
Reviewer #3 – Luke Griffith 
 

Dear editor and authors, 
 
Summary: This paper presents a workflow for multi-class segmentation of 

X-ray computed tomography images of rock during in situ testing. The 
authors aim to address the reproducibility issues commonly associated with 
this process through employing a deep learning approach, trained on the 

results of a feature-based random forest classification. The results of the 
U-net model are compared to a global thresholding method. They 
innovatively use mass balance to provide an external measure of the 

relative volume of constituents, allowing for a direct comparison with the 
segmentation results. 
 

The paper is well-written and the background and motivation are clearly 
outlined. I have some comments on the methodology, for which some 
choices need to be explained in greater detail and potentially modified 

where appropriate to compare the models and evaluate their performance 
in a more robust way. I found the external verification of the multi-class 
segmentation to be a clear strong point of the paper, and I think this data 

could be further used as a priori information to guide the models during 
training and provide robust segmentation (but perhaps this is beyond the 
scope of this study). 

 
I have provided comments below, and comments in the attached PDF on 
specific parts of the text. 

 
I recommend publication after minor revisions, most importantly to address 
the questions on the segmentation methodology. 

 
We are sincerely grateful to Dr. Luke Griffith for his thorough and detailed 
review of our manuscript. We have addressed the comments made here 

below, reporting also those made on the PDF version of the manuscript.  
 
Comments: 

• The distinction between pixel or feature-based methods and 
convolutional methods could perhaps be made clearer earlier on – 
the assumption is that convolutional methods work better because 

they are able to better capture spatial information but I was expecting 
this point to have more weight in the introduction. 
 

We thank the reviewer for point out that these concepts were not 
clearly described in the Introduction section. We have integrated the 
text as follows: 

“In addition, some deep learning algorithms still rely on adaptive 
filtering and global thresholding operations (Phan et al., 2021). This 
reliance on the grayscale value can hinder the effectiveness of such 



algorithms, regardless of their complexity. This limitation becomes 
most apparent in data containing low contrast phases, where filtering 

processes to reduce noise or enhance feature visibility may alter or 
eliminate critical intensity variations necessary for accurate phase 
differentiation and segmentation. In contrast, convolutional methods, 

grounded in machine learning, advance beyond these constraints by 
integrating spatial and morphological information. This integration 
allows for a more robust and accurate segmentation, especially vital 

in µCT datasets, where spatial relationships and contextual nuances 
are key to discerning accurate interpretations.” 
 

• Was there any attempt to use histogram matching and/or calibration 
of greyscale to values of known materials (e.g. for pieces of steel that 
are not expected to change between scans)? This can work quite well 

to allow for direct comparison of time-lapse images and quantitative 
analysis. 
We agree that using a phantom of a known material can help 

calibrating the grayscale of the sample. We have discussed this 
method in the manuscript, but for the dataset shown in the 
manuscript we did not use a phantom. However, in the upcoming 

beamtime we will test the method. 
 

• The ML approaches are compared to simple histogram (global?) 

thresholding – perhaps even adaptive/local thresholding or 
watershed segmentation would perform much better and might be a 
fairer comparison. 

 
We agree the adaptative/local thresholding shows better 
performances that histogram thresholding. However, we deliberately 

used histogram thresholding as comparison since the this is still one 
of the most commonly used method for in image segmentation.  
 

• How did you label the training data? Do you label all pixels within an 
image or a subset of pixels for which you are confident in their 
labelling (e.g. only pixels well within a grain)? 

 
As reported in Appendix B of the manuscript we labelled the training 
dataset using the Dragonfly software. We labelled pixels pertaining to 

the different phases (gypsum, bassanite, pore, celestite) using the 
Brush tool in the software only within the mineral grains or pores.  
 

• How was the validation set chosen? Equally across all images from 
each time step? I would be interested to see how the model performs 
if the validation set contained all images of a given time step 

(therefore not present in the training set). As it is argued that the DL 
method is more robust and consistent, doing the test-train split in 
this way could better illustrate this point. 



