 
Wiedinmyer et al., 2011). Thus, in terms of FB alone, the forest fuel consumption of GFED4s is 479 
therefore 0.67-1.3 times greater than that of FINN1.5, which is one of the main reasons for the 480 
difference in fuel consumption. 481 

3.3 Primary causes of DM inconsistency in the top-down approach 482 

  We also analyze the causes of the difference in DM between BB emission inventories estimated 483 
by the top-down method. According to Eq. (3), it is evident that the empirical factor and the radiative 484 
energy of the fire are the key factors that cause the discrepancy in the top-down emission inventories. 485 
The QFED2.5 and VFEI0 inventories we have chosen use different satellites for the fire detection 486 
products. For example, for the fire radiative power product, QFED2.5 is based on the Moderate 487 
Resolution Imaging Spectroradiometer (MODIS) inversion of the NASA Terra and Aqua combined 488 
satellites, while VFEI0 is based on the Visible Infrared Imaging Radiometer (VIIRS) inversion of 489 
the combined polar-orbiting satellites Suomi NPP and NOAA-20, although the algorithms are 490 
similar. However, there are systematic deviations due to different satellites, specific tests and 491 
metadata, and resolutions. The VIIRS 375 m fire product used by VFEI0 has a finer resolution and 492 
is more advantageous for small fire spot detection than other coarser resolution (1 km) fire spot 493 
detection products. The FRP density used in VFEI0 is much higher than that of QFED2.5 due to the 494 
fine horizontal resolution.   495 
  The estimations of FRP and DM are strongly influenced by the horizontal resolution of satellite 496 
products. For example, in the BONA region during July (the month with the most intense burning 497 
at the position of 50°-70°N, 100°-130°W), the total QFED FRP (average FRP measured by MOD 498 
and MYD) is 1.5 times higher than VFEI0 (Fig. S7). Additionally, the differing α values between 499 
QFED2.5 and VFEI0 in BONA can potentially result in higher DM in QFED2.5 compared to VFEI0 500 
by a factor of 1.3-3.8. However, the actual DM in the QFED2.5 inventory is 30% lower than in 501 
VFEI0. The relatively high FRP density used in VFEI0 (Fig. S8) results in a higher DM than in 502 
QFED2.5 due to its superior horizontal resolution, enabling the precise delineation of fire areas. It 503 
is important to note that while the empirical factor also influences the amount of DM, its impact 504 
should not be as significant as the difference caused by the horizontal resolution of satellite products 505 
(Kaiser et al., 2012; Darmenov et al., 2015; Ferrada et al. 2022). 506 
  Previous studies have shown that cloud occlusion also causes bias in FRP detection (Liu et al., 507 
2020b). We also take BONA as a pilot region to analyze the influence of cloud fraction on FRP in 508 
QFED2.5 and VFEI0. According to Fig. 5c-d, the SMAPE of the two emission inventories rises as 509 
the cloud fraction increases, and the Pearson correlation is noticeably low under the maximum cloud 510 
fraction. While QFED2.5 uses the "sequential approach" (section 2.1) to correct for the missing 511 
FRP in cloud-obscured fires, this correction is not considered in VFEI0. Therefore, although the two 512 
top-down emission inventories use similar algorithms, significant bias occurs under high cloud 513 
fraction conditions, with QFED2.5 estimating DM much higher than VFEI0. 514 
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3.4 Primary causes of EF inconsistencies 515 

