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Abstract. X-ray computed tomography has established itself as a crucial tool in the analysis of rock materials, providing

the ability to visualise intricate 3D microstructures and capture quantitative information about internal phenomena such as

structural damage, mineral reactions, and fluid-rock interactions. The efficacy of this tool, however, depends significantly on

the precision of image segmentation, a process that has seen varied results across different methodologies, ranging from simple

histogram thresholding to more complex machine learning and deep learning strategies. The irregularity in these segmentation5

outcomes raises concerns about the reproducibility of the results, a challenge that we aim to address in this work.

In our study, we employ the mass balance of a metamorphic reaction as an internal standard to verify segmentation accu-

racy and shed light on the advantages of deep learning approaches, particularly their capacity to efficiently process expansive

datasets. Our methodology utilises deep learning to achieve accurate segmentation of time-resolved volumetric images of the

gypsum dehydration reaction, a process that traditional segmentation techniques have struggled with due to poor contrast be-10

tween reactants and products. We utilise a 2D U-net architecture for segmentation and introduce machine learning-obtained la-

belled data (specifically, from random forest classification) as an innovative solution to the limitations of training data obtained

from imaging. The deep learning algorithm we developed has demonstrated remarkable resilience, consistently segmenting

volume phases across all experiments. Furthermore, our trained neural network exhibits impressively short run times on a stan-

dard workstation equipped with a Graphic Processing Unit (GPU). To evaluate the precision of our workflow, we compared15

the theoretical and measured molar evolution of gypsum to bassanite during dehydration. The errors between the predicted and

segmented volumes in all time-series experiments fell within the 2% confidence intervals of the theoretical curves, affirming

the accuracy of our methodology. We also compared the results obtained by the proposed method with standard segmentation

methods and found a significant improvement in precision and accuracy of segmented volumes. This makes the segmented CT

images suited for extracting quantitative data, such as variations in mineral growth rate and pore size during the reaction.20
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In this work, we introduce a distinctive approach by using an internal standard to validate the accuracy of a segmentation

model, demonstrating its potential as a robust and reliable method for image segmentation in this field. This ability to measure

the volumetric evolution during a reaction with precision paves the way for advanced modelling and verification of the physical

properties of rock materials, particularly those involved in tectono-metamorphic processes. Our work underscores the promise

of deep learning approaches in elevating the quality and reproducibility of research in the geosciences.25

1 Introduction

Time-resolved (4D) operando experiments in µCT scanners have emerged as a promising way of studying solid-state reactions

offering unprecedented insight into mineral phases and volume changes and the method is becoming a technique of choice for

many geoscience problems because it provides information about both the spatial and temporal evolution of the microstructure30

of a sample. This technique can achieve a range of resolutions, with voxel sizes from millimetres to hundreds of nanometres.

Underpinning any usefulness of these new insights is the accurate segmentation of individual phases into three-dimensional

(3D) representations across often large datasets; once different phases are segmented and labelled, they directly aid in a quanti-

tative understanding of all types of solid-state mineral reactions (metasomatic, diagenetic, metamorphic, and physico-chemical

alteration) (Fusseis et al. , 2014).35

For the accurate quantification of the various phase components and evolution of minerals from 4D µCT data, semantic

segmentation needs to be accomplished. Semantic segmentation refers to labelling individual pixels of an image to a corre-

sponding classification. Image segmentation has long played a pivotal role in the quantitative analysis of digital representations

of geological materials and there is now a wealth of methods available (Reinhardt et al., 2022). However, not all segmentation

workflows can effectively track a process in space and time across different samples and acquisition conditions, as is needed in40

the case of in-situ, or operando time-resolved X-ray microtomography studies. For instance, while standard histogram segmen-

tation can be consistently applied to a single time-step, it may not be easily transferable between different samples undergoing

solid state transformation (Andrew, 2018). More advanced machine learning techniques have been used successfully on a range

of geoscience problems and offer better portability and applicability compared to histogram segmentation (e.g. for solid state

reactions (Marti et al., 2021); crack detection (Cartwright-Taylor et al., 2022; Lee et al., 2022; Reinhardt et al., 2022); and45

one/two-phase flow experiments (Phillips et al., 2021), but they also still fall short in achieving complete portability between

various time-steps. While deep learning methods show promising potential for tackling the challenges in image segmentation

of high-resolution, time-series datasets, they still need refinement for optimal performance.

Deep learning algorithms are gaining popularity for analysing microstructures in biological and medical sciences (Renard

et al., 2020), in engineering materials (e.g., Müller et al., 2021; Allen et al., 2022) and for the segmentation of deforming50

and reacting porous rock materials (Da Wang et al., 2021). However, regardless of their scientific domains, most studies
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focus on two-component systems, void and solid material classifications. In addition, some algorithms still rely heavily on

adaptive filtering and simple thresholding operations (Phan, 2021). This is a limitation because greyscale images contain limited

information and this restricts how effectively a deep learning algorithm can perform, regardless of its complexity. This is most

clearly seen in data that contain low contrast phases. Moreover, as grayscale image inputs evolve in time-series datasets the55

usefulness of any thresholds chosen is undermined. Greater insight into microstructural changes can only be gained through

the full segmentation of all mineral components based on grayscale and other considerations, like for example component

morphology. This outlines a clear need for deep learning workflows to be further explored and optimised so that they can be

better exploited in geosciences.

In this paper, we explore the use of supervised deep learning to segment 4D synchrotron-based µCT datasets of dehydrating60

Volterra Alabaster (Fig. 1). We employ a 2D U-Net architecture (Ronneberger et al., 2015) and demonstrate its capability to

accurately segment the data into four phases: gypsum, bassanite, celestite, and pores. This model dehydration reaction has

been monitored during experiments under different stress and pore fluid pressure conditions (Gilgannon et al.,, 2023). The data

used encompass numerous challenges encountered in volumetric image segmentation of complex materials, including multiple

heterogeneous material phases with feature sizes ranging from hundreds of nanometres to micrometres, low contrast between65

phases, and a relatively rapid evolution. We demonstrate that these factors make segmentation using standard approaches

difficult. We quantitatively compare outputs of the deep learning architecture to optimise its use and for the first time show

how the accuracy of segmentations can be checked with an internal standard given by the chemistry of the system. Ultimately,

we find that the use of a random forest classifier to produce the ‘ground truth’ to the training of the deep learning architecture

improves the predictive abilities of the algorithm. While the random forest algorithm initially can effectively segment features70

of interest in our dataset, its capability for generalisation to new, unseen data is limited (Rezaee et al., 2018). The inclusion

of the deep learning step enhances the generalisation capability of our workflow. This results significantly improved accuracy

and validity of the segmentation and labelling of the µCT data during the solid state reaction of gypsum to bassanite and pore

space. We believe that this work demonstrates the potential of deep learning for volumetric image segmentation of complex

materials. The method is generic and can be applied to other geoscience problems.75

2 Gypsum Dehydration as an Example of a Complex Segmentation Problem

2.1 The Gypsum Dehydration System and Experimental Set-up

Gypsum dehydration is used as a model dehydration for many prograde metamorphic reactions in collisional tectonic settings.

