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Abstract. In this study, we investigate the fully multivariate state and parameter estimation through idealised simulations of

a dynamic-only model that uses the novel Maxwell-Elasto-Brittle (MEB) sea ice rheology and in which we estimate not only

the sea ice concentration, thickness and velocity, but also its level of damage, internal stress and cohesion. Specifically, we

estimate the air drag coefficient and the so-called damage parameter of the MEB model. Mimicking the realistic observation

network with different combinations of observations, we demonstrate that various issues can potentially arise in a complex sea5

ice model especially in instances for which the external forcing dominates the model forecast error growth. Even though further

investigation will be needed using an operational (a coupled dynamics-thermodynamics) sea ice model, we show that, with the

current observation network, it is possible to improve both the observed and unobserved model state forecast and parameters

accuracy.

1 Introduction10

An accurate representation of the state of sea ice in the Arctic is important for making both short-term, seasonal and long-term

climate predictions. Recent observations show that its extent is in decline, and, in particular, that it is shifting from a multi-year

ice type to “younger” first-year ice (Meier, 2017). This ongoing shift induces a larger year-to-year and inter-annual variability

in the sea ice extent, that makes the short-term and seasonal Arctic sea ice forecasting even more challenging, albeit its crucial

relevance for shipping routes and fisheries (Mioduszewski et al., 2019). The Arctic sea ice is also a major player of the climate15

systems via its feedback to the Earth surface albedo, ocean and atmosphere global circulations. Accurate sea ice simulations

are therefore essential for better climate projections (Bertino and Holland, 2017).

As in other areas of environmental predictions, errors in sea ice models can be attributed to either errors in the initial

conditions or in the model representation of physical processes. Due to the low degree of internal instabilities of the sea-ice
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evolution on long space and time scales (> seasonal timescales), model error is the main source of prediction uncertainty and it20

is especially detrimental to long-term forecasts needed for climate simulations. Numerical models incorporate parametrisations

to represent physical processes that are not explicitly described or resolved in the model. The parameters involved can be

estimated in different ways. One way is to base the parameter on values obtained from laboratory experiments in idealised

environments, but has the limitation that the selected values may not scale up for complex realistic simulations. Alternatively,

one can select a value from a range of possible candidates based on which candidate produces the best fit between model and25

observations (Dansereau, 2011; Miller et al., 2006; Heorton et al., 2019). Nevertheless, as the number of parameters to be tuned

increases, the latter approach becomes computationally infeasible. In that case, an optimised version of the aforementioned

process called “data assimilation” must be pursued.

Data assimilation (DA) combines observations with the model forecast to provide the most-likely estimate for the true

state/parameter of the system (see e.g., Carrassi et al., 2018; Evensen et al., 2022; Park and Zupanski, 2022). It has been proved30

to be essential for sea ice forecasting (Sakov et al., 2012a; Lea et al., 2015; Zuo et al., 2019). Data assimilation can account for

both the forecast and observation errors in the state/parameter estimation. To this extent, error statistics need to be specified. In

ensemble DA, the forecast error statistics are obtained from an ensemble of model runs (Evensen, 2003).

Previous studies have shown that assimilating sea ice concentration (SIC) can reduce errors in sea ice thickness (SIT) (Mas-

sonnet et al., 2015) and that, in coupled sea-ice and ocean models, sea ice observations help initializing ocean fields such as35

the ocean and wind forcing (Toyoda et al., 2016). Model parameters can be made part of the state and when it is assumed that

they are affected by errors, DA can be used to estimate them. An example of such an approach in sea-ice models can be found

in Massonnet et al. (2014) who used the ensemble Kalman filter (EnKF, Evensen, 2003) to estimate the air drag coefficients,

ocean drag coefficients and the sea ice strength parameter by assimilating sea ice drift data.

Sea ice models include multiple variables. However, only three of these are usually observed and assimilated: SIC, SIT and40

sea ice drift. These observations are mostly obtained from satellites. In-situ observations are usually only used for evaluation

purposes (Jakobson et al., 2012). The satellite observations of SIC show good spatial and temporal coverage with relatively

low uncertainty. Assimilation of SIC shows tremendous benefits for sea ice forecasting (Lisæter et al., 2003; Stark et al.,

2007). In the past decades, though less accurate than the SIC, SIT has started to be assimilated, with further improvements

to the forecasts (Xie et al., 2018)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Xie et al., 2018; Blockley and Peterson, 2018; Fiedler et al., 2022b). The assimilation of sea45

ice drift has been comparatively less successful and motivated further developments of sea ice rheological models (Sakov et al.,

2012a). These studies altogether show the important role of DA in sea ice prediction.

In this study, we explore the capability of ensemble DA to estimate both the state and key sea ice parameters in a model

endowed with an MEB rheology. This rheology is adopted by the neXt-generation Sea Ice Model (neXtSIM) which runs

operationally on a Lagrangian grid that uses dynamical remeshing (Rampal et al., 2016). Due to the Lagrangian framework,50

the advection process does not require explicit calculations, and the highly multi-scale sea ice features, especially localised

features such as the so-called Linear Kinematic Features (LKFs), which concentrates sea ice fracturing and high deformations

rates, can be easily preserved (Bouillon and Rampal, 2015). One downside of this framework however is that, with
::
the changing

number of model grid points in time, it poses challenges for ensemble DA. Consequently, DA approaches have been specifically
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designed (e.g., Aydoğdu et al., 2019; Sampson et al., 2021) and implemented in the context of neXtSIM by Cheng et al. (2023).55

Another drawback of using a Lagrangian framework in a sea ice model is that coupling to existing ocean and atmospheric model

components, which are virtually all Eulerian, requires the use of a coupler on a fixed exchange grid (Boutin et al., 2023).

As such a coupling is essential for climate simulations, a new version of neXtSIM based on an Eulerian framework is

being developed under the Scale-Aware Sea Ice Project (SASIP; https://sasip-climate.github.io/). It is in the light of these

developments that this study is inscribed. In particular, the dynamics-only sea ice MEB model of Dansereau et al. (2016, 2017)60

has been designed following a Eulerian approach and a Discontinuous-Galerkin treatment of advection. With the aid of this

dynamics-only sea ice MEB model, we study in detail the capabilities, limitations and adaptations of ensemble DA to infer

state and model parameters based on synthetic observations of the Arctic sea ice.

We intentionally use a dynamics-only model whereby thermodynamics processes are missing. Indeed, such
:
a
:
model is

already complex enough and on short (daily and weekly) times scales, sufficient to focus on how the mechanical/dynamical65

processes lead to the emergence of complex, potentially nonlinear, relations between model states, its parameters and the

observable quantities. Those are the relations the DA has to rely on. Thus, although the model does not capture all of the

processes at play in sea ice, we shall see how our experiments reveal a number of complex interactions. On the other hand, the

use of a simpler idealised model allows us to conduct a fully multivariate estimate where we infer all model fields with only a

handful of available observations, a realistic situation that has not yet
::::
been studied extensively in sea-ice DA.70

The paper is organised as follows. In Sect. 2 we introduce the iterative ensemble Kalman filter (IEnKF), state-of-the-art

DA approach used in this study. Then, we describe the model and its configurations in Sect. 3. The ensemble DA setup and

twin experiments are given in Sect. 4. Results for both multivariate state estimation in “perfect model” setup and parameter

estimation in a biased model are reported in Sect. 5. In Sect. 6 we discuss some of the critical aspects of ensemble DA in this

context together with how to address them in future works. We finally summarise our findings in Sect. 7.75

2 Data assimilation: The iterative ensemble Kalman filter

The iterative ensemble Kalman filter (IEnKF, Sakov et al., 2012b; Bocquet and Sakov, 2012, 2014) is a variant of the Kalman

filter (KF). Like the KF, it is constructed based on the Bayes theorem under the assumption that the prior (forecast), evidence

(observation) and posterior (analysis) follow a Gaussian distribution. It has successfully been applied to joint state and model

parameter estimation problems (Bocquet and Sakov, 2013; Haussaire and Bocquet, 2016; Bocquet et al., 2021). In ensemble80

DA methods, the linear model assumption of the KF is relaxed and the prior distribution is estimated from a finite ensemble

of model forecasts. A relevant feature of the IEnKF is that it solves for the analysis via a nonlinear optimisation aimed at

maximising the aposterior probability distribution. This key aspect makes it worth investigating its performance in the context

of predicting Arctic sea ice, which is characterised by strong and complex nonlinear relations as well as weak non-linearity in

the observations. The IEnKF is the filter version of the more general iterative ensemble Kalman smoother (Bocquet and Sakov,85

2014) and it is conceptually a generalisation of the maximum likelihood ensemble filter by Zupanski (2005).
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In an ensemble DA system consisted
::::::::
consisting of Ne ensemble members with N -dimensional state vector, the ensemble

mean of the posterior analysis xa ∈ RN is given by xa = xf +Awmin with xf ∈ RN being the apriori ensemble mean, A ∈
RN×Ne the matrix of ensemble anomalies with N rows and Ne columns obtained by removing the ensemble mean from the

full ensemble matrix, and wmin ∈ RNe being the minimum of w obtained from the cost function as90

wmin := argmin
w

J (w), (1a)

with

J (w) =
1

2

(
y−H(xf +Aw)

)T
R−1

(
y−H(xf +Aw)

)
+

1

2
(N − 1)wTw, (1b)

where y ∈ RNo contains No observations whose error covariance is specified by R ∈ RNo×No and H is the observation op-

erator. Formulating the problem as in Eq. (1) is equivalent to an ensemble variational method. Note that extensive reviews of95

these methods can be find in the chapter
:::::
found

::
in

:::::::
Chapter 7 of Asch et al. (2016), Bannister (2017), or Sect. 4 in Carrassi

et al. (2018). In our implementation, the cost function in Eq. (1) is minimised using a Gauss-Newton method. The stop-

ping criterion in this study is to have a maximum 40 number of iterations when performing state-estimate
::
are

::
a
:::::::::
maximum

::
of

::
40

:::::::::
iterations,

:::
for

:::
the

::::::::::
experiments

:::
of

::::
state

:::::::::
estimation

:
only (Sect. ??

::::
4.3.2 and 5.1) with the additional

:::
plus

:::
the

:
constraint

of ||wk −wk−1||< 10−3 when parameters are also estimated (Sect. 5.2-Sect. 5.4). The
::::
latter

:::::::::
additional

::::::::
constraint

:::
has

:::::
been100

:::::::
included

:::
on

:::
the

::::
basis

:::
of

:::::::::
theoretical

:::::::::
arguments

:::
and

:::::::::
numerical

:::::::::::
experiments.

::
It

::::::
avoids

:::::::::
overfitting

::
at

:
a
::::::
single

:::::::
analysis

::::
step

:::
for

:::::::::
parameters

:::::::
without

::::::::::::::
time-dependency.

:::::::
Without

::::
the

::::::::
additional

::::::::
stopping

::::::::
criterion,

:::
the

:::::::::
parameter

:::::::::
estimation

::::
leads

:::
to

::::::::
excessive

:::::::::
corrections

:::
that

:::
do

:::
not

::::::
appear

::
in

:::
the

:::
case

:::
of

::::
state

:::::::::
estimation

::::
only.

:::::
Early

:::::::
stopping

::::::
criteria

::
in

:::
the

::::::
context

:::
of

:::::::::::::::::
ensemble-variational

:::::::
methods

::::
with

:::::::
domain

::::::::::
localisation

::::
was

::::
also

::::::::
originally

:::::::::
suggested

::
by

::::::::::::::
Bocquet (2016)

::
to

::::
deal

::::
with

:::
the

::::::::
potential

:::::::::::
convergence

::::::::
problems.

:::::
After

:::::::::::
minimization,

:::
the

:
posterior analysis error covariance is approximated, via the ensemble, by the inverse of the105

Hessian of J .

The forecast error covariance is approximated with the ensemble anomaly matrix, A, by 1
N−1AAT. Given that the state

vector contains both observed and unobserved model fields, the forecast error covariance matrix contains the (ensemble-based)

cross-covariance between these fields that allow for propagating the data content to all model fields, including those that are not

directly observed. As we shall clarify later, we use a fully multivariate augmented DA where the state vector contains all model110

fields and model parameters that we will be estimated (see for instance Ruiz et al., 2013b). The analysis of the unobserved

fields and parameters depends directly on the cross-correlations between these fields and the observations.

3 Model setup

In this study, we use a dynamics-only sea ice model in an idealised setup. In this section, we provide details about the model

setup used in our numerical experiments. This includes the model equations, its parameters and the choice of external forcing115

fields. The setup described in this section is used as modelled “truth” in following DA experiments.
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3.1 The dynamics-only sea ice model

The dynamics-only sea ice model uses the MEB rheology proposed by Dansereau et al. (2016). The model itself and its

numerical implementation, based on an Eulerian, discontinuous Galerkin approach, is presented in Dansereau et al. (2017).

In the MEB model, sea ice is treated as a viscous-elasto-brittle material. This rheology allows for representing the ice cover120

as a brittle solid where it is relatively undamaged (i.e., unfractured) and highly concentrated relative to ice-free waters, and

as an elastic-viscous fluid where it is intensively fractured and low in concentration. By associating sea-ice to an elastic solid

rather than a highly viscous fluid and by incorporating a variable (the level of damage, d) to represent its degree of fracturing at

the sub-grid scale, this model differs significantly from the widely-employed (elastic-)viscous-plastic rheologies (Hunke et al.,

2010).125

The dynamics-only MEB sea ice model describes the evolution of 9 model fields: sea ice concentration (SIC) A, thickness

(SIT) h, velocity (SIV) u= (ux,uy) = (u,v), level of damage d, cohesion C, and internal stress σ =

σxx σxy

σyx σyy

, where

σyx = σxy (see Dansereau et al., 2017).

In the MEB rheology, the evolution of the SIV, level of damage, and stress describes the kinematics of the sea ice. To obtain

a physically plausible solution, a stress-velocity-damage constraint that respects the MEB constitutive equation (which relates130

SIV to σ) must be satisfied. Other model fields also enter the momentum, constitutive, damage evolution and mass conservation

equations, but these are just advected by the SIV. Here, we highlight the momentum and stress equations of the sea ice model.