 
For our latest model (i.e. that trained using RF segmented data as 

input) we defined the “validation set ” randomly setting aside 20% of 
the input data. In our first attempts to train a DL model, we tended 
to feed as ground truth, training and validation sets large volumes of 

data. This, however, induced the model to overfit. Thus the choice of 
training the data over small datasets integrated with Data 
Augmentation. 

 
• How does the RF model alone compare to the U-net model? For 

example, compared to the manually labelled images. 

 
The RF and DL with U-net architecture models produce equally 
comparable (and good) results for the dataset used for training (see 

below figure). However the accuracy of the RF segmentation tends to 
degrade moving towards the extremes of the time-series data (i.e., 
early stage of the dehydration and near-fully dehydrated samples) as 

well as when attempting to segment unseen data. 
 
Differently the DL model is consistent in the segmentation for 

different (unseen) XCT volumes and throughout the time-series. 
 
 

 
 

• How were the features chosen for the RF model? How much better 
could the RF model become if more features are added and/or 
features with larger windows than 3x3? Could it rival the U-net 

model? 
 

To clarify the method used, we have now integrated more details on 

the RF features into the text of Appendix B:  
 
“In our study, the Random Forest classifier was employed with a set 

of predefined features: Morphological, Gaussian Multi-Scale, and 



Neighbours. Each of these feature sets plays a distinct role in 
enhancing the classifier’s ability to accurately segment phases in the 

dataset. 
 
– Morphological Features: These are used to analyse the shape and 

structure within the images, enabling the classifier to detect and 
distinguish different phases based on their morphological 
characteristics. 

– Gaussian Multi-Scale Features: These features involve applying 
Gaussian filters at multiple scales, aiding in smoothing the images 
and reducing noise. This multi-scale approach helps in capturing 

features at various levels of detail, contributing to more effective 
phase differentiation. 
– Neighbours Features: This set focuses on the local neighbourhood 

of each pixel, capturing the texture and local contrast, which is 
essential for identifying subtle boundaries between phases. 
 

All these features are used together in the Random Forest classifier, 
each contributing to the overall classification task. The classifier does 
not operate on a voting system between these feature sets; rather, it 

integrates the information provided by all of them to decide for each 
voxel in the image. This integrated approach enables a more nuanced 
and accurate classification compared to using any single feature set 

on its own, and significantly improves the process over manual 
thresholding methods” 

  

 Regarding changing/modifying the features and their sizes. This is a 
very interesting point which we have not yet tested, but which is 
important to explore. Instead regarding the ability of performing 

more accurate segmentation compared to the U-net, we still believe 
that the main advantage of using a DL model stays in its ability to 
generalise. Random Forest methods (such as the Weka 

implementation in ImageJ; Arganda-Carreras et al., 2017 
Bioinformatics, doi:10.1093/bioinformatics/btx180) are fully able to 
segment complex dataset but require constant ‘re-training’ when 

dealing with unseen datasets. 
  

• Perhaps I misunderstand, but it is a bit confusing to use “ground 

truth” and validation data interchangeably (is this indeed the case?). 
For example, are the “ground truths” used for comparison in Table 1 
the same for each method? I think, ideally, a ground truth should be 

the best possible segmentation (e.g., one that was labelled manually 
or using whichever is deemed the best result from all these models) 
and it should be the same reference for all models.  

It can be misleading to evaluate the models on how well they perform 
on their validation data, because the quality of the validation data 
varies depending on the method used to label it (i.e., thresholding or 



RF). At the very least, this should be made more clear by dropping 
the “ground truth” terminology. Ideally, the models should be re-

evaluated against the same “best-case” segmentation. 
 
We agree that there might be some confusion. When we refer to 

“ground truth” we refer to the labelling of data done my us as 
obtained using different segmentation strategies (i.e., Histogram 
thresholding or Random Forest Classification). Essentially, ground 

truth acts as the standard against which the model's predictions are 
compared. It would be not correct to compare a ground truth derived 
using random forest against the result of a DL model trained using 

Histogram Segmentation.  
 