  Although DM differences dominate the inconsistencies of CO emissions across major BB regions, 516 
the contribution of EFs is still not negligible in some regions. For example, in EQAS, BONA, and 517 
BOAS, the contribution of EFs is up to 50%, which is comparable to that of DM. The comprehensive 518 
EFs of GFED4s are higher in BONA, BOAS, and EQAS regions than in other inventories, with 519 
vegetation classification being one of the most important factors (Fig. 6). For example, in EQAS at 520 
low latitudes, peatlands in GFED4s account for 65% of the regional comprehensive EF. In contrast 521 
to GFED4s, FINN1.5, and QFED2.5 do not consider this organic matter-rich land as a source of 522 
burning, and they classify this category of land cover type as savanna or grass. The CO emission 523 
factor for peatlands is four times higher than the CO emission factor for savanna or grass (Table 2), 524 
ultimately making the comprehensive EF for GFED4s 60-70% higher than that of the other three 525 
datasets. It is worth noting that although the classification of Peatland exists in VFEI0 (Ferrada et 526 
al., 2022), due to differences in terrestrial ecological divisions (Olson et al., 2001; 527 
http://www.worldwildlife.org/science/data/item1875.html), peatlands identification areas are much 528 
smaller than GFED4s inventory. Therefore CO emissions from peatlands in GFED4s are much 529 
higher than in the VFEI0 inventory (Figure 3-9a; Ferrada et al., 2022). 530 
  In both BONA and BOAS, we find that the comprehensive EFs in the four datasets are ranked as 531 
follows: GFED4s>FINN1.5>QFED2.5>VFEI0, where the EF of GFED4s is about 1.5 times higher 532 
than that of VFEI0. Unlike the low-latitude regions, the classification of forests in different emission 533 
inventories is the main reason for the difference in comprehensive EF in high-latitude regions. At 534 
high latitudes (50° - 70°N), GFED4s, QFED2.5, and FINN1.5 identify more forests than VFEI0 535 
(Fig. S1) because the former three classify some shrubs (e.g., closed shrublands and woody savanna) 536 
as forests, while the latter classify them as grassland. Forests contribute to 70% or more of the 537 
comprehensive EFs at high latitudes in the first three emission inventories, but only 8% to the 538 
comprehensive EF in VFEI0. The remaining gap in the absolute contribution of forests is caused by 539 
the difference in the selected emission factors and the horizontal resolution of the satellite products. 540 

3.5 Contribution of DM and EFs to differences in OC emissions  541 

  The above analysis completes the comparison of gaseous pollutant CO among different emission 542 
inventories. In this section, we will take OC as an example to compare the emission differences of 543 
particulate pollutants. As shown in Fig. 7, the global OC emissions of four datasets range from 14.9 544 
to 42.9Tg, with the highest emissions from QFED2.5, which is consistent with previous studies 545 
(Carter et al., 2020; Pan et al., 2020). According to the statistical method in section 3.1, we 546 
quantified the magnitude of OC emission differences between regions and ranked them as follows: 547 
BONA>BOAS>NHAF>SHAF>SEAS>SHSA>EQAS. Compared to the CO emission differences 548 
(Fig. 2), the difference in OC emissions becomes larger for BOAS and smaller for low-latitude 549 
regions of SEAS and EQAS. Since DM should be consistent in the same emission inventories for a 550 
given time and area, the magnitude of emissions for different species depends on changes in 551 
emission factors. Considering that the emission factors of aerosol-related emission species such as 552 
OC, BC, NH3, SO2, and PM2.5 have been corrected based on the satellite retrieved AOD of the 553 
QFED2.5 emission inventory (Table 2), the EFs of OC in QFED2.5 are much higher than that of the 554 
other three emission inventories (Fig. 7b). As a result, the OC EFs in the QFED2.5 emission 555 
inventory were enlarged by a factor of 1.8-4.5 times through the correction of BOAS, SEAS and 556 
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EQAS (Table 2). In contrast, the other three emission inventories were not corrected for OC EFs. 557 
  Unlike the CO EFs, the OC EFs of GFED4s in equatorial regions are largely consistent with the 558 
FINN1.5 and VFEI0 emission inventories. Although burning organic matter-rich soil substrates is 559 
generally thought to release large amounts of CO, their ability to release OC is similar to that of 560 
vegetation such as shrubs and some forests. Thus, despite CO emissions bias in EQAS being largely 561 
affected by peatlands, differences in OC emissions among the four inventories are not significant. 562 
  Compared with Pan et al. (2020), it is obvious that the top-down approach will not lead to an 563 
increase in emission deviation of the particulate-phase species. The correction of EFs, however, is 564 
the root cause of the increased bias in OC emissions. Pan et al. (2020) reported that QFED2.5 and 565 
FEER1.0 had the highest global OC emissions, while GFAS1.2 had much lower OC emissions. In 566 
this study, the largest OC emission also appears in QFED2.5, but the global total OC emissions of 567 
the recently released VFEI0 are relatively low.  568 