The physical boundary conditions make it amenable for laboratory studies and thus a system of choice to investigate complex

geological problems in time-resolved µCT in-situ experiments.80

Volterra Alabaster is a rock that is mainly (>90 %) composed of gypsum (CaSO4 · 2H2O) and celestite (SrSO4) and when

temperature is increased the gypsum dehydrates to produce bassanite (CaSO4 · 1
2H2O), porosity and water. At the same time,

celestite remains stable during gypsum breakdown and is unaffected by the dehydration. The dehydration of gypsum results

in a 29% reduction in solid molar volume, and an 8% excess volume of water. Experiments were performed with the x-ray
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Figure 1. Workflow used for image segmentation. a) The first step involves labelling the different phases (i.e., Gypsum, Bassanite, Pores,

Celestite) over a few (13) slices in the volume and then applying a Random Forest (RF) pixel classification. b) The second step of our

segmentation process involves using the output of the RF as ground truth and then running a 2D U-net deep learning algorithm over the whole

selected volume. c) In the third step we apply a series of post-segmentation routines to clean the data set from possible segmentation errors.

d) In the final step we quantitatively evaluate the overall performances of the trained deep learning network by comparing the theoretical and

measured molar evolution of gypsum to bassanite during the dehydration.
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transparent triaxial rig Mjölnir (Butler et al., 2020) at the TOMCAT beamline of the Swiss Light Source synchrotron. All of85

our experiments were performed at the same confining pressure (Pc) of 20 MPa and a pore fluid pressure (Pf ) varying between

1 and 5 MPa. The experiments followed the same temperature path, with a maximum temperature 124.5 < T < 126.9 ◦C. We

systematically varied the differential stress in each experiment to capture its effect (σdiff = 0; 16.1; 27.9 MPa, see Gilgannon

et al., (2023)). For the work presented in this paper, however, we focus on data from two specific experiments: (a) a sample,

VA17, where the principal stress is radial (with σdiff = 11.3 MPa), and (b) another sample, VA19, where the principal stress90

is vertical (with σdiff = 16.1 MPa). Time-resolved (4D) synchrotron microtomography (µCT) datasets were acquired during

the experiments at SLS TOMCAT beamline using a pink beam with an energy peak at 27 KeV. For each µCT dataset, 1500

radiographs were collected over 180◦ rotation in 2-4 s. The resulting radiographs had a voxel size of 2.753 µm, and the resulting

3D µCT datasets had a size of 2016× 2016× 2016 voxels. The frequency rate of the tomoscopy was set to 60 seconds, and

the experiments ran over 150-314 minutes, resulting in 2.5 TB of data to be analysed. More details on the experiments can be95

found in Gilgannon et al., (2023).

2.2 Challenges of Segmenting Dehydrating Gypsum during Operando X-ray Microtomographies

It is clear from Figure 2 that microstructural changes during the experiment can be readily identified by the human eye.

However, it is also apparent from the evolving histograms in Figure 2a that accurate segmentation of the four phases of

interest (i.e., gypsum, bassanite, pores, and celestite) cannot rely on simple histogram thresholding segmentation. Each 4D100

µCT dataset is extensive, containing more than 100 scans, each ranging from ∼5 to ∼15 GB of reconstructed data, depending

on the scanning parameters. As the histograms of individual scans are clearly different for different time steps (Fig. 2a), an

automated segmentation of the evolving volumes based on a single histogram would yield inaccurate results, necessitating

manual segmentation and the explicit selection of thresholds for each tomogram and for each experiment. This laborious

process inhibits the efficient analysis of large 4D datasets but also misses basic standards for reproducibility. This is further105

complicated by the fact that all synchrotron µCT images have a symmetrical vertical gradient in noise through the sample,

first decaying and then increasing, which renders the application of a single set of thresholds even to a single µCT dataset

problematic. Additionally, the homogeneity of the unreacted starting material intensifies artefacts such as rings which are

problematic to handle for segmentation algorithms that are based solely on grayscale thresholds. As noted above, the human

eye can distinguish different phases in the data and this suggests that a learning-based approach to semantic segmentation110

would be applicable to the dataset. It is becoming evident that we may also require information beyond grayscale values, such

as the geometry of the feature of interest, for successful segmentation.

2.3 A Segmentation Workflow with Internal Standards

To accurately segment large datasets of dehydrating gypsum samples, we used deep learning algorithms, which have entered

the field of volumetric image segmentation through the implementation of convolutional neural networks (CNN). For this work,115

we used a specific implementation of 2D U-Net available in the Dragonfly™ software. This implementation has performed

well on µCT images from fibre-reinforced ceramic composites Badran et al. (2020). Our dehydrating gypsum datasets are
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Figure 2. Variation in grayscale intensity values with reaction progress. (a) Grayscale histograms of a series of tomographic slices captured at

different stages during the reaction. Each line represents the histogram of an individual image, illustrating the changes in grayscale intensity

value distribution across the time steps. This variation complicates the use of grayscale thresholding as input for the deep learning model.