• Are you able to give a formal comparison of the methods based on 

the ground truth from the calculated phase volume changes? That 
seems to be like a good way to evaluate their performance. 
 

We have provided a formal comparison of the methods, both for the 
Deep Learning models trained using different input sets (Table 1 and 
Figure A1 in appendix), as well as of Deep Learning vs Histogram 

thresholding in Figure 7.  
 

• More of an observation as it is perhaps beyond the scope of this work: 

it would be very interesting to see if the measured volumetric 
evolution could be used to constrain the models used for 
segmentation. This is what I was anticipating based on the title. 

 
This is indeed a very interesting topic. We think this can be 
incorporated into a “semi-supervised” deep-learning segmentation 

algorithm. We are indeed working towards including this into the 
deep-learning model. 

 

• "U-net model are compared to a global thresholding method" - should 
read "U-net models trained on RF-generated labels are compared to 
U-net models trained on labels made using thresholding" 

 
thanks for clarifying  
 

Specific Comments: 
 
Line 52: Most, perhaps, but there still are many multi-label classification 

examples out there. 
 
We agree, and we do mention few of them in the introduction. But the 

majority of the studies, particularly for porous media, fluid flow in porous 
media, and for solid state reaction – where µCT is largely used – focus on 
void and solid material classifications. 



 
Line 53: I don't quite understand this sentence and how it relates to "this". 

And does the limitation refer to images, or the limited information within a 
single grayscale pixel? It seems to me that images contain a significant 
amount of information - hence the proposed use of CNNs? 

 
Also Reviewer 1 raised that the wording in this paragraph was unclear. We 
now added the following sentence: “This is most clearly seen in data that 

contain low contrast phases, for which filtering processes to reduce noise 
or enhance feature visibility may modify or remove variations in intensity 
that are critical for accurate phase differentiation and segmentation” 

 
Line 54: Is this referring to grayscale changes due to changes in the imaged 
object or due to instability of the imaging equipment itself? If the latter, I 

understand why simple comparison between images will cause issues, but 
I don't see why thresholds would need to change, otherwise. This could use 
a little more explanation. 

 
In our manuscript, we refer to the changes in the imaged object over time, 
not to any instability in the imaging equipment. 

 
As our system evolves, the grayscale values within the image volumes also 
change dynamically. This variation is highlighted in Figure 2, where it 

becomes evident that a fixed threshold value selected at one time frame 
becomes inadequate for accurately segmenting a certain phase at a later 
time. It's not just the variation in pixel count that we observe; there's also 

a shift in the average grayscale values of the pixels over time. 
 
This means that the threshold that may be appropriate for one time frame 

may no longer be suitable as the system evolves, leading to inaccuracies in 
phase segmentation. Our study emphasises the challenges of using fixed 
thresholding in evolving systems, as the grayscale properties of each phase 

can change significantly over time, necessitating a more adaptable 
segmentation approach. 
 

 
Line 57: For me, this is the main point. Thresholding is pixel based, and DL 
can account for a wider context 

 
We agree. But we would like to emphasise that in our work was actually the 
ML model (the Random Forest Classifier) that allows detection and 

incorporation of morphological feature in the segmentation model. 
 
Figure 1: “"manually labelling"?” instead of “Labelling”. 

 
Modified as suggested 
 



Line 137: How was this 20% chosen? 
 

The 20% of data for validation is chosen randomly from the input data. We 
have now clarified this in the text as follows: “For all the tested strategies, 
we randomly choose a twenty percent of the segmented data to serve as a 

“validation set” which is otherwise not used during training.”  
 
Line 185: Can be confusing to use "features" outside of the ML context. 

  
Here we actually mean the textural/fabric features of the rock. 
 

Line 191: how does this relate to the grain size, I imagine it is quite small? 
 
Initially, the grainsize of the bassanite is indeed quite small. However, using 

a filter size of 3x3 minimises the possibility of smoothing (and therefore 
eliminating) pixels belonging to the bassanite phase particularly during the 
early stages of the dehydration experiment.  