These equations will be relevant in parameter estimation experiments. The momentum equation is given as:

ρh
Du

Dt
=∇ · (hσ)+ ρaCaA|ua|ua, (2)

where ρ and ρa are the sea ice and air density respectively, ua is the wind field, D
Dt is the material derivative, and Ca is the air135

drag coefficient. The stress equation is:

λ0dα−1

[
∂σ

∂t
+(u · ∇)σ+βa(∇u,σ)

]
+ ⌈1− d⌉σ = η0d′α exp[−c∗(1−A)]K :D(u), (3)

where λ0 is the undamaged relaxation time; βa is a function that accounts for the effects of rotation and deformation; η0 is the

undamaged apparent viscosity; d′α = (1− ηmin

η0
)dα + ηmin

η0
with ηmin being the minimum apparent viscosity and α being a

damage-related parameter; K is a stiffness tensor and D() is the symmetric part of the velocity gradient.140

The model equations are discretised on an unstructured triangular grid using a Finite Element, Discontinuous Galerkin

method where the sea ice velocities are defined on triangular vertices (degree of polynomial approximations of 1) and all

other model fields are defined on the face of the triangular element (degree of polynomial approximations of 0, or constant

by element, see Dansereau et al., 2017). In particular, because the constitutive, momentum and level of damage evolution are

coupled, SIV, level of damage and sea ice stress are solved using a semi-implicit, iterative method. Besides these dynamical145

properties, the sea ice model used in this study does not include thermodynamics processes. As such, it is a short time-scales

proxy of the dynamic-thermodynamic sea ice model currently under construction in the SASIP project, neXtSIMDG. However,
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this future model builds on the MEB rheology and Discontinuous Galerkin-based numerical scheme. Therefore, the present

model is a reliable surrogate of the dynamical components and of the numerical core of neXtSIMDG.

The evolution of the sea ice model is controlled by multiple model parameters, which define the physical properties of the sea150

ice and thereby intrinsically affects the representation of sea ice in the model. These parameters (cf. Tab. A1) follow the choice

in Dansereau et al. (2017) with exceptions for the spatial and temporal resolutions and minimum cohesion. In our experiments,

the model runs at the spatial resolution of around 15 km and a time step of 30 seconds. This ensures numerical stability while

sufficiently resolving the propagation of damage, the fastest process represented in the model. The model is solved on a squared

model domain of [−L,L]× [−L,L] with x- and y-axis aligned along the perpendicular sides of the square with L= 100 km.155

This gives us 512 elements and 285 nodes. To enhance internal variability (and thus maintain ensemble spread in the IEnKF),

the minimum sea ice cohesion, which sets the resistance of the sea ice cover from fracturing, is lowered to 5,000 Pa from

8,000 Pa used so far in neXtSIM (Rampal et al., 2016).

In this study,
:::
the DA’s ability to estimate two model parameters will be investigated: the air drag coefficient, Ca, in Eq. (2) and

damage parameter, α, in Eq. (3). Ca enters the model in the momentum equation (cf. Eq. (2)) modulating the influence of the160

wind fields on the SIV. This parameter corresponds to the effect of external forcing on the sea ice model. α controls the swiftness

of the transition between the elastic-brittle regime at low level of damage and the viscous regime at high damage. The mechan-

ical behaviour of an elastic-brittle solid is less predictable in nature than that of a viscous fluid (Weiss and Dansereau, 2017).

This means that erroneous α changes the internal property of sea ice and influences the sea ice predictability.
:::
The

::::::
choice

::
of

:::
the

:::::::::
parameters

::
to

::
be

:::::::::
estimated

::
is

::::::
largely

:::::
based

::
on

::::::::
previous

::::::
studies.

::::::::::::::::::::
Massonnet et al. (2014)

::::::
showed

::::
that

:
a
:::::::

coupled
:::::::::
ocean-sea

:::
ice165

:::::
model

::
is

:::::::
sensitive

::
to

:::
the

::::
drag

::::::::::
coefficient,

:::
that

::
is

::::::::
estimated

::::
with

:::
the

::::::::
ensemble

:::::::
Kalman

:::::
filter.

:::::
Using

:::::::::
neXtSIM,

:
a
:::::::::::::
rheology-based

:::::
model

::::::
similar

:::
to

:::
the

:::::
MEB

::::::
model

::::
used

:::::
here,

::::::::::::::::::
Rabatel et al. (2018)

::::::
showed

:::
the

::::::::::
importance

::
of

:::
the

:::::
wind

::::::
stress,

:::
and

:::::
thus

:::
the

::::::
air-drag

::::::::::
coefficient,

::
in

::::::::::
determining

:::
the

::::::
spread

::
of

:::
the

:::::::
sea-ice

::::::::::
trajectories.

:::::::::::
Furthermore,

::::::::::::::::
Cheng et al. (2020)

:::::::::::
demonstrated

::::
that

::
the

::::::
shape

:::
and

:::::::::
orientation

::
of

:::
the

::::
area

:::::::
covered

::
by

:::
the

:::::::
sea-ice

:::::::::
trajectories

::::::
depend

:::
on

:::
the

::::::
sea-ice

::
air

:::::
drag

:::::::::
coefficient.

:::::::
Besides

:::
the

::::
drag

:::::::::
coefficient,

:::
the

:::::::
damage

::::::::
parameter

::
is

:::
the

::::
only

:::::
other

:::::::
minimal

:::::::::
parameters

::
in

:
a
:::::::::

solid-like
::::
MEB

:::::::::::::
rheology-based

::::::
model.

:::::
Drag170

::::::::
coefficient

::::
and

:::::::
damage

:::::::::
parameters

:::
are

:::
the

::::
sole

::::
two

::::::
tunable

:::::::::
parameters

:::::::
present

::
in

:::
the

:::::
MEB

:::::
model

:::::
used

::
in

:::
this

::::::
study.

::::
This

::
is

:::::::
because,

::
in

:
a
:::::::::::::
dynamics-only

:::::
MEB

::::::
model,

:::
the

::
air

:::::
drag

::::::::
coefficient

::::
and

:::
the

:::::::
damage

::::::::
parameter

:::
are

:::
the

::::
only

::::
two

:::::::::
parameters

::::
that

::
do

:::
not

:::::
affect

:::
the

:::::::::
maximum

:::::
speed

::
of

:::
the

::::::
fastest

::::::::::
propagating

:::::
elastic

::::::
waves

:::::
which

::::::::
influence

:::
the

::::::
model

:::::::
stability

::::
with

:::::
given

::::
time

::::
steps.

:

:::
We

::::
have

:::::::::
performed

::
a
::::::::
numerical

:::::::::
sensitivity

:::::::
analysis

::::::
which

::::::
shows

:::
that

::::
the

::::::::::
observations

::::
are

:::::::
sensitive

::
to
:::::

both
::::::::::
parameters.175

::::::
Results

:::
are

:::::
shown

::
in
::::
Fig.

:
1
::::::
where

:::
the

::::
same

:::::
initial

::::
and

::::::::
boundary

::::::::
conditions

:::
are

::::
used

:::::
while

::::
each

::::::::
ensemble

:::::::
member

:::
has

::::::::
different

::
Ca::

or
:::
α.

:::
The

:::::::::
parameter

:::::
values

:::
are

:::::::
sampled

::::
from

::::::::::::::::::::::
N (2.5× 10−3,5× 10−4),

:::
and

::::::::
N (6,1.5)

:::
for

:::
Ca :::

and
:
α
:::::::::::
respectively.

:::
The

::::::
model

:::::::::
parameters

:::
are

:::::::::::::::
time-independent,

:::
and

:::
the

:::::::::
ensemble

:::::
means

:::
are

::::::::::
2.5× 10−3

:::
and

:::
6.5

:::::::::::
respectively.

::::::
Figure

:
1
::::::

shows
::::
that

::::
both

:::
Ca

:::
and

::
α

::::
have

:
a
::::::
strong

::::::
impact

::
on

::::
SIC

:::
and

::::
SIT

:::::
while

:
a
:::::
lesser

:::::
effect

::
is

::::::::
observed

::
on

:::
the

::::
SIV.

:

The initial and boundary conditions of the model are shown in Tab. 1. The simulations start with a domain covered by undam-180

aged sea ice at rest with a random cohesion field. The value of the cohesion field for each element is sampled from a uniform

distribution between 5,000 and 10,000 Pa. As shown in Fig. 2e, the initial SIT (h) is a “blob” defined by a cosine function
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Figure 1.
:::::::
Sensitivity

::
of
::::
SIV,

:::
SIC

::::
and

:::
SIT

::
to

:::::::
perturbed

:::
Ca::

or
::
α

::::::::
parameter.

:::
The

::::::
shaded

::::
area

:
is
:::

the
:::::::
standard

:::::::
deviation,

::
a
:::::::::::
representation

::
of

::::::::
uncertainty

::
of

:::
the

:::::::
ensemble,

:::
an

:::::::
indication

::
of

:::
the

::::::
strength

::
of

:::
the

::::::::
sensitivity.

Table 1. The initial and boundary condition of the experimental setup in the dynamics-only sea ice model. Here r =
√

x2 + y2 with (x,y)

being the coordinate of the grid points and r0 = 50 km. The boundary condition at y =−L= L is that of the fields transported into the

model domain.

Initial condition
Boundary condition Forcing

x=−L= L y =−L= L ocean atmosphere

A= 1

u= 0 m · s−1

A= 1

at rest

random quasi-periodic storm-liked= 0 d= 0

u= 0 m · s−1 σ(t) ·n= 0 Pa

σ = 0 Pa σ = 0 Pa

wind field occurrenceh=max(1,1+ cos(π
2
r/r0)) m h= 1 m

C ∼ U(5000,10000) Pa C ∼ U(5000,10000) Pa

given in Tab. 1, which represents the naturally inhomogeneous distribution of the SIT in space. We use no-slip boundary con-

ditions at x=−L= L and Neumann boundary conditions at y =−L= L where 1 m-thick undamaged sea ice is transported

into the domain based on the SIV. To avoid an influx of sea ice with
:
a uniform cohesion field from the domain boundaries, the185

cohesion field of the inflowing ice is randomly sampled from a uniform distribution between 5,000 and 10,000 Pa.
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Table 2. The parameters of the storm served as the truth of the wind field.

period (days) strength (m · s−1) initial centre (km) travel speed (m · s−1)

rotational divergent background x y

U(2,5) 22 0.1 2 U(−25,25) U(−50,20) 0.25

3.2 The external wind field

In the model setup, following Dansereau et al. (2017), the ocean is assumed to be at rest and the sea ice variability relies on

the wind forcing. We design an external forcing in the form of a prescribed storm-like wind drag that mimics the wind field

encountered in operational sea-ice DA. Consistent with reality, the wind is therefore a major source of variability in the present190

simulations (Guemas et al., 2016; Rabatel et al., 2018).

The storm-like wind field is inspired by the test cases for linear advection schemes in Lauritzen et al. (2012) generated by

analytical formulae as outlined in Appendix B. We deem this forcing an adequate representation of the complex horizontal

atmospheric flow. The wind field is updated at each model computational time step such that the sea ice is always driven by

the up-to-date wind field similar to the case where the sea ice model is coupled to an atmospheric model.195

The cyclone, shown in Fig. 2a, covers around a quarter of the domain in space. The wind field is superposed on a background

flow (2 m · s−1) from the bottom to the top of the domain. The centre of the storm moves from y = 0 to y = L with a speed of

0.25 m · s−1 which is slower than the background flow. The parameters of the storm can be found in Tab. 2. The formulae for

the wind field also allow for a fine control of the generation and dissipation of the cyclone. Therefore, as shown in Fig. 2b, the

storms (appearing as peaks in the time-series) are not persistent but have time-evolving features. Following the dissipation of200

a cyclone, a “peaceful” period with only the background wind is used. Hence, during our 90-day experiment period, there are

12 storm occurrences. Moreover, like the duration, the strength, the initial centre position, and the travel speed of the storm is

specified by the analytical formula with storm duration and initial position sampled from a uniform distribution as shown in

Tab. 2. With the given random initial position of the storm, the variability of the wind field is confined in a limited region of the

domain as shown in Fig. 2c and d. Figure 2e-f shows that the variability of the wind field leads to a variability of the modelled205

sea ice mainly in the upper right region of the domain as the sea ice is mostly damaged in these regions.

4 Data assimilation setup

The operational sea ice DA-only corrects
:::
DA

:::::::
corrects

::::
only the model state without dealing with model errors explicitly. It is

however impossible to dispose of a perfect model. Model errors originate from diverse sources, such as numerical discretiza-

tion, the lack of sufficient resolution as well as errors in the model parameters. We focus here on the parametric errors, as these210

are particularly problematic and dominate over the initial conditions errors in long-term forecasts.
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Figure 2. An illustration of the wind field and the model response in SIT. a) A snapshot of the wind field at an arbitrary time; b) time series

of the spatial-averaged wind velocity; c) Standard deviation of the u-component and d) the v-component of the wind in time over 90 days;

e) initial condition of the SIT; f) SIT after 42 days of simulation.

As introduced in Sect. 2, the IEnKF can infer unobserved model fields thanks to its ensemble-based cross-correlations

with the observed fields. This feature can also be exploited for parameter estimations. In the parameter estimation, we use

the augmented approach in which the model parameters are included as part of the state vector. For example, in the case of

estimating the air drag coefficient Ca, the state vector is x= (h,u,v, . . . ,Ca)
T. Thus their inference is ultimately related to the215

capability of the IEnKF to properly describe the correlation within this new, augmented virtual state composed by the physical

variables and the parameters.

The simultaneous state and parameter estimation is more challenging than state estimation alone since changes in the param-

eters have a direct impact, and can substantially modify the model’s dynamical properties. In the worst scenario, inappropriate

parameter values can push the model through a bifurcation (a tipping point in the case of non-autonomous systems) leading to220
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Table 3. The experiment setup used in four different scenarios. These experiments use the same truth where ua is the wind forcing, u(t= 0)

is the initial condition of the SIV.

model error inference vector perturbations
background localisation (km)

Ca α state Ca/α SIC SIT SIV

1. None state u, ua 1.5× 10−3 4 IEnKF-N 5 200 & 30 30

2. Ca state, Ca u, ua, Ca 2.5× 10−3 4 1.02 Eq. * 5 30 30

3. α state, α u, ua, α 1.5× 10−3 6.5 1.02 Eq. * 5 30 30

4. Ca and α state, Ca, α u, ua, Ca, α 2.5× 10−3 6.5 1.02 Eq. * 5 30 30

a qualitatively different model behaviour than those in the data. Moreover, different parameters can have aliased uncertainties

in the observed model fields, implying that not all of the parameters can be uniquely identified.

These challenges motivate the investigation of state and parameter estimation in the idealised dynamics-only sea ice model.

In this study, a series of twin experiments are conducted whereby a model run is taken to represent the “truth”. Synthetic

observations are generated from the “truth” following a specified observation error distribution.225

To assess DA’s ability, four different scenarios are explored: 1) a perfect model where the parameters are equal to their “true”

values; 2) a model with biased air drag coefficient, Ca; 3) a model with biased damage parameter, α; 4) a model with biased

Ca and α. A summary of the setup of each experiment is given in Tab. 3.

4.1 Ensemble generation

The IEnKF belongs to the category of the ensemble-based DA methods. As such it relies on an ensemble of model trajectories230

to approximate the forecast uncertainty. The ensemble spread represents the error in the estimate of the model state and

parameters. We will explore four different scenarios, whereby, as we shall clarify later, we will employ each time a different

strategy to generate the ensemble. In particular, in the cases with parametric error, each member of the ensemble will be given

a different set of model parameters.

