



# Impacts of synoptic forcing and cloud inhibition on aerosol radiative effect and boundary layer structure during winter pollution in Sichuan Basin, China

Hua Lu<sup>1,3</sup>, Min Xie<sup>1,2</sup>, Tijian Wang<sup>1</sup>, Bojun Liu<sup>4</sup>, Yangzhihao Zhan<sup>1</sup>, Bingliang
 Zhuang<sup>1</sup>, Shu Li<sup>1</sup>, Mengmeng Li<sup>1</sup>, Kuanguang Zhu<sup>1,5</sup>

6

23

7 <sup>1</sup>School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China

- 8 <sup>2</sup>School of Environment, Nanjing Normal University, Nanjing 210023, China
- <sup>9</sup> <sup>3</sup> Chongqing Institute of Meteorological Sciences, Chongqing 401147, China
- 10 <sup>4</sup>Chongqing Meteorological Observatory, Chongqing 401147, China
- 11 <sup>5</sup>Hubei Provincial Academy of Eco-environmental Sciences, Wuhan 430079, China
- 12 Correspondence to: Min Xie (minxie@nju.edu.cn)

13 Abstract: Winter persistent aerosol pollution frequently occurs in the Sichuan Basin (SCB) due to its

14 unfavorable weather conditions, such as low wind, wetness, and cloudiness. Based on long-term

15 observational data analyses from 2015-2021, it was found that the four representative stations in the

16 SCB often simultaneously experienced PM2.5 pollution accompanied by variations in meteorological

17 conditions above 850 hPa, which indicates a connection between regional winter air pollution in the

18 SCB and large-scale synoptic patterns. The dominant 850 hPa synoptic patterns of winter SCB were

19 classified into six patterns using T-model principal component analysis. Pattern 2, characterized by

20 an east high west low (EHWL) pressure system, and Pattern 5, featuring a low trough (LT), were

21 identified as key synoptic patterns for the beginning and accumulation of pollution processes. Pattern

22 1, characterized by a strong high pressure in the north, was the cleanest pattern associated with

24 cloud liquid content, which was attributed to upper southerly winds that introduced humid air and

reduced PM<sub>2.5</sub> concentrations. The EHWL and LT patterns were associated with a remarkably high

25 converted aerosols into fog/cloud drops. Clouds reduce solar radiation through reflection and

26 scattering, resulting in more stable stratification and aerosol accumulation. This cloud radiation

27 interaction (CRI) is more pronounced in the LT pattern due to denser isobaric lines and stronger

- 28 southerly winds than in the EHWL pattern. Numerical simulation experiments using WRF-Chem
- 29 showed afternoon upper-level heating and morning surface cooling forced by the aerosol radiation

30 interaction (ARI) and evening strong surface cooling influenced by valley winds in the SCB. With

31 wet and cloudy synoptic forcing, CRI directly affects the stability of the boundary layer and is





- 32 modulated through ARI inhibition. For example, Chongqing showed lower PM2.5 concentrations and 33 stronger ARI than the western and southern SCB due to thinner cloud liquid content and weaker CRI 34 inhibition on ARI. The CRI inhibition caused a 50 % reduction in solar radiation and boundary layer 35 height during the daytime under the LT pattern, which was larger than that under the EHWL pattern. 36 This study comprehensively analyzed the cloud inhibition on ARIs and their impacts on the boundary 37 layer structure under typical synoptic forcing during pollution processes, emphasizing the significant 38 role of CRI inhibition in wet and cloudy regions. 39 Key words: Synoptic patterns, cloud radiation interaction inhibition, aerosol radiation interaction, 40 boundary layer structure, Sichuan Basin.

# 41 1 Introduction

42 Particulate matter (PM) pollution has become a significant environmental concern in China 43 (Xie et al., 2016a; 2016b; Che et al., 2019). High concentrations of aerosols worsen air quality 44 and seriously harm resident health, and affect weather and climate through their effects on radiation and clouds (Li et al., 2019; Zhao et al., 2020; Alexeeff et al., 2021; Yang et al., 2021). 45 46 The interactions between aerosols and clouds present the largest uncertainty in anthropogenic 47 radiative forcing of the Earth's climate (Liao et al., 2017; Haywood et al., 2021). Understanding 48 cloud aerosol radiation interactions (ARI) from an air quality perspective is crucial for a scientific 49 understanding of the relationship between weather and pollution.

50 Although excessive emissions are the primary cause of air pollution, local emissions do not 51 commonly change significantly in a short time. However, pollutant concentrations often vary 52 considerably, indicating that meteorological conditions largely govern the pollutant distribution 53 (Zhu et al., 2018; Luo et al., 2018; Nichol et al., 2020; Zhang et al., 2020; Jiang et al., 2021). PM 54 and gaseous pollutants, carried mainly by the planetary boundary layer (PBL), are directly or 55 indirectly influenced by meteorological factors such as wind, relative humidity, PBL height, and solar radiation. These factors contribute to the multi-temporal and spatial distribution 56 57 characteristics through vertical and horizontal diffusion, physicochemical reactions, and dry and wet deposition (Park et al., 2017; Shu et al., 2017; Zhan et al., 2019; Huang et al., 2019). 58 59 Large-scale synoptic forcing is considered the primary driving condition for meteorological





60 factors, PBL structure, and the resulting distribution of atmospheric pollutants (Miao et al., 2019; 61 Ning et al., 2019; Jiang et al., 2020; Li et al., 2021). Specific synoptic patterns can induce advection, which largely determines the local PBL structure and development. PBL, located at 62 63 the bottom of the atmosphere, is responsible for the main exchange of heat, moisture, and matter 64 between the surface and the free troposphere (Stull, 1988). The fate of pollutants emitted near the surface, a significant source of aerosols in the air, is largely controlled by the PBL (Garratt, 1994). 65 The PBL height is often used to characterize the capacity and dilution of pollutants (Seidel et al., 66 67 2010). Synoptic patterns can directly determine the meteorological conditions of emitted pollutants and influence their transport by regulating PBL thermal stratification and mechanical 68 69 turbulence (Stull, 1988; Ning et al., 2018; Zhan et al., 2019; Jiang et al., 2021; Zhang et al., 70 2022).