 
Line 216: Wording seems strange to me here 
 

To us the meaning of this sentence is quite straightforward: If a DICE score 
is close to 0 it means that the segmentation does not match the ground 
truth. Otherwise, the closer the DICE score is to 1 the better the match 

between segmentation and ground truth is.  
 
Line 271 – 272: Perhaps need to be more specific here as this has been 

done for porosity (e.g. Iassonov, 2009), and to calibrate fluid saturation 
measurements in CT imaging. 
 

Thanks for pointing out the reference to the work of Iassonov. We have now 
deleted the sentence. 
 

Line 293: Why is 5% chosen? Could you mean 95%? Also, how is it 
calculated? 
 

Thanks for flagging this. Here we intend that the data points fall within a 
5% “error bound”, and not “confidence interval” as erroneously stated in 
the manuscript. Now fixed. We choose 5% error bound as this is a standard 

value in statistics. The error is measured as distance between the data point 
and the theoretical curve. 
 

Line 320: To some extent, one might use this as a first pass but I think 
watershed segmentation is more typical 
 

We have now added watershed segmentation to integrate the text of the 
manuscript. 
 



Line 328: Is this shown here? 
 

Yes, we have shown how the combination of RF and DL can produce a 
segmentation model that is accurate and generalised over a full time series. 
 

Line 340 – 347: It is not clear to me how the partial volume effect is 
relevant here - are there crystals which are on the order of the voxel size? 
Or mixing of the materials (effective medium)? If so, this should be 

explained. 
 
Often, primarily due to resolution limitations, placing a precise boundary 

between two or more phases is challenging. Typically, a gradual transition 
is observed from the grayscale values of one phase to those of another, 
making it difficult to derive accurate volumetric data. 

 
Line 349: Unless I misunderstand, this is slightly misleading, as a "priori" 
suggests this information is somehow considered in the model, which I 

don't think it is - rather this information is used as validation? 
 
As for definition, a-priori denotes “a knowledge which proceeds from 

theoretical deduction rather than from observation or experience.” We 
therefore think that our word choice is correct. 
 

Figure 7: Does it say which is which? 
 
Later in the figure caption we say: “The new workflow developed in this 

study (a), which leverages a random forest classifier to label input data for 
a deep learning model, yields significantly improved accuracy in phase 
volume measurements relative to conventional thresholding segmentation 

– including “despeckle” and “non-local means” with sigma = 5, smoothing 
= 1 (b). ” 
 

Line 377 – 380: This sentence sticks out a bit - can you give more 
information on why these methods? Transfer learning and reinforcement 
learning are quite large topics that may well add value, but it's unclear 

how/why they might be beneficial for this specific case. For example, 
transfer learning using models based on different time steps, or different 
materials? More concretely, why would RL be beneficial? 

 
We have now integrated the text so that to clarify how we intend to use the 
two methods to integrate segmentation strategies. Here is the new 

paragraph:  
 
“In future iterations of our method aims to expand its capabilities and 

applications. A direction to explore is the integration of deep learning 
convolutional neural networks with transfer learning and reinforcement 
learning techniques. Transfer learning can leverage pre-trained models to 



reduce computational cost and improve generalisation ability (Kim et al., 
2022), while reinforcement learning might provide dynamic and adaptive 

strategies for data acquisition and reconstruction (Le et al., 2022). 
Specifically, transfer learning could be utilised to adapt models initially 
trained on datasets derived using imaging techniques which provide higher 

textural resolutions (such as Scanning Electron Microscope – SEM), thereby 
enhancing their ability to generalise to complex datasets with minimal 
retraining. Reinforcement learning could play a crucial role in optimising 

data acquisition and reconstruction processes. By applying reinforcement 
learning algorithms, we could develop systems that dynamically adjust 
acquisition parameters or reconstruction techniques based on real-time 

feedback, leading to more efficient and accurate image analysis. For 
instance, in time-evolving systems, reinforcement learning could be used 
to adaptively select optimal imaging parameters for each time step, based 

on the changes observed in the previous scans.” 
 


