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 13 
Abstract 14 

Biomass burning (BB) emission inventories are often used to understand the interactions of 15 
aerosols with weather and climate. However, large Large uncertainties exist amongpersist within 16 
current Biomass burning (BB) inventories, so and the choice of these inventories can greatly 17 
substantially affect impact model results when assessing the influence of BB aerosols on weather 18 
and climate. To quantify the differences among BB emission inventories and reveal their reasons, 19 
we We evaluated discrepancies among BB emission inventories by compared comparing carbon 20 
monoxide (CO) and organic carbon (OC) emissions from seven major BB regions globally from 21 
between 2013 to and 2016. The current inventories are based on two basic approaches: (1) bottom-22 
up approach, which establishes inventories based on observed surface data, and (2) top-down 23 
approach, which based on the release rate of radiative energy from vegetation burning. In this study, 24 
we selected Mmainstream bottom-up inventories, including Fire INventory from NCAR 1.5 25 
(FINN1.5) and Global Fire Emissions Database version 4s (GFED4s), and along withthe top-down 26 
inventories Quick Fire Emissions Dataset 2.5 (QFED2.5) and VIIRS-based Fire Emission Inventory 27 
version 0 (VFEI0), were selected for this study.  28 

We find that Gthe total global CO emissions fluctuate betweenrange from 252 and to 336 Tg, and 29 
thewith regional bias is even larger, which can be up todisparities reaching up to a sixfold 30 
differencetimes. Dry matter is responsible the primary contributor for most ofto the regional 31 
variation in CO emissions (50-80%), with emission factors accounting for the remaining 20-50%. 32 
Uncertainties in dry matter often come arise from biases in the calculationng of bottom fuel 33 
consumption and burned area, which are closely related toinfluenced by vegetation classification 34 
methods and fire detection products. In the tropics, peatlands contribute more fuel loads and higher 35 
emission factors than grasslands. At high latitudes, asincreased cloud fraction increases,amplifies 36 
the bias discrepancy in between estimated burned area (or fire radiative power) increases by 20%. 37 
In addition, due to the corrected emission factors in QFED2.5, global BB OC emissions have higher 38 
variability, fluctuating betweenThe global OC emissions range from 14.9 and to 42.9 Tg, exhibiting 39 
higher variability than CO emissions due to the corrected emission factors in QFED2.5, with 40 
regional disparities reaching a factor of 8.7..  41 

FinallyAdditionally, we applied the four sets ofthese BB emission inventories to the Community 42 
Atmosphere Model version 6 (CAM6) and compared assessed the model results performance with 43 
against observations. Our results suggest that the simulations based on the GFED4s agree best with 44 
the MOPITT-retrieved CO. We alsoWhile compared comparing the simulation results with satellite 45 
or ground-based measurments, such as Moderate Resolution Imaging Spectroradiometer (MODIS)) 46 
AOD and  and AErosol RObotic NETwork (AERONET) aerosol optical depth (AOD). , oOur 47 
results reveal that there is no global optimal choice for the BB inventories, . In the high latitudes of 48 
the Northern Hemisphere, using GFED4s and QFED2.5 can better capture the AOD magnitude and 49 
diurnal variation. In equatorial Asia, GFED4s outperform others in representing day-to-day changes, 50 
particularly during intense burning. In Southeast Asia, we recommend using the OC emission 51 
magnitude from FINN1.5 combined with daily variability from QFED2.5. In the Southern 52 
Hemisphere, the latest VFEI0 has performed relatively well. but we give certain inventory 53 
recommendations based on different study areas and spatiotemporal scales. This study has 54 
implications for reducing the uncertainties in emissions or improving BB emission inventories in 55 
further studies. 56 
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 59 
1 Introduction 60 

  In recent years, extreme wildfire events have occurred frequently around the world (Balshi et al., 61 
2009; Knorr et al., 2016; Yang et al., 2019; Junghenn Noyes et al., 2022). The size of the fire has 62 
consistently broken records over the last decades (Westerling et al., 2006; Westerling and Bryant, 63 
2008; Brando et al., 2020), threatened lives and infrastructure, and continuously jeopardized the 64 
global economy. Wildfires are also one of the most important sources of biomass burning (BB) 65 
emissions, which can emit loads of gaseous and particulate pollutants (Ferek et al., 1998; Adams et 66 
al., 2019), detrimental to regional air quality and human health (Reid et al., 2005, Reid and Mooney, 67 
2016). Additionally, BB aerosols, predominantly black carbon (BC) and organic carbon (OC) can 68 
affect regional climate by absorbing/scattering solar radiation, acting as cloud condensation nuclei, 69 
and altering cloud albedo (Spracklen et al., 2011; Boucher et al. 2013). Recent studies have shown 70 
that aerosols produced by biomass burning can significantly affect changes in temperature, cloud 71 
fraction, precipitation, and even the circulation structure (Christian et al., 2019; Yang et al., 2019; 72 
Yu et al., 2019; Carter et al., 2020; Jiang et al.,2020; Ding et al., 2021; Huang et al., 2023). However, 73 
these changes in meteorology are sensitive to the choice of BB emission inventory. 74 
  Recent studies have shown that aerosols produced by biomass burning can significantly affect 75 
changes in temperature, cloud fraction, precipitation, and even the circulation structure (Christian 76 
et al., 2019; Yang et al., 2019; Yu et al., 2019; Carter et al., 2020; Jiang et al.,2020; Ding et al., 77 
2021; Huang et al., 2023). Jiang et al. (2020) used the Community Earth System Model version 1.2 78 
(CESM1.2) to investigate the impact of BB aerosols on global climate change. They pointed out 79 
that BB aerosols reduce the annual mean surface air temperature and precipitation by 0.64 K and 80 
0.06 mm day-1, respectively. Based on 16 years of simulation from the Weather Research and 81 
Forecasting model coupled with Chemistry (WRF-Chem), Ding et al. (2021) reported that BB 82 
aerosols increased low cloud coverage by 20% in areas downwind of wildfires in Southeast Asia in 83 
March and Southern Africa in August. A recent study also reported that the radiative effects of BB 84 
aerosols alter the local circulation structure, leading to dry air on the West Coast of the United States, 85 
or less precipitation in Southeast Asia, thus intensifying fires and exacerbating air pollution (Huang 86 
et al., 2023). However, these simulated results are sensitive to the amount of BB pollutants (Liu et 87 
al., 2020a). 88 
  Previous studies often found that there is a significant deviation between the gaseous or 89 
particulate pollutants simulated by the model and the satellite retrieval value (Bian et al., 2007; 90 
Chen et al., 2009; Carter et al., 2020), one of the most important reasons comes from the 91 
uncertainties in emission inventories. For example, Bian et al. (2007) applied six different BB 92 
emission inventories, GFED1 and GFED2 (Global Fire Emissions Database version 1 and 2) 93 
(GFED1 and GFED2), Arellano1, Arellano2, Duncan1, and Duncan2, to the Unified Chemistry 94 
Transport Model (UCTM). They reported that although the total global CO of the six BB emission 95 
inventories was within 30% of each other, the model results suggested that regional deviations can 96 
be much higher, by as much as 2-5 times, especially in the Southern Hemisphere. Bias in emission 97 
inventories can therefore often have a significant impact on the direct and indirect effects of models 98 
on aerosol assessments (Liu et al., 2018; Liu et al., 2020a; Ramnarine et al., 2019; Carter et al., 99 
2020). Carter et al. (2020) compared the simulated black carbon (BC) and organic carbon (OC) 100 
concentrations with measurements from IMPROVE (Interagency Monitoring of Protected Visual 101 
Environments) observation network from May to September. They suggested that using the 102 
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FINN1.5 inventory (Fire INventory from NCAR 1.5) improves model results in eastern North 103 
America, while using GFED4s, QFED2.4 (Quick Fire Emissions Dataset 2.4), and GFAS1.2 (Global 104 
Fire Assimilation System 1.2) inventories shows better agreement with observations in western 105 
North America. They also noted that population-weighted BB PM2.5 concentrations in Canada and 106 
the adjacent United States could vary between 0.5 and 1.6 𝜇g m-3 in 2012 by using different BB 107 
emissions. Liu et al. (2018) used the global model CAM5 (The Community Atmosphere Model 5) 108 
and three different BB emission inventories to analyze the uncertainties in the aerosol radiative 109 
effects in the Northeastern United States in early April 2009. They found that aerosols exhibited a 110 
stronger cooling effect when CAM5 used the QFED2.4 inventory than the GFED3.1 and GFED4s 111 
inventories, with additional cooling of -0.7 W m-2 and -1.2 W m-2 through aerosol direct radiative 112 
effect and the aerosol-cloud radiative effect, respectively. On a global basis, Ramnarine et al. (2019) 113 
used the global model GEOS-Chem-TOMAS (GEOS-Chem-TwO-Moment Aerosol Sectional), and 114 
found that the direct radiative effects and indirect effects of aerosols driven by the FINN1.5 emission 115 
inventory in 2010 were 70% and 10% lower than those driven by GFED4, respectively. Therefore, 116 
to better estimate regional aerosol-radiation/aerosol-cloud interactions in wildfire regions, it is 117 
necessary to understand the differences in emission inventories from biomass combustion and the 118 
main drivers of uncertainties. 119 
  In general, BB emission inventories are based on bottom-up or top-down methods to infer the 120 
emission source intensity. The bottom-up approach, also known as the fire detection and/or burned 121 
area method, estimates emissions based on surface data such as fuel loading, active fire counts, 122 
and/or burned area. Currently, the widely used BB inventories based on the bottom-up approach 123 
include Duncan (Duncan, 2003), GFED (van der Werf et al., 2006, 2010a, 2010b, 2017), FINN 124 
(Wiedingmyer et al., 2011), Global Inventory for Chemistry-Climate Studies-GFED4S (G-G) 125 
(Mieville et al., 2010). The top-down approach uses satellite observations of fire radiative power 126 
(FPR), a method to measure the radiative energy release rate of burning vegetation, to estimate 127 
emissions by fuel consumption. The BB inventories based on the top-down method include Arellano 128 
(Arellano Jr et al., 2004; Arellano Jr and Hess, 2006), GFAS (Kaiser et al., 2012), Fire Energetics 129 
and Emission Research (FEER) (Ichoku and Ellison, 2014), QFED (Darmenov et al., 2015), the 130 
Fire Emissions Estimate Via Aerosol Optical Depth (FEEV-AOD) (Paton-Walsh et al., 2012) and 131 
the recently released VIIRS-based Fire Emission Inventory version 0 (VFEI0) (Ferrada et al., 2022). 132 
On a global scale, the average annual BB emissions of CO and OC can differ by a factor of 3 to 4, 133 
with the global emissions fluctuating in the range of 280-580 Tg yr-1 and 13-50 Tg yr-1 respectively. 134 
The bias may be even greater when focusing on emissions in specific regions (Bian et al., 2007; 135 
Liousse et al., 2010; Williams et al., 2012; Carter et al., 2020; Lin et al., 2020b; Liu et al., 2020b). 136 
For example, the estimated CO emission of Arellano inventory in South America during the burning 137 
peak season of September 2000 is four times greater than that of GFED1 inventory (Bian et al., 138 
2007). A recent study even found that since 2008, OC emissions from QFED2.5 in the Middle East 139 
are approximately 50 times larger than those from GFED3 and GFED4 (Pan et al., 2020).  140 
  Several previous studies have analyzed the reason for the huge emission bias. According to 141 
Darmenov et al. (2015), the emissions Ei (mass of pollutant i) is the sum of the products of the 142 
emission factor (EFb) and the dry matter (DMb) for each biome: 143 
𝐸! = ∑ 𝐸𝐹"" × 𝐷𝑀"     (1) 144 
. While earlier studies suggested that the uncertainty in BB emissions arises mainly from differences 145 
in emission factors (e.g., Alvarado et al., 2010; Akagi et al., 2011; Urbanski et al., 2011), more 146 
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recent studies point out that uncertainty in dry matter also plays an important role in differences in 147 
BB emissions (Paton-Walsh et al., 2010; 2012; Carter et al., 2020). For example, Paton-Walsh et al. 148 
(2012) assessed the difference in CO emissions from the February 2009 Australian fire and found 149 
that total CO emissions in GFED3.1 were roughly three times higher than that in FINN1, with DM 150 
contributing up to 80%. Carter et al. (2020) evaluated emissions from various North American BB 151 
inventories over the period 2004-2016 and found that changes in DM was were very close to the 152 
emission trend, suggesting that uncertainty in potential DM across the North American was the 153 
primary factor, rather than EF.  154 