4 Model evaluation based on emission inventories application 569 

4.1 Comparison of simulations with MOPITT CO 570 

  One of the main goals of this study is to provide a confidence assessment of the BB emission 571 
inventories by comparing model simulations with observations. A comparison between model 572 
simulations using different emission inventories and ground-based/satellite-retrieved data for the 573 
respective fire seasons (Table 3) of the main BB regions is explored below. In this study, we 574 
compared the model results with measurements from two perspectives: the spatial distribution of 575 
BB pollutants, and the time-varying characteristics of BB pollutants. 576 
  Figure 8 depicts the spatial distribution of CO column burdens in SHSA and SHAF during the 577 
fire seasons. In SHSA, the simulated CO column burdens using different emission inventories are 578 
all consistent with the spatial distribution pattern of MOPITT CO column burden, with the peak 579 
value located in the Amazon rainforest. However, the central value of MOPITT CO column burden 580 
is as high as 2.8×1018 molecules cm-2, which is slightly higher than the simulated results. Among 581 
the four sets of emission inventories, the peak amplitude and spatial distribution of simulated CO 582 
column burdens are closest to the satellite-retrieved data after applying the GFED4s and VFEI0. In 583 
SHAF, however, the model underestimated the peak CO column burden after applying all emission 584 
inventories except VFEI0. 585 
  In addition to SHSA and SHAF, a comparison of regionally averaged CO column burdens 586 
between our simulations and MOPITT CO in major BB regions is also shown in Table 3. In the 587 
Northern Hemisphere, our simulations are significantly underestimated compared to MOPITT CO, 588 
while those in the Southern Hemisphere are consistent with satellite retrievals. Surprisingly, the 589 
simulated spatial distributions and magnitudes of CO in the Southern Hemisphere using the recently 590 
released VFEI0 agree very well with observations. In contrast, the underestimation of CO 591 
concentrations in the Northern Hemisphere is partly due to uncertainty in anthropogenic emissions, 592 
as we assume anthropogenic emissions at 2010 levels, which are lower than those during the 2013-593 
2016 period. 594 
  Note that simulated CO concentrations are 30-40% lower than MOPITT CO at high latitudes. 595 
Besides the impact of emission inventories, there are also large uncertainties in satellite-retrieved 596 
CO concentrations (Lin et al., 2020a; Pan et al., 2020). In addition, OH loss, long-range transport, 597 
and photochemical reactions involved in the CESM2-CAM6 model simulations also lead to 598 
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uncertainties in simulated CO. For example, MOZART-4x contains an additional OH oxidation 599 
pathway for CO, which may lead to lower CO concentrations (Lamarque et al., 2012; He and Zhang, 600 
2014; Barré et al., 2015; Brown-Steiner et al., 2018; Emmons et al., 2020). In comparison, the 601 
simulated CO by using GFED4s is closest to the MOPITT CO value in terms of spatial distribution 602 
and peak magnitude at high latitudes in the Northern Hemisphere, which is superior to other 603 
emission inventories. 604 