Nevertheless, in all of the four scenarios, we will perturb both the wind field (i.e. an external forcing), the initial condition235

of the sea ice velocity, and the cohesion flux at model boundaries. The external atmospheric wind forcing is a major source

of forecast uncertainty in sea ice models. For example, Rabatel et al. (2018) and Cheng et al. (2020) studied the sensitivity

of neXtSIM to the wind forcing and sea ice cohesion. In this study, we generate synthetic perturbed wind fields around the

“true wind” defined in Sect. 3.2 and use them to form an ensemble. The duration, strength, initial position, and the travel speed

of each cyclone are perturbed with noises sampled from Gaussian distributions (see Tab. 4 for details). In addition to these240

perturbations, we also introduce a random walk for the centre of the cyclone in the zonal direction as part of the ensemble

perturbation. This is generated as a red noise at each time step according to

∆xi+1 = e−∆t/τ∆xi + ϵ, (4)
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Table 4. Gaussian distributions of wind fields, SIV and parameter perturbations. The mean of the wind fields is given in Tab. 2.

wind field

SIV (m · s−1) Ca α

period (days)
strength (m · s−1) initial centre (km)

travel speed (m · s−1)
rotational background x y

N (0,0.5) N (0,0.5) N (0,
√
0.05) N (0,1.5) N (0,1.5) N (0,0.0045) N (0,0.05) N (0,5× 10−4) N (0,1.5)

Table 5. The time- and space-averaged ensemble standard deviation of each free run ensemble over 90 days.

Scenario u (m · s−1) v (m · s−1) A h (m) d C (Pa) σxx (Pa) σxy (Pa) σyy (Pa)

1. 7.52× 10−3 0.011 0.072 0.037 0.215 153.128 2584.221 1475.218 1701.683

2. 0.030 0.031 0.153 0.089 0.240 289.626 3089.592 1508.822 1925.960

3. 7.42× 10−3 0.011 0.074 0.038 0.185 166.199 2657.060 1502.896 1754.829

4. 0.033 0.034 0.149 0.093 0.210 295.344 3139.044 1517.597 1951.430

where ∆xi is the distance travelled zonally at ith time step, τ = 60 is a time decorrelation factor, ϵ is a noise sampled from

N (0,4.44× 10−5) m. This red noise is not applied to the “true wind”. To avoid the cyclone traveling outside of our model245

domain, we resample the noise if the centre of the cyclone goes outside of the region between −40 km and 50 km in the

x-coordinate. The same check and re-sampling is applied to the perturbations for the initial centre of the cyclone.

Albeit marginal with respect to variability due to the external forcing, the internal model variability caused by non-linearities

is another source of forecast error. This is accounted for in our ensemble by perturbing the SIV initial condition, in addition

to perturbing the external atmospheric wind field. SIV perturbations are sampled from the Gaussian distribution, N (0,0.05).250

Furthermore, as discussed in Sect. 3.1, the boundary condition of the random cohesion influx, which differs for each ensemble

member, adds another source of uncertainty in our experiments but as the sea ice drifts slowly and does not travel long distances

across the domain, the impact of the cohesion perturbation is limited.

In the experiments with parametric error in either or both Ca and α (Exp 2–4 in Tab. 3) the prior covariances of the model

parameters need to be specified. As shown in Tab. 4, the parameter values used by the ensemble members are sampled from255

zero-mean Gaussian distributions with standard deviations set to be around 33% of the true parameter value. Given that both

Ca and α are bounded from below due to physical constraints, the sampled values of Ca and α are ensured to be greater than

10−5 and 2 by rejecting outliers.

4.2 Synthetic observations

Synthetic observations in our twin experiments are generated by sampling from the “truth” with the aim to mimic how obser-260

vations of the Arctic sea-ice are collected operationally, e.g. their spatio-temporal density.
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Observation distribution

SIV SIT

Figure 3. Observation distribution of SIT and SIV with the background triangles being the model grid. The observation distribution of SIC

is not shown because it covers the entire domain.

Satellite observations of SIC, SIT and sea ice drift are used in sea ice forecasting and reanalysis systems (Sakov et al., 2012a).

Most operational systems assimilate gridded products. However, some recent studies show the possibility of directly assimilat-

ing along-track instead of gridded data for SIT (Fiedler et al., 2022a), which could allow for a more frequent SIT assimilation

than the 7-day averaged gridded products (Ricker et al., 2017) because gridded data requires time for collection and processing.265

Hence, a star-shaped spatial distribution mimicking the along-track SIT observations is used here. For simplicity, we assume

that the same star-shaped spatial distribution is available daily due to the time required for data collection from polar satellite.

Note that this treatment neglects the temporal variability of the satellite tracks. Following the protocol of gridded data, we gen-

erate synthetic observations of SIC and SIV quasi uniformly across the model domain. Nowadays SIC satellite observations

reach a resolution as high as 10 km. Considering that our model has a spatial resolution of around 15 km, we synthetically ob-270

serve every grid point for SIC in our experiments. SIV data are sparser, with a spatial resolution of around 50 km. The position

of the along-track SIT data is parametrised by four lines on the domain satisfying the condition |yi+cxi| ≤ r where the (xi,yi)

is the spatial coordinate of the grid points, and the pair (c,r) ∈ {(2.2,16 km),(−2.2,16 km),(0.5,8 km),(−0.5,8 km)}. A

graphic distribution of SIC and SIV can be found in Fig. 3.

The synthetic observations are generated by sampling from the “truth” and adding an observational error drawn from Gaus-275

sian distributions. The observation error variances of these Gaussians follow those of realistic DA systems. For SIC, we adopt

the observation error standard deviation from Sakov et al. (2012a) and Cheng et al. (2023):

σA[m] =
√

0.01+ (0.5− |0.5−A|)2. (5)
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The observation error of the along-track SIT follows the formula for the measurement uncertainty for CryoSat-2 used by Fiedler

et al. (2022a),280

σh =


8 h < 0.7 m

2
(
1− 7e

0.3−he

)
h

100 0.7≤ h < 3 m(
5(h− 3)+

(
1− 7e

0.3−3e

))
h

100 h > 3 m.

(6)

This equation parameterises the uncertainty of the observations based on the measured value of the SIT. The use of σh = 8 m

for h < 0.7 m effectively eliminates SIT observations of thin ice from the DA reflecting that SIT of thin ice from satellite

altimetry is notoriously untrustworthy. The error in Eq. (6) does not account for the representation errors. To account for it, we

have therefore added an extra factor of 2.285

For the sake of simplicity, synthetic SIV observations are used as a substitute to the sea ice drift data. There is no explicit

equation for the observational error variance of the SIV, nor prototypical examples, due to the lack of investigation of SIV

uncertainties. Hence, for each observation grid point, we use either 80% of the standard deviation of a single 90-day model tra-

jectory (in our case, the truth) of the observation variance, or 8 ×10−4 m · s−1 (∼ 0.21 km/3 days), whichever is greater. This

leads to a maximum observational error around 12 km/3 days (13 km/3 days) for u(v)-component and insures that SIV ob-290

servations will contribute to the DA correction. However, the value for the standard deviation is smaller than the 14 km/3 days

value used in Sakov et al. (2012a): one of the few cases of operational reanalyses using SIV we are aware of. Since Sakov

et al. (2012a) showed only a faint impact of SIV assimilation, a reduction of the observation error is expected to take better

advantage of the SIV data.

4.3 Inflation and localisation295

4.3.1 Inflation

The application of ensemble DA in geosciences is plagued by sampling errors arisen by the impossibility to use sufficiently

large ensembles. The huge size of realistic numerical models of geofluids and the computational constraints imply that the

number of affordable ensemble size is much smaller than the state vector’s dimension, Ne ≪N . Inflation and localisation are

the two main approaches to alleviate sampling errors (and to some extent, model errors, as discussed in Scheffler et al. (2022);300

Grudzien et al. (2018)). Following Cheng et al. (2023), an ensemble size of Ne = 40 is used for the IEnKF. The ensemble size

is thus orders of magnitude smaller than the size of the state vector which is O(103).

We use different inflation strategies in
::
In our four experimental scenarios(cf. Tab. 3). In scenario 1, when we only infer

the model state vector, we use the adaptive inflation method
:::::::
proposed

:::
by

::::::::::::::::::::::
Bocquet and Sakov (2012). The IEnKF-N is an

extension of IEnKF that includes an adaptive inflation method designed to counteract the sampling error by keeping a safe305

ensemble spread (Bocquet and Sakov, 2012)
:
.
:::
To

::::::
achieve

:::::
this,

:::
the

::::::::
IEnKF-N

:::::::::
introduces

:::
an

::::::::::::
uninformative

:::::::::
hyperprior

::
in
::::

the

:::::
EnKF;

:::
the

::::::::::
formulation

::::
has

::::
been

::::::
proved

::
to

:::
be

:::::::::
equivalent

::
to

:::
the

:::::::::::
multiplicative

::::::::
inflation. Although the IEnKF-N has a slightly

13



larger computational cost, it spares us from the very costly offline tuning of the inflation factor (a procedure that should ideally

be repeated for each experimental setup).

However, as we will further discuss in Sect. 6, the cross-correlation between observed (physical) quantities and the parameter310

in the ensemble can be undesirably modified by the adaptive inflation procedure of IEnKF-N. Therefore, we use the standard

IEnKF without adaptive inflation whenever simultaneously inferring state and model parameters (scenarios 2-4). In these

experiments, we separate the inflation for the physical state variable and that for the parameter.

In the adjoint state and parameter estimations, we use a fixed multiplicative inflation factor of 1.02 applied exclusively to

the physical variables of the model (i.e. it does not affect the ensemble-based estimate of the error variance in the parameter).315

We make several tests to identify the value of 1.02 as satisfactory.

Given that the evolution of the parameter is governed by the persistence model, the estimated parametric error stays constant

between successive analyses. On the other hand, at the analysis times, the parametric error is bounded to stay unaltered or

to be reduced. The overall result of these two effects is that the filter progressively gains confidence in its estimate of the

parameter and reaches convergence around a value, no matter whether or not this value is actually correct (Ruiz et al., 2013a).320

To counteract this effect we apply an ad-hoc adaptive multiplicative inflation factor λ such that the forecast ensemble spread of

the model parameter is always above a chosen lower bound, σt
std. Before each analysis step, the inflation is obtained according

to

λ=
max(σt

std,σ
f
std)

σf
std

.

The lower bound is defined as σt
std = pσ0

std, with σ0
std being the standard deviation of the initial uncertainty of the model325

parameter as given in Tab. 4, while p= 0.4 is a scaling factor; in Eq. ,σf
std is the forecast spread at the current DA step. With

this time-dependent inflation, the forecast ensemble spread in the model parameter is always larger than 40% of the initially

specified uncertainty.

4.3.2 Localisation

We implement domain localisation as described in Bocquet (2016, his Tab. 2)
:::::::::::::::::::::
Bocquet (2016, his Tab. 2). In the domain local-330

isation, each model grid point (local domain) assimilates observations within a circle centred on the grid point. To gradually

reduce the impact of observations away from the central grid point and to insure spatially smooth DA corrections, the obser-

vation error is tapered by the Gaspari-Cohn (GC) function with a cutoff value of 10−5. In this way, each local domain has a

different cost function based on different observations. Moreover, the localisation radii are dependent on the observation type

. The choices that we implement for the localisation radii in this study are given in Tab. 3 while their rationale and impacts are335

discussed in Sect. ??
:::
and

:::
the

::::::
spatial

:::::::::
correlation

::::
scale

:::
of

:::
the

:::::
model

:::::::
physics.

::::
The

:::::
latter

:
is
::::::::
naturally

:::::
time-

:::
and

:::::::::::::::
space-dependent.

::
In

:::::::
practice,

:::
for

:::
the

::::
sake

::
of

::::::::::::
computational

::::::::
efficiency

:::
and

:::
for

:::
the

:::::::::
difficulties

:::::::
inherent

::
in

:::
its

:::::::
adequate

::::::::::
assessment,

:::
the

::::::::::
localisation

:::::
radius

::
is

::::
often

::
a
::::
fixed

:::::
value

::::::
(albeit

::::::::::
dependence

::
on

:::
the

:::::::
physical

:::::::
variable

::
is

::::::
usually

:::::::::::::
accommodated).
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We anticipate that the localisation radius for global parameters (e.g. drag coefficient, damage parameter, etc.) is set to infinity.

This choice reflects the fact that the parameter does not have a spatial de-correlation scale and is indeed global. This treatment340

of localisation for global parameters is also adopted in Aksoy et al. (2006); Ruiz et al. (2013b); Massonnet et al. (2014). See

also Ruckstuhl and Janjić (2018); Bocquet et al. (2021); Malartic et al. (2022) for more recent developments on this topic.

4.4 Treatment of bounded physical variables and model parameters

Of the nine MEB model variables, three are bounded: SIC, the level of damage and SIT. Inferring them via the IEnKF is

therefore challenging given the Gaussian assumption on which the IEnKF based. In practice, there is no guarantee that the345

update analyses of SIC, damage level or SIT, fall within their bounds.

Hence, the solution to that problem that we adopt in this study, albeit sub-optimal, is very pragmatic and straightforward.

When the analysis of these variables falls outside of their bounds, they are forcibly set to their nearest bounds. We are conscious

that this approach leads to local ensemble collapse (whereby some members originally having out-of-range analysis values

area made all equal to the nearest boundary value) and can cause biases in the analysis. Nevertheless, the results in Sect. 5350

will demonstrate that, when the bounds are not exceeded too often, the approach works well, it does not cause major ensemble

collapse and it is successful in removing non physical values.

We follow a similar strategy when performing the estimation of the damage parameter, α. There the analysed value of α

assumed bounded from below by α= 2, the value at which the analysed α will be taken if lower than 2.

Our pragmatic approach is however insufficient when estimating the drag coefficient Ca. This parameter is bounded to be355

strictly positive, therefore ensemble collapse could happen whenever the ensemble mean of Ca approaches zero. In that case

a potentially large number of members may get negative analysis values that would all be restored to the same little positive

values. Hence, we adopt a re-sampling approach in which, with each negative analysis of Ca, we sample from N (10−5,10−6)

until a positive value is obtained.

5 Results360

We evaluate the performance of the IEnKF for state and parameter estimation in the dynamics-only MEB sea ice model under

the four different scenarios described in Tab. 3. We use the root-mean square error (RMSE) over both time- and space as skill

metric.

4.1 Optimising the localisation radius

As discussed in Sect. 4.3.2, the domain localisation allows for different localisation radius per observation type. The localisation365

radius is related to the spatial correlation scale of the model physics. The latter is naturally time- and space-dependent. In

practice, for the sake of computational efficiency and for the complexity of its adequate assessment, the localisation radius is

often a fixed value (albeit dependence on the physical variable is usually accommodated).
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Figure 4.
::::::::::::::
RMSEa/RMSEfree

::
as

:
a
:::::::
function

::
of

::
the

:::::::::
localisation

::::::
radius,

:
in
::::::::::
experiments

:::
with

:::::::
observed

:::
SIT

:::
(a),

::::
SIC

::
(b)

::
or

::::
SIV

:::
(c).