The accuracy of BB inventories is influenced by lEF.  155 
  To analyze the root causes of the differences in EFs and DM among BB inventories, equation 156 

(1) is further decomposed. According to the bottom-up method, the emission for each species i can 157 
be further summarized as: 158 
𝐸! = ∑ (𝐸𝐹" × 𝐵𝐴(𝑥, 𝑡) × 𝐹𝐶")" = ∑ (𝐸𝐹" × 𝐵𝐴(𝑥, 𝑡) × 𝐹𝐿" × 𝐹𝐵")"     (2) 159 
where BA(x,t) is burned area at location x and time t, which can be obtained from the fire 160 

detection products. For each biome, fuel consumption (FCb) is the product of fuel loadings (FLb) 161 
and the fraction of biomass burned (FBb), which can be obtained with reference to static biomass 162 
density or using a biological models.  163 

Similarly, the top-down inventories can be further divided into: 164 
                  𝐸! = ∑"                       (3) 165 
where A is the area of unit pixel observed by satellite, and FRP/A represents the FRP density, 166 

which is proportional to Ei. For the emission Ei of a substance i, the empirical coefficient αb is used 167 
to convert the fire radiative energy (i.e., the time-integrated FRP) of each biome into DM (also can 168 
be considered as converting FRP density into emission fluxes).  169 

  Therefore, land cover and land use (LULC) data, associated with vegetation types can 170 
influence the BB inventory byimpacting both affecting EFs and EFs, fuel loads, and the FB for 171 
bottom-up approach, or by affecting EFs and empirical coefficient α for top-down approach DM 172 
(Wiedinmyer et al., 2006; Ferrada et al., 2022). In a study by For example, Wiedinmyer et al. (2006), 173 
used three different distinct LULC products were employed to drive a regional model of BB 174 
emissions model. and found thatThe variations inying LULC products drive led through to 175 
discrepancies in fuel consumption, ultimately leading toresulting in an annual bias of up to 26% in 176 
North and Central America. FurthermoreMoreover, since EFs are highly dependentclosely tied on 177 
to various different biomes, different biome classifications will introducinge uncertainty into BB 178 
emission inventories with varied biome classifications (Ferrada et al., 2022). In addition to LULC 179 
products, uncertainties are introduced by fire detection products (such as FRP and burned area 180 
products) that are, affected by factors such as satellite transit time and cloud obscuration also bring 181 
uncertainty to BB emission inventories. For example, Paton-Walsh et al. (2012) found that in an 182 
Australian fire called "Black Friday" in February 2009, the burned areas of FINN1 were barely half 183 
of that of GFED3.1. Liu et al. (2020b) reported that compared with the active fire area used in 184 
FINN1.5, the burned area product selected by GFED4s is less sensitive to the satellite overpass time 185 
and cloud obscuration. These results indicate that LULC and fire detection products are key factors 186 
leading to bias in BB emission estimation. 187 
  Although previous work has generated biomass burning emission inventories and attempted to 188 
reduce their uncertainties (Duncan, 2003; Arellano Jr et al., 2004; Arellano Jr and Hess, 2006; van 189 
der Werf et al., 2006, 2010a, 2010b, 2017; Bian et al., 2007; Mieville et al., 2010; Wiedingmyer et 190 
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al., 2011; Kaiser et al., 2012; Paton-Walsh et al., 2012; Ichoku and Ellison, 2014; Darmenov et al., 191 
2015; Liu et al., 2018; Ramnarine et al., 2019; Carter et al., 2020; Lin et al., 2020b; Liu et al., 2020b; 192 
Pan et al., 2020; Zhang et al., 2020; Ferrada et al., 2022), they did not analyze the reasons why DM 193 
and EF exhibited large differences among various emission inventories, which may vary over time 194 
and location. Here, this study aims to explore the underlying reasons for the differences in BB 195 
emission inventories in major combustion regions around the world, thereby attempting to reduce 196 
the uncertainties of the impact of BB emission inventories on model results. To minimize the 197 
interference of anthropogenic emissions on model results, we selected combustion regions 198 
satisfying the following conditions: (1) regional BB CO emissions above 20 Tg yr-1; (2) BB CO 199 
emissions contribute more than 70% of the total. We ultimately selected seven major burning areas 200 
as shown in Fig. 1, including Boreal North America (BONA), Southern Hemispheric South America 201 
(SHSA), Northern Hemispheric Africa (NHAF), Southern Hemispheric Africa (SHAF), Boreal Asia 202 
(BOAS), Southeast Asia and India (SEAS), and Equatorial Asia (EQAS). 203 
  Due to the abundance of published BB inventories, in this studyIn this study, we compare several 204 
widely used datasets we selected several datasets that are widely used (FINN1.5, GFED4s, and 205 
QFED2.5) and the latest recently released VFEI0. for comparison, with tThe former two of 206 
themdatasets are based on the bottom-up method, and while the latter twoothers are based on the 207 
top-down method. Specific details of these BB inventories will be are described in Section 2. In 208 
section 3.1, we will discussexplore the differences of in CO and OC emissions among the four 209 
inventories, along with examining the contributions of DM and EFs to these differences, 210 
respectively. For the first time, we have evaluated the biases of CO column concentrations and AOD 211 
driven by BB inventories in the CESM2-CAM6 model, . Based on our findings, and givenwe 212 
provide recommendations suggestions on what which inventory should be adopted across various 213 
regions. (Section 3.2). Section 4 presents tThe conclusion and discussion are presented in section 4, 214 
and our research is anticipated expected to provide someoffer insights for into reducing the 215 
uncertainties of with BB emission datasets.  216 
 217 
2 Data and Methodology 218 

2.1 Biomass Burning emission inventories 219 

  We simultaneously diagnosed the differences among between two bottom-up approach 220 
inventories and two top-down approach inventories, including FINN1.5, GFED4s, and QFED2.5, 221 
which are commonly used in the current atmospheric model, as well as the recently released VFEI0. 222 
Details about the emission inventories and the satellite products they use are listed in Table 1 and 223 
Text S1 in supplementary.. 224 
 225 

Bottom-up (Burned Area) inventories 226 

  IAmong the four BB emission inventories selected in this study, both FINN1.5 and GFED4s both 227 
useadopt the a bottom-up methodapproach , also known as the (also called the Burned Area method), 228 
and the. As showndetails are shown in Table 1., FINN1.5 uses the MODIS (Moderate Resolution 229 
Imaging Spectroradiometer) product MCD14DL  to for calculate the burned area , calculations. 230 
which can monitor fire points with an area larger than 0.05 km2. Since the MCD14DL is an This 231 
active fire detection product monitors real-time fire points larger than 0.05 km2that reflects real-232 
time fire point detectio. However, it is important to note thatn, if a fire occurs but when the satellite 233 
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is not in transit or is obscured by clouds while the satellite is induring transit, the fireit will not be 234 
detected (Firms, 2017). Additionally, considering that MODIS on polar-orbiting satellites cannot 235 
provide daily coverage products in the tropics (30°N-30°S), FINN1.5 makes some smoothing 236 
assumptions for fire detection in this region. It assumes that every fire detected at the equator (30°N-237 
30°S) will continue persist the next day at half the size of the previous day (Table 1), ). and However, 238 
this assumption obviously raises some questionsmay not accurately reflect real-world conditions 239 
(Wiedinmyer et al., 2011; Pan et al., 2020). Meanwhile, tThe land cover classification of land cover 240 
types in FINN1.5 is based on MCD12Q1 (IGBP, version 2005). According to the IGBP land cover 241 
classification, each fire is initially assigned to one of 16 land use/land cover (LULC) classes, and 242 
then lumped into six generic categories including tropical forest, temperate forest, boreal forest, 243 
savanna and grasslands, woody savannas and shrublands, and cropland (Fig. S1, Wiedingmyer et 244 
al., 2011). The amount of usable biomass that can be burned per fire (fuel loadings) for each generic 245 
LULC according to Hoelzemann et al. (2004). The FB for each fire is specified as a function of 246 
vegetation cover (MODIS Vegetation Continuous Fields (VCF) product), as described by 247 
Wiedinmyer et al. (2006; 2011). Emission factors (EFs) for various gaseous and particulate species 248 
are determined from a dataset compiled by Akagi et al. (2011) and Andreae and Merlet (2001), and 249 
with these EFs varying for different LULC types. Currently, FINN1.5 provides the daily global 250 
emissions from biomass burning since 2002, including 41 species, with a spatial resolution of 1 km2 251 
(Table 1). 252 
  The main difference between FINN1.5 and GFED4s differs in that it primarily is that the latter 253 
mainly uses the MCD64A1 Collection 5.1 burned area product (Giglio et al., 2013; Randerson et 254 
al., 2018), which can onlycapable of detecting fires with a size larger than 500 m × 500 m. For small 255 
fire burning areas, GFED4s additionally incorporate active fire detection products (MOD14A1 and 256 
MYD14A1), and by comparing the difference normalized burned area (dNBR) of active fire 257 
products observed inside and outside the 500 m burning area, which compensatinges to some extent 258 
for the bias caused by the lower spatial resolution of the original product MCD64A1 (van der Werf 259 
et al., 2017). Note that, according to van der Werf et al. (2017), only small or moderate angel fire 260 
point detections are retained in order to reduce uncertainty in geolocation. In general, burned area 261 
products reduce uncertainty in fire detection due to satellite non-transit and cloud/smoke 262 
obscuration when a burn occurs by identifying day-to-day surface variations, such as charcoal and 263 
ash deposition, vegetation migration, and changes in vegetation structure (Boschetti et al., 2019). 264 
Similar to FINN1.5, each fire in GFED4s is initially assigned to one of 16 LULC subcategories and 265 
then lumped into six categories, with the inclusion of an additional biome, peatland (Fig. 266 
S1).According to the annual MODIS MCD12C1 version 5.1 land cover type product and University 267 
of Maryland (UMD) classification scheme (Friedl et al., 2010), each fire is also initially assigned to 268 
one of 16 LULC subcategories and then lumped into six categories: tropical forest, temperate forest, 269 
boreal forest, savanna, cropland (agriculture), and peatland as shown in Fig.  S1. While GFED4s 270 
combines the “savanna and grasslands” and “woody savannas and shrublands” in FINN1.5 into one 271 
biome, it has an additional biome “peatland”. GFED4s generate the fuel loadings and the fraction 272 
of biomass burned for each category by combining the burned area and vegetation morality in a 273 
modified Carnegie-Ames-Stanford Approach (CASA) model, which is driven by the data of 274 
temperature, precipitation, solar radiation, NDVI, and vegetation types (Schaefer et al., 2008; van 275 
der Werf et al., 2010; 2017). Additionally, EFs for various gaseous and particulate species follow 276 
Akagi et al. (2011) and Andreae and Merlet (2001), also varyying across with different biome 277 