71 Unfavorable meteorological conditions contribute to aerosol pollution. When pollutants 72 accumulate to a certain degree, aerosols reduce surface solar radiation by backscattering or 73 absorbing solar radiation, leading to surface cooling. This decrease in solar radiation and 74 temperature near the ground weakens turbulent diffusion, suppresses the convective development of the PBL, and lowers PBL height, which in turn exacerbates aerosol pollution (Ding et al., 2016; 75 76 Wang et al., 2018). Moreover, the increase in humidity caused by the decreased surface saturation 77 vapor pressure and inhibited water vapor diffusion enhances aerosol hygroscopic growth 78 accelerates liquid-phase and heterogeneous reactions, and contributes to aerosol pollution 79 (Pilinis et al., 1989; Zhong et al., 2018; Zhong et al., 2019). This positive feedback between 80 unfavorable PBL meteorology and increasing aerosols explained the majority of the increase in 81 PM<sub>2.5</sub> during cumulative stages (Zhong et al., 2018). As for the aerosol-cloud interactions, arise 82 from increasing aerosols acting as cloud condensation nuclei in cloud and translating into larger 83 concentrations of smaller cloud droplets, leading to an increased cloud albedo reflecting more radiation back to space(Twomey, 1977; Lohmann and Feichter, 2005). Even a marginal increase 84 in cloud droplets above pristine conditions in deep convective clouds causes more droplets to 85 86 reach supercooled levels, which enhances latent heat release and invigorates convection (Rosenfeld et al., 2009; Possner et al., 2015). Further increases in cloud droplets result in direct 87 88 radiative effects, reducing downward solar radiation, cooling the surface, and inhibiting convection (Scott et al., 2016). 89





| 90  | The Sichuan Basin (SCB) is surrounded by high mountains with cloudy and wet weather                            |
|-----|----------------------------------------------------------------------------------------------------------------|
| 91  | conditions. The mean annual relative humidity, cloud cover, and sunshine hours for the SCB are                 |
| 92  | 75 %, 8 h, and 1200 h, respectively. The Chengdu-Chongqing city cluster in the SCB serves as                   |
| 93  | the economic center of the upper reaches of the Yangtze River in China, accounting for                         |
| 94  | approximately 10 % of the population of the country. Rapid industrialization and urbanization in               |
| 95  | this region have resulted in severe air pollution, making it one of the most polluted regions in               |
| 96  | China with high black carbon concentrations (Li et al., 2016; Cao et al., 2021). The                           |
| 97  | Qinghai-Tibet Plateau on the western edge of the SCB significantly influences the transport and                |
| 98  | accumulation of pollutants through thermal and dynamic effects (Ning et al., 2017; Shu et al.,                 |
| 99  | 2021). In addition, the Qinghai-Tibet topography leads to higher cloud water content over the                  |
| 100 | SCB than the other regions (Yu et al., 2004; Yang et al., 2012). Complex terrain and higher cloud              |
| 101 | water content may modify aerosol-PBL interactions, alter cloud chemistry, and affect the                       |
| 102 | distributions of pollutants and PM <sub>2.5</sub> chemical components, thus impacting ARIs (Zhao et al., 2017; |
| 103 | Wang et al., 2018). The positive effects of aerosols and PBL meteorology can be influenced by                  |
| 104 | synoptic patterns (Miao et al., 2020) and inhibited by cloud direct radiative effects in the SCB               |
| 105 | (Zhong et al., 2019).                                                                                          |

106 Therefore, with high aerosol loadings and semi-permanent cloudy weather, the SCB provides 107 an optimal region for studying the influence of synoptic forcing on the interactions between 108 clouds, aerosols, and the PBL. This study objectively classifies the synoptic patterns influencing 109 the SCB based on long-term data. An integrated analysis of pollutants and meteorological 110 factors reveals the primary pollution sources and clean synoptic patterns. Using WRF-CHEM 111 simulation experiments, the impacts of synoptic forcing and inhibition of cloud radiation interaction (CRI) on ARI with the PBL in the SCB are discussed. These results will deepen our 112 113 understanding of CRI, ARI, and the PBL interactions in regions influenced by plateau-basin 114 topography with wet and cloudy weather. The data and methods are presented in Section 2, 115 whereas Section 3 describes the synoptic patterns and their corresponding impacts on clouds, aerosols, radiation, and PBL. Finally, the conclusions are presented in Section 5. 116





### 117 2 Data and method

# 118 2.1 Observation data

Dazhou, and Bazhong, respectively.

- 119 Air quality monitoring data were obtained from air quality monitoring sites established by the
- 120 Ministry of Ecology and Environment of China across the SCB. Hourly PM<sub>2.5</sub> observations from
- 121 18 stations in the SCB were collected during the winter period from 2015–2021 for data analysis
- 122 and model verification (Fig. 1b). CQ, CD, MY, DY, LS, MS, YA, ZY, ZG, YB, LZ, NJ, GA, NC,
- 123 SN, GY, DZ, and BZ represent Chongqing, Chengdu, Mianyang, Deyang, Leshan, Meishan,
- 124 Yaan, Ziyang, Zigong, Yibin, Luzhou, Neijiang, Guangan, Nanchong, Suining, Guangyuan,



**Figure 1.** (a) Three layers of simulation domains in WRF-Chem with topography map as shading; (b) the locations of 18 air quality monitoring stations(red dots) and 4 sounding stations(black dots) in the Domain 3.

126

125

The SCB has four sounding stations: Wenjiang (Chengdu), Yibin, Dazhou, and Shapingba (Chongqing), situated in the western, southern, northwestern, and eastern regions of the basin, respectively (Fig. 1b), representing different pollution and meteorological conditions within the SCB. The vertical distribution of the meteorological factors used in the study was obtained from an L-band sounding radar, collecting temperature, pressure, humidity, and wind data at 0800 and 1200 local time on vertical levels every second from the surface up to 30 km. Ground observation data from the four cities, including temperature and dew point temperature, were used for





134 meteorological factor simulation verification. All meteorological data were obtained from the 135 China Weather Website Platform maintained by the China Meteorological Bureau. ERA5 reanalysis data from the ECMWF, which assimilates comprehensive observation data, 136 137 including ground observation, sounding data, aircraft observation data, and satellite observation 138 data, were obtained for synoptic pattern classification and their impact on meteorological factors in four representative cities. The EAR5 data at the 850 hPa pressure level were collected for the 139 140 synoptic pattern study. Additionally, cloud liquid water content, downward solar radiation, and 141 boundary layer height derived from the EAR5 single-level datasets were obtained to assess the influences of synoptic forcing on CRI studies, while PBL height were adopted to conduct the 142 143 simulation verification.

### 144 2.2 Synoptic pattern classification

145 The objective classification was conducted on the synoptic patterns of the SCB using ERA5 146 data, including geopotential height, u, and v components of winds at the 850 hPa pressure level. 147 The analysis covered an area of 97–117° E and 24–37° N with a horizontal resolution of 0.25°  $\times$ 148 0.25°. Since PM pollution in the SCB primarily occurs in winter (Zhao et al., 2018; Lu et al., 149 2022b), the synoptic pattern classification was performed for winter 2015–2021 (December, 150 January, and February) using the principal component analysis in the T-model (T-PCA) 151 objective method. Compared with the subjective classification method, the objective method can 152 process large amounts of data without relying on subjective experience (Huth et al., 2008; Miao 153 et al., 2017). Among various classification methods, the T-PCA method accurately reflects the 154 characteristics of the original synoptic circulations and exhibits spatial and temporal stability 155 (Huth et al., 1996; Huth et al., 2008). Consequently, the T-PCA has been widely used in synoptic pattern classification research (Ning et al., 2019; Miao et al., 2020; Li et al., 2021). 156