(b)-(e) Display the images corresponding to the histograms in (a), depicting the reaction progression from an early stage (b) to the final

product (e).

comparable in terms of grayscale value contrast and the number of distinguishable material phases. Dragonfly runs locally on

a workstation and allows for the creation of training data and training of a CNN segmentation model. Once the CNN is trained,

the model can be generalised and offers the advantage of being flexible and being straightforward to apply on similar datasets.120

To train the network, we selected 13 of the 2016 horizontal (XY) virtual slices from the synchrotron CT scan of sample

VA19 time step 40 as “input” images. This specific time-step was chosen because it has sufficient volume of each phase we

aim to segment; in images derived from either early or late steps of the experiment, the volume of at least one of the phases

would be insufficient to achieve automatic segmentation. We tested the role of ground truth data (i.e., the correct segmentation

of an image) in achieving the best results by comparing a histogram thresholding segmentation with a random forest classifier.125

Choosing the best training neural network architecture and tuning the network (hyper-)parameters requires time and some

knowledge of neural network architecture. However once the best configuration is set up the application of the model is nearly

effortless. Network (hyper-)parameters that need to be chosen include: (i) a “patch size” – in the training stage the images

are split into a set of smaller 2D square patches that capture the features of interest in the image; (ii) a “stride ratio” – which

defines the position of the neighbouring patches (at a value of ’1.0’, there will be no overlap between patches and they will be130

extracted sequentially one after another; at a value of ’0.5’, there will be a 50% overlap); (iii) a “batch size” – which defines

the number of patches evaluated in each batch prior to updating the network model; (iv) the number of epochs – an epoch

indicates a training iteration, involving a pass over all batches of the training set; (v) selection of a loss function to evaluate

how far the output of the CNN model deviates from the ground truth and an optimisation algorithm to find optimal weights for

the coefficients of the CNN.135
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We trained the different networks by varying the (hyper-)parameter settings to see which setting results in a measurable

improvement to model performance. For all the tested strategies, twenty percent segmented data serves as a “validation set”

and is otherwise not used during training. A loss function was used to evaluate the training progress. The U-Net deep learning

architecture was trained for a maximum of 100 epochs, stopping when no further improvement of loss was observed.

To demonstrate the accuracy of the segmentations, we devised an additional quality check consisting of comparing the output140

volumes of phases to their predicted values given by the mass balance of the reaction (see section 3.7). This internal standard

allows us to objectively assess the effectiveness of the application of deep learning to time series data sets that contain low

contrast phases.

3 Influence of Training Data

3.1 Input Data for the Deep Learning Convolutional Neural Network145

Convolutional neural networks (CNN) are a special class of deep learning algorithms where one or more layers of the network

perform convolution operations (Fig. 1). The specific convolution kernels are not programmed but are learned from the input

data by the deep-learning engine to extract relevant features of an image that become useful discriminators in segmenting

complex pixel classes – in our case mineral phases – in the images. The CNN architecture (Fig. 1b) can be thought of as a

formula of linear weights applied to the image pixel intensities, often combined through multiple network layers in a nonlinear150

fashion. The coefficients encoded in the neural network itself are learned from training data that couples example “input”

images (i.e., the raw un-segmented image) with example “output” images (i.e., ground truth). The iterative process of learning

the weights that can reliably transform input into output images is termed training and is the most computationally demanding

phase of the deep learning cycle. In order for a deep learning model to perform the segmentation of the different classes

contained within the image, it requires a set of data which are typically created by manually annotating each pixel in the image155

with its corresponding semantic label (Fig. 1a). This set of labelled pixels forms the so-called “ground truth”. Ground truth is

an essential part of training deep learning models as it represents the target to learn towards and should ensure that the model

is learning to segment images in a meaningful way. In our case, the ground truth images are a selection of image slices that

have been previously segmented to assign each pixel to a specific mineral or pore phase. The trained model can then, not only

automatically segment the remaining unsegmented image slices within a single µCT volume, but also unseen data - i.e., other160

volumes within the same time series of the training set as well as image volumes obtained during other experimental time

series.

Initial image classification to create the ground truth set can be made with various levels of information, like for example (i)

histogram thresholding – low information levels – or (ii) Greyscale information alone, as provided by histogram thresholding,

would express gradients in a field of values for which boundaries between phases are diffuse. In contrast, ground truth classified165

using a machine learning algorithm provides discrete transitions between phases and better information about features like

phase morphology. Before finding the best workflow to segment our image volumes, we tested several combinations of ground

truth input and CNN parameters until the quality of output images on unseen data was adequate, with reasonable training time.
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3.2 Histogram Thresholding as Training Data

Figure 3a shows an example of data containing the four phases as segmented by different networks trained with different ground170

truth data. The corresponding bracketed threshold values for the four phases are shown in Figure 3b. Figure 3c shows the output

produced by a neural network trained using a ground truth set of images labelled solely by manual histogram thresholding.

This input failed to reliably classify the bassanite needles, it often failed to segment pores, and it failed to accurately segment

celestite, often confusing it for bassanite. This can be improved upon by using manual histogram thresholding with the appli-

cation of data augmentations within the neural network model (Fig. 3d). The training data were subjected to data augmentation175

based on the basic image manipulations (i.e., flip horizontally, flip vertically, rotate, shear, and scale). Specifically, we octupled

the input data in order to render the neural network more robust, while at the same time compensating for deliberately using a

small input dataset. This strategy allowed us to increase the network’s ability to generalise while decreasing the potential dan-

ger of overfitting (Shorten & Khoshgoftaar, 2019). By tuning the different CNN (hyper-)parameters and including augmented

data, we improved the overall performance of the network (Fig. 3d). However, the final segmentation still lacked accuracy: it180

can be seen that errors remained, for example the celestite was still identified as bassanite (Fig. 3d). More importantly, this

deep neural network model struggled when it was applied to new and more complex datasets: such as in the early and final

stages of the reaction (where one of the two main phases was scarce, or absent).

3.3 Random Forest Classifier as Training Data

In contrast, the use of ground truth data classified with a random forest classifier plus data augmentation performed exception-185

ally well and visually captured more of the features of the microstructure correctly (Fig. 3e).

A random forest classifier (Fig. 1) comprises numerous decision trees, each contributing a vote toward the class prediction

for every voxel (more details on the random forest classifier are available in the Additional Information). The class receiving

the most votes is allocated to the respective voxel. Filters are applied to the input images, generating filtered images that serve

as features (Reinhardt et al., 2022). These features enable the classifier to differentiate between phases in the dataset. In this190

work, the random forest classifier was pre-set with morphological filters, 3x3 neighbour filter and Gaussian filter to perform

identification of the phases in the training set. Using a random forest classifier for setting up the ground truth dataset also

enabled training the deep learning model based on the shape of the objects. This offered a significant progress from manual

thresholding segmentation.