 9 

categories. Currently, GFED4s provides the daily global emissions from biomass burning since 278 
1997, including 27 species, with a spatial resolution of 0.25° × 0.25° (Table 1). However, since 2017, 279 
the DM provided by GFED4s is derived from a linear relationship between past emissions and 280 
MODIS FRP data for the period 2003-2016. 281 

 282 

Top-down (Fire Radiative Power) inventories 283 

  The other two emission inventories selected forIn this study, both QFED2.5 and VFEI0, use a 284 
top-down approach, also known as the Fire Radiative Power (FRP) method. Unlike In contrast to 285 
the bottom-up approach, the top-down approach is not based relies on satellite products detecting 286 
fire-radiated power rather than on fire point detection., but on satellite products that detected fire 287 
radiated power. QFED2.5 uses MODIS Collection 6 MOD14/MYD14 level 2 products to estimate 288 
the fire radiative power, and pinpoint fire locations usinge MOD03/MYD03 to pinpoint the location 289 
of the fire (Darmenov and Silva 2015; Liu et al., 2020b). Since MOD14 and MYD14 products are 290 
strongly influenced by clouds, missing FRPs are corrected using the "sequential approach" 291 
combining current observations and predicted values (Darmenov and da Silva, 2015). The FRPs are 292 
then integrated in over time to obtain the fire radiative energy (FRE), which is detected and 293 
converted to DM by using an empirical coefficient α. The initial value of α values in QFED2.5 isare 294 
taken obtained from Kaiser et al. (2009) and subsequently are adjusted monthly based on global 295 
emissions of GFED2 in 2003–2007, resulting in two sets of empirical coefficients: αMOD14 = 1.89 × 296 
10-6 kg (DM) J-1 and αMYD14 = 0.644 × 10-6 kg (DM) J-1. In QFED2.5 classifies land cover using, 297 
the International Geosphere-Biosphere Programme (IGBP-INPE) dataset, classes are used to 298 
aggregateing 17 land cover classes into four broad vegetation types, including tropical forest, extra-299 
tropical forest (forest classes that exclude tropical forest), savanna, and grassland (Fig. S1, 300 
Darmenov and da Silva 2015). Initially, EFs for various species in QFED2.5 also follow Akagi et 301 
al. (2011) and Andreae and Merlet (2001)The EFs of particulate or trace gas species are from 302 
previous studies (Andreae and Merlet, 2001; Akagi et al., 2011). But for certain species, including 303 
organic carbon (OC), black carbon (BC), ammonia (NH3), sulfur dioxide (SO2), and particulate 304 
matter diameter < 2.5𝜇m (PM2.5), QFED2.5 incorporates a scaling factor to enhance the EFs. 305 
QFED2.5 provides daily global BB emissions since 2000, including 17 species, with a spatial 306 
resolution of 0.1° × 0.1° (Table 1). 307 
 It is important to note that QFED2.5 scales up the EFs for emissions associated with the particulate 308 
phase, such as organic carbon (OC), black carbon (BC), ammonia (NH3), sulfur dioxide (SO2), and 309 
particulate matter diameter < 2.5𝜇m (PM2.5), so emissions of these species are greater in QFED2.5 310 
than in other inventories. The QFED2.5 product covers daily emission inventories from 2000 to the 311 
present, and contains 17 emission species with a spatial resolution of up to 0.1° × 0.1°. 312 
  VFEI0 also adopts the top-down method but uses VNP14IMG.001 FRP product from VIIRS I-313 
band (Visible Infrared Imaging Radiometer), ). This product has a higher resolution (375 m at nadir) 314 
compared to MODIS (1 km resolution at nadir), enabling the detection of which can detect smaller 315 
and colder flames than MODIS (1 km resolution at nadir), since it has a resolution of 375 m at nadir 316 
(Ferrada et al., 2022). Unlike QFED2.5, VFEI0 has no cloud calibration, but it will be supplemented 317 
in future versions. It also uses the an empirical coefficient α derived from the linear regression of 318 
GFED3.1 DM and VIIRS FRP to convert the detected FRE into DM, but α is derived from the linear 319 
regression of GFED3.1DM and VIIRS FRP. Additionally,VFEI0 uses MCD12C1 (IGBP, version 320 
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2015) is as the underlying LULC data, which is further supplemented by Köppen climate 321 
classification (Beck et al., 2018), to defininge ten subcategories in VFEI0 (i.e., Tropical forest, 322 
Savanna, Temperate forest, Temperate Savanna, Boreal forest, Boreal Savanna, Grass, Agriculture, 323 
Peatland and Desertic areasFig. S1). VFEI0 then groupsed the previous tenthese subcategories into 324 
six biomes (Fig. S1), corresponding to the emission factorsEFs provided by Andreae (2019), to 325 
calculate the BB emission inventory. Among the four BB emission inventoriesCurrently, VFEI0 326 
provides offers the shortest inventory time coverage (daily BB emission fluxes from since 20 327 
January 2012 to the present), but it provides the largest number of emitted species at  covering 46 328 
emitted species withand the highest a horizontal resolution of 0.005° × 0.005° (Table 1). 329 
 330 

2.2 The calculation for EFs and DMs 331 

To calculate regional EFs and DMs, we adopt the approach outlined by Carter (2020). Initially, 332 
we divide CO emissions per grid by the EF applied to each biome, yielding DM: 333 
                              𝐷𝑀",$ = 𝐶𝑂",$/𝐸𝐹"                            	(1) 334 

where b represents one of the seven biomes in Fig. S1, and x represents the location grid. This 335 
calculation of DM using CO is reasonably representative, given that the inventories are not adjusted 336 
for CO emission factors. After calculating DMb,x for each grid, we derive a regional average 337 
emission factor by dividing total CO emissions by total DM for each major BB region:  338 
                               𝐸𝐹%& = ∑ 𝐶𝑂",$ /∑ 𝐷𝑀",$ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2) 339 
These calculations enable us to discern the influence of LULC classification on BB emission 340 
inventories. For a specific biome type within a given region, we calculate EF by dividing the CO 341 
emissions of that particular biome classification by the sum of the value from each biome in the 342 
respective region: 343 
                              𝐸𝐹" = 𝐶𝑂" ∑ 𝐷𝑀"⁄                               (3) 344 
where b represents one of the seven biome classifications in this study (Fig. S1).  345 
Furthermore, for the two bottom-up inventories, we invert the fuel consumption for each vegetation 346 
biome b within a given area: 347 
                                  𝐹𝐶" = 𝐷𝑀" 𝐵𝐴⁄                              (4) 348 
Here, the DM corresponding to each biome in FINN1.5 and GFED4s is obtained using equation (1), 349 
and BA represents the total burned area derived from the emission inventory. 350 
 351 

2.2 3 Quantitative statistical methods 352 

  As described in section 2.1, fire detection is greatly affected by cloud/smoke obscuration in the 353 
bottom-up approach. For example, if there are clouds/smoke at high altitudes while fire occurs on 354 
the ground, the MCD14DL active fire detection product used in FINN1.5 may miss these fire points. 355 
In addition, for the combustion that is too small in size and too low in temperature, it cannot be 356 
effectively monitored due to the low brightness temperature contrast with the surrounding 357 
environment. In contrast, the burned area product (mainly MCD64A1) used by GFED4s determines 358 
the burning information based on the changes such as surface albedo, and is, therefore less affected 359 
by clouds/smoke. For inventories based on the top-down approach, the emission inventories also 360 
differ to a large extent due to the cloud/smoke obscuration, since QFED2.5 uses a “sequential 361 
method” to correct for missing FRPs during cloud/smoke obscuration, whereas VFEI0 does not. 362 
Thus, in this study, the symmetrical mean absolute percentage error (SMAPE) and Pearson's R are 363 
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used to access assess the difference in sensitivity to clouds/smoke between the two BB products 364 
based on the bottom-up (or top-down) approach. The specific algorithm is as follows: 365 

																																											SMAPE	 = 	 '((%
*
	∑ |,-.|

(|,|0|.|)/3
,																																																							*

45'  (45) 366 

																																																						R = ∑ |(,-,7)∙(.-.7)|!
"#$

9∑ (,-,7)%!
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,                          (56) 367 

where X and Y are fire detection data from two different datasets (e.g. burned area from FINN1.5 368 
and GFED4s or FRP from VFEI0 and QFED2.5). We divided these fire detection data into three 369 
groups according to the cloud fractions less than 0.4, 0.4-0.7, and greater than 0.7, and the number 370 
n represents valid samples in different cloud fraction groups. SMAPE ranges from 0% to 200%, 371 
with smaller values indicating smaller differences, while Pearson's R ranges from 0 to 1, with 372 
smaller values implying less correlation. 373 
  In order to quantify the effect of cloud obscuration on BB datasets, we selected the most intensely 374 
burning regions in BONA in July for this study. For consistency, we re-interpolated the fire 375 
detection data used in the four BB datasets, as well as the MODIS MCD06 cloud fraction data, to 376 
the same horizontal resolution (0.25° × 0.25°). Considering the continuity of combustion, we took 377 
every 5° × 5° as a sample area in the northern U.S. to ensure that if a large burn occurred, the area 378 
would be detected to some extent, avoiding errors due to differences between the inventories. At 379 
the same time, we excluded the samples in at the same time and location, where the emissions are 380 
all zero. Finally, a total of 1888 samples were obtained for the burned area group, with 534, 541, 381 
and 813 samples for low (<0.4), medium (0.4-0.7), and high (>0.7) cloud fraction, respectively. A 382 
total of 1,682 samples were obtained for the FRP group, with 860, 390, and 432 samples under low, 383 
medium, and high cloud fraction, respectively. It is worth noting that we use the average FRP of 384 
MOD and MYD for QFED2.5 since the VFEI0 FRP is the average between day and nighttime 385 
observations. Moreover, our approach cannot rule out the case of missing measurements when two 386 
sets of BB inventories are both obscured by the cloud. However, the main goal of this paper is to 387 
explore the causes of uncertainties in emission inventories, the specific case of omission due to 388 
cloud obscuration depends on the development of satellite detection technology and is not part of 389 
the purpose of this study. 390 
 391 