# 157 2.3 Model configuration and simulation experiments

To understand the combined effects of synoptic patterns and CRI inhibition on ARI and PBL, a series of parallel experiments were conducted on the simulation of a typical pollution episode using the Weather Research and Forecasting model with Chemistry (WRF–Chem v3.9.1) (Grell et al., 2005). The model domain (Fig. 1a) was centered over the SCB and utilized three layers of





| 162 | nested grids with cell points of 155×110 (D01), 184×160 (D02), and 320×250 (D03). The                                  |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 163 | horizontal resolutions of the model were 27, 9, and 3 km for the three layers, while 32 vertical                       |
| 164 | layers spanning from the surface to 100 hPa were defined. Initial meteorological fields were                           |
| 165 | obtained from the National Centers for Environmental Prediction Final reanalysis data with a                           |
| 166 | horizontal resolution of $1^\circ$ $\times$ $1^\circ$ and 6 h time interval. For chemical process simulations,         |
| 167 | anthropogenic emissions were sourced from the Multiresolution Emission Inventory for China                             |
| 168 | (MEIC) in 2016, featuring a grid resolution of $0.25^{\circ} \times 0.25^{\circ}$ . Biogenic emissions were calculated |
| 169 | online using the Guenther scheme (Guenther et al., 2006). Table 1 provides a summary of the                            |
| 170 | chosen physical and chemical parameterization schemes.                                                                 |

## 171 Table 1 The main options of WRF-Chem

| Items                    | Contents                                             |
|--------------------------|------------------------------------------------------|
| Microphysics             | WRF Single-Moment 5 class (WSM5) scheme              |
| Longwave radiation       | RRTMG scheme (Iacono et al., 2008)                   |
| Shortwave radiation      | RRTMG scheme (Iacono et al., 2008)                   |
| Planetary boundary layer | Younsei University scheme (Hong et al., 2006)        |
| Land surface             | United Noah land surface model (Tewari et al., 2004) |
| Cumulus parameterization | Grell-Freitas ensemble scheme                        |
|                          | (Grell et al., 2013)                                 |
| Gas-phase chemistry      | RADM2 (Stockwell et al., 1990)                       |
| Aerosol module           | MADE/SORGAM (Schell et al., 2001)                    |

### 172

173 To assess the impact of CRI inhibition on ARI and ARI under typical synoptic pollution patterns, 174 four parallel experiments were conducted to simulate the pollution process. The selected 175 simulation period is January 1-7, 2017, as the period is close to the time of MEIC emission 176 inventory used. Besides, the Chinese government announced clean air action in 2013 with the goal of reducing PM2.5 pollution in key areas by controlling anthropogenic emission sources 177 within a five-year period, with the year of 2017 as the key year about current PM2.5 pollution 178 (Wang et al., 2020). Finally, the period of January 1-7, 2017 encompasses both typical 179 180 pollution and clean weather patterns. Considering these three factors, this study focuses on





simulation and analysis during this period. The baseline experiment (BASE) considered both CRI and ARI, while the three sensitivity experiments excluded ARI or CRI. Experiment 1 (EXP1) did not include ARI, Experiment 2 (EXP2) did not consider CRI, and Experiment 3 (EXP3) did not consider ARI when CRI was not excluded. The differences between BASE and EXP1 represented the disturbances caused by ARI, while EXP2 and EXP3 represented the influences of ARI without CRI inhibition. The numerical experiments ran from 00:00 UTC on December 30, 2016, to 00:00 UTC on January 8, 2017, with the initial 48 h used for a model spin–up.

### 188 3 Results and discussions

## 189 3.1 Relationships between synoptic patterns and PM<sub>2.5</sub> pollution in the SCB

190 Figure 2 illustrates the daily mean variations in PM2.5 concentration and vertical distributions of 191 potential temperature (PT) during winter from 2015 to 2021, highlighting the pollution episodes. 192 The four sounding stations in the SCB (CD, YB, CQ, and DZ) are located in separate areas of the 193 basin; however, they consistently experienced pollution processes with simultaneous changes in 194 vertical thermal structures. For example, during the pollution events in January 2017 and 195 December 2020,  $PM_{2.5}$  concentrations in all four cities reached their highest levels at the same time before declining rapidly (Fig. 2). Notably, the warming of the upper air coincided with 196 197 pollution episodes, while a decrease in  $PM_{2.5}$  concentration correlated with cooling in the upper 198 layer. Despite the significant distances between these cities (approximately 200-400 km), the 199 synchronized changes in pollutants and vertical thermal structures can be attributed to large-scale 200 synoptic patterns (Miao et al., 2020; Li et al., 2021). While the four cities with sounding stations were selected as representatives for vertical thermal structure analysis, other cities in the SCB 201 202 also experienced pollution episodes and relevant physical processes.







Figure 2. Time series of  $PM_{2.5}$  and potential temperature derived from the sounding data during 2015-2021 winter months. The  $PM_{2.5}$  pollution episodes are marked with black dotted boxes.

203

204 The time series of PM2.5 from air quality monitoring sites and the accompanying vertical 205 distributions of temperature, relative humidity, and wind in CD, CQ, YB, and DZ derived from the sounding stations are shown in Fig. 3, using January 2017 as an example for analysis. During this 206 207 month, two severe PM<sub>2.5</sub> pollution episodes occurred: January 1-7 and January 24-31 in 2017. The 208 highest daily PM2.5 concentrations recorded were 291.17 µg/m3 (CD) and 276.21 µg/m3 (YB), 209 influencing all four cities. Pollution in early January exhibited a gradual increase in PM2.5 levels from 210 January 1-3, with upper air warming and the emergence of an inversion above the PBL. Additionally, 211 lower humidity and higher wind speeds above 1500 m were observed during the pollution 212 accumulation period. Similarly, the late January pollution episode showed a rapid increase in PM2.5, 213 from January 24-27, together with warming, dryness, and high wind speed above 1500 m in all four 214 cities. These consistent meteorological conditions during the pollution periods indicate significant 215 synoptic forcing. Notably, the key layer for studying the connection between synoptic patterns and 216 PM<sub>2.5</sub> pollution is approximately 850 hPa, corresponding to a height of approximately 1500 m within 217 the PBL, where changes in specific meteorological conditions primarily affect surface-emitted 218 pollutants.

219







**Figure 3.** Time series of (a)PM<sub>2.5</sub> concentrations, and corresponding vertical meteorological data from the sounding data, including (b)vertical temperature, (c)vertical humidity and (d)vertical wind speed, taking January 2017 as an example to illustration.

