Supplement for:

10

Variation in chemical composition and volatility of oxygenated organic aerosol in different rural, urban, and remote environments

5 Wei Huang¹, Cheng Wu^{2,3}, Linyu Gao⁴, Yvette Gramlich^{2,5}, Sophie L. Haslett^{2,5}, Joel Thornton⁶, Felipe D. Lopez-Hilfiker⁷, Ben H. Lee⁶, Junwei Song⁴, Harald Saathoff⁴, Xiaoli Shen^{4,8}, Ramakrishna Ramisetty^{4,9}, Sachchida N. Tripathi¹⁰, Dilip Ganguly¹¹, Feng Jiang⁴, Magdalena Vallon⁴, Siegfried Schobesberger¹², Taina Yli-Juuti¹², Claudia Mohr^{2,5,13,*}

¹Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, 00014, Helsinki, Finland

²Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden

³Now at: Department of Chemistry and Molecular Biology, University of Gothenburg, 41296, Gothenburg, Sweden ⁴Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany

⁵Bolin Centre for Climate Research, Stockholm University, 11418, Stockholm, Sweden
 ⁶Department of Atmospheric Sciences, University of Washington Seattle, Washington 98195, United States
 ⁷Tofwerk AG, 3600 Thun, Switzerland

⁸Now at: Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States

20 ⁹Now at: TSI Instruments India Private Limited, 560102, Bangalore, India

¹⁰Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, India

¹¹Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, 110016, New Delhi, India

¹²Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland

¹³Now at: Department of Environmental System Science, ETH Zurich and Laboratory of Atmospheric Chemistry, Paul

25 Scherrer Institute, 5232 Villigen, Switzerland

*Correspondence to: Claudia Mohr (claudia.mohr@psi.ch)

total PM _{2.5} ,	, double bon	d equivalent (DBE) values,	and number o	of carbon at	oms (nC) and	oxygen atom	s (nO) at differe	int locations	s and differe	it seasons.
Name	$T (^{\circ}C)$	RH (%)	O3 (ppbv)	NO ₂	SO_2	eBC	$\mathbf{Org}^{\mathrm{a}}$	$PM_{2.5^a}$	DBE	nC	0u
				(ppbv)	(ppbv)	(µg m ⁻³)	(µg m ⁻³)	(µg m ⁻³)			
MCC-t	0.3 ± 2.1	53.0±22.4	/	/	_	0.2 ± 0.4	0.3 ± 0.5	1.0 ± 1.8	3.1±0.2	8.4±0.8	6.2±0.3
MCC-d	-0.4±1.9	52.2±18.8	_	_	_	0.3 ± 0.4	0.5±0.5	1.6 ± 1.4	3.2 ± 0.1	7.7±0.7	5.8 ± 0.3
REL	19.9±3.9	76.1±15.2	22.7±12.4	11.3±5.2	$1.4{\pm}1.0$	0.7 ± 0.4	3.7±2.1	6.6±4.2	3.1 ± 0.1	9.2±0.8	6.6±0.5
RAB	24.2±3.2	83.1±15.2	25.0±12.5	0.6±0.6	0.2 ± 0.4	/	4.1±2.5	6.0±3.2	2.9 ± 0.1	8.0±0.4	5.7±0.2
RHT	8.1±6.1	66.0±23.7	36.1±10.1	$0.4{\pm}0.6$	0.2 ± 0.2	0.1 ± 0.2	1.6 ± 2.0	2.3±2.3	3.1 ± 0.1	9.1±0.6	5.7±0.3
UST-s	24.6±4.0	55.1±12.8	29.6±7.5	9.7±4.1	3.9±2.8	1.0 ± 0.3	5.1±3.2	7.1±3.3	3.4 ± 0.1	8.8±0.4	6.4±0.2
W-TSU	2.0±3.7	61.4±10.1	17.1±8.7	15.8±3.9	1.4 ± 0.8	1.2 ± 0.1	8.4±5.6	27.0±11.9	3.4 ± 0.1	8.7±0.9	6.7±0.2
UKA-s	25.9±6.6	49.8±21.0	37.4±19.8	9.6±6.4	_	0.7 ± 0.4	3.9±2.4	5.9±2.8	3.6±0.2	10.7 ± 0.8	7.0±0.4
UKA-w	13.2±3.3	56.4±13.4	27.8±10.0	9.2±7.1	0.6 ± 1.0	0.5±0.5	1.9 ± 1.6	3.9±3.6	3.5 ± 0.1	11.2 ± 0.8	7.1±0.4
UDL	16.8±4.1	73.3±16.7	11.1±13.3	34.6±22.0	/	16.1±13.3	86.4±66.7	172.7±103.8	4.0±0.2	9.4±0.4	4.9 ± 0.1
^a Data were Inc.) or an	total non-rel aerosol chem	fractory mass nical speciatic	concentration in monitor (A	from a high-1 CSM, Aerody	resolution ti ne Researcl	ime-of-flight h Inc.).	aerosol mass	spectrometer (H	R-ToF-AM	IS, Aerodyne	Research
		-		•							