4.2 Comparison of simulations with MODIS AOD 605 

  We compared MODIS-derived aerosol optical depth (AOD) data with simulated AOD in major 606 
BB areas. Figure 9 shows the spatial distribution of AOD in SHSA and SHAF during their fire 607 
seasons. The simulated AOD is significantly higher than the MODIS AOD in SHSA. Note that 608 
primary organic aerosols (POA) associated with BB account for only 15-23% of the total AOD in 609 
Amazon, while secondary organic aerosols (SOA) account for approximately 50% of the total AOD. 610 
Furthermore, overestimation of simulated AOD occurs throughout the year, not just during the fire 611 
season. Considering the high biogenic emissions in this region, the overestimation of AOD could 612 
be attributed to the formation of biogenic SOA (He et al., 2015; Tilmes et al., 2019). In SHAF, the 613 
spatial distribution and magnitude of simulated AOD using GFED4s and VFEI0 are close to those 614 
of the MODIS AOD. In comparison, our results show that AOD is significantly underestimated 615 
using FINN1.5, but largely overestimated using QFED2.5. 616 
  Table 4 shows the mean values of model-simulated AOD and satellite measurements for each 617 
region during its fire season. The influence of the BB emission inventory has little effect on the 618 
simulated AOD value in the Southern Hemisphere, and the regional average AOD deviation is 619 
within 20%. In contrast, the average deviation of simulated AOD driven by four BB inventories can 620 
be as high as 40% in the high latitudes of the Northern Hemisphere. Comparatively, GFED4s and 621 
QFED2.5 are more suited for high latitudes in the northern hemisphere, whereas the VFEI0 is most 622 
suitable for the southern hemisphere for AOD simulations. In Africa, QFED2.5 is not recommended 623 
due to its considerable overestimation. 624 

4.3 Comparison of simulations with ground-based measurements 625 

  In the above sections, we merely discussed the spatial distribution and the magnitude of pollutants 626 
during fire seasons. To further analyze whether each dataset can effectively capture the 627 
instantaneous combustion of BB, we compared the value of simulated daily AOD with that of 628 
ground-based observation (Fig. 10). To be more representative, we selected stations in each BB 629 
region with a large amount of data during fire season, allowing a comprehensive assessment of the 630 
global BB emission inventories. The specific locations of the selected 12 AERONET sites are shown 631 
as red triangles in Fig. 1b. 632 
  At EQAS sites such as Palangkaraya and Jambi, the observed AOD from September to November 633 
2014/2015 is generally higher than 1, with peaks exceeding 5, reflecting the intense BB events (Fig. 634 
10a-b). Only simulations using GFED4s are consistent with observed AOD during strong BB events, 635 
with a slight underestimation of 33-38%, while none of the other simulations could capture the BB 636 
process. Considering the significant contribution of peatlands to BB emissions in EQAS in GFED4s, 637 
our results suggest that it is important to include the burning of organic matter-rich soils in BB 638 
emission inventories. At SEAS sites such as Omkoi and Ubon Ratchathani, the peak AOD occurs 639 



 17 

from February to April at a value of about 2, and all simulations applying the four emission 640 
inventories capture the observed changes in AOD (Fig 10c-d). However, due to the uncertainty of 641 
anthropogenic emissions, the simulated AOD is usually smaller than the actual observed value in 642 
EQAS. Note that simulations using QFED2.5 are most consistent with observed AOD during intense 643 
biomass burning events. 644 
  At the Namibe station of SHAF (Fig. 10e), the simulated AOD agrees best with the measured 645 
results after using FINN1.5 and GFED2.5, with NMB values within ±8%, indicating these two 646 
emission inventories can characterize the day-to-day variability of the intense BB process. However, 647 
Namibe is located downwind of the dust source, and dust aerosols contribute more than 50% to the 648 
total AOD in this area. To better evaluate the performance of the four BB emission inventories in 649 
SHAF, we chose another site, Mongu Inn, located in the interior of Southern Hemispheric Africa, 650 
where dust and sea salt accounted for 20-30% of the total AOD. At Mongu Inn, all simulations 651 
underestimate AOD by 46-71%, and only QFED2.5 and VFEI0 emission inventories can capture a 652 
few peaks during intense biomass burning events (Fig. 10f). In SHSA, while Figures 9 and 10h 653 
show an overall overestimation of simulated AOD compared to MODIS AOD, at the Brazilian Alta 654 
Floresta site east of the Amazon, simulated AOD agrees very well with the ground-based 655 
observations (Fig. 10g). In general, the simulations using the VFEI0 emission inventory for the 656 
Southern Hemisphere are close to the measurements. 657 
  At high latitudes, simulations driven by GFED4s and QFED2.5 better capture the observed peak 658 
AOD, with regional NMB values of less than 40% (Fig. 10i-l), suggesting that these two simulations 659 
can reproduce the intense BB process. In contrast, FINN1.5 and VFEI0 are obviously not suitable 660 
for describing the BB process in these sites, and the simulated AOD is underestimated by 60-80%. 661 