220 Using ERA5 reanalysis data for winter (December, January, and February) from 2015 to 2021, 221 the 850 hPa synoptic patterns over the SCB were objectively classified into six types (Fig. 4). 222 According to the relative positions of the high-pressure and low-pressure systems in the basin, 223 these synoptic patterns can be described as follows: (1) strong high pressure in the north, (2) east 224 high west low (EHWL) pressure, (3) weak high pressure in the north, (4) weak ridge of high 225 pressure after the trough, (5) low trough (LT), and (6) strong high pressure. Patterns 1 and 3 226 exhibit high pressure in the northern SCB, which differs from the high-pressure intensity. With 227 strong high pressure, the basin is primarily controlled by northerly airflow. Under weak 228 high-pressure conditions, the basin is dominated by an easterly backflow. Patterns 2 and 5 had 229 high and low pressures near the basin, forming a relatively dense isopotential altitude gradient 230 and resulting in strong southerly winds over 850 hPa. Pattern 4 was a weak high-pressure ridge 231 after a trough controlled the SCB with sparse isobaric lines and weak winds leading to static and stable weather conditions. During Pattern 6, the SCB was controlled by the cold high-pressure 232 233 system, accompanying weak northerly airflow on the basin. Pattern 6 usually evolved from either 234 Pattern 1 or Pattern 3.







**Figure 4.** The 850hPa geopotential height field(shading) with wind vector fields(blue vectors), and frequency of occurrence for 6 synoptic patterns during 2015-2021 winter months.

235

236 Patterns 2, 4, and 5 exhibited higher frequencies of pollution occurrence (PM<sub>2.5</sub> daily 237 concentration  $\ge 75 \ \mu g/m^3$ ) according to statistical results from 18 cities in the SCB during the 238 2015–2021 winters (Fig. 5a). These patterns were associated with high PM<sub>2.5</sub> concentrations in 239 50-70 % days, including CD, DY, and MY in the northern SCB, 40-60 % for cities in the 240 southern SCB, such as ZG and YB, and also 40-60 % of days for cities in the northern SCB, such 241 as CQ, DZ, NC, and GA. Furthermore, the average PM2.5 concentrations in the respective cities 242 for the six synaptic patterns were calculated (Fig. 5b), aligning with the frequency of pollution 243 occurrence. The days under Patterns 2, 4, and 5 exhibited higher average daily PM2.5 concentrations. 244 The average concentrations of CD, YB, CQ, and DZ under these three synoptic patterns were 245 99.19, 103.43, and 111.97 µg/m<sup>3</sup>, 95.44, 87.98, and 94.26 µg/m<sup>3</sup>, 79.14, 83.96, and 74.771 246  $\mu g/m^3$ , and 91.02, 104.64, and 91.51  $\mu g/m^3$ , respectively. Regarding the impact of synoptic 247 patterns on the accumulation or dispersion of PM2.5, Fig. 5c illustrates the average daily changes in PM<sub>2.5</sub> concentration compared with the previous day for CD, CQ, YB, and DZ under the six 248 249 synoptic patterns. Patterns 2 and 5 exhibited the most significant PM2.5 accumulation under the influence of southerly airflow. 250







Figure 5. (a)The pollution occurrence frequency at 18 air pollution stations in SCB, (b)(c)average  $PM_{2.5}$  concentrations and  $PM_{2.5}$  day to day variations at 4 representative SCB cities, under 6 synoptic patterns.

251

252 The time series of  $PM_{2.5}$  and the day-to-day classification of 850 hPa synoptic patterns are shown in Fig. 6, from December 2016 to January 2017. Six pollution episodes occurred during 253 254 this period (December 03-12 and 16-26, 2016; January 1-7, 16-19, and 20-28, 2017; and February 255 14-23). It is evident that pollution episodes consistently began with Pattern 2 and ended with 256 Pattern 1, accompanied by a rapid decline in PM<sub>2.5</sub>, suggesting that Pattern 2 is the key synoptic 257 forcing for pollution initiation. Statistical results revealed that Pattern 2 accounted for a high 258 proportion of PM<sub>2.5</sub> increase in the six pollution episodes, reaching 48.48 %, while Pattern 5 had 259 the second highest proportion of 21.88 %, with Patterns 2 and 5 combined accounting for more 260 than 70 %. For example, during the two heavy pollution events that occurred in early and late 261 January 2017, PM<sub>2.5</sub> rapidly accumulated with the interplay of Patterns 2 and 5. In addition, 262 Patterns 2 and 5 represented a significant proportion of 31.96 % and 12.97 %, respectively (Fig. 4), 263 during winters from 2015 to 2020 over 850 hPa in the SCB. Based on this analysis, Patterns 2, 4, 264 and 5 were identified as synoptic pollution patterns, whereas Patterns 1, 3, and 6 were clean. 265 Patterns 2 and 5 played crucial roles in the initiation and accumulation of PM<sub>2.5</sub> during pollution 266 episodes.

The disscusion above showed that pollution in the SCB usually occurred when airflow controlled the upper-layer of the basin (Pattern 2 and 5), while the dispersion of pollutants was





- 269 accompanied by northerly winds, which is consistent with Lu et al. (2022a). Southerly airflow in the upper-layer could bring warm air, leading to warming above the basin and forming a warm 270 271 lid. Combined with the surrounding mountains and plateau, a relative enclosed space could be 272 formed in the SCB, resulting in local circulations and allowing for the thorough mixing and 273 secondary reactions of local emission and pollutants transported from outside. As a result, 274 persistent and severe pollution often occurred under the influence of southerly airflow. When the 275 northerly airflow begin to dominate the SCB, the warm lid and local circulation were disrupted, leading to dispersion of pollutants through advection and vertical transport. Additionally, 276 northerly winds are often associated with cold air and sometimes accompanied by weak 277 278 precipitation, resulting to wet deposition. Therefore, the arrival of northerly airflow often signifies the ending of the pollution episode. 279
- 280



**Figure 6.** Time series of  $PM_{2.5}$  concentrations and the day to day 850hPa synoptic patterns at 4 representative SCB cities, taking December 2016 to February 2017 as an example for illustration.

281

| 282 | Because of the convergence of air moving eastward across the Tibetan Plateau, the SCB             |
|-----|---------------------------------------------------------------------------------------------------|
| 283 | experiences a high frequency of wet and cloudy weather, with cloud cover fraction exceeding       |
| 284 | 80 % (Yu et al., 2004; Zhang and Lin, 1985). The roles of clouds in the interactions of aerosols, |
| 285 | radiation, and the PBL under typical synoptic forcing must be non-negligible in this region. This |
| 286 | study evaluated the average cloud liquid water content, downward solar radiation, and PBL under   |
| 287 | the influence of the six classified synoptic patterns in CD, CO, DZ, and YB, using data from      |





288 ERA5 (Fig. 7). Reanalysis data revealed significantly higher cloud liquid water contents with Patterns 2 and 5, likely triggered by robust southerly air prevailing at 850 hPa over the SCB (Fig. 289 290 4). This southerly air brings warm and moist air, contributing to cloud formation. Dense clouds reduce solar radiation through reflection and scattering, resulting in surface cooling and 291 292 inhibiting PBL development. The PBL height under Patterns 2 and 5 was approximately 293 900-1000 m, lower than that under the influence of clean synoptic Pattern 1 at 1500 m (Fig. 7). In 294 contrast, the clean synoptic Pattern 1 is characterized by a strong northerly flow at 850 hPa, 295 resulting in lower cloud liquid water content over the basin and increased solar radiation, promoting PBL development. The lower PBL height with more stable stratification caused by the 296 297 CRI in Patterns 2 and 5 can partially explain the rapid accumulation of PM2.5 during these two 298 pollution patterns.