2.3 4 CESM2-CAM6 model 392 

  The Community Earth System Model version 2.1 (CESM2) is a new generation of the coupled 393 
climate/Earth system models developed by National Center for Atmospheric Research (NCAR). In 394 
this study, we used the global Community Atmosphere Model version 6 (CAM6) (Danabasoglu et 395 
al., 2020). Gas-phase chemistry was represented by the Model for Ozone and Related chemical 396 
Tracers tropospheric chemistry (MOZART-T1, Emmons et al., 2020). The wet deposition of soluble 397 
gaseous compounds in CAM6-Chem is based on the scheme of Neu and Prather (2012), which 398 
describes the process of in-cloud cleaning and under-cloud cleaning. The formation of secondary 399 
organic aerosols (SOA) is from a volatility basis set (VBS) approach developed by Tilmes (2019). 400 
Properties and processes of aerosol species of black carbon (BC), primary organic aerosols (POA), 401 
SOA, sulfate, dust, and sea salt are calculated by Modal Aerosol Module (MAM4) described by Liu 402 
(2016). CAM6 uses a horizontal resolution of nominal 1° (1.25° × 0.9° , longitude by latitude) and 403 
32 vertical levels from the surface to 2.26 hPa (~40 km). 404 
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  In this study, four BB emission inventories (FINN1.5, GFED4s, QFED2.5, and VFEI0) are re-405 
gridded to a horizontal resolution of 1.25° (longitude) × 0.9° (latitude), and then applied to the 406 
model. All simulations were performed for five years, while horizontal winds and temperature are 407 
were nudged toward the Modern-Era Retrospective analysis for Research and Applications, version 408 
2 (MERRA-2) reanalysis data (GMAO, 2015) for every 6 h. Simulations are conducted for 2012-409 
2016, with the first year used for initialization and model spin-up. Daily BB emissions were applied 410 
in this study, whereas the vertical distribution of fire emissions was followed Freitas et al. (2006, 411 
2010). Anthropogenic and biogenic emissions in this study are from the Community Emissions Data 412 
System (CEDS) and Model of Emissions of Gases and Aerosols from Nature version 2.1 413 
(MEGANv2.1), respectively, at 2010 levels (Guenther et al.,2012; Hoesly et al., 2018). 414 
 415 

2.4 5 Measurement data 416 

  The Tropospheric Pollution Measurement Instrument (MOPITT) is aboard the Earth Observing 417 
System (EOS)/Terra satellite launched by NASA (Warner, et al., 2001). MOPITT is the first 418 
instrument to observe the global concentration and currently provides column concentration and 419 
volume mixing ratio of global carbon monoxide (CO) since 1999. We used MOPITT CO gridded 420 
monthly means (Near and Thermal Infrared Radiances) V009 (MOP03JM_9; NASA Langley 421 
Atmospheric Science Data Center DAAC, retrieved from 422 
https://doi.org/10.5067/TERRA/MOPITT/MOP03JM.009), which has a horizontal resolution of 1°   423 
× 1°. It should be noted that in order to compare the CO column concentration simulated by CESM2-424 
CAM6 with MOPITT CO, we calculated the simulated CO column concentrations by cumulative 425 
integration from 900 hPa to 100 hPa isobaric height (Deeter et al., 2022). We also used the daily 426 
AOD (550 nm) and cloud fraction data from MODIS products MOD08_D3 (MODIS/Terra Aerosol 427 
Cloud Water Vapor Ozone Daily L3; Platnick et al. 2015) and MCD06COSP (MODIS (Aqua/Terra) 428 
Cloud Properties Level 3 daily, Webb et al., 2017), respectively.  429 
  The observations of AERONET (http://AERONET.gsfc.nasa.gov/; Holben et al., 1998) from 12 430 
sites are used in this study. These AERONET stations were selected since they are close to BB 431 
source regions. As marked in Figure 1b, these sites include sites in BONA (Yellowknife_Aurora 432 
(62.5°N, 114.4°W), Pickle Lake (51.4°N, 90.2°W)), BOAS (Tiksi (71.6°N, 128.9°E), Yakutsk 433 
(61.7°N, 129.4°E)), SHAF (Namibe (15.2°S, 12.2°E), Mongu Inn (15.3°S, 23.1°E)), SHSA (Alta 434 
Floresta (9.9°S, 56.1°W), Rio Branco (9.9°S, 67.9°W)), EQAS (Palangkaraya (2.2°S, 113.9°E), 435 
Jambi (1.6°S, 103.6°E)), SEAS (Omkoi (17.8°N, 98.4°E), Ubon Ratchathani (15.2°N, 104.9°E)).  436 
  All observed AOD represent real atmospheric conditions and therefore, in addition to BB aerosols, 437 
biogenic aerosols, anthropogenic aerosols, dust, and sea salts are also integrated in MODIS and 438 
AERONET datasets. 439 
 440 
3 Comparative analysis of emission inventories 441 

  CO and OC are the main species emitted from biomass burning (Westerling et al., 2010; van der 442 
Werf et al., 2010b; Carter et al., 2020) but emissions vary widely. In this study, we compare the 443 
differences in CO and OC emissions (representing gaseous and particulate pollutants, respectively) 444 
in four BB inventories, and investigate in detail the key reasons for the differences in emission 445 
inventories. 446 
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3.1 The contribution of dry matter and emission factors to the difference in CO 447 
emission 448 

  The total global CO emissions from the four BB emission inventories selected for this study are 449 
in the range of 252-336 Tg, with GFED4s being the highest and FINN1.5 the lowest. In order tTo 450 
quantify the differences in CO emissions among four datasets, we use the standard deviation (SD) 451 
to characterize the absolute difference, and the coefficient of variation (cv, calculated as the ratio of 452 
SD to the mean) to characterize the relative differences (Fig. 2a). The larger the cv, the greater the 453 
difference between emission inventories. We have ranked the major seven BB regions in the world 454 
according to the differences in CO emissions between the four sets of inventories, with the 455 
differences being, in descending order, EQAS, BONA, SEAS, SHAF, NHAF, BOAS, and SHSA. 456 
  This study points to a high variability of different BB emission inventories in EQAS, which is 457 
inconsistent with previous studies (Liu et al., 2020b; Pan et al., 2020). Previous studies mainly 458 
focused on emission differences of particulate pollutants, such as BC and OC (Bian et al., 2007; 459 
Paton-Walsh et al., 2012; Carter et al., 2020; Lin et al., 2020b; Pan et al., 2020), thus assuming that 460 
the inventory differences in Equatorial Asia are smaller than those in Southern Hemispheric Africa  461 
and Northern Hemispheric Africa. In contrast, this study analyzes the differences between 462 
particulate and gaseous pollutant emissions separately when comparing the differences in BB 463 
emission inventories. For example, GFED4s classify a large portion of EQAS land cover as peatland 464 
(Kasischke and Bruhwiler, 2002; Stockwell et al., 2016; van der Werf et al., 2006, 2010a, 2010b, 465 
2017) and suggest that this organic matter-rich soil emits a large amount of CO when burned. The 466 
other three inventories either do not include peatland (FINN1.5 and QFED2.5) or only consider 467 
peatlands as a small fraction of the burned area in EQAS (VFEI0), thus estimating CO emissions 468 
much smaller than GFED4s. In addition, the extent of peatland fires in EQAS increased significantly 469 
during the strong El Niño event (Page et al., 2002). Considering that a strong El Niño event also 470 
occurred in 2015-2016, these increases in peatland fires further amplify the discrepancy between 471 
GFED4s and other emission inventories on CO estimates. 472 
  According to Eq. (1), we split the difference in CO emission into the difference in EFs and DM 473 
(Fig. 2b and c). Since only GFED4s provides DM information in its dataset, we follow Carter (2020) 474 
to divide CO emissions per grid by the EF applied to each biome to obtain DM: 475 
                              𝐷𝑀",$ = 𝐶𝑂",$/𝐸𝐹"                            	(6) 476 
where b represents one of the seven biomes in Fig. S1, and x represents the location grid. The 477 
calculation of DM by CO is somewhat representative, since all inventories are not corrected for CO 478 
emission factors. After calculating the DMb,x for each grid, we obtained a regional average emission 479 
factor by dividing the total CO emissions by the total DM for each major BB region:  480 
                               𝐸𝐹%& = ∑ 𝐶𝑂",$ /∑ 𝐷𝑀",$ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (7) 481 
Such calculations allow us to distinguish the impact of LULC classification on BB emission 482 
inventories. 483 
  As shown in Fig. 2, the distribution pattern of DM differences is very similar to that of CO 484 
emission differences, indicating that DM is the main reason for dominating the difference in the 485 
four emission inventories. In comparison, the difference in DM contributes 50-80% to the regional 486 
CO emission differences, and the comprehensive EFs contributes the remaining 20-50%. However, 487 
in EQAS, BONA, and BOAS, the contribution of comprehensive EFs to BB emission differences 488 
in four datasets is comparable to that of DM (Fig. 2). In the following sections, we will further 489 
analyze the main causes of the differences for DM and EFs. 490 
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3.2 Primary causes of DM inconsistency in the bottom-up inventories 491 

  To investigate the underlying causes of the differences in DM, we first compared DM between 492 
emission inventories produced by the bottom-up and up-down approaches. The difference in DM 493 
estimated by the top-down method is small, and the DM ratio of QFED2.5 to VFEI0 does not exceed 494 
two times in different regions. However, DM estimated by the bottom-up approach varied widely, 495 
with DM ratio as high as 4.7 in BONA for GFED4s and FINN1.5 during the 2013-2016 fire season. 496 
Therefore, we need to focus on the main reasons for DM variance in emission inventories based on 497 
bottom-up approach. 498 
  According to Eq. (2), DM equals the product of the burned area, fuel load, and FB in the bottom-499 
up inventories, with the product of the last two terms being fuel consumption. Fig. 3 compares the 500 
burned area and fuel consumption of GFED4s and FINN1.5 emission inventories for the seven 501 
largest BB regions. The ratio GFED4s/FINN1.5 represents the relative difference in burned area or 502 
fuel consumption between the two emission inventories. In general, the difference in burned area 503 
between the two inventories varies greatly with latitude, and the ratio of GFED4s to FINN1.5 504 
fluctuates in the range of 0.28-1.94. In contrast, differences in fuel consumption between the two 505 
inventories were more consistent, with GFED4s consistently having higher fuel consumption than 506 
FINN1.5 in all regions except SEAS. In the next sections, we discuss the main reasons for the 507 
differences in burned area and fuel consumption between the two datasets. 508 