:::
The

:::
red

:::
star

::::::
indicates

:::
the

:::::
lowest

::::::
analysis

:::::
error.

:::
The

::::
insets

:::::
show

::
the

::::
error

::
of

::::
other

:::
two

:::::::::
unobserved

:::::
model

::::
fields

:::
out

::
of

:::
the

::::
three

::::::
observed

:::::
model

::::::::
variables,

:::
and

::
the

:::
red

:::::
dashed

::::
line

::::::
indicates

:::
the

::::
point

:::::
where

::::::
RMSEa

::
=

::::::::
RMSEfree.

As a trade-off between efficiency and accuracy, we opted for optimising the localisation radius when only one model field is

observed. Furthermore, we assume that the SIV has the same correlation length scale along both components (i.e. no preferred370

direction of movement), consistently
::::::::
consistent with the experimental setup.

For each of the localisation radius explored we run a 15 days-long simulation, after a 42 days ensemble free run without

DA. Although 15 days may appear as too few for an adequate tuning and may not include all possible physical regimes, it still

covers multiple storm events (storms passage every 3.5 days on average).

The ratio between the RMSE
::::
root

:::::
mean

:::::::
squared

::::
error

::::::::
(RMSE)

:
of the analysis and of the free run, as function of the375

localisation radius when assimilating either SIT, SIC or SIV, is shown in Fig. 4. When assimilating SIT (Fig. 4a), the analysis

error in SIT decreases monotonically with the localisation radius until the localisation radius reaches the domain size (200 km).

The inset shows that assimilating SIT leads also to a reduction in SIV’s RMSE (RMSEa/RMSEfree systematically below one),

while it instead leads to a deterioration in the SIC as soon as the localisation radius is larger than 5 km.

As opposed to when SIT is observed, the localisation radius for SIC observations (Fig. 4b) is very small. After 5 km, the380

analysis error in SIC increases monotonically with the localisation radius. Observing SIC improves both SIT and, for very long

radii, also SIV (see inset in Fig. 4b).

Finally, from Fig. 4c we see that the lowest analysis RMSE when assimilating SIV is attained with a localisation radius

around 30 km and that both SIC and SIT will improve in the multivariate update.

RMSEa/RMSEfree as a function of the localisation radius, in experiments with observed SIT (a), SIC (b) or SIV (c). The385

red star indicates the lowest analysis error. The insets show the error of other two unobserved model fields out of the three

observed model variables, and the red dashed line indicates the point where RMSEa = RMSEfree.

Based on these results, the most effective localisation radius for the observed model fields are: 200 km for the SIT observa-

tions, 5 km for the SIC observations and 30 km for SIV observations. These different localisation radii arise from the physical
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spatial correlations and the observation density of these model fields.
:
A
::::::::
summary

:::
of

:::
the

::::::
choices

:::
for

:::
the

::::::::::
localisation

:::::
radii

::
in390

:::
this

:::::
study

:::
are

:::::
given

::
in

:::
Tab.

::
3
:::
and

::::::
further

:::::::::
discussion

::::
will

::
be

::::::::
presented

::
in

:::::
Sect.

:::
5.1.

:

4.1
::::::::

Treatment
:::
of

::::::::
bounded

:::::::
physical

::::::::
variables

::::
and

::::::
model

::::::::::
parameters

::
Of

:::
the

::::
nine

:::::
MEB

::::::
model

:::::::::
variables,

::::
three

:::
are

:::::::::
bounded:

::::
SIC,

:::
the

:::::
level

::
of

:::::::
damage

::::
and

::::
SIT.

:::::::
Inferring

:::::
them

:::
via

::::
the

::::::
IEnKF

::
is

:::::::
therefore

::::::::::
challenging

:::::
given

:::
the

::::::::
Gaussian

::::::::::
assumption

:::
on

:::::
which

:::
the

:::::::
IEnKF

:::::
based.

:::
In

:::::::
practice,

:::::
there

::
is

::
no

:::::::::
guarantee

::::
that

:::
the

:::::
update

::::::::
analyses

::
of

::::
SIC,

:::::::
damage

::::
level

::
or

::::
SIT,

:::
fall

::::::
within

::::
their

:::::::
bounds.395

::::::
Hence,

:::
the

:::::::
solution

::
to

::::
that

:::::::
problem

:::
that

:::
we

:::::
adopt

:::
in

:::
this

:::::
study,

:::::
albeit

:::::::::::
sub-optimal,

::
is

::::
very

:::::::::
pragmatic

:::
and

::::::::::::::
straightforward.

:::::
When

:::
the

:::::::
analysis

::
of

::::
these

::::::::
variables

::::
falls

::::::
outside

::
of

::::
their

:::::::
bounds,

:::
they

:::
are

:::::::
forcibly

:::
set

::
to

::::
their

::::::
nearest

:::::::
bounds.

:::
We

::
are

:::::::::
conscious

:::
that

::::
this

::::::::
approach

::::
leads

:::
to

::::
local

::::::::
ensemble

::::::::
collapse

::::::::
(whereby

:::::
some

::::::::
members

::::::::
originally

::::::
having

:::::::::::
out-of-range

:::::::
analysis

::::::
values

:::
area

:::::
made

:::
all

:::::
equal

::
to

:::
the

:::::::
nearest

::::::::
boundary

:::::
value)

::::
and

:::
can

:::::
cause

::::::
biases

::
in

:::
the

::::::::
analysis.

:::::::::::
Nevertheless,

:::
the

::::::
results

::
in
:::::

Sect.
::
5

:::
will

::::::::::
demonstrate

::::
that,

:::::
when

:::
the

::::::
bounds

:::
are

:::
not

::::::::
exceeded

:::
too

:::::
often,

:::
the

::::::::
approach

:::::
works

:::::
well,

:
it
:::::
does

:::
not

:::::
cause

:::::
major

::::::::
ensemble400

:::::::
collapse

:::
and

::
it

:
is
:::::::::
successful

::
in

::::::::
removing

::::
non

:::::::
physical

::::::
values.

:

:::
We

:::::
follow

::
a
::::::
similar

:::::::
strategy

:::::
when

::::::::::
performing

:::
the

:::::::::
estimation

::
of

:::
the

:::::::
damage

:::::::::
parameter,

:::
α.

:::::
There

:::
the

::::::::
analysed

::::
value

:::
of

::
α

:::::::
assumed

:::::::
bounded

:::::
from

:::::
below

:::
by

:::::
α= 2,

:::
the

:::::
value

::
at

:::::
which

:::
the

::::::::
analysed

::
α

:::
will

:::
be

::::
taken

::
if
:::::
lower

::::
than

::
2.

:

:::
Our

:::::::::
pragmatic

::::::::
approach

::
is

:::::::
however

:::::::::
insufficient

:::::
when

:::::::::
estimating

:::
the

::::
drag

:::::::::
coefficient

::::
Ca.

::::
This

:::::::::
parameter

::
is

:::::::
bounded

::
to

:::
be

::::::
strictly

:::::::
positive,

::::::::
therefore

::::::::
ensemble

:::::::
collapse

:::::
could

::::::
happen

:::::::::
whenever

:::
the

::::::::
ensemble

:::::
mean

::
of

:::
Ca:::::::::

approaches
:::::
zero.

::
In

::::
that

::::
case405

:
a
:::::::::
potentially

:::::
large

::::::
number

:::
of

:::::::
members

:::::
may

:::
get

:::::::
negative

:::::::
analysis

:::::
values

::::
that

::::::
would

::
all

:::
be

:::::::
restored

::
to

:::
the

:::::
same

::::
little

:::::::
positive

::::::
values.

::::::
Hence,

::
we

:::::
adopt

::
a
::::::::::
re-sampling

::::::::
approach

::
in

::::::
which,

::::
with

::::
each

:::::::
negative

:::::::
analysis

::
of

:::
Ca,

:::
we

::::::
sample

:::::
from

:::::::::::::
N (10−5,10−6)

::::
until

:
a
:::::::
positive

:::::
value

:
is
::::::::
obtained.

:

5
::::::
Results

:::
We

:::::::
evaluate

:::
the

::::::::::
performance

::
of

:::
the

::::::
IEnKF

:::
for

::::
state

::::
and

::::::::
parameter

:::::::::
estimation

::
in

:::
the

::::::::::::
dynamics-only

:::::
MEB

:::
sea

:::
ice

::::::
model

:::::
under410

::
the

::::
four

::::::::
different

::::::::
scenarios

::::::::
described

::
in

::::
Tab.

::
3.

:::
We

:::
use

:::
the

:::::::::
root-mean

::::::
square

::::
error

:::::::
(RMSE)

::::
over

::::
both

:::::
time-

::::
and

:::::
space

::
as

::::
skill

::::::
metric.

5.1 Scenario 1: Inferring the model physical variables under a perfect model setup

Here we study in detail the fully multivariate DA using different combinations of observations under a perfect model scenario.

The RMSE is calculated over 30 days-long assimilation experiments that follow a 42 days free ensemble run without DA. In415

the 30 days assimilation, we assimilate observations daily as mentioned in Sect. 4.2 leading to a total of 31 analyses.

As mentioned in Sect. 4.1, three out of the nine model fields are bounded quantities: SIC, SIT and the level of damage. Given

that the respect of those bounds is not automatically guaranteed by the DA procedure, we apply a post-processing step. Here,

we quantify how often nonphysical values (i.e. values out of the bounds) are produced in the analysis: Tab. 6 shows the number

of violations during the 30-day DA period.420
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Table 6. The total percentage of local analyses that violate the physical bounds in the 30-day multivariate DA experiments.

Assimilated observations
Physical bounds violation

SIC< 0 SIC> 1 d < 0 d > 1

SIC 0.01% 0.01% 0.02% 1.41%

SIT 0.25% 6.95% 0.34% 18.66%

SIV 0.23% 1.36% 0.19% 11.80%

SIC+SIT 0.01% 3.45% 0.09% 20.93%

SIC+SIV 0.01% 0.85% 0.17% 12.09%

SIT+SIV 0.22% 5.17% 0.24% 18.87%

SIC+SIT+SIV 0.01% 3.75% 0.17% 20.64%

SIC+SIT30+SIV 0.01% 0.98% 0.14% 12.97%

*The bound SIT> 0 is never violated because SIT is always larger than 1 m in our experiments.

When only SIC is assimilated, physical bounds for SIC and for the level of damage are exceeded very occasionally, below

1.5% of the total analyses and grid points. On the other hand, when SIC is not observed, the chance of getting nonphysical

SIC analyses increases by two order of magnitudes, although it remains below 5.2%. Similarly, the SIC observations lower

the chance of getting nonphysical damage analyses. Notably, when SIT is observed it leads to analyses that more often violate

the physical bounds, particularly the upper bound for the level of damage. The damage bound violations are more severe than425

those in SIC since most of the time the sea ice is undamaged and thus very close to the potentially violable bounds of the model

fields. Without the possibility of observing the damage field, the cross-correlations may amplify the analysis increments. This

effect can be mitigated by limiting the localisation radius of SIT to 30 km as shown in the row of “SIC+SIT30+SIV”. The

violation of the physical bounds is efficiently addressed by the post-processing step that brings them within their physical

limits as described in Sect. 4.1 and it does not lead to an increased RMSE afterwards. As shown in Fig. 5, the SIC analysis is430

improved compared to the free run in all cases and the sea ice damage is the only model field that can be less accurate than the

free run.

Figure 5 shows the ratios analysis/free-run (a) and forecast/free-run (b) RMSE (averaged in space and time) for different

type of observations (column-wise) and variable (row-wise). Values smaller than 1.0 indicate that DA brings in general an

improvement in the state estimate compared to the free run. Comparing panels (a) and (b) we can evaluate how much of435

the DA update is effective in reducing the forecast error (recall that the analysis cycle is 1 day long). From the figure we

immediately notice that when only one observation field is assimilated, that same field gets most of the improvement in the

analysis. This is consistent with our results in Sect. ??
::::
4.3.2. Figure 5 also shows

::::::
almost

::
no

:::::::::::::
changes/slight improvements in

SIV (SIC) when SIC (SIT)
::::::
analysis

:::::
when

:::
SIC

:
alone is assimilated

:::
and

:::::::::
conversely

::
for

:::
the

::::
SIC

:::::::
analysis

:::::
when

:::
SIT

::
is

:::::::::
assimilated.

This appears to contrast with
::
in

:::::::
contrast

::
to

:
Fig. 4, which displayed a slight deterioration in the same case

::::::
indicate

::::
that

::::
SIT440

::::::::::
observations

::::
have

::
a
:::::::
negative

:::::::
impact

::
on

:::
the

::::
SIC

::::::::
analysis,

:::
and

::::
that

::::
SIC

:::::::::::
observations

:::
can

:::::::::
deteriorate

::::
SIV

:::::::
analysis

:::
at

::::::
certain

18



u v SIC SIT d C σxx σxy σyy
var loc

SIC+SIT30+SIV
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Figure 5. RMSE in the state estimate for scenario 1. (a) RMSEa/RMSEfree (b) RMSEf /RMSEfree. Columns display the individual physical

model fields; rows refer the (combination of) observations that are assimilated.

1.0 0.5 0.0 0.5 1.0
0.0

0.5
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2.0
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corr(u, xx), 0.281
corr(u, d), 0.263

corr(SIC,SIT), 0.202
corr(u, SIC), 0.178

corr(u, SIT), 0.177

Figure 6. Time-averaged spectral norm (the largest singular value of a matrix)
::
A

::::::::
histogram of the cross-correlation matrices

:::::::
ensemble

::::::::
correlation between selected model fields

::::::
variables

:
when all observations are assimilated

:::
over

:::
the

:::::
period

::
of
::::::::::

assimilation. Here
::
The

::::::
legend

::::::
indicate the u-component

:::::::
standard

:::::::
deviation of SIV is chosen to be shown

:::
the

::::::::
histogram.

:::::
Larger

::::::::::::
spread/standard

:::::::
deviation

::::::::
represents

:::
an

:::::
overall

:::::
higher

:::::::::
correlations

::::::
between

:::::::
variables.

Corr(u, σxx) Corr(u, d) Corr(u, SIC) Corr(u, SIT) Corr(SIC, SIT) 76.99 67.35 41.00 42.03 59.72

19



:::::::::
localisation

::::
radii

:
(cf. Fig. 4b andc

:
a
:::
and

:::
4b

:
insets). Nevertheless, the longer experiments of Fig. 5 suggest that the ensemble

has acquired dynamical consistency and therefore better reproduces the cross-variables correlations.