299



Figure 7. The averaged (a)PM<sub>2.5</sub> concentrations, (b)cloud liquid water contents, (c)downwards solar radiation and (d)boundary layer height derived from 2015-2021 winter months ERA5 reanalysis data, at 4 representative SCB cities under 6 synoptic patterns, the dot sizes represent PM<sub>2.5</sub> concentrations.





# 301 3.2 Integrate impacts of synoptic patterns and the CRI inhibition on ARI

302 Based on the above analysis, Patterns 2 and 5 were identified as the key pollution synoptic 303 patterns accompanying dense clouds and, thus, CRI. However, the effects of pollution patterns on 304 ARI and their interaction with CRI in the SCB remain unclear and warrant further investigation. 305 A typical pollution episode from January 1-7, 2017, was selected to understand these complex 306 processes and simulated using WRF-Chem. The BASE simulations were verified with 307 observations to determine the accuracy and reliability of the simulation results. The simulated PM<sub>2.5</sub>, 308 T2, and TD2 values at the four representative stations from January 1-7 are shown in Fig. 8. The 309 evaluation demonstrated that the simulation captured changes in relevant elements in the SCB, 310 representing variations in PM2.5 and meteorological conditions. In addition, the vertical profiles of potential temperature and relative humidity in the model were compared with the sounding data 311 312 from the SCB (Fig. 9). The simulation aligned well with the sounding observations, reflecting upper air warming and PBL humidification during the accumulation process of PM<sub>2.5</sub>, as well as upper 313 314 air cooling with PBL drying during the dissipation process of PM2.5. Differences between 315 simulation and observation in surface wind could be predictable in case of low wind and complex 316 terrain. In addition, this could also be attributed to the negligence of WRF model in considering the 317 atmospheric drag to that generated by vegetation produced by the unresolved topographic features 318 (Zhan et al., 2023). As for the vertical wind profile, simulation results could capture the shift in winds 319 and reproduce the height-time patterns in whole despite some differences. For the verification of PBL 320 height, sounding data are commonly regarded as reliable vertical observation and PBL height can be 321 calculated based on sounding data, however the low temporal resolution of sounding data made it not 322 suitable to be adopted to compared with refined variations of PBL height in this study. Besides, PBL 323 height derived from ERA5 shows good consistency with sounding data in the SCB based on 324 long-term validation(Guo et al., 2016). As a result, PBL height derived from the ERA5 has been 325 added in Figure 9(a)-(d) to verify the simulations in Figure 9(e)-(h). The certain values of PBL height 326 simulations differed from ERA5 data, but the magnitudes and change trends aligned well. Overally, 327 although discrepancies existed, the simulation generally reproduced the observations of both 328 pollutants and meteorological factors during this pollution episode, providing a reliable basis for 329 subsequent analysis.







**Figure 8.** Time series of simulated and observed (a)-(d)PM<sub>2.5</sub> concentration, (e)-(h)temperature at 2m, (i)-(l) dew temperature at 2m and (m)-(p)wind speed at 4 representative SCB cities during 1-7 January 2017.



**Figure 9.** Simulated and observed time-height sections of (a)-(h) potential temperature, (i)-(p)relative humidity and (q)-(x)wind speed at 4 representative SCB cities during 1-7 January 2017. The red lines in (e)-(h) are time series the boundary layer heights derived from simulation.

330





| 332 | During the pollution episode from January 1-7, 2017, the pollution synoptic pattern controlled          |
|-----|---------------------------------------------------------------------------------------------------------|
| 333 | the SCB on January 1-6, with Pattern 2 on January 1-3, Pattern 5 on January 4-6, and Pattern 1          |
| 334 | on January 7 (Fig. 6). Consequently, PM <sub>2.5</sub> pollution in the SCB occurred on January 1–6 and |
| 335 | rapidly dissipated on January 7 (Fig. 8). The mean geopotential height at 850 hPa derived from          |
| 336 | the simulation of January 1-3 under Pattern 2 showed EHWL, with southerly flow prevailing               |
| 337 | over the SCB (Fig. 10a). The resulting upper air warming suppressed PBL development (Fig. 9).           |
| 338 | During January 1-3 under Pattern 2, the average PBL heights were lower (Fig. 11a), acting as a lid      |
| 339 | above the SCB and hindering the airflow within the basin due to the surrounding mountains. Low          |
| 340 | wind speeds provided adverse diffusion conditions for pollutants emitted into the basin, resulting      |
| 341 | in severe pollution in the western and southern SCB (Fig. 11d). As for January 4-6, the low             |
| 342 | pressure over the SCB evolved into an LT pattern, termed Pattern 5 in the previous analysis.            |
| 343 | Compared with Pattern 2, the isobaric lines were denser under the influence of the LT, leading to       |
| 344 | stronger southerly winds above the SCB (Fig. 10a-b). Lower average PBL heights appeared                 |
| 345 | during January 4-6 under Pattern 5 compared with those of January 1-3 under Pattern 2 (Fig              |
| 346 | 11a-b), which is attributed to stronger upper air warming and more stable stratification (Fig.          |
| 347 | 9a-h). The pollutants accumulated during January 4-6 from the pollution episode that began on           |
| 348 | January 1-3 (Fig. 11d-e). On January 7, high pressure in the north dominated the SCB with a             |
| 349 | prevailing northerly flow over the basin (Fig. 10c). The PBL height quickly increased due to            |
| 350 | upper layer cold advection (Fig. 11c), resulting in a rapid decrease in $PM_{2.5}$ (Fig. 11f). Overall, |
| 351 | synoptic patterns played a key role in the accumulation and diffusion of $PM_{2.5}$ during pollution    |
| 352 | episodes by modulating PBL development and stratification stability.                                    |







**Figure 10.** The 850hPa geopotential height field(shading) with wind vector fields(blue vectors) on (a)1-3 , (b)4-6 and (c)7 January, representing 3 typical synoptic patterns in the SCB respectively.

353



**Figure 11.** The simulated (a)-(c)boundary layer height and (d)-(f)PM<sub>2.5</sub> concentrations(shading) and wind vector fields at 900hPa(blue vectors) for 1-3, 4-6 and 7January. The size and color of scatters in (d)-(f) show corresponding observed PM<sub>2.5</sub> concentrations at 18 air quality monitoring stations.