3.4 Optimising the Deep Learning Models195

Model parameters can be optimised to improve the deep learning network. We systematically monitored the performance of

each tested deep learning model both during training and testing. The results of this systematic testing are visualised in Figure

4 and synthesised in Table 1. The quantitative comparison of types of ground truth data and the variations of model (hyper-

)parameters provides a solid base for discussing the advantages of the workflow that is presented here and how it is transferable

to other geoscience data.200
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Figure 3. Challenges of the segmentation. (a) Portion of a horizontal slice of the raw µCT image showing the relative low contrast between

gypsum and bassanite. (b) threshold values for the four phases present in the image. Two main phases – Gypsum and Bassanite – are difficult

to split up accurately into two classes by the deep learning algorithm with (c) no data augmentation but are better segmented when using

data augmentation (d) but still showing evident artefacts in the segmentation. Both cases (in c and d) struggle in separating the celestite

phase which is wrongly classified as bassanite. (e) the segmentation results using Random Forest classifier as input into the deep learning

algorithm.

For an objective quantitative comparison of different deep learning network models, we tracked the performance of each

model during training using a loss function to measure the error between the neural network’s prediction and the corresponding

ground truth; the error was then used to update the model parameters. Figure 4a shows that with ground truth data derived from

random forest classification we obtained the lowest validation errors for all tested networks. Compared to other models, the

random forest model reached low values of loss already after 5 epochs. After this minimum, the error kept oscillating within205

the neighbourhood of its lowest value until the maximum 100 epochs were reached. This indicates that the overfitting risk is

minimal.

We evaluate segmentation quality according to eight standard evaluation metrics based on overlap and similarity criteria

(Taha & Hanbury, 2015; Müller et al., 2021), where the deep learning-based segmentations are compared to the corresponding

ground truths. Here we focus on the Dice coefficient, however, a full picture of all calculated metrics can be found in the210

Supplementary Information. The Dice coefficient scores were used to evaluate and compare the segmentations resulting from
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Table 1. Evaluation of the segmentation models based on Dice Coefficient scores

Name Model Model A Model B Model C Model D Model E Model RF

Ground Truth* HT HT HT HT HT RFC

Data Augmentation NO NO NO YES YES YES

Training Parameters* P=16 S=1 B=64 P=16 S=0.5 B=128 P=16 S=1 B=128 P=16 S=1 B=64 P=16 S=1 B=128 P=16 S=1 B=512

Average DICE 0.013 0.021 0.095 0.088 0.964 0.961

Gypsum DICE 0.035 0.041 0.651 0.546 0.983 0.979

Bassanite DICE 0.001 0 0.077 0 0.845 0.923

Pore space DICE 0.019 0.024 0.122 0.160 0.957 0.924

Celestite DICE 0 0 0 0 0 0.827

*Abbreviations: HT = Histogram Thresholding; RFC = Random Forest Classifier; P = Patch Size; S = Stride Ratio; B = Batch Size

neural network models trained on (i) histogram thresholding ground truth data (models A, B and C), (ii) histogram thresholding

with augmented ground truth data (models D and E), and (iii) random forest classified ground truth data with augmentation

(model RF). The Dice coefficient (DICE) is the normalised overlap of pixels in the segmentation and the corresponding ground

truth of a given phase. A DICE score of 0 means that there is no overlap between segmentation and ground truth, while a DICE215

score of 1 indicates perfect overlap. In addition, to the direct comparison between automatic and ground truth segmentations,

it is common to use the DICE to measure reproducibility (repeatability) of a trained neural network segmentation algorithm

(Taha & Hanbury, 2015).

For the networks trained using histogram thresholding the average DICE varies between 0.01 and 0.98, it increases when

data augmentation is used during training; For the network trained using a Random Forest classifier, the DICE score is also220

0.98 (Table 1). From the error curves and the DICE plots, it is clear that the inclusion of augmented data into the histogram

threshold ground truth (as seen in model D and E in Fig. 4 and Table 1) improved the overall performance of the neural network

model compared to the models which did not (model A, B and C in Fig. 4). The DICE scores for each segmented phase show

similar trends, on average improving for data augmented models. However, it was only the model trained using a ground truth

from a random forest classifier that produced scores for all four phases. This includes the celestite phase, which was entirely225

absent in the results from the other models (Fig. 4).

All these results show that using a random forest classifier pre-classified ground truth data clearly outperforms a ground

truth obtained via simple grayscale histogram thresholding regardless of the optimisation of parameters.

3.5 Applying the deep learning segmentation

After the training stage, the model was applied to a larger sub-volume (400 consecutive slices, ∼250 MB) from the same scan230

used during training of the deep learning algorithm (i.e., VA19 time step 40). The model succeeded in correctly segmenting

all four phases in about 7 minutes (each volume composed of 400 slices, with 250 MB each volume) using a computer with

256GB of RAM, an Intel Xeon Eighteen-Core Processor, and an NVIDIA Quadro RTX 5000 16GB GPU. Typical results are
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Figure 4. Error curves and evaluation metrics for the image segmentation models (see Table 1 for details on the models). (a) Error curves

comparison for different loss values for the tested models. The neural network model trained with a random forest Classifier input outper-

formed the other models which used manually thresholded inputs. Plots for Dice coefficient (DICE) metric (colour coded as in (a)), show the

predictive performances of each trained model for both the average volume (in b) and each separate phase: gypsum (c), bassanite (d), pores

(e), and celestite (f). Clearly, The model trained using a random forest classifier input demonstrates superior performance to other models.

See Table 1 for details on the training parameters for the different models.

shown in Figure 5, which compares equivalent horizontal and vertical slices from the unprocessed and segmented CT images.