In the MEB rheology, the level of damage, cohesion and stress have a close relationship. Without assimilating SIT, the

IEnKF-N leads to improvements in sea ice cohesion and stress and some improvements in the level of damage too. However,445

the assimilation of SIT tends to result in overly damaged sea ice. This is also evident from Tab. 6 where the assimilation of SIT

leads to higher chances of breaking the bounds of the level of damage. This adverse effect on the damage and stress persists

when SIT is assimilated together with SIV. Interestingly, however, when SIT is assimilated together with SIC, the adverse

effect is subdued
::::::::::
boundedness

::
of

:::
the

:::::
level

::
of

:::::::
damage

::
is

::::::::
improved

:::
for

:::::::::
undamaged

::::
sea

::
ice

:::::::
(d < 0)

:::
but

::
is

:::
not

::
so

:::
for

::::::::::
completely

:::::::
damaged

:::
sea

:::
ice

:::::::
(d > 1).

::::
Yet,

::
it

::
is

::::::::
sufficient

::
to

:::::::
improve

:::
the

::::::
overall

::::::
RMSE

:::
of

:::
the

::::
level

::
of

:::::::
damage

::::
(see

::::
Fig.

:::
5).

::::
One

:::::::
possible450

:::::
reason

::
is

::::
that,

:::::::
without

::
the

:::::::::::::::
thermodynamics,

:::
the

::::::
forecast

:::::
error

::::::
mainly

:::::
comes

:::::
from

:::
the

:::::::
damaged

:::
sea

:::
ice. An ad-hoc remedy is to

use a shorter localisation radius for SIT (experiment “SIC+SIT30+SIV” in Fig. 5), although it also reduces the improvements

in SIT and cohesion. Moreover, as a result of better cross-correlations, the use of a small localisation mitigates the violations

of physical bounds as shown in Tab. 6.
::::::
Another

::::::::
approach

::
to

:::::::
avoiding

:::
the

::::::::
negative

::::::
impact

::
of

:::
SIT

:::::::
consists

::
in

:::::::::
artificially

::::::
setting

::
to

::::
zero

:::
the

:::::::::
covariance

::::::
matrix

::::::
entries

:::::::
between

::::::::
between

::::
SIT

:::
and

:::::::::::
SIC/damage

::
is

:::
set

::
to

:::::
zero.

::::
This

::
is

::::::::
achieved

::
in

:::::::
practice

:::
by455

::::::::::
assimilating

::::
only

:::
SIC

::::
and

::::
SIV

::
for

:::
the

::::
SIT

:::
and

:::::::
damage

::::::::
variables

:::::
while

::
all

:::::::::::
observations

:::
are

:::::::::
assimilated

:::
for

:::
the

:::
rest

:::
of

:::
the

::::
state

:::::
vector.

::::
The

:::::::::
experiment

::::
“var

::::
loc”

::::::
shows

::::::::
improved

:::::
results

::
in
::::
Fig.

::
5.

:

Due to the importance of cross-correlation derived from the forecast ensemble, we
:::
We show the strength of the cross-correlation

matrix
::::::::::::::
cross-correlations

:
between different model variables measured by a spectral norm as shown in Table ??. Here the

spectral norm is defined as the largest singular value of a cross-correlation matrix. Note that the spectral norm is an overall460

measure of the magnitude of a matrix and is always positive.We use it here as a means of comparison of the strength of

the cross-correlation between two variables.
::
in

:::
Fig.

:::
6.

:::
The

::::::
values

:::
are

:::::
taken

:::::
from

:::
the

::::::::::
experiment

:::::
where

:::
all

:::::::::::
observations

:::
are

:::::::::
assimilated,

:::::
from

:::
all

:::::
spatial

::::::
points

:::
and

:::
all

::::::::
analyses.

::
As

:::::::::
expected,

:::
the

::::::::::
distributions

:::
are

:::
all

::::::
peaked

::::::
around

::::
zero:

::::
this

::
is

:::::::
because

::::::
beyond

:
a
::::::
certain

::::::::
distance,

:::
the

:::::::::
correlations

:::
are

:::
all

::::
very

:::::
small

::
(a

:::
fact

::::
that

:
is
::
at

:::
the

:::::
basis

::
of

:::
the

:::
use

::
of

:::::::::::
localisation),

::::
with

:::
the

:::::
larger

:::::
values

:::::::::::
concentrated

::
in

:::
the

:::::::::
proximity

::
of

:::
the

:::::::
analysis

:::::
point

:::
and

:::::::::
populating

:::::::
mainly

:::
the

::::
tales

::
of

:::
the

:::::::::::
distributions

::
in

::::
Fig.

::
6.

::::
The465

:::::
width

::
of

:::
the

::::::::::
distributions

::::::::
indicates

::::
that

::
in

:::::
many

::::::::
instances

:::
the

::::::::::
correlations

:::
are

:::
(in

:::::::
absolute

::::::
value)

::
as

::::
high

:::
as

:::
0.5.

:::
To

:::::::
provide

:
a
::::::::::
quantitative

::::::::::
comparison

::::::
among

:::
the

:::::::::::
distributions’

:::::
width,

:::
we

::::
also

:::::
shows

:::
the

::::::::
standard

:::::::::
deviations.These cross-correlations can

be understood from a physical point of view. The cross-correlations between the SIV and stress are the strongest as SIV is

mainly driven by the external wind field. In addition, SIV, stress and level of damage are closely coupled processes, so the level

of damage and the SIV also shows strong cross-correlation. The weak cross-correlation between SIV and SIC/SIT is a result470

of the small magnitude of SIV which transports SIC, SIT and cohesion. Nevertheless, this gives rise to a strong correlation

between SIC and SIT because they are both controlled by the advection processes.

A physical interpretation can also be invoked to explain why the improvements in SIV analysis does not necessarily translate

into improvements in the forecast as shown in Fig. 5. We argue that this is due to the instant injection of error from the wind

field after the assimilation of observations. The correction from the assimilation acts as a perturbation to the model which475

induces a model adjustment. In contrast to SIV, the increased error in the analysis of the level of damage, when assimilating
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Figure 7. Time series of a) the analysis of Ca using different combinations of observations; b) the analysis ensemble spread of Ca;

SIT, is mitigated by the further damage caused by the wind field. On the other hand, the longer timescale in the variability of

SIC, SIT and cohesion makes them less sensitive to the model adjustments and thus better analysis generally yields better sea

ice forecasts (cf. Fig. 5).

In summary, our experiments show that the IEnKF can improve both the analysis and forecast of the MEB sea-ice model.480

We confirm, in line with previous studies, the necessity of controlling the main source of the uncertainty from the external

forcing in the sea ice model. We argue that a correct wind field can counteract the deterioration of the inaccurate SIV fore-

cast. Furthermore, the results also demonstrate the positive impact of a variable-dependent localisation radius to combat both

sampling error and nonlinearities. Moreover, even if the IEnKF suffers from sampling error with a large localisation radius,

the deterioration of some of the unobserved fields is marginal with the RMSE being only 6% larger than the free run. With a485

reduced localisation radius, the IEnKF improves all the unobserved fields.

5.2 Scenario 2: Inferring the model physical variables and the drag coefficient Ca

We achieved satisfactory performance in the state estimation of the MEB model using the IEnKF-N under the perfect model

assumption. In the experiments described in this section, we assume that Ca is incorrectly specified and attempt to recover the

true value using DA, while all other parameters are perfectly known.490

The air drag coefficient, Ca, controls the degree to which momentum from the wind is transferred to the sea ice cover. In

our model, similar to most sea ice models, it is a constant scalar value that modulates the wind drag, cf. Eq. (2). Equation (2)

shows two main sources of uncertainties in the same term: the wind field, ua, and the drag coefficient Ca. The multiplicative

role of Ca makes it an amplification factor on the uncertainty originated from uncertain wind fields. Given that the wind field is

the main source of uncertainties in the sea ice dynamics, the incorrect specification of Ca affects also the predictability of the495

sea ice. To see this, note in Tab. 5, the larger free run ensemble spread in this scenario compared to the perfect model scenario.

Note that the difference in the Ca between scenarios 1 and 2 is as small as 10−3 (cf. Tab. 3).
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Figure 8.
:::::::::::::
Cross-correlation

:::::::
between

::
the

:::::::::
observation

:::
and

::::
Ca:

::
a)

::::::::
correlation

::::::
between

::::
SIC

:::
and

:::
Ca :

at
:::

the
:::
last

:::::::
analysis;

::
b)

:::
SIC

:::::::::
increment.

::
In

:::
both

::::
cases

::
it
:::::
refers

:
to
:::::::::

experiment
::::
when

::::
only

:::
SIC

::
is
:::::::::
assimilated;

::
c)

:::
and

::
d)

:::
the

::::
same

::
as

:::
(a)

:::
and

::
(b)

:::
but

:::
for

:::
SIT

::
in

::::
place

::
of

:::
SIC

::
in

:::::::::
experiment

::::
when

::::
only

:::
SIT

:
is
:::::::::
assimilated.

Similar to the state estimation experiments, the assimilation starts after a 42-day free ensemble run. Recall that here we do

not use adaptive inflation and a fixed multiplicative inflation factor of 1.02 for physical variables are used (cf. Tab. 3). For the

parameter Ca, we adopt a time-dependent inflation based on Eq. .500

Cross-correlation between the observation and Ca: a) correlation between SIC and Ca at the last analysis; b) SIC increment.

In both cases it refers to experiment when only SIC is assimilated; c) and d) the same as (a) and (b) but for SIT in place of

SIC in experiment when only SIT is assimilated. Figure 7a shows the time series of the analysis of Ca, while Fig. 7b shows

the analysis spread in Ca as a function of time. We see that after the drastic correction of the initial bias, the ensemble spread

stabilises to the threshold of
:::
for

::
all

:::::::::::
experiments.

::::
The

::::::::
ensemble

::::::
spread

::::::::
converges

::::
and

::::::::
stabilises

::
to

:::::::
slightly

:::::
above

::::
zero

::::::
except505

::
for

:::
the

::::
case

::::::
where

::::
only

:::::::
SIT/SIV

::
is
::::::::::
assimilated.

:::
In

::::
those

::::::
cases, the ensemble spread , σt

std. A first
:
is

:::::
larger

::::::
which

:::::
might

::
be

::
a

::::::::::
consequence

::
of

:::
the

:::::::
sparser

:::::::::
observation

:::::::
density.

::::
Due

::
to

:::
the

:::::::
sensitive

::::
SIV

::
to

::::
Ca,

::
the

:::::::::
estimation

:::
of

::
Ca::

is
:::::::
affected

:::
by

:::::::
changes

::
in

:::
SIV

:::::::::::
observations.

::::::
These

::::::
changes

:::
are

::::::::
captured

::
by

:::
the

:::::::
adaptive

::::::::
inflation

::::::
scheme

::::::
leading

::
to
:::
an

::::::::
increased

::::::::
ensemble

::::::
spread

::
of

:::
Ca

:::::
toward

:::
the

::::
end

::
of

:::
the

:::::::::
experiment

::::::
period.

:::::::
Another

:
remarkable feature is that in all experiments, Ca drops significantly over the

first time steps, thereby approaching (but not necessarily converging to) the true value (red line). This is a clear consequence510
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Figure 9. RMSE in the state estimate for scenario 2. (a) RMSEa/RMSEfree (b) RMSEf /RMSEfree. Columns display the individual physical

model fields; rows refer the (combination of) observations that are assimilated.

of a strong correlation between the observed fields and the parameter. Besides this, we then observe different converging value

and performance depending on the type of observations assimilated. When only one type of observation
::::::
Except

:::
for

:::
the

::::
case

:::
that

::::
only

::::
SIC is assimilated, either SIC or SIT, the analyses underestimate Ca at the end of our experiment time. In particular,

although assimilating either SIC or SIT alone leads to an underestimated Ca, assimilating SIC gives Ca values closer to the

truth with progressively smaller increments, a signature of convergence. The smaller increments of Ca, when assimilating SIC,515

is a result of smaller cross-correlation between SIC and Ca in comparison to SIT and Ca as shown in Fig. 8a and c. With the

same ensemble spread of Ca, the cross-correlation reflects a large ensemble spread of SIT. Similar to the increment of Ca, the

SIT experiment also shows increased increments of the observed fields compared to the SIC observation as in Fig. 8b andd.
:::
8d.

::::
This

:::::::
suggests

:::
that

:::
the

:::::::::
ensemble

:::::
spread

::
in
::::
SIT

::
is

:::::
larger

::::
than

::
in

::::
SIC.

:
Moreover, the cross-correlation of the ensemble anomaly

between SIC/SIT and Ca is spatially inhomogeneous (cf. Fig. 7a and c). This implies that the error is not controlled solely520

by the global parameter but also by other spatially dependent processes. One possibility is the error in the wind fields. As the

ensemble error is primarily driven by the error in the wind field scaled by Ca acting as wind forcing, the cross-correlation

between the Ca and the observations may be affected by the error in the wind fields. This suggests that while the IEnKF

successfully corrects large biases in Ca it may not be able to correct equally well errors of smaller magnitude as the errors can

be aliased with the error in the wind field. In the latter case, the estimation of Ca does not necessarily converge to the “true”525

Ca.

The correction of Ca is also effective in the state estimation as shown in Fig. 9. The IEnKF efficiently controls the RMSE

for nearly all model fields regardless of the combination of observations compared to the free run that is instead affected by a

large bias in Ca. Notably, compared to the free run, SIV is improved not only in the analysis, but also in the forecast. This is

different from the multivariate update in Sect. 5.1 because the positively biased Ca amplifies the uncertainties from the wind530

field which is then reduced by the corrected Ca. The time series in Fig. 10c-d show that the corrected Ca significantly reduces

the bias in SIV, but the transient error in the wind forcing still impacts the accuracy of the SIV forecast.
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Figure 10. Time series of a) sea ice stress in the x direction when only SIV is assimilated; b) sea ice stress in the x direction when all observed

fields are assimilated; c) SIV in u− and d) v−component when all observed fields are assimilated. The black points in the time series are the

spatially averaged analysis.

In Fig. 7a, the best skill in estimating Ca is achieved when assimilating SIV
:::
SIC

:
alone due to its

:::::
higher

::::::::::
observation

:::::::
density.

::::::::
However,

::::
even

::::
with

:::::
fewer

:::::::::::
observations,

::::
SIV

:::::::
achieves

:::::
good

::::::::::
performance

::::
due

::
to

:
close relationship with the wind field and Ca

in Eq. (2). Notably, assimilating only SIV greatly reduces the RMSE across all model fields except for the sea ice stress (cf.535

the third row in Fig. 9a). The increased RMSE in the sea ice stress arises because the DA update of the stress sometimes

severely violates the constitutive equation. This can potentially lead to unstable model solutions and model crashes. Model

crashes can be avoided by using a large number of iterations for the MEB solver during an extended periods after the DA step,

but the unphysical update still leads to inaccurate forecasts of the sea ice stress (cf. the third row in Fig. 9a). The inaccurate

stress forecast can be observed in Fig. 10a, which shows a spike
:::::::::
significant

:::::::::::::
underestimation

:
in the stress time series . Such540

a spike
::::::
around

:::
day

:::
17.