354

Pollutant accumulation can regulate the PBL structure through the ARI, further exacerbating
pollution (Wang et al., 2018; Miao et al., 2020). In the SCB, this positive feedback is weaker
than in the other regions and may be inhibited by cloud radiation (Zhong et al., 2018). A series of





358 simulation experiments were conducted to examine the aerosol radiation feedback in the SCB 359 under the influence of two typical synoptic pollution patterns, as described in Section 2.4. 360 BASE-EXP1 represents the perturbations caused by ARI, whereas EXP2-EXP3 demonstrates 361 changes through ARI without CRI inhibition. Aerosols lead to surface cooling through absorbing 362 and scattering solar radiation, thereby inhibiting the development of the PBL, which in turn 363 facilitates pollutant accumulation (Fig. 12). Compared with Pattern 2, the aerosol concentrations 364 in Pattern 5 were higher, resulting in greater reduction of downward solar radiation reduction due 365 to ARI, leading to more pronounced cooling near the ground and a lower boundary layer height. Overall, the ARI in Pattern 5 was more significant than that in Pattern 2, regardless of CRI 366 367 inhibition (Fig. 12).



Figure 12. Spatial distribution of perturbations induced by (a)-(h) aerosol radiation interactions(ARI), and (i)-(p) ARI without the cloud radiation interaction(CRI) inhibition during 1-3 and 4-6 January representing Pattern 2 and Pattern 5 synoptic forcing, respectively.





| 369 | Furthermore, results from parallel simulation experiments showed that the CRI significantly       |
|-----|---------------------------------------------------------------------------------------------------|
| 370 | attenuated the ARI in the SCB under both pollution synoptic patterns. When the CRI is not         |
| 371 | considered, more solar radiation entered the PBL. Dense aerosols accumulating near the surface    |
| 372 | intercepted more downward shortwave radiation, resulting in stronger cooling near the ground      |
| 373 | and suppressing PBL development, contributing to a more remarkable ARI (Fig. 12). For the         |
| 374 | horizontal spatial distribution, a strong ARI was primarily observed in Chongqing, as well as the |
| 375 | western and southern SCB, despite Chongqing experiencing lower pollutant concentrations than      |
| 376 | the other two regions (Figs. 8 and 11). This weaker ARI phenomenon in the western SCB was         |
| 377 | also reported by Zhong et al. (2019) and attributed to CRI inhibition of ARI. Considering the     |
| 378 | statistical results in Fig. 7, the average cloud liquid water contents in CD and YB were          |
| 379 | significantly higher than that in CQ under the influence of Patterns 2 and 5. Therefore, a more   |
| 380 | remarkable CRI inhibition would occur on the ARI in the western and southern SCB compared         |
| 381 | with CQ, leading to a relatively weaker ARI distribution in the region. Without considering the   |
| 382 | CRI, the ARI in the western and southern SCB would be much more pronounced than that in the       |
| 383 | CQ.                                                                                               |

384 Using the western SCB, which exhibited the highest pollution concentration, as an example, Fig. 385 13 illustrates the vertical diurnal variations in temperature and solar radiation caused by the ARI. 386 The results in Fig. 13 and 14 were derived from the simulation experiments in CD, as CD is one 387 of the most polluted cities with typical meteorological and geographical characteristics of the western 388 SCB. The ARI caused morning surface cooling and afternoon upper-air warming. As the local 389 solar radiation increased from 8 am to 12 pm, the decrease in solar radiation caused by the ARI 390 also increased, with surface cooling reaching its peak at approximately 10 am to 12 pm, 391 gradually weakening in the afternoon. Wang et al. (2018) suggested that this was due to enhanced turbulence during morning PBL evolution. Afternoon surface cooling was partly 392 393 compensated by the turbulent transport of warm air above the PBL. In addition, strong surface 394 cooling between 5 pm and 8 pm in the SCB, is possibly influenced by remarkable valley wind 395 circulations forced by the Qinghai-Tibet Plateau adjacent to the western SCB (Lu et al., 2022b). 396 The evening cooling of the plateau induces strong mountain winds, promoting surface cooling, 397 while the upper-layer warming mainly occurs around 1-1.5 km in the afternoon. In general, the 398 ARI reduces solar radiation, causing surface cooling and upper air warming, thereby regulating





399 the vertical atmospheric thermal structure, suppressing convection, and consequently decreasing



400 PBL heights (Fig. 14).





**Figure 14.** Diurnal variations of (a)(c)boundary layer height(lines) and downward solar radiation(shading), and (b)(d)the perturbations of boundary layer height induced by ARI and ARI without CRI inhibition, under Pattern 2 and Pattern 5 synoptic forcing respectively.

401





| 403 | Synoptic patterns play a role in the interaction between the ARI and PBL (Wang et al., 2018;       |
|-----|----------------------------------------------------------------------------------------------------|
| 404 | Miao et al., 2020). In the SCB, Pattern 5 suffered from denser aerosols due to the LT of Pattern 5 |
| 405 | evolving from the low-pressure system in Pattern 2, and the accumulation of pollutants in Pattern  |
| 406 | 5 was based on Pattern 2 (Figs. 8 and 11). Denser aerosols under Pattern 5 caused a greater        |
| 407 | reduction in solar radiation, resulting in stronger surface cooling. During January 4-6, surface   |
| 408 | cooling reached 1 K, with cooling layers higher than those observed on January 1-3. The            |
| 409 | differences in thermal structure modulations contributed to a lower diurnal PBL height in Pattern  |
| 410 | 5 than in Pattern 2 (Figs. 14a and c), indicating that Pattern 5 was more favorable for ARI. Based |
| 411 | on the simulation experiments, this study further discusses the impact of synoptic forcing on the  |
| 412 | CRI inhibition of ARI. When the CRI was not considered, the solar radiation reduction at noon      |
| 413 | on January 4-6 by the ARI was nearly twice as high as when the CRI was considered.                 |
| 414 | Correspondingly, surface cooling at noon was remarkably enhanced. In the evening, surface          |
| 415 | cooling occurred earlier and was stronger without the CRI (Fig. 13). The regulation of CRI on      |
| 416 | ARI was further reflected in changes in PBL height. Without the CRI, the diurnal PBL height        |
| 417 | increased significantly, with the PBL height decreased more with ARI without CRI inhibition.       |
| 418 | The PBL heights were decreased by the ARI during January 13-17 afternoon, reaching 2-3 times       |
| 419 | the decrease observed with CRI inhibition (Fig. 14). More significant CRI inhibition of ARI was    |
| 420 | revealed under Pattern 5 compared with that under Pattern 2, owing to the stronger ARI itself with |
| 421 | higher aerosol concentrations in Pattern 5 and the more apparent CRI inhibition with denser cloud  |
| 422 | liquid water contents under the LT pattern (Fig. 7). Therefore, the intensity of CRI inhibition of |
| 423 | ARI in the SCB was altered by synoptic forcing, with stronger effects under the influence of LT.   |





4



Figure 15. The Synergetic interactions of cloud, aerosol and radiation under the influence of cloudy pollution synoptic forcing.