This comparison indicates that gypsum, bassanite, porosity and celestite are clearly labelled, even in the portions showing235

ring artefacts that can mask the true grayscale values (Figure 5c, d). Importantly, the combination of random forest-based

ground truth and deep learning segmentation ensures that the ring artefacts are not mislabelled as actual phases, a problem that
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Figure 5. Horizontal (XY) and vertical (YZ) slices of the µCT images before (a, c, e) and after (b, d, f) deep learning segmentation performed

using a model trained with Random Forest classified images. Images in (c) and (d) are closer captions of areas indicated with white boxes in

(a) and (b).

frequently arises with manual histogram thresholding. This consequently prevents the creation of fictitious phases when there

is none. Comparison of the vertical (YZ) sections (Figure 5e, f), where the unprocessed slice clearly shows all four phases,

qualitatively indicates that the accuracy of the segmentation is high.240

3.6 Post-segmentation processing

Once the data volume is segmented by the trained deep learning model, we apply a series of post-segmentation routines to

clean the data set from segmentation errors, which is necessary primarily on data acquired early in the experiment when the

contrast in the sample was low. These routines involve removal of isolated clusters of erroneously labelled pixels and deletion

of areas labelled as bassanite around celestite aggregates. The first routine is implemented using the “remove island” tool245

in Dragonfly™, targeting pixels misinterpreted as bassanite and porosity. The size of clusters to be removed is fixed in all
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volumes of the time series and also through the different scanned samples: 100 pixels and 8 pixels for bassanite and porosity,

respectively. The application of this routine is much more frequent at early stages of the dehydration process when the majority

of the volume is still represented by the gypsum phase: the lack of contrast between phases leads to very noisy slices (i.e.,

speckled in appearance). The second routine involves the deletion of mislabelled areas around celestite. This procedure is most250

accurate and fast if conducted through visual inspection and manual corrections.

3.7 Understanding the accuracy of the segmentation

Time-resolved µCT data offer the opportunity to quantify evolving volumes in a sample and thereby the rates of a process,

whereby the accuracy of the quantification hinges on the accuracy of the volumetric segmentation. The accuracy of our deep-

learning segmentation method itself is contingent upon three potential sources of error. The first pertains to the quality of255

the original CT image data, influenced by factors such as image resolution, noise, and potential artefacts. In our work, this

source of error had minor impacts on the segmentation of bassanite and pores and is primarily restricted to the early stages

of the dehydration process when the dominant presence of a single mineral phase, gypsum, led to noisy slices and enhanced

ring artefacts. A second potential error source lies in the initial segmentation used to establish the target image. The initial

segmentation is arguably the most laborious and time-consuming step, with some level of error inevitable during the labelling of260

slices and assignment of pixels to specific phases, particularly at phase boundaries. These issues, however, have minimal impact

on the final trained model as they generally occur at isolated pixels (Badran et al., 2020). The third potential source of error

is mislabelling of pixels during the deep-learning segmentation stage, attributable to limitations in the accuracy of the trained

model. While the error rate typically decreases with an increase in the number of training images and iterations, overfeeding the

training network can lead to overfitting, which can in turn degrade performance when segmenting unseen images. However, we265

showed (Figs. 3 and 4; Table 1) that augmenting data significantly reduced both mislabelling and overfitting during the training

step of the neural network.

The quantification of a metamorphic reaction rate from 4D µCT data hinges on the accurate tracking of the evolution of

reacting and emerging phases. To independently ascertain the accuracy of the chosen deep learning model, we compared the

theoretical and measured (i.e. segmented) molar volumetric evolution of gypsum to bassanite during the dehydration reaction.270

To our best knowledge, this represents the first application of an internal standard to unambiguously measure the accuracy of

a segmentation model.

For the case studied here, where no irreversible compaction occurred in the samples during the experiments (Gilgannon et

al.,, 2023), we can use the theoretical molar evolution during the dehydration of gypsum to bassanite to calculate the amounts

of gypsum, bassanite, and water produced during the dehydration reaction and the stoichiometric ratios between them. Gypsum275

has two water molecules per formula unit, while bassanite has only half of a water molecule per formula unit. Hence, during

the dehydration process, the molar ratio of water molecules to calcium sulphate molecules decreases. The chemical equation

for the dehydration of gypsum to bassanite is:
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CaSO4 · 2H2O→ CaSO4 · 0.5H2O + 1.5H2O (R1)

where one mole of gypsum (CaSO4 · 2H2O) gives one mole of bassanite (CaSO4 · 0.5H2O) and 1.5 water molecules.280

Knowing the initial volume of gypsum in the sample and its density (2310 kg/m3), we can simply calculate its mass and the

corresponding molar quantity. From this, we can compute the theoretical amount of bassanite produced from gypsum at every

reaction step. Given that the density of bassanite is 2731 kg/m3, we can use the molar mass to convert the produced moles of

bassanite into volume. A plot of the moles of reactants versus products is a y=-x graph consistent with the 1:1 stoichiometric

ratio of reaction (Eq. 1). For the 1:1 gypsum to bassanite reaction, the slope is -1 (solid black lines in Figs. 6a and b with grey-285

shaded 2% confidence intervals). The segmentation, which provides a volume of bassanite and gypsum at each step, can be

represented and compared to the theoretical case. This graphical method forms the basis of the theoretical dehydration curve

against which we compare the segmented volumes. Examples of this comparison are shown in Figure 6, where we present

dehydration evolution paths for a sample under radial stress (VA17, Fig. 6a) and an axial deviatoric stress sample (VA19, Fig.

6c). In both examples, the curves for theoretical and measured molar volumes follow the same trend, with fitting parameters290

showing close equivalence.

This comparison shows that our segmentation workflow produces highly accurate volume fractions for each phase. All frac-

tions fall within the <5% confidence intervals of the theoretical curve (Fig. 6). For a more comprehensive evaluation of the

method, a comparison was made between the novel integrated workflow (Fig. 7a), and traditional manual histogram thresh-

olding. This comparison was applied to a selection of volumes in the time series (Fig. 7b). The manual thresholding method,295

which incorporates basic pre-processing steps (including “despeckle” and “non-local means” with sigma = 5, smoothing = 1)

displayed significant shortcomings. It resulted in a severe underestimation of the reaction extent and the inadvertent ’creation’

of celestite. Contrarily, the proposed workflow (Fig. 7a) significantly outperforms the traditional approach (Fig. 7b).

Due to its demonstrable accuracy, the segmentation output is well-suited for extracting quantitative information, such as

mineral growth rates and variations in pore size during the dehydration reactions. Our segmentation method enables the quan-300

tification of relative accuracy, allowing for the propagation of errors in any derived and quantified parameters. This advance

represents a significant step towards interpreting results and establishing their significance, as confidence intervals are often

absent in studies using manual thresholding.