 $Table S1. Campaign-average (average \pm 1 standard deviation) \ parameters \ for \ meteorology, \ trace \ gases, \ equivalent \ black \ carbon \ (eBC), \ total \ organics \ and \ rede \ average \ deviation) \ parameters \ for \ meteorology, \ trace \ gases, \ equivalent \ black \ carbon \ (eBC), \ total \ organics \ and \ rede \ deviation) \ parameters \ for \ meteorology, \ trace \ gases, \ equivalent \ black \ carbon \ (eBC), \ total \ organics \ and \ rede \ deviation) \ parameters \ for \ meteorology, \ trace \ gases, \ equivalent \ black \ carbon \ (eBC), \ total \ organics \ and \ rede \ deviation) \ trace \ deviation \ deviati$

	1	I							
Name	Total inlet flow (L/min)/	Deposition	Mass loading	FIGAERO type/	IMR	IMR	Ion	Ratio of	Ramp
	Residence time (s)	time (min)	(µg) ^c	Sample mode	body T	pressure	source	sample flow :	rate
					(°C)	(mbar)		ionizer flow	(°C/min)
MCC-t	7.0/1.4	120	0.3 ± 0.3	Aerodyne/online	45	100	Corona	2:1.3	13.3
							discharge		
MCC-d	7.0/1.4	120	0.4 ± 0.4	Aerodyne/online	45	480	X-ray	2:1.3	13.3
REL	8.6/1.2	30	1.0 ± 0.7	Aerodyne/online	45	100	Po-210	2:2	13.3
RAB	22/3.6	20	1.8±1.3	UW/online ^d	25	100	Po-210	2:2	10.0
RHT	11/4.2	30	0.5±0.8	UW/online ^d	25	100	Po-210	2:2	10.0
UST-s	8.7/0.8	112±43 ^b	3.5±1.4	Aerodyne/offline	45	100	Po-210	2:2	13.3
W-TSU	10.0/0.7	86±70 ^b	4.0±1.0	Aerodyne/offline	45	100	Po-210	2:2	13.3
UKA-s	6.4/0.8	128±99 ^b	3.2±2.1	Aerodyne/offline	45	100	Po-210	2:2	13.3
UKA-w	6.4/0.8	245±124 ^b	3.0±1.5	Aerodyne/offline	45	100	Po-210	2:2	13.3
UDL	2.4ª/2.8	3±1	0.6±0.5	Aerodyne/online	25	250	X-ray	2:1.5	6.7
		tot		 					

Table S2. Deposition parameters and instrumental parameters at different locations and different seasons.

^aAverage inlet flow of 3.5 L/min for the 1st week and 2 L/min for the next 2.5 weeks.

^bDeposition time was average ± 1 standard deviation from offline filters.

°Mass loadings were calculated based on concurrent HR-ToF-AMS or ACSM measurements.