5 Conclusion and Discussion 662 

  In this study, we examine four commonly used BB emission inventories (two bottom-up 663 
inventories (GFED4s and FINN1.5) and two top-down inventories (QFED2.5 and VFEI0)) to better 664 
understand the uncertainties associated with BB emissions. We analyze variations in CO and OC 665 
emissions across seven major BB regions worldwide from 2013 to 2016. We explore the differences 666 
between gaseous and particulate emission inventories, quantifying the impact of vegetation 667 
classification, cloud cover, and emission factors on inventory bias. Additionally, we apply these 668 
inventories to the global model CESM2-CAM6 to assess the model’s performance in simulating 669 
pollutants against satellite and ground-based observations.  670 
  The total global CO emissions exhibit significant variability among the four inventories, with 671 
annual averages ranging from 252 to 336 Tg, and a maximum deviation rate exceeding 30%. In 672 
certain regions such as BONA, changes in CO emissions are even larger, GFED4s emits 5.8 times 673 
more CO than FINN1.5. DM is identified as the primary contributor to variance among BB emission 674 
inventories, accounting for 50-80% of regional bias, while comprehensive EFs contribute the 675 
remaining 20-50%. Interestingly, the contributions of DM and comprehensive EFs to emission 676 
inventory differences are comparable across equatorial regions and Northern Hemisphere high 677 
latitudes. 678 
  The uncertainty in DM arises from underlying fuel consumption and burned area, linked to 679 
vegetation classification, fire detection product algorithm, and cloud/smoke masking. Vegetation 680 
classification significantly impacts fuel loading and the Fraction of Biomass burned, with 681 
discrepancies contributing to biases in fuel consumption. In regions at both low and high latitudes 682 
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(except Southeast Asia), FINN1.5 exhibits a fuel consumption term that is less than 50% of  683 
GFED4s, with the vegetation classification methodology contributing primarily to this bias.  684 
Different fire detection products introduce bias in estimated burned area, affecting uncertainty in 685 
DM. Satellite transit/cloud obscuration influences DM by affecting burned area/fire radiative energy. 686 
Cloud cover at high latitudes substantially impacts emission uncertainty, with bias increasing by 20% 687 
in July in BONA with higher cloud fraction. 688 
  We extend our analysis to particulate pollutants, using OC emissions as an example. Global 689 
average annual OC emissions vary widely among the four inventories, ranging from 14.9 to 42.9 690 
Tg, demonstrating greater variability than gaseous species like CO. BB OC emissions exhibit large 691 
variability at high latitudes in the Northern Hemisphere, with QFED2.5 adjusting emission factors 692 
based on satellite aerosol optical thickness (AOD) to enhance particulate matter emissions.  693 
  Applying four BB emission inventories to CESM2-CAM6, we compare model-simulated CO 694 
column concentrations with the MOPITT satellite inversion CO column concentrations. According 695 
to our simulations, CO simulated using GFED4s is closest to satellite observations in almost all 696 
regions except southern Asia and Africa. We also compared model results with AOD retrieved from 697 
MODIS satellites or measured by AERONET. Simulated AOD at high northern latitudes is often 698 
underestimated when using current mainstream BB emission inventories. For example, the 699 
simulated regional average AOD is 8-46% lower than MODIS in North America. Unlike the high 700 
latitudes, the simulated AOD is significantly overestimated at the equator, and the regional average 701 
AOD simulated by the model in Northern Hemispheric Africa is 66-91% higher than MODIS. In 702 
addition, comparing model simulated AOD with AERONET ground-based observations, we find 703 
that GFED4s performs best in EQAS for daily variability during intense burning. In SEAS, although 704 
FINN1.5 can better represent the magnitude of the overall OC emissions in the BB season, QFED2.5 705 
can capture the day-to-day variation characteristics of intense combustion. In the Southern 706 
Hemisphere, the latest VFEI0 emission inventory performs well, and the simulated AOD is able to 707 
capture the BB processes.  708 
  Our study assesses the global applicability of BB emission inventories and has some implications 709 
for future studies. Overall, GFED4s and QFED2.5 inventories for the northern high latitudes capture 710 
the magnitude and daily variation of OC emitted throughout the BB season. These two emission 711 
inventories outperformed the others when applied to studies of interactions between BB aerosol and 712 
weather/climate. In the Southern Hemisphere, the spatial distribution and daily variation 713 
characteristics of CO and AOD simulated by the model are closest to the observed values when the 714 
latest VFEI0 emission inventory is applied. For the equator, the situation is more complicated, and 715 
we recommend combining emission inventories according to the research objectives. For example, 716 
GFED4s performs best in day-to-day changes during intense burning in equatorial Asia. In 717 
Southeast Asia, combining OC magnitude in FINN1.5 and daily variation in QFED2.5 is the optimal 718 
choice. 719 
  It is worth noting that emission factors (as listed in Table 2) significantly contribute to the 720 
differences in BB emissions. However, actual emission factors vary widely depending on the 721 
different states of combustion (Pokhrel et al., 2021). Further study is needed to understand the 722 
impact of combustion efficiency on the BB EFs and optimize them. 723 
 724 
Data availability. The biomass burning emission datasets used in this work are available from 725 
http://www.globalfiredata.org/ (GFED4s), https://www.acom.ucar.edu/Data/fire/ (FINN1.5), 726 
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https://portal.nccs.nasa.gov/datashare/iesa/aerosol/emissions/QFED/v2.5r1/ (QFED2.5), and 727 
http://bio.cgrer.uiowa.edu/VFEI/DOWNLOAD/ (VFEI0). AOD and cloud fraction from MODIS 728 
dataset can be obtained from https://ladsweb.modaps.eosdis.nasa.gov/search/. MOPITT CO can be 729 
obtained from https://doi.org/10.5067/TERRA/MOPITT/MOP03JM.009. AERONET AOD is 730 
available from https://aeronet.gsfc.nasa.gov/new_web/download_all_v3_aod.html. The Modern-731 
Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) reanalysis data is 732 
available from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/. The MCD14DL is available from 733 
https://firms.modaps.eosdis.nasa.gov/country/. Additional data and scripts related to the modeling 734 
results are available at https://zenodo.org/records/10939422. 735 
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Table 1. Brief introduction of four BB inventories 1031 
Inventory “Bottom-up” “Top-down” 