3.2.1 Effect of land cover on burned area 509 

  As shown in Fig. 3a, the differences in the burned area between the bottom-up emission 510 
inventories is are highly variable. At high latitudes, the burned area of GFED4s is significantly 511 
higher than that of FINN1.5, especially in BONA, where the burned area of GFED4s is twice that 512 
of FINN1.5. In contrast, the burned area of GFED4s in the equatorial region is much lower than that 513 
of FINN1.5, and even 60% smaller in EQAS. This is a result of the difference in fire detection 514 
between the two datasets. As shown in Table 1, FINN1.5 uses the MCD14 DL fire point product, 515 
while GFED4s uses the hybrid burned area product, mainly using MCD64A1 combined with fire 516 
point products MOD14A1/MYD14A1 to enhance the detection of small fires.  517 
  These two sets of products have their own advantages in detection ability under different 518 
vegetation type conditions. The hybrid burned area product detects burned areas over a period of 519 
time (up to days), while the fire point product detects burned areas primarily in near real real-time 520 
(Roy et al., 2008). In addition, the burned area used in GFED4s (hybrid burned area product) is not 521 
affected by the vegetation canopy when the leaf area index (LAI) is less than 5. Therefore, a higher 522 
burned area is estimated in GFED4s in BONA and BOAS than in FINN1.5. However, in areas with 523 
more broadleaf forests and grasslands such as EQAS, SEAS, and SHSA (Fig. S2), the MCD14DL 524 
fire point product used in FINN1.5 performed better in capturing understory fires that occurred in 525 
closed canopies (Cochrane and Laurance, 2002; Cochrane, 2003; Alencar et al., 2005; Roy et al., 526 
2008). It also has an advantage in capturing sporadic and fragmented small fires in grasslands and 527 
agricultural fields due to its high resolution (Liu et al., 2020b). Furthermore, FINN1.5 assumes that 528 
each detected fire in the equatorial region will continue to burn for 2 days, and that the next day’s 529 
fire will continue to be half the size of the previous day (Table 1). Thus, the burned area of FINN1.5 530 
in the tropical zone is 2.6 times higher than those that of GFED4s, which is consistent with previous 531 
studies (Wiedinmyer et al., 2011; Pan et al., 2020). At the equator, the burned area in 532 
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grassland/agricultural fields and forests estimated by FINN1.5 is 1-3 and 4-6 times higher than in 533 
GFED4s, respectively (not shown). 534 
  It is worth noting that in Africa (NHAF and SHAF), although the dominant burnable vegetation 535 
is grassland (Fig. S2), unlike the sporadic small fires that occur in grassland in the other five regions, 536 
large continuous fires often occur in African Savannas (Liu et al., 2020b). Therefore, the hybrid 537 
burned area product used in GFED4s is more effective in detecting all fire events occurring over a 538 
period of time, with 10-20% higher burned area than FINN1.5. 539 

3.2.2 Effect of cloud obscuration on burned area 540 

  In addition to the vegetation, cloud occlusion can likewise bias the satellite detection of burned 541 
area. Figure S3 shows the time series of AOD measured by satellite or ground-based data at the 542 
Pickle Lack site of BONA from June to August 2013. In contrast to the high AOD values observed 543 
for the AERONET network, MODIS AOD is often in missing measurements when the MODIS 544 
cloud fraction is larger than 0.5. Furthermore, AERONET AOD varies dramatically over a short 545 
period of time, suggesting that different detection principles (such as detecting fire points in near 546 
real-time during satellite overpass time, or estimating the accumulation of burned area over time 547 
through changes in surface albedo over multiple satellite overpass times) can significantly affect the 548 
burned area product under high cloud fraction/smoke conditions (Paton-Walsh et al., 2012; Liu et 549 
al., 2020b; Pan et al., 2020). Although some assumptions are made in FINN1.5 in the equatorial 550 
regions as described above to improve the effect of cloud obscuration on burned area detection, 551 
these assumptions are not used for mid- and high-latitudes. GFED4s uses a hybrid burned area 552 
product and is relatively unaffected by cloud obscuration. By fusing the MCD64A1 with 553 
MOD14A1/MYD14A1 products with multi-temporal satellite data, GFED4s is able to determine 554 
the approximate date and extent of fires through post-fire ash deposition, vegetation migration, and 555 
land surface changes (van der Werf et al., 2017; Boschetti et al., 2015, 2019).  556 
  To quantitatively assess the impact of cloud obscuration on different emission inventory estimates, 557 
we perform analyzes analyses in areas with high cloud fraction (Fig. S4), intense biomass burning, 558 
and unaffected by the smoothing hypothesis used in FINN1.5. We selected the regions of North 559 
America with the most intense biomass burning (Alberta and Saskatchewan, Canada, 50°-70°E, 560 
100°-130°W, Fig. S5), and analyzed the relationship between the burned area and cloud fraction for 561 
bottom-up inventories during July from 2013 to 2016 (Fig. S6). As shown in Fig. 4, with the increase 562 
in cloud fraction, the SMAPE of the two bottom-up emission inventories increases from 150% to 563 
180%, while the Pearson correlation declines from 0.85 to around 0.75. These results demonstrate 564 
that the uncertainty in the burned area for two bottom-up emission inventories increases by ~20% 565 
during high cloud fraction compared to low cloud fraction conditions.  566 

3.2.3 Causes of Fuel Consumption differences 567 

  Fuel consumption is another factor that affects DM differences between two BB emission 568 
inventories. As shown in Fig. 3b, the fuel consumption of GFED4s is 30-75% higher than that of 569 
FINN1.5 in almost all BB areas except SEAS. The difference in fuel consumption between the two 570 
emission inventories is larger in the tropics than in the high latitudes. In this study, we invert the 571 
fuel consumption for each vegetation biome b in a given area as follows: 572 
                          𝐹𝐶" = 𝐷𝑀" 𝐵𝐴⁄                           (8) 573 
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The DM corresponding to each biome in FINN1.5 and GFED4s has been obtained according to 574 
equation (6), and BA is the total burned area obtained from the emission inventory. As shown in Fig. 575 
5, at high latitudes (e.g., BONA and BOAS), and in the equatorial region (such as EQAS), relatively 576 
high fuel consumption comes from peatlands in GFED4s. According to previous studies, peatlands, 577 
a type of soil rich in organic matter, store large amounts of carbon underground (van der Werf et al., 578 
2010b, 2017; Gibson et al., 2018; Kiely et al., 2021; Vetrita et al., 2021), and emit large amounts of 579 
CO when burned. Peatlands contribute 30-60% of the total fuel consumption in BONA, BOAS, and 580 
EQAS (Fig. 5a-c).  581 
  Besides peatlands, GFED4s tends to have higher fuel consumption than FINN1.5 due to forest 582 
contributions. Forests (including tropical, temperate, and boreal forests) account for more than 50% 583 
of the fuel consumption in all burning regions except EQAS, where peatlands dominate the fuel 584 
consumption. Moreover, forest fuel consumption in GFED4s is generally much higher than in 585 
FINN1.5 except in BOAS and SEAS (Fig. 5). Since fuel consumption is equal to the product of fuel 586 
load and FB (the percentage of specific plants that can be adequately burned, Eq. 2), different 587 
vegetation classifications may be responsible for large differences in fuel consumption between 588 
emission inventories. For example, for woody vegetation such as forests, GFED4s assumes a range 589 
of FB between 40-60% for temperate and tropical forests and 20-40% for boreal forests, while 590 
FINN1.5 assumes that all woody vegetation burns no more than 30% (van der Werf et al., 2010; 591 
Wiedinmyer et al., 2011). Thus, in terms of FB alone, the forest fuel consumption of GFED4s is 592 
therefore 0.67-1.3 times greater than that of FINN1.5, which is one of the main reasons for the 593 
difference in fuel consumption. 594 

3.3 Primary causes of DM inconsistency in the top-down approach 595 

  We also analyze the causes of the difference in DM between BB emission inventories estimated 596 
by the top-down method. According to Eq. (3), it is evident that the empirical factor and the radiative 597 
energy of the fire are the key factors that cause the discrepancy in the top-down emission inventories. 598 
The QFED2.5 and VFEI0 inventories we have chosen use different satellites for the fire detection 599 
products. For example, for the fire radiative power product, QFED2.5 is based on the Moderate 600 
Resolution Imaging Spectroradiometer (MODIS) inversion of the NASA Terra and Aqua combined 601 
satellites, while VFEI0 is based on the Visible Infrared Imaging Radiometer (VIIRS) inversion of 602 
the combined polar polar-orbiting satellites Suomi NPP and NOAA-20, although the algorithms are 603 
similar. However, there are systematic deviations due to different satellites, specific tests and 604 
metadata, and resolutions. The VIIRS 375 m fire product used by VFEI0 has a finer resolution and 605 
is more advantageous for small fire spot detection than other coarser resolution (1 km) fire spot 606 
detection products. The FRP density used in VFEI0 is much higher than that of QFED2.5 due to the 607 
fine horizontal resolution.   608 
  The estimations of FRP and DM are highly dependent onstrongly influenced by the horizontal 609 
resolution of satellite products. For example, in the BONA region duringin July (the month with the 610 
most intense burning at the position of 50°-70°N, 100°-130°W), the total QFED FRP (average FRP 611 
measured by MOD and MYD) is 1.5 times higher than VFEI0 (Fig. S7), ). Additionally, the differing 612 
α values between QFED2.5 and VFEI0 in BONA can potentially result in higher DM in QFED2.5 613 
compared to VFEI0 by a factor of 1.3-3.8. However, the actual but DM in the QFED2.5 inventory 614 
is 30% lower than in VFEI0. The relatively high FRP density used in VFEI0 (Fig. S8) results in a 615 
higher DM than in QFED2.5 due to its higher superior horizontal resolution, enabling which 616 
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facilitates capturintheg precise areas delineation of fire areas. It is important to nNote that while the 617 
empirical factor also has an impactinfluences on the amount of DM, but itits impact should not be 618 
as significant as the difference caused by the horizontal resolution of satellite products (Kaiser et 619 
al., 2012; Darmenov et al., 2015; Ferrada et al. 2022). 620 
  Previous studies have shown that cloud occlusion also causes bias in FRP detection (Liu et al., 621 
2020b). We also take BONA as a pilot region to analyze the influence of cloud fraction on FRP in 622 
QFED2.5 and VFEI0. According to Fig. 5c-d, the SMAPE of the two emission inventories rises as 623 
the cloud fraction increases, and the Pearson correlation is noticeably low under the maximum cloud 624 
fraction. While QFED2.5 uses the "sequential approach" (section 2.1) to correct for the missing 625 
FRP in cloud-obscured fires, this correction is not considered in VFEI0. Therefore, although the two 626 
top-down emission inventories use similar algorithms, significant bias occurs under high cloud 627 
fraction conditions, with QFED2.5 estimating DM much higher than VFEI0. 628 