^dFIGAERO inlet from the University of Washington, U.S., designed by Lopez-Hilfiker et al. (2014).

30 Figure S1. Mass contributions of CHO and CHON compounds to total CHOX compounds as a function of the number of carbon atoms for MCC-t (a), MCC-d (b), REL (c), RAB (d), RHT (e), UST-s (f), UST-w (g), UKA-s (h), UKA-w (i), and UDL (j).

Figure S2. Volatility distribution for MCC-t (a), MCC-d (b), REL (c), RAB (d), RHT (e), UST-s (f), UST-w (g), UKA-s (h), UKA-w (i), and UDL (j) with the modified Li et al. (2016) parameterization method (Daumit et al., 2013;Isaacman-VanWertz and Aumont, 2021).

Figure S3. Comparison between ambient temperature (*T*) and campaign-average contribution (%) of different volatility groups resulting from VBS calculations to total organics (colored in bars) and campaign-average mass weighted $\log_{10}C_{\text{sat}}$ (*T*) values (in black markers) for different campaigns with the modified Li et al. (2016) parameterization method (Daumit et al., 2013;Isaacman-VanWertz and Aumont, 2021) (same as Figure 2). Compounds more volatile than IVOC with C_{sat} higher than $10^{6.5} \,\mu\text{g m}^{-3}$ (labelled as "others") contributed negligibly (0.8–2.9 %).

Figure S4. Correlations of campaign-average mass weighted log₁₀C_{sat} values vs. other parameters. Pearson's R values
including and excluding UDL (Dehli, India) data point for eBC, Org, and PM_{2.5} are in gray bars and red bars, respectively, due to their extremely high levels at UDL (see Table S1).

Figure S5. Campaign-average sum thermograms of CHOX compounds for MCC-t (a), MCC-d (b), REL (c), RAB (d), RHT (e), UST-s (f), UST-w (g), UKA-s (h), UKA-w (i), and UDL (j). Dashed blue lines represent ± 1 standard deviation and dashed black lines indicate the sumT_{max} values.

Figure S6. Thermograms of $C_6H_{10}O_5$ compound during the whole campaign in winter Stuttgart (UST-w).

Figure S7. Campaign-average T_{max} values for $C_5H_{12}O_4$ (a), $C_6H_{10}O_5$ (b), $C_8H_{10}O_5$ (c), $C_8H_{12}O_5$ (d), $C_{10}H_{15}NO_7$ (e), and $C_{17}H_{24}O_6$ (f) vs. the corresponding campaign-average sum T_{max} values.

Figure S8. Correlations of campaign-average sumT_{max} values vs. other parameters.

Figure S9. Overview of the comparison of the average $C_{\text{sat}}(T)$ (i.e, molecular composition-derived volatility) with the 60 sumT_{max} (i.e., thermal desorption-derived volatility) for different locations and seasons (Mountain sites in triangles, Rural sites in circles, and Urban sites in squares).

References

Daumit, K. E., Kessler, S. H., and Kroll, J. H.: Average chemical properties and potential formation pathways of highly oxidized organic aerosol, Faraday Discuss, 165, 181-202, <u>https://doi.org/10.1039/C3FD00045A</u>, 2013.

- 65 Isaacman-VanWertz, G., and Aumont, B.: Impact of organic molecular structure on the estimation of atmospherically relevant physicochemical parameters, Atmos Chem Phys, 21, 6541–6563, <u>https://doi.org/10.5194/acp-21-6541-2021</u>, 2021.
 - Li, Y., Pöschl, U., and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols, Atmos Chem Phys, 16, 3327–3344, <u>https://doi.org/10.5194/acp-16-3327-2016</u>, 2016.
- 70 Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, T. F., Lutz, A., Hallquist, M., Worsnop, D., and Thornton, J. A.: A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO), Atmos Meas Tech, 7, 983–1001, https://doi.org/10.5194/amt-7-983-2014, 2014.