424

# 425 4 Conclusion

| 426 | This study conducted synoptic classification and numerical simulation to understand the                               |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| 427 | combined effects of synoptic patterns and CRI inhibition on ARI and PBL structures in the wet                         |
| 428 | and cloudy SCB. On the basis of long–term $\text{PM}_{2.5}$ observations and sounding data in the SCB,                |
| 429 | large-scale synoptic circulations on 850 hPa were indicated to play key roles in variations of                        |
| 430 | $\ensuremath{\text{PM}_{2.5}}$ pollution. Synoptic classification was conducted with the T-PCA method, revealing that |
| 431 | Pattern 2 and 5 characterized with low pressure system and southerly airflow on 850 hPa were                          |
| 432 | key synoptic patterns for onset and accumulation of $PM_{2.5}$ , while Pattern 1 controlled by the                    |
| 433 | northerly airflow represented a clean pattern associated with significant decrease in $PM_{2.5}$ .                    |
| 434 | Moreover, denser cloud liquid water content and resulting stronger CRI could be found under                           |
| 435 | Pattern 2 and 5. The highest cloud liquid water content and CRI appeared in Pattern 5, due to the                     |
| 436 | robust southerly airflow induced by the dense isobaric lines, bringing warm and humid air                             |
| 437 | masses and facilitating the conversion of aerosols to cloud/fog droplets.                                             |
| 438 | To illustrate the interactions among cloud, aerosol and PBL under the pollution synoptic                              |

439 patterns, a pollution episode on January 1-7 of 2017 was simulated with using WRF-Chem. The





| 440 | results showed that solar radiation was remarkably reduced by the ARI during the two pollution      |
|-----|-----------------------------------------------------------------------------------------------------|
| 441 | patterns, leading to morning surface cooling and afternoon upper-air warming. The enhanced          |
| 442 | evening surface cooling was impacted by the mountain-valley wind circulations forced by the         |
| 443 | plateau-basin topography of the SCB. This modulation in the vertical thermal structure by the       |
| 444 | ARI would then suppress the development of the PBL and favor pollution outbreaks (Fig. 15).         |
| 445 | Besides, the parallel simulation experiments also indicated that CRI impacted stratification        |
| 446 | stability and modulated the vertical thermal structure through its inhibition of the ARI (Fig. 15). |
| 447 | For the spatial distribution, a stronger ARI appeared in Chongqing, despite lower $\text{PM}_{2.5}$ |
| 448 | concentrations than in the western and southern SCB, because of the lower cloud liquid water        |
| 449 | content and weaker CRI inhibition of ARI in Chongqing. Without considering CRI inhibition, the      |
| 450 | ARI in the western and southern SCB was significantly stronger than that in Chongqing. In           |
| 451 | addition, the reduction in solar radiation and PBL height during daytime due to ARI could be        |
| 452 | more than doubled when neglecting the CRI influence under Pattern 5, primarily due to the higher    |
| 453 | aerosol concentrations and cloud liquid water contents with a low trough. This study revealed the   |
| 454 | interaction of multi-scale atmospheric physical processes in the SCB, considering its complex       |
| 455 | terrain and foggy/cloudy climate. The findings shed light on the interactions among aerosols,       |
| 456 | clouds, and PBL under different synoptic patterns and emphasize the significant role of CRI         |
| 457 | inhibition on ARI during wet and cloudy conditions.                                                 |

458 Author contributions. HL and MX had the original idea for the study, designed the experiments, 459 conducted the numerical simulation and prepared the initial draft manuscript. BL, YZ and KZ 460 collected the data. TW and BZ helped perform the analysis with constructive discussions, reviewed 461 and edited the manuscript. HL, MX, TW and BL acquired financial support for the project leading to 462 this publication. SL and ML reviewed the manuscript.

463 **Competing Interest:** The authors declare no conflict of interest.

# 464 Data Available Statement

 465
 The ERA5 pressure layer and single layer data can be respectively downloaded from

 466
 <u>https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels</u>
 and

 467
 <u>https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form</u>.
 The

 468
 NCEP FNL data are available at <a href="https://rtda.ucar.edu/datasets/ds083.2/">https://rtda.ucar.edu/datasets/ds083.2/</a>. The MEIC data can be





| 469                      | accessed in Zheng et al(2018) at https://doi.org/10.5194/acp-18-14095-2018. Air quality and                                                                                                                                                                                                                                                                                     |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 470                      | meteorological monitoring data can be acquired from <u>https://doi.org/10.7910/DVN/USX59F</u> .                                                                                                                                                                                                                                                                                 |
| 471<br>472<br>473<br>474 | <b>Financial support:</b> This work was supported by the National Natural Science Foundation of China (42205186), the Chongqing Natural Science Foundation (cstc2021jcyj-msxmX1007), the open research fund of Chongqing Meteorological Bureau (KFJJ-201607) and the key technology research and development of Chongqing Meteorological Bureau (YWJSGG-202215; YWJSGG-202303). |
| 475                      | References                                                                                                                                                                                                                                                                                                                                                                      |
| 476                      | Alexeeff, S., Deosaransingh, K., Liao, N., Van Den Eeden, S., Schwartz, J., and Sidney, S. (2021) Particulate                                                                                                                                                                                                                                                                   |
| 477                      | Matter and Cardiovascular Risk in Adults with Chronic Obstructive Pulmonary Disease, American                                                                                                                                                                                                                                                                                   |
| 478                      | journal of respiratory and critical care medicine 204(2): 159-167.                                                                                                                                                                                                                                                                                                              |
| 479                      | Cao, S., Zhang, S., Gao, C., Yan, Y., Bao, J., Su, L., Liu, M., Peng, N., and Liu, M. (2021) A long-term analysis                                                                                                                                                                                                                                                               |
| 480                      | of atmospheric black carbon MERRA-2 concentration over China during 1980-2019, Atmospheric                                                                                                                                                                                                                                                                                      |
| 481                      | Environment 264, 118662.                                                                                                                                                                                                                                                                                                                                                        |
| 482                      | Chen, Z., Chen, D., Zhao, C., Kwan, Mp., Cai, J., Zhuang, Y., Zhao, B., Wang, X., Chen, B., Yang, J., Li, R.,                                                                                                                                                                                                                                                                   |
| 483                      | He, B., Gao, B., Wang, K., and Xu, B. (2020) Influence of meteorological conditions on PM <sub>2.5</sub>                                                                                                                                                                                                                                                                        |
| 484                      | concentrations across China: A review of methodology and mechanism, Environment International 139,                                                                                                                                                                                                                                                                              |
| 485                      | 105558.                                                                                                                                                                                                                                                                                                                                                                         |
| 486                      | Ding, A., Huang, X., Nie, W., Sun, J., Kerminen, VM., Petäjä, T., Su, H., Cheng, Y., Yang, XQ., Wang, M.,                                                                                                                                                                                                                                                                       |
| 487                      | Chi, X., Wang, J. P., Virkkula, A., Guo, W., Yuan, J., Wang, S., Zhang, R. J., Wu, Y., Song, Y., and Fu,                                                                                                                                                                                                                                                                        |
| 488                      | C. (2016) Black carbon enhances haze pollution in megacities in China, Geophysical Research Letters                                                                                                                                                                                                                                                                             |
| 489                      | 43(6):2873-2879.                                                                                                                                                                                                                                                                                                                                                                |
| 490                      | Garratt, J. R. (1994) Review: the atmospheric boundary layer, Earth-Science Reviews 37, 89-134.                                                                                                                                                                                                                                                                                 |
| 491                      | Gong S, Liu Y, He J, Zhang L, Lu S, Zhang X. (2022)Multi-scale analysis of the impacts of meteorology and                                                                                                                                                                                                                                                                       |
| 492                      | emissions on $PM_{2.5}$ and $O_3$ trends at various regions in China from 2013 to 2020 1: Synoptic circulation                                                                                                                                                                                                                                                                  |
| 493                      | patterns and pollution. Sei Total Environ. Apr 1;815:152770.                                                                                                                                                                                                                                                                                                                    |
| 494                      | Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B. (2005)                                                                                                                                                                                                                                                                      |
| 495                      | Fully coupled "online" chemistry within the WRF model, Atmospheric Environment 39, 6957-6975.                                                                                                                                                                                                                                                                                   |
| 496                      | Grell, G. A., & Freitas, S. R. (2013). A scale and aerosol aware convective parameterization. Atmos. Chem. Phys,                                                                                                                                                                                                                                                                |
| 497                      | 14(10), 5233–5250.                                                                                                                                                                                                                                                                                                                                                              |