4 Discussion and implications

The application of deep learning to time-resolved micro-CT imaging offers a new tool for geoscientists studying rock defor-305

mation, metamorphic processes, and fluid-rock interactions. We successfully leveraged optimised deep learning methods to

perform reliable and efficient segmentation of time-resolved volumetric images during the gypsum dehydration reaction. The

approach outlined here not only streamlines data analysis by swiftly processing large datasets, but also enhances confidence

in the robustness of results by ensuring high segmentation accuracy. Importantly, this accuracy is established in a robust way
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Figure 6. Theoretical versus measured. Comparison between the theoretical and the measured molar ratio of gypsum and bassanite during

dehydration. Here, we plot the evolving molar ratio of gypsum to bassanite during dehydration for (a) sample VA17 which experienced

radial stress and (c) sample VA19 experiencing axial stress (see Figure 5 for reference). Shaded grey areas are 2% confidence intervals of the

theoretical curve. On the right-hand side, 3D renderings of bassanite crystals and pores in two samples’ sub-volumes reacting at two different

stress conditions. In (b) VA17 reaction principal stress (σmax) is axial (i.e. parallel to Z), while in (d) VA19 the principal applied stress is

radial (in the X-Y plane). Heights of both boxes are 1.5 mm.

due to the three-component system under study: gypsum, bassanite, and water. We ascertained the accuracy of the chosen deep310

learning model we compared the theoretical and measured molar evolution of gypsum to bassanite during dehydration. This

approach defines an internal standard, verifying that the segmentation method accurately captures the mineralogical changes

occurring within the rock samples. Importantly, the robustness of this validation is based on the three-component nature of the

system—gypsum, bassanite, and water (imaged as porosity the µCT data)—allowing for a non-circular and independent veri-

fication of our method’s effectiveness. By harnessing the power of deep learning for image segmentation, we can extract more315

nuanced and precise information from µCT imaging datasets. This will enhance our understanding of geological processes and

contribute to more accurate models of rock behaviour under different physical conditions.
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4.1 Comparison with other segmentation approaches

Accurate segmentation has long been a challenge across various scientific domains, from medical CT imaging to material sci-

ences and engineering (Withers et al., 2021). Global segmentation methods, such as manual histogram thresholding, have long320

been go-to solutions for the segmentation of X-ray µCT tomographic images. However, three considerable drawbacks persist:

(i) significant time commitment required, (ii) global techniques ignore local context and thus have an intrinsic potential for mis-

classification, and, therefore, (iii) the potential for compromised reproducibility (Andrew, 2018) As µCT imaging technologies

evolve, resulting in larger datasets, the scalability and efficiency of manual segmentation methods become increasingly chal-

lenging (Da Wang et al., 2021). Herein lies the risk of jeopardising reproducibility, defined as the ability to consistently obtain325

similar results across multiple measurements using the same methodology (Renard et al., 2020).

Machine and deep learning segmentation strategies form promising alternatives for automatic segmentation, optimising pa-

rameters for high accuracy performance on the training dataset and ensuring effective generalisation to other datasets within

the same problem class. However, transitioning towards automatic segmentation, while promising, is not trivial. Successful

automation of segmentation methods still requires an initial investment of time and resources for skill acquisition and under-330

standing needed to fine-tune models and adapt the workflow to the specific dataset at hand.

A good example of this is the intrinsic dependency of deep learning segmentation on the ground truth data input and the

selection of hyperparameters during the training process. If the initial segmentation—which forms the ground truth—is not

meticulously executed, this could lead to subpar results. These could manifest as minor differences when compared with the

ground truth, creating a misleading perception of accurate segmentation. Given these potential pitfalls, independent verification335

of segmentation results appears to be a preferable approach.

In fields such as medical imaging and material science a common strategy to ensure reliability and accuracy of segmentations

is the use of external calibration techniques, which involve the use of phantoms with known dimensions and/or compositions

as benchmarks (Adams , 2009; Kruth et al., 2011). These external standards aid in the assurance of measurement accuracy

(Withers et al., 2021). These external standards aid in the assurance of measurement accuracy [Writers et al., 2021]. However,340

these calibration techniques are not without limitations. One major challenge lies in partial volume effects, which occur when

the volume of interest encompasses more than one type of material. The CT values measured in these regions do not correspond

to a single material type, but rather are a weighted average of the different types present (Kruth et al., 2011; Sokac et al., 2020).

Solutions have been proposed and often require complementary techniques (such as using tactile, optical sensors) to calibrate

measurements derived from CT data (Torralba et al., 2018). Furthermore, the use of phantoms can result in difficulties during345

sample preparation (such as staining, sample chemistry/structure modification to include the standard) which, in turn, can alter

the general output of the segmentation.

In line with the efforts to enhance the accuracy and reproducibility of CT image-based measurements, our approach leverages

on an a-priori knowledge of the chemical reactions involved in the dehydration process, therefore establishing a framework

for assessing the accuracy of the data extracted from the µCT images. This internal validation approach offers a robust and350

consistent means of assessing the reliability of our segmentation results. It provides an additional layer of confidence in the
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Figure 7. Quantitative analysis of phase volume changes during the gypsum dehydration experiment, as determined by segmenting the same

volume VA19 time step 40 using two distinct segmentation methods. The new workflow developed in this study (a), which leverages a

random forest classifier to label input data for a deep learning model, yields significantly improved accuracy in phase volume measurements

relative to conventional thresholding segmentation – including “despeckle” and “non-local means” with sigma = 5, smoothing = 1 (b). The

inset graphs show volume measurements for the celestite phase (yellow), which is a non-reacting phase during dehydration. The bottom

images show slices of the sample at different stages; in the graph they are represented by the data points with a black outline

accuracy of our measurements, ensuring that the segmentation method effectively captures the phase evolution within the rock

samples.