:::::
Such

:::::::::::::
underestimation

:
does not occur when all observations are assimilated as shown in Fig. 10b. We

found that the erroneous stress spike
:::::::::::::
underestimation

:
in the time series occurs when the local element of SIC is reduced by the

assimilation (not shown) to the point that it creates large SIC gradient and increases the elastic behaviour of the sea ice (see the

right hand side of Eq. 3). Since the temporal variation of the SIC is small, this issue persists, and maintains a continued decrease

24



0 10 20 30
Days

4

6

8
a) α

0 10 20 30
Days

0.25

0.50

0.75

1.00

1.25
b) Ensemble spread

SIC
SIT

SIV
SIC+SIT

SIC+SIV
SIT+SIV

SIC+SIT+SIV
forecast

truth

Figure 11. Time series of a) the analysis of α and b) its ensemble spread.

in the sea ice stress along with the model integration. This incorrect SIC estimate is remedied in the next DA step where the545

multivariate DA restores the SIC. Hence, assimilating SIC mitigates the unphysical DA update. Arguably, it is unlikely that

only the SIV is assimilated in real scenarios, yet our results suggest that it is wise to restrict the multivariate update of the sea

ice concentration in this case.

Our experiments show that the IEnKF is able to reduce the bias in Ca based on available sea ice observations. The improved

Ca estimation significantly reduces the error in the model fields. From the momentum Eq. (2), we know that the SIV is directly550

linked to Ca. Our results show the importance of assimilating SIV
:::::::
However,

::::
our

:::::
results

:::::
show

::::
that,

::::::::
although

::::::::::
assimilating

::::
SIV

:
is
::::::
crucial

:
for estimating Ca. ,

:
SIC and SIT , though less effective than SIV, still improves

:::
still

:::::::
improve

:
the estimate of Ca and

of the state. Importantly, when assimilated in conjunction with SIV, SIC and/or SIT mitigate the imbalance of the constitutive

equations.

5.3 Scenario 3: Inferring the model physical variables and its erroneous damage parameter α555

While the drag coefficient, Ca, is linked to the external forcing, the internal property of the sea ice is largely controlled by the

damage parameter α. The damage enters the model in the stress Eq. (3). Although α is added to the model in an ad-hoc manner,

it plays an essential role in the MEB rheology as it sets the rate at which viscosity decreases with increasing level of damage

and thereby controls the transition between the elastic-brittle regime at low damage and the viscous regime at high damage.

Model sensitivity studies by Dansereau (2016); Weiss and Dansereau (2017) showed that the value of α is critical in deter-560

mining the macroscopic mechanical behaviour of the model, and that a value of α≥ 4 leads to complex, sea-ice compatible,

behaviours. In fact, in our experiments, the truth, i.e. the un-biased model, is set to α= 4 (cf. Tab. 3). In the DA experiments

with estimate of α, we mimic an initial biased estimation of the parameter that is in the same range of sea-ice compatible

behaviour: we choose α= 6.5 (cf. Tab. 3). Our strategy is realistic as the initial “guess” does not cause the model to behave

qualitatively differently from the observations when α≥ 4. Drastic changes of the dynamical regimes are also challenging for565

DA and it influences the error dynamics between the model parameter and the observed fields. Given that the IEnKF updates
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Figure 12. Cross-correlation between (a,c) u- and (b,d) v-component of SIV and α at day 17 and 18 when only SIV is assimilated.

(both in the state fields and parameters) are unbounded, we apply the same post-process to keep the analyses within physically

acceptable bounds as described in Sect. 4.1. Finally, similar to the experiments with biased Ca, we apply a fixed inflation factor

of 1.02 to the model state, and a time-dependent inflation to the parameter uncertainty based on Eq. ?? (cf. Tab. 3).

One of the fundamental challenges in estimating α arises from the nonlinear relationship between α and the observed fields.570

In particular, the parameter is directly related to the stress field, which is not observable. The complex, nonlinear and indirect

nature of these relations, can lead to inaccurate (finite) ensemble-based cross-correlations. Another potential challenge comes

from the little sensitivity of the model fields to α
::::::::
compared

::
to

:::
the

::::
wind

::::
field

:::
and

:::
Ca::::

(see
:::
Fig.

::
1. As shown in Tab. 5, in a 90-day

free run, the ensemble spread of observed model fields is only marginally larger than that in the perfect model scenario.

Despite these obstacles, the IEnKF shows encouraging results in estimating α as shown in Fig. 11a. Assimilating SIC or575

SIT alone leads to under- and over-estimation of α after 30 days. From Fig. 11b, we see that the ensemble spread in SIT is

still relatively large at the end of the experiment. This suggests that it is only slightly reduced at the analysis steps but also that

further adjustment of α beyond the 30-th day is still a possibility. The simultaneous assimilation of SIT and SIC leads to an

almost full recovery a
:::::
good

::::::::::::
approximation

:
of the true value of α= 4. Similar results are attained whenever SIC is assimilated

(cf. experiment SIC+SIV or SIC+SIT+SIV). This suggests the crucial relationship between α and SIC, which appears as the580

key observation for inferring the damage parameter.
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Figure 13. Same as Fig. 12 but for the components of the wind forcing in place of those of SIV.

Our results suggest also that observations of SIV cannot be used to retrieve α effectively. In all the experiments with SIV

observations, the estimated α gradually approaches the truth until day 18, when it then abruptly diverges away from it. An

insight on the reasons behind this sudden change is provided in Fig. 12, which shows the spatial distribution (on the model

domain) of the cross-correlation between α and either u or v, at days 17 and 18. The cross-correlation between SIV and α585

flip their signs spatially from day 17 to 18. This is related to the uncertainties in the wind field which dominates the forecast

uncertainty in the SIV.

Let us illustrate this issue with simple mathematical arguments. We assume that the nonlinear sea ice model, M, can be

approximated by its linearisation M within the forecast interval in between two successive analyses. The forecast ensemble

anomaly (error) of SIV at time step k can be approximated as590

δuk =Mα
k δαk−1 +Mua

k δuak−1 +Mx
kδxk−1 +O(2) (7)
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Figure 14. RMSE in the state estimate for scenario 3. (a) RMSEa/RMSEfree (b) RMSEf /RMSEfree. Columns display the individual physical

model fields; rows refer the (combination of) observations that are assimilated.

where δ· represents the deviation from the ensemble mean, and x is the state vector except the damage parameter, the superscript

means the model sensitivity to the corresponding variables in which Mα
k ∈ Rn×1, Mua

k ∈ Rn×m, Mx
k ∈ Rn×l with n being

the number of SIV in the controlled vector, m being the number of elements in the wind fields vector and l being the number of

elements of model state in the controlled vector. The O(2) represents the high order terms that are greater than 2nd order. In the595

EnKF (and thus in the IEnKF), the cross-covariance is estimated from the ensemble anomaly of the SIV and the perturbations

of α, which approximates E[δukδαk]. This cross-covariance between SIV and α is related to the perturbation (error) from

the model state, wind and α. In our case, whenever ||Mua

k δua ≫Mα
k δα||, the SIV uncertainty is mainly driven by the wind.

This can falsely give a strong cross-correlation between SIV and α producing incorrect α estimate when it is only based on

SIV observations. A similar issue was encountered in Simon and Bertino (2012) where they found the parameter estimation600

challenging when the uncertainty of the parameters show relatively little uncertainties on the observed fields.

Based on this argument, we can show that the sign flip of cross-correlations in Fig. 12 is a result of the change in wind

field. In Fig. 13, the cross-correlation between the wind field and α shows the periodic northward travel of the storm in y-axis

(cf. Fig. 13a and b) and the rotation of the storm (cf. Fig. 13c and d). This matches with the changes of cross-correlations in

Fig. 12. The incorrect estimate of α highlights the challenges when the primary sources of the uncertainties are external instead605

of being the model parameters. We observe that this effect also influences the α estimate when the SIV is assimilated with the

SIT.

Figure 14 shows the improvements in the state estimate. As expected, the analysis of the observed fields are in general more

accurate than the free run. Moreover, compared to the perfect model scenario, the damage field is now improved relative to

the free run in all experiments. The stress field is only moderately improved even though it has direct relationship with α in610

Eq. (3).

Interestingly, without observing SIV, the assimilation of SIC shows a negative impact on the analysis of SIV. This may be

a result of the underestimated α in these experiments. With low value of the α, the sea ice has a more elastic behaviour. The
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Figure 15. The analysis of α (a) and Ca (b) parameter estimate based on a variety of combinations of observations.

elastic motion has a short timescale and is sensitive to the perturbation of the sea ice variables making the slowly changed

SIC observations unreliable. This leads to deteriorated SIV forecast even if SIV is assimilated with SIC. On the contrary,615

assimilating either SIT or SIV leads to improvements in SIV forecast. This is consistent with the finding from Weiss and

Dansereau (2017) such that, with high α values, with the sea ice transitioned from elastic to viscous behaviour the system

becomes more predictable.
:::::
When

:::
SIV

::
is

::::::::::
assimilated,

:::
the

:::::::::::
overestimated

::
α

:::::
leads

::
to

::::
only

::::
slight

:::::
error

:::::::
increases

::
in
:::
the

::::
SIC

:::::::
analysis

::::::
without

:::::::::
hampering

:::
the

::::
state

:::::::::
estimation

::
of

:::::
other

:::::
model

::::::::
variables.

::::
This

::::::::
suggests

:::
that

:::
the

::::::
model

::::
state

:::
and

:::::::::
parameter

:::
are

:::::::
adjusted

:::::
based

::
on

:::
the

:::::::
primary

::::::
source

::
of

:::::
error,

::
the

:::::
wind

:::::::
forcing.620

Our results demonstrate the possibility of estimating α successfully using as many as possible of the available observations.

It is notable that not a single type of observation alone can infer α accurately. We also demonstrate that the IEnKF cannot

always identify the correct source of error in a complex environment. In our case, the error from the wind field negatively

impacts the estimation of α. Interestingly, a deteriorated α analysis does not necessarily lead to a deteriorated state estimation.

In contrast, the overestimation of α still moderately improves the sea ice forecast due to improved predictability.625

5.4 Scenario 4: Inferring the model physical variables and its erroneous Ca and α

In the previous sections we demonstrated that, with sufficient observations, the IEnKF can estimate Ca and α when only one of

them is erroneous. Considering that both Ca and α are in the closely related equations for SIV and stress (cf. Eq. (2) and (3)),

it is of interest to investigate the possibility of estimating both model parameters simultaneously.

Figure 15b shows the estimated Ca after 30 days of assimilation. All experiments underestimate
:::::::
approach

:::
the

::::
true

:::::
value630

::
of Ca (although starting from an overestimated value)and shows no sign of convergence with time. In particular, when all

types of observations are assimilated , the estimated .
::::::
When

:::
SIC

::::
and

::::
SIV

:::
are

:::::::::
assimilated

::::::::
together,

:::
the

::::::
IEnKF

:::::
gives

:::
the

::::
best

:::::::
estimate

::
of Ca is the farthest from the truth. The underestimation of

::::
while

::
it

::::::::::::
underestimates

:::
the

:
Ca is accompanied by

:::::
when

::::
only

:::
SIT

::::
and

:::
SIV

:::
are

::::::::::
assimilated.

::::
The

::::::
IEnKF

::::
also

::::
gives

:
an increase of the estimate of α as shown in Fig. 15a. Although this

demonstrates the difficulty in estimating both parameters, it is remarkable that it still leads to an improved forecast of model635
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Figure 16. RMSE in the state estimate for scenario 4. (a) RMSEa/RMSEfree (b) RMSEf /RMSEfree. Columns display the individual physical

model fields; rows refer the (combination of) observations that are assimilated.

fields as shown in Fig. 16. This is known as a compensating effect (Bocquet, 2012). This apparent contradiction is related to the

non-identifiability of the problem whereby the parameter estimation cannot fully reconstruct the true parameters. In practice,

this implies that more than one set of parameters can produce the same observed fields. The identifiability issue can also be

viewed from a physical standpoint: Ca determines the motion of the sea ice via the wind forcing. With reduced
:::::::::::
overestimated

:::::
aprior Ca, the wind can cause a slower sea ice motion

:::
fast

:::
sea

:::
ice

:::::::
motions. α influences the rate at which sea ice transitions640

from an elastic-brittle solid behaviour to a viscous fluid behaviour with increasing level of damage. As discussed in Sect. 5.3,

the increased α leads to more viscous sea ice that is more easily subjected to permanent deformations . With high α and low

Ca, the sea ice is deformed by the wind forcing with weakened oscillatory elastic behaviour. This means that the oscillatory

elastic motion of the sea ice is replaced by the motion driven by the wind forcing which can lead to similar sea ice properties

as the truth.645

::::::
instead

::
of

:::
fast

::::::::
transient

:::::
elastic

::::::::::::
deformations.

::
In

::::
this

::::::::
situation,

:::
the

::::::
IEnKF

:::::::
controls

:::
the

:::
fast

:::
sea

:::
ice

:::::::
motions

:::
by

::::::::
removing

:::
the

:::::
elastic

:::
sea

:::
ice

::::::::::::
deformations.

The identifiability issue can also be associated with incorrect cross-correlations between model fields and model parameters

from different sources of errors as described in Eq. (7). We observe that, assimilation correctly decreases Ca showing a rel-

atively correct cross-correlation between the observations and Ca. This controls the impact of the external wind forcing as a650

positively biased Ca can amplify the uncertainty in the wind field, which increases the term Muaδua in Eq. (7). As discussed

in Sect. 5.3, the outstanding external wind forcing could lead to erroneous estimation of α. Hence, after the external uncer-

tainties are controlled, the ensemble should be able to develop reasonable cross-correlations between α and the observations.

To test this, we adopt the following strategy in the 30-day assimilation experiments: 1) Constraining the external uncertainty

by estimating Ca only for 10 days; 2) developing uncertainty from α by model forecast without assimilation for 10 days;655

3) estimating α for the last 10 days. This is labeled as “seq” in Fig. 15. Although Ca is still underestimated, we observe a

reduction of error in α. Also, as other experiments do not show a decreased α after an underestimated Ca, this may suggest the
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Figure 17.
::::::::::
Simultaneous

::::::::
parameter

::::::::
estimation

::
of

::
Ca:::

and
::
α

:::
with

:::::::
different

:::
set

:
of
::::
truth

::
of

::::
these

:::::::::
parameters.

:::
The

::::::::
horizontal

:::
red

::::
lines

:::::::
represent

::
the

::::
truth

::::
when

::::
they

:::
are

::::
either

:::::
lower

::
or

:::::
higher

:::
than

:::
the

::::
initial

:::::
guess.

::::
The

:::
inset

::
in
::
a)

::
is

::
the

::::::::
estimated

:
α
::

in
:::
the

::::::::
experiment

::::::::::
EXPαHCH

a .

importance of step 2) where the uncertainty arising from α developed. We stress here that the 10 days is simply chosen for the

convenience and is not tuned.