3.4 Primary causes of EF inconsistencies 629 

  Although DM differences dominate the inconsistencies of CO emissions across major BB regions, 630 
the contribution of EFs is still not negligible in some regions. For example, in EQAS, BONA, and 631 
BOAS, the contribution of EFs is up to 50%, which is comparable to that of DM. Considering that 632 
EF is closely related to vegetation types, we calculated the emission factor of a single biome type 633 
in a given region as follows: 634 
                          𝐸𝐹" = 𝐶𝑂" ∑ 𝐷𝑀"⁄                           (8) 635 
where b represents one of the seven biome classifications in this study (Fig. S1), and DM here is 636 
the sum of the value from each biome in a certain region.   637 
  The comprehensive EFs of GFED4s are higher in BONA, BOAS, and EQAS regions than in 638 
other inventories, with vegetation classification being one of the most important factors (Fig. 6). 639 
For example, in EQAS at low latitudes, peatlands in GFED4s account for 65% of the regional 640 
comprehensive EF. In contrast to GFED4s, FINN1.5, and QFED2.5 do not consider this organic 641 
matter-rich land as a source of burning, and they classify this category of land cover type as savanna 642 
or grass. The CO emission factor for peatlands is four times higher than the CO emission factor for 643 
savanna or grass (Table 2), ultimately making the comprehensive EF for GFED4s 60-70% higher 644 
than that of the other three datasets. It is worth noting that although the classification of Peatland 645 
exists in VFEI0 (Ferrada et al., 2022), due to differences in terrestrial ecological divisions (Olson et 646 
al., 2001; http://www.worldwildlife.org/science/data/item1875.html), peatlands identification areas 647 
are much smaller than GFED4s inventory. Therefore CO emissions from peatlands in GFED4s are 648 
much higher than in the VFEI0 inventory (Figure 3-9a; Ferrada et al., 2022). 649 
  In both BONA and BOAS, we find that the comprehensive EFs in the four datasets are ranked as 650 
follows: GFED4s>FINN1.5>QFED2.5>VFEI0, where the EF of GFED4s is about 1.5 times higher 651 
than that of VFEI0. Unlike the low-latitude regions, the classification of forests in different emission 652 
inventories is the main reason for the difference in comprehensive EF in high-latitude regions. At 653 
high latitudes (50° - 70°N), GFED4s, QFED2.5, and FINN1.5 identify more forests than VFEI0 654 
(Fig. S1) because the former three classify some shrubs (e.g., closed shrublands and woody savanna) 655 
as forests, while the latter classify them as grassland. Forests contribute to 70% and or more of the 656 
comprehensive EFs at high latitudes in the first three emission inventories, but only 8% to the 657 
comprehensive EF in VFEI0. The remaining gap in the absolute contribution of forests is caused by 658 
the difference in the selected emission factors and the horizontal resolution of the satellite products. 659 
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3.5 Contribution of DM and EFs to differences in OC emissions  660 

  The above analysis completes the comparison of gaseous pollutant CO among different emission 661 
inventories. In this section, we will take OC as an example to compare the emission differences of 662 
particulate pollutants. As shown in Fig. 7, the global OC emissions of four datasets range from 14.9 663 
to 42.9Tg, with the highest emissions from QFED2.5, which is consistent with previous studies 664 
(Carter et al., 2020; Pan et al., 2020). According to the statistical method in section 3.1, we 665 
quantified the magnitude of OC emission differences between regions and ranked them as follows: 666 
BONA>BOAS>NHAF>SHAF>SEAS>SHSA>EQAS. Compared to the CO emission differences 667 
(Fig. 2), the difference in OC emissions becomes larger for BOAS and smaller for low latitude 668 
regions of SEAS and EQAS. Since DM should be consistent in the same emission inventories for a 669 
given time and area, the magnitude of emissions for different species depends on changes in 670 
emission factors. Considering that the emission factors of aerosol-related emission species such as 671 
OC, BC, NH3, SO2, and PM2.5 have been corrected based on the satellite retrieved AOD of the 672 
QFED2.5 emission inventory (Table 2), the EFs of OC in QFED2.5 are much higher than that of the 673 
other three emission inventories (Fig. 7b). As a result, the OC EFs in the QFED2.5 emission 674 
inventory were enlarged by a factor of 1.8-4.5 times through the correction of BOAS, SEAS and 675 
EQAS (Table 2). In contrast, the other three emission inventories were not corrected for OC EFs. 676 
  Unlike the CO EFs, the OC EFs of GFED4s in equatorial regions are largely consistent with the 677 
FINN1.5 and VFEI0 emission inventories. Although burning organic matter-rich soil substrates is 678 
generally thought to release large amounts of CO, their ability to release OC is similar to that of 679 
vegetation such as shurubs and some forests. Thus, despite CO emissions bias in EQAS being 680 
largely affected by peatlands, differences in OC emissions among the four inventories are not 681 
significant. 682 
  Compared with Pan et al. (2020), it is obvious that the top-down approach will not lead to an 683 
increase in emission deviation of the particulate-phase species. The correction of EFs, however, is 684 
the root cause of the increased bias in OC emissions. Pan et al. (2020) reported that QFED2.5 and 685 
FEER1.0 had the highest global OC emissions, while GFAS1.2 had much lower OC emissions. In 686 
this study, the largest OC emission also appears in QFED2.5, but the global total OC emissions of 687 
the recently released VFEI0 are relatively low.  688 

4 Model evaluation based on emission inventories application 689 

4.1 Comparison of simulations with MOPITT CO 690 

  One of the main goals of this study is to provide a confidence assessment of the BB emission 691 
inventories by comparing model simulations with observations. A comparison between model 692 
simulations using different emission inventories and ground-based/satellite satellite-retrieved data 693 
for the respective fire seasons (Table 3) of the main BB regions is explored below. In this study, we 694 
compared the model results with measurements from two perspectives: the spatial distribution of 695 
BB pollutants, and the time-varying characteristics of BB pollutants. 696 
  Figure 8 depicts the spatial distribution of CO column burdens in SHSA and SHAF during the 697 
fire seasons. In SHSA, the simulated CO column burdens using different emission inventories are 698 
all consistent with the spatial distribution pattern of MOPITT CO column burden, with the peak 699 
value located in the Amazon rainforest. However, the central value of MOPITT CO column burden 700 
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is as high as 2.8×1018 molecules cm-2, which is slightly higher than the simulated results. Among 701 
the four sets of emission inventories, the peak amplitude and spatial distribution of simulated CO 702 
column burdens are closest to the satellite satellite-retrieved data after applying the GFED4s and 703 
VFEI0. In SHAF, however, the model underestimated the peak CO column burden after applying 704 
all emission inventories except VFEI0. 705 
  In addition to SHSA and SHAF, a comparison of regionally averaged CO column burdens 706 
between our simulations and MOPITT CO in major BB regions is also shown in Table 3. In the 707 
Northern Hemisphere, our simulations are significantly underestimated compared to MOPITT CO, 708 
while those in the Southern Hemisphere are consistent with satellite retrievals. Surprisingly, the 709 
simulated spatial distributions and magnitudes of CO in the Southern Hemisphere using the recently 710 
released VFEI0 agree very well with observations. In contrast, the underestimation of CO 711 
concentrations in the Northern Hemisphere is partly due to uncertainty in anthropogenic emissions, 712 
as we assume anthropogenic emissions at 2010 levels, which are lower than those during the 2013-713 
2016 period. 714 
  Note that simulated CO concentrations are 30-40% lower than MOPITT CO at high latitudes. 715 
Besides the impact of emission inventories, there are also large uncertainties in satellite-retrieved 716 
CO concentrations (Lin et al., 2020a; Pan et al., 2020). In addition, OH loss, long-range transport, 717 
and photochemical reactions involved in the CESM2-CAM6 model simulations also lead to 718 
uncertainties in simulated CO. For example, MOZART-4x contains an additional OH oxidation 719 
pathway for CO, which may lead to lower CO concentrations (Lamarque et al., 2012; He and Zhang, 720 
2014; Barré et al., 2015; Brown-Steiner et al., 2018; Emmons et al., 2020). In comparison, the 721 
simulated CO by using GFED4s is closest to the MOPITT CO value in terms of spatial distribution 722 
and peak magnitude at high latitudes in the Northern Hemisphere, which is superior to other 723 
emission inventories. 724 

4.2 Comparison of simulations with MODIS AOD 725 

  We compared MODIS-derived aerosol optical depth (AOD) data with simulated AOD in major 726 
BB areas. Figure 9 shows the spatial distribution of AOD in SHSA and SHAF during their fire 727 
seasons. The simulated AOD is significantly higher than the MODIS AOD in SHSA. Note that 728 
primary organic aerosols (POA) associated with BB account for only 15-23% of the total AOD in 729 
Amazon, while secondary organic aerosols (SOA) account for approximately 50% of the total AOD. 730 
Furthermore, overestimation of simulated AOD occurs throughout the year, not just during the fire 731 
season. Considering the high biogenic emissions in this region, the overestimation of AOD could 732 
be attributed to the formation of biogenic SOA (He et al., 2015; Tilmes et al., 2019). In SHAF, the 733 
spatial distribution and magnitude of simulated AOD using GFED4s and VFEI0 are close to those 734 
of the MODIS AOD. In comparison, our results show that AOD is significantly underestimated 735 
using FINN1.5, but largely overestimated using QFED2.5. 736 
  Table 4 shows the mean values of model-simulated AOD and satellite measurements for each 737 
region during its fire season. The influence of the BB emission inventory has little effect on the 738 
simulated AOD value in the Southern Hemisphere, and the regional average AOD deviation is 739 
within 20%. In contrast, the average deviation of simulated AOD driven by four BB inventories can 740 
be as high as 40% in the high latitudes of the Northern Hemisphere. Comparatively, GFED4s and 741 
QFED2.5 are more suited for high latitudes in the northern hemisphere, whereas the VFEI0 is most 742 
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suitable for the southern hemisphere for AOD simulations. In Africa, QFED2.5 is not recommended 743 
due to its considerable overestimation. 744 