4.2 General applicability of the proposed workflow

The versatility of the presented workflow extends beyond the study of the gypsum dehydration process. By leveraging 4D355

µCT imaging and integrating chemical knowledge, our approach has potential for investigating other fluid-rock interaction

processes, enabling precise quantification of mineralogical changes, and providing valuable insights into various geological
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phenomena. For example, our approach can be directly applied to the investigation of the KBr−KCl solid-solid replacement,

which serves as an analogue for studying the dolomitization mechanism and other solvent-mediated reactions, resulting in the

creation of porosity (Beaudoin et al., 2018). Similarly, the method has potential in fluid-rock interaction reactions relevant in360

the geoenergy field: our methodology can contribute to the analysis of carbonation reactions within ultramafic rocks, where

carbon dioxide (CO2) reacts with minerals to form carbonate minerals (Beinlich et al., 2020; Snaebjörnsdóttir et al., 2020),

thus gain valuable insights into the mineralogical changes associated with carbon dioxide (CO2) sequestration, contributing

to the development of efficient carbon capture strategies. Additionally, our method is applicable to studying metasomatic and

alteration processes related to hydrothermal fluids, shedding light on transformations occurring in geothermal reservoirs (Heap365

et al., 2020).

The proposed approach enables us to quantify geological processes at the grain scale, integrating with data from other

sources and a priori chemical knowledge. This synergy between advanced imaging techniques and chemical understanding can

bring about a new level of precision in our comprehension of complex geological processes. The ability to capture and analyse

the temporal evolution of mineral phases with high spatial resolution provides us with a detailed understanding of the dynamic370

behaviour of geological systems. This enhanced level of insight allows us to unravel the intricate mechanisms governing rock

deformation, metamorphic processes, and fluid-rock interactions.

4.3 Future horizons of deep learning segmentation for image analysis in geosciences

The success of our deep learning methods in the task of segmenting complex 4D data can represent a versatile approach that

can find use in many image analysis tasks of geomaterials. By providing a reusable and adaptable workflow, we open the door375

to collaborations and innovations within the scientific community.

In future iterations of our method aims to expand its capabilities and applications. A direction to explore is the integration

of deep learning convolutional neural networks with transfer learning and reinforcement learning techniques. Transfer learning

can leverage pre-trained models to reduce computational cost and improve generalisation ability (Kim et al., 2022), while

reinforcement learning might provide dynamic and adaptive strategies for data acquisition and reconstruction (Le et al., 2022).380

For our case study, by using the chemical theoretical molar reaction as a guiding principle, we can train the segmentation

algorithm to identify and accurately outline the volumes of different mineral phases at various stages of the dehydration

process. This adaptive learning process, driven by the theoretical molar reaction, could maintain high accuracy and robustness

of the segmentation algorithm throughout the dehydration process. In addition to this promising integration of techniques, two

key areas of potential advancement lie in the development of unsupervised segmentation approaches and the use of time as385

a parameter to learn from. Unsupervised learning can dramatically reduce the time and effort required for data annotation,

accelerating analysis, and enabling the exploration of larger datasets (Mahdaviara et al., 2023). While data from before and

after a scan in a time series may provide extra information that can be leveraged to better segment complex datasets. 4D data

pose a unique challenge and opportunity for these unsupervised methods, as leveraging temporal information can significantly

improve the quality and consistency of the segmentation.390
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5 Conclusions

In this work, we have demonstrated the potential of deep learning methods in the segmentation of 4D synchrotron X-ray

tomographic images, particularly in the context of metamorphic rock transformations. We successfully overcame the inherent

challenge of accurately segmenting all mineral phases and the pore network in an operando dataset, consisting of around 50

tomograms for each experimental setting, by using a robust and efficient deep learning-based workflow.395

Our deep learning algorithm, trained on just 13 representative slices, generated a reliable segmentation, substantiating the

versatility and power of such approaches. Conversely to the conventional external calibration techniques, we achieved vali-

dation of the segmentation accuracy by employing the metamorphic reactions themselves as an internal standard. We found

the errors between the theoretical and segmented volumes from our time-series experiments to be consistently within the 2%

confidence intervals of the theoretical curves. This facilitates extracting quantitative information, such as mineral growth rate400

and pore size variations, from segmented CT images during a reaction. The implementation of a 2D U-net architecture for

segmentation and the utilisation of Random Forest-obtained labelled data as input demonstrated how machine learning can

efficiently process large datasets and provide robust results even under challenging conditions. Coupled with the advantage of

very short run times, our algorithm demonstrates great potential for practical application in similar studies.

In conclusion, our study underscores the transformative potential of deep learning in the realm of image analysis for geoma-405

terials. The robustness, accuracy, and efficiency of our algorithm, coupled with its reusability, highlight how such methods can

significantly advance research in this field. We anticipate that our approach will serve as a catalyst for further research, empow-

ering scientists to make accurate predictions about microstructural changes under various stress conditions and contributing to

a deeper understanding of tectono-metamorphic processes. We encourage other researchers to adopt and develop the workflow

we introduced here, fostering an environment of shared learning and collaboration within the scientific community.410

Code availability. Data analysis and plots were created using the Matplotlib library for the Python language (https://matplotlib.org/stable/

index.html); the script for recreating the figures together with the input data are available at: https://doi.org/10.7488/ds/7493.

Data availability. The images and deep learning models for this paper were generated using Dragonfly software, Version 2020.2 for Win-

dows. Object Research Systems (ORS) Inc, Montreal, Canada, 2020; software available at http://www.theobjects.com/dragonfly. The deep

leaning model and data set used in this work are available at:415

– Deep learning model: https://doi.org/10.7488/ds/7493

– VA17: https://doi.org/10.16907/8ca0995b-d09b-46a7-945d-a996a70bf70b

– VA19: https://doi.org/10.16907/a97b5230-7a16-4fdf-92f6-1ed800e45e37
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Appendix A: Manual Segmentation

Manual Segmentation is performed using the Dragony software. The different features of interest are identified by the human420

eye and we define the intensity range of grey value according to the specific material phase.

Appendix B: Random Forest Segmentation

Random Forest pixel classification is performed using the Dragonfly software. The pixels pertaining to the different phases

(gypsum, bassanite, pore, celestite) visible in the sample are identified and painted using the Brush tool in the software. We

manually classified phases over a small number of slices (i.e., thirteen slices) and then used these data as input dataset into the425

Random Forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-

samples of the dataset and uses averaging to improve the predictive accuracy and control overfitting. In our case, the algorithm

is a pixel-based segmentation computed here using local features based on local intensity, edges and textures at different scales.