Our results show that
::
To

::::::
further

::::::::::
consolidate

:::
our

:::::::
findings

::
on

:::
the

:::::::::::
performance

::
of

:::
the

::::::
IEnKF

:::
on

:::
the

:::::::::::
simultaneous

:::::::::
parameter660

:::::::::
estimations

::
of

:::
Ca::::

and
::
α,

:::::::::
extensive,

::::
and

:::::::::::::
computationally

::::::::::
demanding,

::::::::::::
investigations

::::
with

::::::::
different

:::::
model

::::::
states,

::::::
forcing

::::
and

:::::::::
parameters

:::::
would

::
be

:::::
ideal.

::
In

::::
fact,

::::
even

::::::
though

:::
the

:::::
model

::
is

:
a
::::::::::::
simplification

::
of

:
a
:::
full

:::::::::
pan-Arctic

:::
sea

:::
ice

::::::
model,

::
the

::::::::::::
computational

:::::
power

::::::
quickly

::::::
scales

::
up

::
to
:::::::
beyond

:::
our

:::::::::
resources.

::::
With

:::
the

:::::::::::::
aforementioned

::::::::::::
computational

:::::::::
constraints

::
in

:::::
mind,

:::
we

:::::::::
performed

::::
three

:::::::::
additional

::::::::::
experiments

:::::
using

:::::::
different

::::::
truths.

:::
In

:::::::
addition

::
to

:::
the

:::::::
existing

::::::::::
experiment

:::::::::::
(EXPαLCL

a )
:::::
where

:::
we

:::::::::
assimilate

::
all

:::::::::::
observations

::
to

::::::::
estimate

::
α

::::
and

:::
Ca,

::::
we

:::::::::::
implemented

:::::
three

::::::::
additional

:::::::::::
experiments

::::::
where

:::
the

:::::
truth

::::
uses

::
1)

::::::
α= 4

::::
and665

::::::::::::::
Ca = 3.5× 10−3

::::::::::::
(EXPαLCH

a );
::
2)

:::::
α= 7

::::
and

::::::::::::::
Ca = 1.5× 10−3

::::::::::::
(EXPαHCL

a );
::
3)

::::::
α= 7

:::
and

:::::::::::::::
Ca = 3.5× 10−3

::::::::::::
(EXPαHCH

a ).

::::
Here,

::::
the

:::::::::
superscript

::
L

::::
and

::
H

:::::::
denotes

::::
that

:::
the

::::
truth

::
is
:::::
lower

::::
and

::::::
higher

::::
than

:::
the

:::::
initial

::::::
guess

::::::::::
respectively.

:::
We

::::::::::
investigate

::::::
relevant

::::::::
scenarios

::::
(e.g.

:::::
under

::
or
:::::::::::
overestimate

::
of

:::
the

::::
real

::::::
values)

::
in

:::::
which

:::
the

:::::::
model’s

:::::::::
qualitative

::::::::
behaviour

::
is

::
of

:::
the

:::::
same

::::
sort.

:::
The

:::::
latter

:::::::
concerns

::::::::::
specifically

::
to

:::
the

:::::
model

::::::::
structural

::::::::
stability,

:::
that

::
is

::
to

:::
say

::
to

:::
the

:::
fact

::::
that

:::::
model

::
is
:::
not

::::::
subject

::
to
::::::::::
bifurcation

::
of

::
its

::::::
general

:::::::::
behaviour.

:
670
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:::::
When

:::
the

::::
truth

:::
of

:::::
model

::::::::::
parameters

::
is

::::::
higher

::::
than

:::
the

:::::
initial

::::::
guess,

:::
the

:::
air

::::
drag

:::::::::
coefficient

::
is

:::
2σ

:::::
above

:::
the

::::::
initial

:::::
guess

::::
while

::
α
::
is

::::
one

:
σ
:::::
above

:::
the

::::::
initial

:::::
guess.

:::::::
Keeping

:::
the

:::::
value

:::
up

::
to

:::
one

::
σ

:::::
higher

::::
than

:::
the

::::::
initial

::::
guess

:::
of

:
α
::
is
::::
due

::
to

:::
the

:::::::
changes

::
in

:::
the

::::::::
dynamical

:::::::
regime

::
of

:::
the

:::::
model

::::
that

:::::
occur

::::::
beyond

::::
one

::
σ.

:::
As

::::::::
discussed

::
in

:::::::::::::::
Dansereau (2016),

:::::
when

::
α
:::::::::
increases,

:::
the

:::
sea

::
ice

:::::
loses

:::::::
memory

::
of

:::
the

:::::::
previous

:::::::
damage

::::::
events

::::::
leading

::
to

:::::::::
increasing

:::::::::::
elasto-plastic

::::::::
behaviour.

:::::
This

::::::
implies

:::
that

::
a
:::::::
different

:::
set

::
of

:::::
initial

:::::
guess

:::::
might

::
be

::::::
needed

:::
for

:::::
these

:::::::::
dynamical

:::::::
regimes

::
as

:::
we

::
do

:::
not

::::::
expect

::::::
IEnKF

:::
can

:::::::
provide

::::::
reliable

:::::::::
estimation

:::::
when675

:
a
::::::
change

::
of

:::::::::
dynamical

::::::
regime

::::::
occurs.

::::::::::
Meanwhile,

::::::
based

::
on

:::::::
physical

::::::::::
arguments,

::::
such

::::
high

::
α

::::::::
parameter

::
is

::::
less

:::::
likely

::
to

:::::
occur

::
in

:::::
reality

::::::
where

:::
the

:::
true

:::::
value

::
is

:::::
likely

::
to

::
be

::::::::
between

:
4
:::
and

::
7.
:::
As

::::::
shown

::
in

::::
Fig.

:::
17,

::::::::::
EXPαHCL

a ::::
gives

::::::::::::
improvements

::
in

:::
the

:::
air

::::
drag

:::::::::
coefficient,

::::
and,

::::::
though

::::::::::::
overestimated,

:::
the

::
α

:::::::::
parameter

:
is
:::::::::
increased

::
as

:::::::::
prescribed

::
by

:::
the

:::::
truth.

::
In

:::::::::::
EXPαLCH

a ,
::::::::
improved

::
Ca:::::::::

estimation
::
is
::::::
obtain

::
at

:::
the

::::
start

::
of

:::
the

:::::::::
estimation

:::
but

:::
the

:::::::::
estimation

::::::::::
deteriorates

::::
after

:::
20

:::::
days.

::
In

:::::::::::
EXPαHCH

a ,
::::::
though

:::
the

::
Ca:::::::::

parameter
::::
gets

:::::::::
improved,

:::
the

:::::::::
estimation

::
of

::
α

::
is

::::::::::::
approximately

::
17

::::::
which

::
is

:::
one

:::::
order

::
of

:::::::::
magnitude

::::::
larger

::::
than

:::
the

:::::
truth.680

:::
The

::::::::::
deteriorated

::::::
results

:::::
occur

:::::
when

:::
the

::::
true

:::
Ca::

is
::::::
higher

::::
than

:::
the

:::::
initial

:::::
guess

::::::
which

::::::::::
corresponds

::
to
::

a
::::::
strong

::::
wind

:::::::
forcing

::
in

:::
the

:::::
truth.

::::
One

:::::::
possible

::::::::::
explanation

::
is

::::
that

:::
the

::::::::::
correlations

:::::::
between

::
α

::::
and

:::
the

::::::::
observed

:::::
fields

:::
are

:::
not

::::::::
truthfully

::::::::
reflected

:::
due

::
to

:::
the

::::::
strong

:::::
wind

:::::::
forcing.

:::::::::::
Nevertheless,

::
if

:::
we

::::
first

:::::::
estimate

:::
the

:::
air

::::
drag

::::::::::
coefficient,

:::::::
followed

:::
by

::
a
:::
free

:::::::
forecast

::::::
phase

:::
and

:::::::
estimate

::
α

:::::::::
afterwards,

:::
the

:::::::::
parameter

:::::::::
estimation

::
is

:::::::::
improved.

:::::
These

:::::
show

:::
that

::::
even

::
if
:::
the

:::::
same

::::
prior

::::::::::
distribution

::
is

:::::
used,

:::::::
different

:::::::::
dynamical

::::::
regime

::
of

:::
the

::::::::
modelled

::::
truth

:::
can

::::
lead

::
to

::::::::
different

:::::
results

::
in

:::
the

:::::::::::
experiments.685

:::
Our

::::::
results

::::::
suggest

::::
that the augmented state vector can have identifiability issues when both Ca and α are biased. As shown

in Tab. 5, the perturbation of α cannot provide greater forecast uncertainty compared to the positively biased Ca. We have

proposed a strategy to overcome the issue with some discussions on alternative approaches. For example, a larger ensemble

spread of α may increase the uncertainty in the forecast ensemble which avoids a single dominant source of forecast uncertainty.

We note that, based on our reasoning, the identifiability issue may not exist when Ca is negatively biased. Nevertheless, this690

demonstrates a potential issue in the parameter estimation in MEB-type sea ice model.

5.5
::::::
Impact

::
of

:::::::::
parameter

::::::::::
estimation

::
on

::::
long

:::::
term

:::::::::
prediction

:
It
::

is
::::::

worth
:::::::
studying

::::
the

::::::
impact

::
of

::::
the

::::::::
parameter

:::::::::
estimation

:::
on

:::
the

:::::::::
long-term

:::::::::::
performance

::
of

::::
the

::::::
model.

:::
To

:::
this

:::::
end,

:::
we

::::::::
performed

::::::::
90−days

::::
long

:::
free

:::
run

::::::::
whereby

:::
the

:::::
model

:::::::::
parameters

:::
are

:::::::
“frozen”

::
to

:::
the

:::::
values

::::::::
obtained

::
at

::
the

::::
end

::
of

:::
the

:::
DA

::::::
period.

:::
The

::::::::::
experiment

::
is

::::::
carried

:::
out

:::
for

:::
the

::::
case

:::::
when

::::
both

:::
Ca::::

and
::
α

:::
are

::::::::
estimated

::::::
during

:::
the

::::
DA

:::::
period

:::::
using

:::
the

::::::::::::
configuration695

::::
“seq”

:::
of

::::
Sect.

::::
5.4.

::::::
Results

:::
are

::::::::
displayed

::
in

::::
Fig.

:::
18.

:::::
Figure

::
18

::::::
shows

:::
that

:::
the

::::::
RMSE

::
of

:::
all

:::::::
observed

::::::
model

::::::::
variables

:
is
:::::::
smaller

::::
using

:::
the

:::::::::
corrected

:::::
model

::::::::::
parameters

::::::::
compared

::
to

:::
the

::::
free

::::
run

:::
that

::::
use

:::
the

:::::
initial

::::::
guess.

:::
The

::::::::::::
improvement

::
is

::::::::
persistent

:::
(in

::::
time)

::
in

::::
SIV,

:::::
while

::
it

::::::::
increases

::
for

::::
SIC

:::
and

::::
SIT

:::
due

::
to
:::
the

::::
long

::::
time

:::::
scale

::
of

:::::
these

:::::
model

::::::::
variables.

::::::
These

:::::
results

:::::::::::
demonstrate

::
the

::::::::::
importance

::
of

::::::::
correctly

:::::::
specified

::::::
model

:::::::::
parameters

::
in

:::::::::
long-term

:::
sea

::
ice

::::::::
forecast.

6 Discussion700

In this study, we investigate joint state and parameter estimation of a MEB sea ice model using IEnKF. This study focuses

on the cross-covariance between model fields which is crucial for the correct parameter estimation. Given that the IEnKF is
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Figure 18.
:::::
RMSE

:::
and

:::::::
ensemble

::::::
spread

::
of

::
the

::::
free

::
run

:::::
using

::::
prior

::::::::
parameters

:::
and

:::::::::
parameters

:::::::
corrected

::
by

:::
the

:::
DA

::::
when

::::
both

::
Ca:::

and
::
α
:::
are

::::::::
erroneous.

also a variational method, it minimises the cost function in Eq.|
:
(1) and thus it adjusts the model parameter at each Gauss-

Newton iteration. The adjusted, data-informed, model parameters allows for a natural treatment of the nonlinearity thanks to

the execution of the model within one analysis step or, had we used the IEnKS, within the entire assimilation window. The705

variational formulation has also other additional advantages over the traditional EnKF. For example, one can impose constraint

optimisation and regularisation to the cost function to avoid numerical problems or to append physical constraints.

One important ingredient of IEnKF is the use of
::
an

:
ensemble. The forecast ensemble of the IEnKF can suffer from ensemble

collapse as discussed in Sect. 4.3 where inflation is used as an effective modification to the forecast ensemble. In this study, two

different inflation approaches are used. In the perfect model scenario, we
:::
We

:
adopt an adaptive inflation method, the IEnKF-710

N (Bocquet and Sakov, 2012). The IEnKF-N works very well when only the system’s state (its physical variables) are inferred.

On the other hands, its performance in the state and parameter estimation case (not shown here) is unsatisfactory. We argue

that this is related to the nature of the other key fix for EnKF, the localisation. In our experiments, the localisation in the IEnKF

is done in the domain. In practice, each grid point is updated individually, using the observations gathered within a given local

domain. The adaptive inflation of IEnKF-N is therefore itself dependent on the model field and grid point. To see this, let us715

write the analysis error covariance after the adaptive inflation as Pa →W ◦Pa with each entry of the matrix W containing the

field-specific inflation factor, and ◦ being the Schur product. As a result, the cross-correlation across different model fields and

spatial points described in the un-inflated Pa are modified by the inflation, potentially breaking the physically and dynamically
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sounds correlation developed in the ensemble.
:::::::
adaptive

:::::::
inflation

::::::::
approach

::
is
::::::
shown

::
to

:::
be

:::::::::
applicable

::
to

:::::::
complex

:::::::
models

:::
for

::::
joint

::::::::::::
state-parameter

::::::::::
estimations

::::
with

:::::::::
reasonable

::::::::
stopping

:::::::
criterion.

:
720

This undesired effect of the inflation does not cause trouble when only the model state is estimated because the domain

localisation acts exclusively on the cross-correlations within the localisation radius, thus limiting the impact of the weighting

from the inflation factor. In the (global) parameter estimation problem on the other hand, localisation is not used and thus

the effect of the inflation factor in breaking the cross-correlation between the observations and the parameters becomes more

relevant. We foresee that this aspect of the IEnKF-N may limit is direct applicability when dealing with global parameter725

estimation in high-dimensional systems, whereby using localisation is mandatory. Further investigations is being undergone

to address this issue, including the development of an alternative inflation and/or localisation strategy, e.g. one proposed

by Pasmans et al. (2023).