 FINN1.5 GFED4s QFED2.5 VFEI0 

Temporal range 2002- (NRT) a 1997-2022b 2000- (NRT) a 2012- (NRT) a 

Spatio-temporal resolution 1km, daily 0.25°, monthly (daily fraction) 0.1°, daily (0.25° × 0.375°, NRT a) 500m,  daily 

Primary satellite fire input MCD14DL C5 active fire 

area (1km) 

MCD64A1 C5.1 burned area 

(500m) 

MOD14/MYD14 C6 FRP (1km) VNP14IMG FRP (1km) 

Statistical 

boosts/Adjustion 

Smooth assumption  

in tropics c 

Small fire boost 

(MOD14A1/MYD14A1) 

Cloud-gap adjusted FRP density  

Primary land use/land 

cover (LULC) 

MCD12Q1 (IGBP), 2005 MCD12Q1 (UMD), 2001-2012 IGBP-INPE  MCD12C1(IGBP) + 

The Köppen Climate 

Classification 

Peatland fire × Olson et al. (2001) × Ferrada et al. (2022) 

Conversion to dry matter Hoelzemann et al. (2004) CASA biogeochemical model 

(van der Werf et al., 2010) 

QFED FRP vs GFED2 dry matter 

global calibration 

VFEI FRP vs GFED3.1 dry 

matter global calibration 

Emission factors Akagi et al. (2011), 

Andreae and Merlet 

(2001)  

Akagi et al. (2011) + updates 

from Andreae et al. (2013) 

Andreae and Merlet (2001),  

Akagi et al. (2011) d 

Akagi et al. (2019) 