The pixels of the mask are used to train a random-forest classifier from scikit-learn (Pedregosa et al., 2011). Intensity, gradient

intensity and local structure are computed at different scales thanks to Gaussian blurring.430

Appendix C: Evaluation Metrics Parameters

To help evaluate Deep Learning segmentation quality, we use a set of different evaluation metrics for comparing the neural

network models trained with different ground truth data. All presented metrics are based on the computation of a confusion

matrix for the segmentation task. The confusion matrix is built on the so-called “basic cardinalities” which can be calculated

within the Dragonfly software. Basic cardinalities include the number of true positive (TP), false positive (FP), true negative435

(TN), and false negative (FN) predictions. For a full mathematical description of the cardinalities we refer to Taha & Hanbury

(2015) and to Müller et al. (2022). For all metrics shown here, except Cohen’s Kappa, the value ranges from zero (worst) to

one (best).

C1 Recall, Specificity, and Precision

Recall, also known as sensitivity or true positive rate (TPR), focuses on the true positive detection capabilities. Specificity,440

instead, evaluates the ability for correctly identifying true negative classes, thus, it is also known as true negative rate. An-

other related measure is Precision, also called positive predictive value (PPV), which is not commonly used in validation of

tomographic images, but it is used to calculate the F-measure (see below). These three metrics are calculated as:
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Recall =
TP

TP + FN
(C1)

(C2)445

Specificity =
TN

TN + FP
(C3)

(C4)

Precision =
TP

TP + FP
(C5)

C2 Accuracy

Accuracy is one the most known evaluation metric in statistics (Müller et al., 2022). It is defined as the number of correct450

predictions, consisting of true positives and true negatives, compared to the total number of predictions. However, many recent

works (see Taha & Hanbury, 2015; Müller et al., 2022, for a complete review) have discouraged the use of accuracy in

image analysis, particularly in multi-class segmentation where class imbalance is highly common: because of the true negative

inclusion, the accuracy metric will always result in an anomalous high scoring (Müller et al., 2022). This can be clearly seen

in Figure A1, where the score for the Accuracy metric is high also for those models which do not perform well if taking into455

account other metrics. Accuracy is calculated as:

Accuracy =
TP + TN

TP + TN + FN + FP
(C6)

C3 F-measure based metrics

F-measure, also known as F-score, metrics are among the most widely used evaluation performance metrics for computer

vision and image analysis (Taha & Hanbury, 2015; Müller et al., 2021, 2022; Allen et al., 2022). It is calculated from Recall460

and Precision of a prediction, by which it scores the overlap between predicted segmentation and ground truth. Including

the precision metric, F-measure penalises false positives, which can be common features in multi-class datasets – such as

those derived from X-ray µCT. There are two metrics based on the F-measure: Dice Coefficient, also called F1 or Sørensen-

Dice index, and the Intersection-over-Union (IoU), also known as Jaccard index or Jaccard similarity coefficient. The Dice

coefficient is defined as the harmonic mean between sensitivity and precision and is calculated as:465

DICE =
2 ·TP

2 ·TP + FP + FN
(C7)

The IoU, instead, is defined as:

IoU =
TP

TP + FP + FN
(C8)
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We can also define DICE as:

DICE =
2× IoU

1× IoU
(C9)470

C4 Area under the Receiver Operating Characteristic

The Receiver Operating Characteristic (ROC), is a line plot of the diagnostic ability of a classifier by visualising its performance

with different discrimination thresholds (Taha & Hanbury, 2015; Müller et al., 2022). The performance is assessed through the

true positive rate against the false negative rate. We can use the Area under the Receiver Operating Characteristic (AUC) as

a single-value evaluation performance metric for the validation of image classifiers (Müller et al., 2022). The following AUC475

formula is determined as the area of the trapezoid defined by the ROC plot (see Müller et al. (2022) for a full formulation):

AUC = 1− 1
2

( FP

FP + TN
+

FN

FN + TP

)
(C10)

It needs to be noted that an AUC value of 0.5 is indicative of a random classifier.

C5 Volumetric similarity

As the name suggests, Volumetric Similarity (VS) is a measure that considers the volume of the segmented classes to indicate480

similarity. Here we use the definition reported in Taha & Hanbury (2015), namely the absolute volume difference divided by

the sum of the compared volumes. Taha & Hanbury (2015) define the VS as 1-VD, where VD is the volumetric distance:

V olumetricSimilarity = 1− |FN −FP |
2 ·TP + FP + FN

(C11)

C6 Cohen’s Kappa

This metric is defined as a change-corrected measure of agreement between ground truth and predicted classification (Taha &485

Hanbury, 2015; Müller et al., 2022). Differently for previous metrics, Cohen’s Kappa (KAPPA) ranges from -1 (worst) and +1

(best); a KAPPA close to 0 indicates a random classifier. The KAPPA evaluation metric is calculated as follows:

fc =
(TN + FN)(TN + FP ) + (FP + TP )(FN + TP )

TP + TN + FN + FP
(C12)

(C13)

Kappa =
(TP + TN)− fc

(TN + TN + FN + FP )− fc
(C14)490

In the main text the Dice coefficient (Fig. 4 and Table 1) is used to evaluate and compare the segmentation resulting from

the neural network trained using ground truth data derived from (i) Histogram segmentation (Models A, B, C), (ii) Histogram
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segmentation with data augmentation (Models D and E), and finally (iii) a Random Forest Classifier. A complete description of

all calculated metrics can be found in Figure A1 and in Table A1. Both the figure and the table report the calculated values for

the different phases (Gypsum, Bassanite, Pores, and Celestite) and the average over the segmented volume, for the reference495

volume VA19-040 (736x800x400 voxels). It can be noted how the introduction of data augmentation benefits the segmentation

of most phases with respect to almost all metrics (particularly for Model E). However, only Model RF (trained with a Random

Forest ground truth) includes the Celestite phase (yellow in the graphs) in addition to the overall best performance in all most

metrics.
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Figure A1. Eight common evaluation metrics calculated for the different segmentation models: Accuracy, Recall, Dice Coefficient (DICE),

Specificity, Intersection-over-Union (IoU), Area under the Receiver Operating Characteristic (AUC), Volumetric Similarity, and Cohen’s

Kappa (Kappa) are evaluated for the average volume and for each of the phases present in the analysed sample volume. Please refer to the

main text for details regarding each trained model.
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