In this study we have used a spatially homogeneous and constant inflation factor for the model state, but for the parameters

we have adaptively inflated the error ensemble-based covariance to maintain the forecast ensemble larger than a given bound730

(cf Sect. 5.2). Although we have not performed any fine tuning of this inflation factor (i.e. , for the lower bound for the ensemble

variance) our results are promising and left room for further improvement

::
In

:::::::
addition

::
to

::
the

:::::::
constant

::::::::
ensemble

::::::
spread,

:::
we

::::
also

:::::::
explored

:::
the

:::
use

::
of

::
an

:::::::::::::
auto-regressive

:::::
model

:::::::::::::::::::::::::
(NEA, 2007; Xie et al., 2017)

::
for

::::
the

:::::
model

::::::::::
parameters,

:::::::
instead

::
of

:::::::::::
persistence.

::::::::
However,

:::
the

::::::
results

::::
(not

:::::::
shown)

:::
are

:::::::
elusive.

:::
We

:::::::::
speculate

::::
that,

::
as
::::

the

:::::::::::
autoregressive

::::::
model

::::::::
resamples

:::
the

::::::::
ensemble

:::::::::
uncertainty

::
of

:::
the

:::::::::
parameter

:
at
:::::
each

:::
time

:::::
step,

:::
this

:::::::::
introduces

::::::::
additional

::::::::
sampling735

::::
error

:::
and

:::
the

::::::
results

::::
may

::
be

:::::::
subject

::
to

:::
the

::::::::::::
signal-to-noise

::::
ratio

:::::
from

:::
the

:::::
choice

::
of

:::
the

::::::::
standard

::::::::
deviation

::
of

:::
the

::::::::::::
autoregressive

::::::
model.

:::::
This

:::
may

:::::::
suggest

:::
the

::::
need

:::
for

::::::
careful

::::::
tuning

:::
for

::
the

::::::::::::
autoregressive

:::::::::
processes.

We also shed lights
::::
light

:
on potential issues when the forecast uncertainty is driven mainly by the external wind field. In

this case, the cross-covariance matrix reflects the error from the wind fields and the model fields. This is undesirable for the

parameter estimations where we expect the error in the observed fields to be related to the parameter perturbations. This is740

particularly relevant for sea ice DA where the wind field contribute to most of the uncertainties of the forecast ensemble.

Meanwhile, we have also shown that the effect of external uncertainty depends on the model fields. The incorrect cross-

correlations is more detrimental when the model fields are directly linked to the source of the uncertainty. For example, when

only α is biased, assimilating only SIV shows severely problematic analysis. This may also suggest that coupled DA controlling

the uncertainty of external forcing could improve the sea ice parameter estimation.745

7 Conclusions

We investigated the state and parameter estimation in a dynamics-only MEB sea ice model under an idealised setup using the

IEnKF(-N). We mimicked the observation error and its spatial distribution with the forecast uncertainty driven primarily by the

uncertainties in the wind field.

We adopted a fully multivariate approach whereby all model fields are estimated by DA utilising the cross-correlations750

between observations and model fields. Our results show that different combinations of the sea ice observation fields can lead
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to different effects on the model state and parameter estimates. In general, it is useful to assimilate as many observations as

possible. Potential issues with multivariate state and parameter estimation due to both the limitations of the DA method and

the features of the sea ice model dynamics are highlighted. We also demonstrate that these issues are surmountable and that

successful multi-variate state and parameter estimation using state-of-the-art ensemble DA approaches is possible.755

Experiments in the perfect model scenario show that, even if the sea ice model is perfect, the limited ensemble size and

uncertainties in the external forcing, e.g. the atmospheric wind, still limit the capability of DA to improve the sea ice fore-

cast especially for the unobserved model fields. We show that the forecast of SIV cannot be improved because it is strictly

constrained by wind field while other model fields with longer timescales show improved forecasts. This suggests that cou-

pled DA that estimates the external forcing could improve the sea ice forecast of model fields like the SIV. In addition,760

the linear Gaussian assumption of DA methods can violate the bounds of various model fields in the sea ice models re-

quiring a post-processing of these fields. One potential treatment of the bounds problem is anamorphosis which can be ap-

plied analytically to the IEnKF as well as to other EnKF variants (e.g., Bocquet and Sakov, 2013; Simon and Bertino, 2009, )

:::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Bocquet and Sakov, 2013; Simon and Bertino, 2009). We did not explore this venue here, it may constitute an interesting

follow-up work; note however that the majority of sea ice DA does not use anamorphosis since it can cause numerical imbal-765

ances (Bocquet and Sakov, 2013). Nevertheless, with suitable localisation and sufficient observations, we show improvements

for all model fields, both observed and unobserved fields (e.g., stress, cohesion and damage).

We choose two global parameters to be estimated, the air drag coefficient, Ca, and the damage parameter, α. The air drag

coefficient is closely related to the external uncertainties from the wind field while α affects the mechanical and dynamical

regime of the sea ice. In
:::
this

::::::
study,

::
we

:::::::
choose

:::
one

:::::::
specific

:::::
setup

::
of

:::
the

::::::
model

:::::::::
parameters

::
as

:::
the

:::::
truth

:::::
based

::
on

:::::::::::
experiments770

::
in

::::::::::::::
Dansereau (2016)

:
.
::::
With

:::
our

::::::
chosen

:::::
model

::::::
setup,

:
in
:
a model with only one biased parameter, the DA can reduce the parameter

bias and improve the model forecast. However, in the case where only SIV is assimilated, our results show that it can lead to

model imbalance. Also, as it is closely related to the external uncertainties, the cross-correlation between SIV and α can be

incorrectly specified. This shows the importance of assimilating multiple sea ice observations and the potential difficulty in sea

ice DA when the ensemble uncertainties are primarily driven by the external uncertainties (wind field).775

When both model parameters are biased, an identifiability problem arises. This highlights the caveats that the ensemble

spread can come from different sources of uncertainties rather than purely from uncertainties in the parameters. When one

source of uncertainty dominates the ensemble uncertainty, the estimated model parameters can deviate from the truth even if

better forecast is achieved for those observed fields. We proposed a strategy that can mitigate such an issue in our specific test

case by first controlling the dominating error from the external forcing and estimating the sea ice internal parameters later.780

A number of open questions are still at stake. For example, we
::
the

:::::
MEB

::::::
model

:::::::
contains

:::::::
multiple

:::::::::
dynamical

:::::::
regimes

::
as

:::
the

:::
sea

::
ice

::::
can

::
be

::::::
viewed

::
as

::::::::
different

:::::::
materials

:::::
based

:::
on

:::
the

::::
state

::
of

:::
sea

:::
ice.

::
It
::
is

::
of

:::::::::
theoretical

::::::
interest

::
to

:::::::::
investigate

:::
the

:::::::::
parameter

:::::::::
estimations

:::::
under

:::::::
different

:::::::::
dynamical

:::::::
regimes

::
of

:::
the

:::::
MEB

::::::
model.

:::
We

:
observed improvements in the fully multivariate update

but it is still unclear whether these improvements can be observed in the full Arctic sea ice predictions compared to state-of-

the-art operational setup. Another point that should be addressed in future work is the development of a rigorous approach to785

handle bounded variables like concentration and damage.
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On the side of the ensemble generation, in this study, the wind forcing serves as the sole source of uncertainty. Nevertheless,

in operational sea ice models, multiple potential uncertain external forcing sources are present. A study of MEB-like models

sensitivity to different external forcing appears as another venue worth pursuing, along the line of the sensitivity analysis to

external wind and cohesion parameter in Cheng et al. (2020).790

:::
We

:::::
finally

:::::::
mention

:::
the

::::::
current

:::::::::::
development

::
of

:::
data

::::::::::
assimilation

::::::::::
approaches

:::::::::
specifically

:::::::
adapted

::
to

::::::
models

:::::
using

:
a
:::::::::::
discontinuous

:::::::
Galerkin

:::::::::
dynamical

::::
core,

::
as
:::
in

::
the

::::
sea

::
ice

::::::
model

::::
used

::
in

::::
this

::::
study

:::::::::::::::::::
(Pasmans et al., 2023).

:::::
These

:::::
novel

::::::::
methods

::::
may

::::
pave

:::
the

:::
way

::
to
:::::
solve

:::::
some

::
of

:::
the

:::::::::::::
aforementioned

:::::
issues

::::
and

:::
the

::::::
authors

:::
are

::::::::
currently

::::::::::
investigating

::::
their

::::
use

::
in

:::
the

::::::
present

:::::::
context.

Code and data availability. The code for the data assimilation scheme and experiment setup can be found at https://zenodo.org/record/

8224997. The dynamics-only sea ice model is available upon request.795

Appendix A: Model parameters

Here we present the model parameters used in the modelled truth in Table A1.

Appendix B: Wind field

The wind field is prescribed as a series of passing cyclonic storms combined with a constant background wind. To have control

over the vorticity and divergence of the wind field we use the Helmholtz decomposition800

ua =∇Φ+k×∇Ψ, (B1)

where ua = (ua, va), Φ is the velocity potential and Ψ is the streamfunction with the solenoidal wind component us
a =∇Φ

and the divergent wind component ud
a = k×∇Ψ. The equations for the wind field is

us
a(x̂, ŷ, t) = Us sin

2 (2πx̂)sin(4πŷ) · γ(t) ·Umask, (B2)

vsa(x̂, ŷ, t) = −Us sin
2 (2πŷ)sin(4πx̂) · γ(t) ·Umask +Ub, (B3)805

ud
a(x̂, ŷ, t) = Ud sin

2 (2πŷ)sin(4πx̂) · γ(t) ·Umask, (B4)

vda(x̂, ŷ, t) = Ud sin
2 (2πx̂)sin(4πŷ) · γ(t) ·Umask, (B5)

with Ud = 0.1 m · s−1 as the magnitude of the divergent wind and Us = 22 m · s−1 as the maximum solenoidal wind speed,

and U b = 2 m · s−1 as the background wind field. To simulate a sequence of storms generating and dissipating, we introduce

the time dependent term, γ(t), that controls the strength of the storm810

γ(t) = 1− exp

(
−a

∣∣∣∣sin(π t

T

)∣∣∣∣b
)
, (B6)
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Table A1. The default model parameters used in the modelled truth.

Parameter Notation Value

Poisson’s ratio ν 0.3

Internal friction coefficient µ 0.7

Ice density ρ 900 kg m−3

Elastic (shear) wave propagation speed c 500 m s−1

Damage parameter α 4.0

Undamaged elastic modulus E0 2c2(1+ ν)ρ

Undamaged relaxation time
(

η0

E0

)
λ0 107 s

Undamaged apparent viscosity η0 λ0E0

Minimum apparent viscosity ηmin 104 Pa s

Minimum cohesion Cmin 5000 Pa

Model time step ∆t 30 s

Mean model resolution ∆x 15 km

Characteristic time for damage td ∆t

Characteristic time for healing th 5× 105 s

Air density ρa 1.3 kg ·m−3

Air drag coefficient Cda 1.5× 10−3

Water density ρw 1027 kg ·m−3

Water drag coefficient Cdw 5.5× 10−3

Parameter used in coupling E and η to A c∗ 20

where T is the period of the storm, and a= 10 and b= 2 are parameters that control the shape of the curve and in turn the rate

that the storm generates, maintains its maximum strength, and then dissipates. In Eq. B2- B5, the spatial coordinate, (x̂t, ŷt),

is time-dependent. This simulates the passing of the storm across the domain.

x̂t = x̂t−1 +∆x̂t, (B7)815

ŷt = ŷt−1 − vc∆t/L, (B8)

where ∆t is the forcing frequency, vc is the speed at which the storm passes across the domain (from the bottom to top),

L= Lmax −Lmin and ∆x̂t is a random perturbation that allows us to send the storm on a random walk. The initial position

of each storm is given by

x̂0 =
(x−xc)−Lmin

L
− 1

4
, (B9)820

ŷ0 =
(y− yc)−Lmin

L
− 1

4
, (B10)

where (xc, yc) is the initial position of the storm centre. The choice of T , vc, and xc,yc is given in Table 2, and the ∆x̂t related

to random walk is specified in Eq 4.
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With these setup, each storm is approximately half the width of the domain. The sine and cosine equations can generate 4

storms on the domain, and Umask is used to ensures only one storm is in the domain at any time:825

Umask = (1−⌊x⌋− 2

[
⌊x⌋
2

]
)H(sin(2πx)H(sin(2πy), (B11)

where [] is the integral part function and H(x) is a Heaviside step function.
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Aydoğdu, A., Carrassi, A., Guider, C. T., Jones, C. K. R. T., and Rampal, P.: Data assimilation using adaptive, non-conservative, moving

mesh models, Nonlinear Processes in Geophysics, 26, 175–193, https://doi.org/10.5194/npg-26-175-2019, 2019.845

Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Quarterly Journal of the Royal

Meteorological Society, 143, 607–633, https://doi.org/https://doi.org/10.1002/qj.2982, 2017.

Bertino, L. and Holland, M. M.: Coupled ice-ocean modeling and predictions, Journal of Marine Research, 75, 839–875, 2017.

Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness,

The Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018, 2018.850

Bocquet, M.: Parameter field estimation for atmospheric dispersion: Application to the Chernobyl accident using 4D-Var, Q. J. R. Meteorol.

Soc., 138, 664–681, https://doi.org/10.1002/qj.961, 2012.

Bocquet, M.: Localization and the iterative ensemble Kalman smoother, Q. J. R. Meteorol. Soc., 142, 1075–1089,

https://doi.org/10.1002/qj.2711, 2016.

Bocquet, M. and Sakov, P.: Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems, Nonlin. Processes855

Geophys., 19, 383–399, https://doi.org/10.5194/npg-19-383-2012, 2012.

Bocquet, M. and Sakov, P.: Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlin. Processes Geophys.,

20, 803–818, https://doi.org/10.5194/npg-20-803-2013, 2013.

Bocquet, M. and Sakov, P.: An iterative ensemble Kalman smoother, Q. J. R. Meteorol. Soc., 140, 1521–1535,

https://doi.org/10.1002/qj.2236, 2014.860

Bocquet, M., Farchi, A., and Malartic, Q.: Online learning of both state and dynamics using ensemble Kalman filters, Foundations of Data

Science, 3, 305–330, https://doi.org/10.3934/fods.2020015, 2021.

Bouillon, S. and Rampal, P.: Presentation of the dynamical core of neXtSIM, a new sea ice model, Ocean Modelling, 91, 23–37,

https://doi.org/https://doi.org/10.1016/j.ocemod.2015.04.005, 2015.

Boutin, G., Ólason, E., Rampal, P., Regan, H., Lique, C., Talandier, C., Brodeau, L., and Ricker, R.: Arctic sea ice mass balance in a new cou-865

pled ice–ocean model

using a brittle rheology framework, The Cryosphere, 17, 617–638, https://doi.org/10.5194/tc-17-617-2023, 2023.

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in the geosciences: An overview of methods, issues, and perspec-

tives, WIREs Climate Change, 9, e535, https://doi.org/https://doi.org/10.1002/wcc.535, 2018.
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