4.3 Comparison of simulations with ground-based measurements 745 

  In the above sections, we merely discussed the spatial distribution and the magnitude of pollutants 746 
during fire seasons. To further analyze whether each dataset can effectively capture the 747 
instantaneous combustion of BB, we compared the value of simulated daily AOD with that of 748 
ground-based observation (Fig. 10). In order tTo be more representative, we selected stations in 749 
each BB region with a large amount of data during fire season, allowing a comprehensive 750 
assessment of the global BB emission inventories. The specific locations of the selected 12 751 
AERONET sites are shown as red triangles in Fig. 1b. 752 
  At EQAS sites such as Palangkaraya and Jambi, the observed AOD from September to November 753 
in 2014/2015 is generally higher than 1, with peaks exceeding 5, reflecting the intense BB events 754 
(Fig. 10a-b). Only simulations using GFED4s are consistent with observed AOD during strong BB 755 
events, with a slight underestimation of 33-38%, while none of the other simulations could capture 756 
the BB process. Considering the significant contribution of peatlands to BB emissions in EQAS in 757 
GFED4s, our results suggest that it is important to include the burning of organic matter-rich soils 758 
in BB emission inventories. At SEAS sites such as Omkoi and Ubon Ratchathani, the peak AOD 759 
occurs from February to April at a value of about 2, and all simulations applying the four emission 760 
inventories capture the observed changes in AOD (Fig 10c-d). However, due to the uncertainty of 761 
anthropogenic emissions, the simulated AOD is usually smaller than the actual observed value in 762 
EQAS. Note that simulations using QFED2.5 are most consistent with observed AOD during intense 763 
biomass burning events. 764 
  At the Namibe station of SHAF (Fig. 10e), the simulated AOD agrees best with the measured 765 
results after using FINN1.5 and GFED2.5, with NMB values within ±8%, indicating these two 766 
emission inventories can characterize the day-to-day variability of the intense BB process. However, 767 
Namibe is located downwind of the dust source, and dust aerosols contribute more than 50% to the 768 
total AOD in this area. To better evaluate the performance of the four BB emission inventories in 769 
SHAF, we chose another site, Mongu Inn, located in the interior of Southern Hemispheric Africa, 770 
where dust and sea salt accounted for 20-30% of the total AOD. At Mongu Inn, all simulations 771 
underestimate AOD by 46-71%, and only QFED2.5 and VFEI0 emission inventories are able tocan 772 
capture a few peaks during intense biomass burning events (Fig. 10f). In SHSA, while Figures 9 773 
and 10h show an overall overestimation of simulated AOD compared to MODIS AOD, at the 774 
Brazilian Alta Floresta site east of the Amazon, simulated AOD agrees very well with the ground-775 
based observations (Fig. 10g). In general, the simulations using the VFEI0 emission inventory for 776 
the Southern Hemisphere are close to the measurements. 777 
  At high latitudes, simulations driven by GFED4s and QFED2.5 better capture the observed peak 778 
AOD, with regional NMB values of less than 40% (Fig. 10i-l), suggesting that these two simulations 779 
can reproduce the intense BB process. In contrast, FINN1.5 and VFEI0 are obviously not suitable 780 
for describing the BB process in these sites, and the simulated AOD is underestimated by 60-80%. 781 

5 Conclusion and Discussion 782 

  The establishment of BB emission inventories follows two basic approaches, one is a “bottom-783 
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up” approach, which usually establishes inventory information based on observed surface data (such 784 
as detected fire points, burned area, and vegetation types). The other one is a “top-down” approach, 785 
that is, the vegetation consumption is inversely calculated from the radiative energy release rate of 786 
vegetation burning observed by satellite, and the vegetation type information is superimposed to 787 
establish the inventory. In this study, we examine four commonly used BB emission inventories 788 
(two bottom-up inventories (GFED4s and FINN1.5) and two top-down inventories (QFED2.5 and 789 
VFEI0)) are chosen to better understand the uncertainty uncertainties of associated with BB 790 
emissions. , two of which are bottom-up inventories (GFED4s and FINN1.5), and two are top-down 791 
inventories (QFED2.5 and VFEI0). We analyze the differencevariations in CO and OC emissions 792 
acrossfrom these inventories for seven major BB regions  around the worldworldwide from 2013 793 
to 2016. We explore the differences between gaseous and particulate emission inventories, and 794 
quantifying the impact of vegetation classification, cloud cover, and emission factors on emission 795 
inventory bias. Additionally, wWe also applyied the foutheser BB emission inventories to the global 796 
model CESM2-CAM6 to assess the model’s ability performance to in simulatinge pollutants, by 797 
comparing the simulations with measurements from against satellite products orand ground-based 798 
observations.  799 
  The total global CO emissions exhibit significant variability in among the four inventories vary 800 
greatly, with their annual average values fluctuating ranging between from 252- to 336 Tg, and the 801 
a maximum deviation rate exceedings 30%. In some certain regions such as BONAs, changes in 802 
CO emissions are even larger. , For example, GFED4s in BONA emits 5.8 times more CO emissions 803 
than FINN1.5, while the coefficient variation of the four emission inventories in EQAS is as high 804 
as 0.67. Overall, CO emissions from GFED4s are higher than those from VFEI0 and QFED2.5 805 
inventories in all regions, with the lowest CO emissions in FINN1.5 inventory. DM is dominates 806 
identified as the primary contributor to the variance among BB emission inventories, accounting for 807 
50-80% of the regional bias, while comprehensive EFs account forcontribute the remaining 20-50%. 808 
NotablyInterestingly, the contributions of DM and comprehensive EFs to the emission inventory 809 
differences in BB emission inventories are comparable across equatorial regions and Northern 810 
Hemisphere high latitudes. 811 
  There is a largehe uncertainty in DM due toarises from the calculation of underlying fuel 812 
consumption and burned area, which in turn is relatedlinked to the vegetation classification method, 813 
fire detection product algorithm, and cloud/smoke masking used in the emission inventory. First, 814 
the Vvegetation classification method significantly impactsaffects fuel loading and the Fraction of 815 
Biomass burned. , with discrepancies contributing to biases in fuel consumption. At In regions at 816 
both low and high latitudes (except Southeast Asia), the fuel consumption term of FINN1.5 is 817 
exhibits a fuel consumption term that is less than 50% of  that of GFED4s,, where with the 818 
vegetation classification methodology contributes contributing significantly primarily to this bias. 819 
For example, in EQAS, while GFED4s classifies a significant protion of the area as peatland, 820 
FINN1.5 identifies it as grassland, resulting in 37% lower fuel consumption for FINN1.5 than 821 
GFED4s in this region. In addition, GFED4s assumes that the FB of tropical forest is 40-60%, while 822 
FINN1.5 assumes that the FB of forests does not exceed 30%, so the FB of forests in FINN1.5 is 823 
25-50% lower than GFED4s. Similarly, the fuel consumption of FINN1.5 in high latitudes is also 824 
lower than that of GFED4s, with a deviation of up to 50% or more. The classification of peatlands, 825 
the amount of forest burnable (fuel load) and burning percentage of the forest remain the main 826 
contributions. Second, dDifferent fire detection products can also causeintroduce bias in the 827 
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estimated burned area, leading toaffecting uncertainty in DM. For example, the MCD14DL used in 828 
FINN1.5 identifies fire points based on brightness temperature, which can effectively detect 829 
understory burns in tropical rainforests, and can easily capture small area burns in agricultural fields. 830 
Furthermore, combined with the smoothing assumptions for equatorial regions, the estimated 831 
burned area in FINN1.5 is generally larger than that in GFED4s at low latitudes. Last but not least, 832 
sSatellite transit/cloud obscuration can similarly affect influences DM between emission inventories 833 
by influencing affecting the burned area/fire radiative energyidentification of burned area/fire 834 
radiative energy. In the Africa grasslands where fires develop rapidly, due to the fast fuel 835 
consumption, the burned area often has a large difference in a short period of time. If the fire point 836 
monitoring product based on brightness temperature data identification is used, there may be missed 837 
detections of fire that occur during the satellite transit/cloud occlusion, but fire area product 838 
indentified based on surface albedo changes can better avoid missed detections caused by satellite 839 
transit/cloud occlusion. Cloud cover at high latitudes substantially has a significant impacts on the 840 
uncertainty of emission inventoriesuncertainty. , with According to our results, the bias between 841 
bottom-up (or top-down) emission inventories in BONA increasinged by 20% in July in BONA with 842 
under increased higher cloud fraction. 843 
  We extend our analysis to In addition to gaseous emissions, we also analyzed the differences in 844 
emissions of particulate pollutants, among emission inventories using OC emissions as an example. 845 
The four sets of BB emission inventories fluctuate between 14.9 and 42.9 Tg of gGlobal average 846 
annual OC emissions vary widely among the four inventories, ranging from 14.9 to 42.9 Tg, a 847 
greater variation than the gaseous speciesdemonstrating greater variability than gaseous species like 848 
CO. Similar to the results for CO emission variability, current BB emission inventories have large 849 
variability at high northern latitudes. Unlike differences in CO emissions, there is less variability in 850 
comprehensive EFs over the equator. In particular, the QFED2.5 inventory adjusted emission factors 851 
using satellite aerosol optical thickness (AOD) to enhance emissions of particulate matter including 852 
OC. In addition, peatlands only have comparable OC emission capacity to the shrub, which makes 853 
the impact of vegetation classification differences on OC EFs less significant, ultimately resulting 854 
in lower variability in particle-phase emissions in equatorial regions. BB OC emissions exhibit large 855 
variability at high latitudes in the Northern Hemisphere, with QFED2.5 adjusting emission factors 856 
based on satellite aerosol optical thickness (AOD) to enhance particulate matter emissions. 857 
  We aApplyingied four sets of BB emission inventories to CESM2-CAM6, and we compared the 858 
model-simulated CO column concentrations with the MOPITT satellite inversion CO column 859 
concentrations. According to our simulations, CO simulated using GFED4s is closest to satellite 860 
observations in almost all regions except southern Asia and Africa. We also compared model results 861 
with AOD retrieved from MODIS satellites or measured by AERONET. Simulated AOD at high 862 
northern latitudes is often underestimated when using current mainstream BB emission inventories. 863 
For example, the simulated regional average AOD is 8-46% lower than MODIS in North America. 864 
Unlike the high latitudes, the simulated AOD is significantly overestimated at the equator, and the 865 
regional average AOD simulated by the model in Northern Hemispheric Africa is 66-91% higher 866 
than MODIS. In addition, comparing model simulated AOD with AERONET ground-based 867 
observations, we find that GFED4s performs best in EQAS for daily variability during intense 868 
burning. In SEAS, although FINN1.5 can better represent the magnitude of the overall OC 869 
emissions in the BB season, QFED2.5 can capture the day-to-day variation characteristics of intense 870 
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combustion. In the Southern Hemisphere, the latest VFEI0 emission inventory performs well, and 871 
the simulated AOD is able to capture the BB processes.  872 
  Our study assesses the global applicability of BB emission inventories and has some implications 873 
for future studiesy. Overall, GFED4s and QFED2.5 inventories for the northern high latitudes 874 
capture the magnitude and daily variation of OC emitted throughout the BB season. These two 875 
emission inventories outperformed the others when applied to studies of interactions between BB 876 
aerosol and weather/climate. In the Southern Hemisphere, the spatial distribution and daily variation 877 
characteristics of CO and AOD simulated by the model are closest to the observed values when the 878 
latest VFEI0 emission inventory is applied. For the equator, the situation is more complicated, and 879 
we recommend combining emission inventories according to the research objectives. For example, 880 
GFED4s performs best in day-to-day changes during intense burning in equatorial Asia. In 881 
Southeast Asia, combining OC magnitude in FINN1.5 and daily variation in QFED2.5 is the optimal 882 
choice. 883 