Speciation 41 species 27 species 17 species 46 species 

References Wiedinmyer et al. (2011) van der Werf et al. (2017) Darmenov and da Silva (2015) Ferrada et al. (2022) 

a: NRT = near real time;     b: 2017-2022 are beta version releases;   1032 
c: In equatorial region (30°N-30°S), each detected fire will be counted as 2-day, assuming the second day’s fire will continue to be half the 1033 
size of the previous day; 1034 
d: Particulate matter-related emissions from biomass burning (e.g. BC, OC, NH3, SO2, and PM2.5) were corrected from emission factors 1035 
based on MODIS AOD. 1036 

 1037 
 1038 
  1039 
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Table 2. CO and OC emission factors used in the four biomass burning emission inventories.  1040 
 Emission factors across inventories and vegetation types (g species per kg dry matter) 

Types CO  OC 

 FINN1.5 GFED4s QFED2.5 VFEI0  FINN1.5 GFED4s QFED2.5 VFEI0 

Temperate 

forest 
108Ak 88Ak 107AM 113An  6.97AR 9.6AM 41.09* 10.9An 

Boreal forest 118Ak 127Ak 107AM 121An  7.31Mc 9.6AM 41.09* 5.9.An 

Savanna and 

Grass, shrub 
59Ak/68Ak 63Ak 65AM 69An  2.6Ak/6.61Mc 2.62Ak 6.12* 3An 

Tropical forest 92Ak 93Ak 104AM 104An  4.77Ak 4.71Ak 13* 4.4An 

Agricultural 111Ak 102Ak / 76An  3.3AM 2.3Ak / 4.9An 

Peatlands / 210# / 260An  / 6.02# / 14.2An 

Ak: Akagi et al. (2011);  AM: Andreae and Merlet (2001);  An: Andreae (2019);  AR: Andreae and Rosenfeld (2008);  Mc: McMeeking et al. (2009) 1041 
*: QFED2.5 PM-related emission factors are obtained by multiplying the base EF multiplied by its biome-specific enhancement factor 1042 
#: Emission factors for peatland is the average of lab measurements of Yokelson et al. (1997) and Christian et al. (2003) 1043 
 1044 
  1045 
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Table 3. Comparison of CESM-CAM6 simulated CO column averages and satellite retrieved CO 1046 
column averages during the fire season. 1047 

  Satellite CESM2-CAM6 
Regions Fire-

Season 
MOPITT FINN1.5 GFED4s QFED2.5 VFEI0 

EQAS Jan.-Apr. 1.88 1.66 1.69 1.61 1.47 
BONA Apr.-Aug. 2.03 1.29 1.47 1.30 1.32 
SEAS Feb.-Apr. 2.40 2.10 1.94 1.89 1.95 
SHAF May.-Nov. 2.31 1.75 2.04 1.99 2.19 
NHAF Jan.-May. 2.66 1.96 2.02 2.05 2.10 
BOAS Mar.-Nov. 2.05 1.31 1.42 1.33 1.34 
SHSA July.-Dec. 1.77 1.75 1.80 1.76 1.80 

 1048 
  1049 
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Table 4. Same as Table 3 but for AOD 1050 
 Satellite CESM2-CAM6 
Regions MODIS FINN1.5 GFED4s QFED2.5 VFEI0 
EQAS 0.23  0.22 0.25  0.23 0.21 
BONA 0.13  0.07  0.12  0.11  0.07 
SEAS 0.30  0.35 0.30  0.36  0.30 
SHAF 0.33  0.31  0.37  0.53  0.40 
NHAF 0.32  0.53  0.54  0.61  0.55 
BOAS 0.15  0.11  0.13  0.16  0.11 
SHSA 0.14  0.30  0.31  0.34  0.29 