It is worth noting that emission factors (as listed in Table 2) significantly contribute to the 884 
differences in BB emissions. However, actual emission factors vary widely depending on the 885 
different states of combustion (Pokhrel et al., 2021). Further study is needed to understand the 886 
impact of combustion efficiency on the BB EFs and optimize them. 887 
 888 
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https://portal.nccs.nasa.gov/datashare/iesa/aerosol/emissions/QFED/v2.5r1/ (QFED2.5), and 891 
http://bio.cgrer.uiowa.edu/VFEI/DOWNLOAD/ (VFEI0). AOD and cloud fraction from MODIS 892 
dataset can be obtained from https://ladsweb.modaps.eosdis.nasa.gov/search/. MOPITT CO can be 893 
obtained from https://doi.org/10.5067/TERRA/MOPITT/MOP03JM.009. AERONET AOD is 894 
avaiable from https://aeronet.gsfc.nasa.gov/new_web/download_all_v3_aod.html. The Modern-Era 895 
Retrospective analysis for Research and Applications, version 2 (MERRA-2) reanalysis data is 896 
available from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/. All data analyzed during the 897 
current study are included in this published article and its supplementary information. Raw model 898 
simulations are available from the corresponding author on reasonable request. 899 
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Table 1. Brief introduction of four BB inventories 1204 
Inventory “Bottom-up” “Top-down” 

 FINN1.5 GFED4s QFED2.5 VFEI0 

Temporal range 2002- (NRT) a 1997-2022b 2000- (NRT) a 2012- (NRT) a 

Spatio-temporal resolution 1km, daily 0.25°, monthly (daily fraction) 0.1°, daily (0.25° × 0.375°, NRT a) 500m,  daily 

Primary satellite fire input MCD14DL C5 active fire 

area (1km) 

MCD64A1 C5.1 burned area 

(500m) 

MOD14/MYD14 C6 FRP (1km) VNP14IMG FRP (1km) 

Statistical 

boosts/Adjustion 

Smooth assumption  

in tropics c 

Small fire boost 

(MOD14A1/MYD14A1) 

Cloud-gap adjusted FRP density  

Primary land use/land 

cover (LULC) 

MCD12Q1 (IGBP), 2005 MCD12Q1 (UMD), 2001-2012 IGBP-INPE  MCD12C1(IGBP) + 

The Köppen Climate 

Classification 

Peatland fire × Olson et al. (2001) × Ferrada et al. (2022) 

Conversion to dry matter Hoelzemann et al. (2004) CASA biogeochemical model 

(van der Werf et al., 2010) 

QFED FRP vs GFED2 dry matter 

global calibration 

VFEI FRP vs GFED3.1 dry 

matter global calibration 

Emission factors Akagi et al. (2011), 

Andreae and Merlet 

(2001)  

Akagi et al. (2011) + updates 

from Andreae et al. (2013) 

Andreae and Merlet (2001),  

Akagi et al. (2011) d 

Akagi et al. (2019) 

Speciation 41 species 27 species 17 species 46 species 

References Wiedinmyer et al. (2011) van der Werf et al. (2017) Darmenov and da Silva (2015) Ferrada et al. (2022) 

a: NRT = near real time;     b: 2017-2022 are beta version releases;   1205 
c: In equatorial region (30°N-30°S), each detected fire will be counted as 2-day, assuming the second day’s fire will continue to be half the 1206 
size of the previous day; 1207 
d: Particulate matter-related emissions from biomass burning (e.g. BC, OC, NH3, SO2, and PM2.5) were corrected from emission factors 1208 
based on MODIS AOD. 1209 

 1210 
 1211 
  1212 
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Table 2. CO and OC emission factors used in the four biomass burning emission inventories.  1213 
 Emission factors across inventories and vegetation types (g species per kg dry matter) 

Types CO  OC 

 FINN1.5 GFED4s QFED2.5 VFEI0  FINN1.5 GFED4s QFED2.5 VFEI0 

Temperate 

forest 
108Ak 88Ak 107AM 113An  6.97AR 9.6AM 41.09* 10.9An 

Boreal forest 118Ak 127Ak 107AM 121An  7.31Mc 9.6AM 41.09* 5.9.An 

Savanna and 

Grass, shrub 
59Ak/68Ak 63Ak 65AM 69An  2.6Ak/6.61Mc 2.62Ak 6.12* 3An 

Tropical forest 92Ak 93Ak 104AM 104An  4.77Ak 4.71Ak 13* 4.4An 

Agricultural 111Ak 102Ak / 76An  3.3AM 2.3Ak / 4.9An 

Peatlands / 210# / 260An  / 6.02# / 14.2An 

Ak: Akagi et al. (2011);  AM: Andreae and Merlet (2001);  An: Andreae (2019);  AR: Andreae and Rosenfeld (2008);  Mc: McMeeking et al. (2009) 1214 
*: QFED2.5 PM-related emission factors are obtained by multiplying the base EF multiplied by its biome-specific enhancement factor 1215 
#: Emission factors for peatland is the average of lab measurements of Yokelson et al. (1997) and Christian et al. (2003) 1216 
 1217 
  1218 
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Table 3. Comparison of CESM-CAM6 simulated CO column averages and satellite retrieved CO 1219 
column averages during the fire season. 1220 

  Satellite CESM2-CAM6 
Regions Fire-

Season 
MOPITT FINN1.5 GFED4s QFED2.5 VFEI0 

EQAS Jan.-Apr. 1.88 1.66 1.69 1.61 1.47 
BONA Apr.-Aug. 2.03 1.29 1.47 1.30 1.32 
SEAS Feb.-Apr. 2.40 2.10 1.94 1.89 1.95 
SHAF May.-Nov. 2.31 1.75 2.04 1.99 2.19 
NHAF Jan.-May. 2.66 1.96 2.02 2.05 2.10 
BOAS Mar.-Nov. 2.05 1.31 1.42 1.33 1.34 
SHSA July.-Dec. 1.77 1.75 1.80 1.76 1.80 

 1221 
  1222 
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Table 4. Same as Table 3 but for AOD 1223 
 Satellite CESM2-CAM6 
Regions MODIS FINN1.5 GFED4s QFED2.5 VFEI0 
EQAS 0.23  0.22 0.25  0.23 0.21 
BONA 0.13  0.07  0.12  0.11  0.07 
SEAS 0.30  0.35 0.30  0.36  0.30 
SHAF 0.33  0.31  0.37  0.53  0.40 
NHAF 0.32  0.53  0.54  0.61  0.55 
BOAS 0.15  0.11  0.13  0.16  0.11 
SHSA 0.14  0.30  0.31  0.34  0.29 

 1224 
 1225 
  1226 
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 1227 

 1228 

Figure 1. (a) The fraction of BB CO emissions to the sum of anthropogenic and BB CO emissions 1229 
(CO_BB/CO_Total) during 2013-2016 and (b) the spatial distribution of CO emissions (FINN1.5 was 1230 
used as an example). The red dots in Fig. 1(a) are the fire points from the MCD14DL satellite product. 1231 
In Fig. 1(b), seven regions with high BB emissions taken from those applied by van der Werf et al. (2006, 1232 
2010) are marked with black boxes, and the red triangles represent 12 AERONET stations. In this study, 1233 
seven major BB regions includes Boreal North America (BONA), Boreal Asia (BOAS), Southeast Asia 1234 
(SEAS), Equatorial Asia (EQAS), North Hemisphere Africa (NHAF), South Hemisphere Africa (SHAF), 1235 
and South Hemisphere South America (SHSA). 1236 

 1237 

 1238 

 1239 
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 1240 

Figure 2. (a) Average annual CO emissions of four biomass burning emission inventories across seven 1241 
major BB regions during 2013-2016. The cv, defined as the ratio of the standard deviation to the mean, 1242 
is the coefficient of variation among the emissions of four datasets. (b) and (c) are the same as (a), but 1243 
for the emission factor of CO (EFCO) and Dry Matter. 1244 

 1245 

 1246 

 1247 

 1248 

 1249 

 1250 
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 1252 
Figure 3. Annual burned area (a) and fuel consumption (b) of two bottom-up datasets (FINN1.5 and 1253 
GFED4s) across seven regions from 2013 to 2016. 1254 
 1255 
  1256 
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 1257 

 1258 
Figure 4. The differences in (a-b) burned areas and (c-d) total FRP detected by two inventories under 1259 
different cloud fraction in a pilot region of BONA. These differences are quantified by two indicators: 1260 
SMAPE and Pearson's R. Could fraction data is calculated from MODIS product MCD06COSP. 1261 
 1262 
  1263 
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 1264 

 1265 
Figure 5. Annual average fuel consumption of two bottom-up datasets (FINN1.5 and GFED4s) across 1266 
seven regions from 2013 to 2016. The contributions of the seven biomes are shown in different colors. 1267 
 1268 
  1269 
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 1270 

 1271 
Figure 6. Regional comprehensive emission factors for four datasets (FINN1.5, GFED4s, QFED2.5, 1272 
and VFEI0) in seven regions from 2013 to 2016. The contributions of the seven biomes are shown in 1273 
different colors. 1274 
 1275 
  1276 
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 1277 

 1278 

Figure 7. (a) Average annual OC emissions of four biomass burning emissions inventories across seven 1279 
major BB regions during 2013-2016. The cv, defined as the ratio of the standard deviation to the mean, 1280 
is the coefficient of variation among the emissions of four datasets. (b) is the same as (a) but for the 1281 
emission factor of OC (EFoc). 1282 

 1283 
  1284 
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 1285 

 1286 
Figure 8. Spatial distribution of CO column burdens from MOPITT and CESM2-CAM6 simulations 1287 
during the fire season (Table 3). The text above each plot identifies the name of the satellite inversion 1288 
dataset or emission inventory dataset applied by the model, namely FINN1.5, GFED4s, QFED2.5, and 1289 
VFEI0. 1290 
  1291 
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 1292 

 1293 
Figure 9. The same as figure 8 but for AOD. 1294 
 1295 
  1296 
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 1297 

 1298 
Figure 10. Comparison between AOD simulated by CESM2-CAM6 using the four datasets (FINN1.5, 1299 
GFED4s, QFED2.5, and VFEI0) and AERONET ground-based observations during fire seasons. These 1300 
AERONET sites are: (a) Palangkaraya (2.2°S, 113.9°E), (b) Jambi (1.6°S, 103.6°E), (c) Omkoi (17.8°N, 1301 
98.4°E), (d) Ubon Ratchathani (15.2°N, 104.9°E), (e) Namibe (15.2°S, 12.2°E), (f) Mongu Inn (15.3°S, 1302 
23.1°E), (g) Alta Floresta (9.9°S, 56.1°W), (h) Rio Branco (9.9°S, 67.9°W), (i) Yellowknife_Aurora 1303 
(62.5°N, 114.4°W), (j) Pickle Lake (51.4°N, 90.2°W), (k) Tiksi (71.6°N, 128.9°E), (l) Yakutsk (61.7°N, 1304 
129.4°E). 1305 
 1306 
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