 1051 
 1052 
  1053 
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 1054 

 1055 

Figure 1. (a) The fraction of BB CO emissions to the sum of anthropogenic and BB CO emissions 1056 
(CO_BB/CO_Total) during 2013-2016 and (b) the spatial distribution of CO emissions (FINN1.5 was 1057 
used as an example). The red dots in Fig. 1(a) are the fire points from the MCD14DL satellite product. 1058 
In Fig. 1(b), seven regions with high BB emissions taken from those applied by van der Werf et al. (2006, 1059 
2010) are marked with black boxes, and the red triangles represent 12 AERONET stations. In this study, 1060 
seven major BB regions includes Boreal North America (BONA), Boreal Asia (BOAS), Southeast Asia 1061 
(SEAS), Equatorial Asia (EQAS), North Hemisphere Africa (NHAF), South Hemisphere Africa (SHAF), 1062 
and South Hemisphere South America (SHSA). 1063 

 1064 

 1065 

 1066 
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 1067 

Figure 2. (a) Average annual CO emissions of four biomass burning emission inventories across seven 1068 
major BB regions during 2013-2016. The cv, defined as the ratio of the standard deviation to the mean, 1069 
is the coefficient of variation among the emissions of four datasets. (b) and (c) are the same as (a), but 1070 
for the emission factor of CO (EFCO) and Dry Matter. 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 
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 1079 
Figure 3. Annual burned area (a) and fuel consumption (b) of two bottom-up datasets (FINN1.5 and 1080 
GFED4s) across seven regions from 2013 to 2016. 1081 
 1082 
  1083 
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 1084 

 1085 
Figure 4. The differences in (a-b) burned areas and (c-d) total FRP detected by two inventories under 1086 
different cloud fraction in a pilot region of BONA. These differences are quantified by two indicators: 1087 
SMAPE and Pearson's R. Could fraction data is calculated from MODIS product MCD06COSP. 1088 
 1089 
  1090 
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 1091 

 1092 
Figure 5. Annual average fuel consumption of two bottom-up datasets (FINN1.5 and GFED4s) across 1093 
seven regions from 2013 to 2016. The contributions of the seven biomes are shown in different colors. 1094 
 1095 
  1096 
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 1097 

 1098 
Figure 6. Regional comprehensive emission factors for four datasets (FINN1.5, GFED4s, QFED2.5, 1099 
and VFEI0) in seven regions from 2013 to 2016. The contributions of the seven biomes are shown in 1100 
different colors. 1101 
 1102 
  1103 
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 1104 

 1105 

Figure 7. (a) Average annual OC emissions of four biomass burning emissions inventories across seven 1106 
major BB regions during 2013-2016. The cv, defined as the ratio of the standard deviation to the mean, 1107 
is the coefficient of variation among the emissions of four datasets. (b) is the same as (a) but for the 1108 
emission factor of OC (EFoc). 1109 
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 1112 

 1113 
Figure 8. Spatial distribution of CO column burdens from MOPITT and CESM2-CAM6 simulations 1114 
during the fire season (Table 3). The text above each plot identifies the name of the satellite inversion 1115 
dataset or emission inventory dataset applied by the model, namely FINN1.5, GFED4s, QFED2.5, and 1116 
VFEI0. 1117 
  1118 
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 1119 

 1120 
Figure 9. The same as figure 8 but for AOD. 1121 
 1122 
  1123 
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 1124 

 1125 
Figure 10. Comparison between AOD simulated by CESM2-CAM6 using the four datasets (FINN1.5, 1126 
GFED4s, QFED2.5, and VFEI0) and AERONET ground-based observations during fire seasons. These 1127 
AERONET sites are: (a) Palangkaraya (2.2°S, 113.9°E), (b) Jambi (1.6°S, 103.6°E), (c) Omkoi (17.8°N, 1128 
98.4°E), (d) Ubon Ratchathani (15.2°N, 104.9°E), (e) Namibe (15.2°S, 12.2°E), (f) Mongu Inn (15.3°S, 1129 
23.1°E), (g) Alta Floresta (9.9°S, 56.1°W), (h) Rio Branco (9.9°S, 67.9°W), (i) Yellowknife_Aurora 1130 
(62.5°N, 114.4°W), (j) Pickle Lake (51.4°N, 90.2°W), (k) Tiksi (71.6°N, 128.9°E), (l) Yakutsk (61.7°N, 1131 
129.4°E). 1132 
 1133 
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