| 498 | Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C. (2006) Estimates of global       |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 499 | terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature),                |
| 500 | Atmos. Chem. Phys. 6, 3181-3210.                                                                                  |
| 501 | Guo, J., Miao, Y., Zhang, Y., Liu, H., Li, Z., Zhang, W., & Zhai, P. (2016) The climatology of planetary          |
| 502 | boundary layer height in China derived from radiosonde and reanalysis data. Atmospheric Chemistry                 |
| 503 | and Physics, 16(20), 13309-13319.                                                                                 |
| 504 | Hansen, J., Sato, M., and Ruedy, R. (1997) Radiative forcing and climate response, 102, 6831-6864.                |
| 505 | Haywood, J. M., Abel, S. J., Barrett, P. A., Bellouin, N., Blyth, A., Bower, K. N., Brooks, M., Carslaw, K., Che, |
| 506 | H., Coe, H., Cotterell, M. I., Crawford, I., Cui, Z., Davies, N., Dingley, B., Field, P., Formenti, P.,           |
| 507 | Gordon, H., de Graaf, M., Herbert, R., Johnson, B., Jones, A. C., Langridge, J. M., Malavelle, F.,                |
| 508 | Partridge, D. G., Peers, F., Redemann, J., Stier, P., Szpek, K., Taylor, J. W., Watson-Parris, D., Wood,          |
| 509 | R., Wu, H., and Zuidema, P. (2021) The CLoud-Aerosol-Radiation Interaction and Forcing:                           |
| 510 | Year 2017 (CLARIFY-2017) measurement campaign, Atmos. Chem. Phys. 21, 1049-1084.                                  |
| 511 | Hong, SY., Dudhia, J., and Chen, SH. (2004) A Revised Approach to Ice Microphysical Processes for the             |
| 512 | Bulk Parameterization of Clouds and Precipitation, Monthly Weather Review 132, 103-120.                           |
| 513 | Hong, S. Y., Y. Noh, and J. Dudhia (2006), A new vertical diffusion package with an explicit treatment of         |
| 514 | entrainment processes, Mon. Weather Rev., 134(9), 2318-2341.                                                      |
| 515 | Huth, R. (1996) AN INTERCOMPARISON OF COMPUTER-ASSISTED CIRCULATION CLASSIFICATION                                |
| 516 | METHODS, International Journal of Climatology 16, 893-922.                                                        |
| 517 | Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z., Cahynová, M., Kyselý, J., and Tveito, O. E. (2008)    |
| 518 | Classifications of Atmospheric Circulation Patterns, Ann N Y Acad Sci, 1146, 105-152.                             |
| 519 | Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D. (2008),         |
| 520 | Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models,            |
| 521 | J. Geophys. Res., 113, D13103.                                                                                    |
| 522 | Li, K., Liao, H., Mao, Y., and Ridley, D. A. (2016) Source sector and region contributions to concentration and   |
| 523 | direct radiative forcing of black carbon in China, Atmospheric Environment 124, 351-366.                          |
| 524 | Li, J., Wu, M., Li, Y., Ma, S., Wang, Z., Zhao, Y., et al. (2021a). Reinforcement of secondary circulation by     |
| 525 | aerosol feedback and PM2.5 vertical exchange in the atmospheric boundary layer. Geophysical Research              |
| 526 | Letters, 48, e2021GL094465.                                                                                       |





| 527                                                                                                                                                       | Li, Q., Wu, B., Liu, J., Zhang, H., Cai, X., and Song, Y. (2020) Characteristics of the atmospheric boundary layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 528                                                                                                                                                       | and its relation with PM2.5 during haze episodes in winter in the North China Plain, Atmospheric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 529                                                                                                                                                       | Environment 223, 117265.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 530                                                                                                                                                       | Li, X., Miao, Y., Ma, Y., Wang, Y., and Zhang, Y. (2021b) Impacts of synoptic forcing and topography on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 531                                                                                                                                                       | aerosol pollution during winter in Shenyang, Northeast China, Atmospheric Research 262, 105764.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 532                                                                                                                                                       | Li, Z., Wang, Y., Guo, J., Cribb, M., Dong, X., Fan, J., Gong, DY., Huang, J., Jiang, M., Jiang, Y., Lee, S. S.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 533                                                                                                                                                       | Li, H., Li, J., Liu, J., Qian, Y., Rosenfeld, D., Shan, S., Sun, Y., Wang, H., and Zheng, Y. (2019) East                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 534                                                                                                                                                       | Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 535                                                                                                                                                       | (EAST-AIR CPC ), Journal of Geophysical Research: Atmospheres 124(23):13026-13054.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 536                                                                                                                                                       | Liao, Z., Jielan, X., Fang, X., Wang, Y., Zhang, Y., Xu, X., and Fan, S. (2020) Modulation of synoptic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 537                                                                                                                                                       | circulation to dry season PM2.5 pollution over the Pearl River Delta region: An investigation based on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 538                                                                                                                                                       | self-organizing maps, Atmospheric Environment 230, 117482.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 539                                                                                                                                                       | Liu, N., Zhou, S., Liu, C., and Guo, J. (2019) Synoptic circulation pattern and boundary layer structure associated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 540                                                                                                                                                       | with PM <sub>2.5</sub> during wintertime haze pollution episodes in Shanghai, Atmospheric Research 228,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 541                                                                                                                                                       | 186-195.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 540                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 542                                                                                                                                                       | Lohmann, U., and Feichter, J. (2005) Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 542<br>543                                                                                                                                                | Lonmann, U., and Feichter, J. (2005) Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737.<br>Lu H, Xie M, Liu B, Liu X, Feng J, Yang F, Zhao X, You T, Wu Z, Gao Y. (2022a) Impact of atmospheric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 543                                                                                                                                                       | Lu H, Xie M, Liu B, Liu X, Feng J, Yang F, Zhao X, You T, Wu Z, Gao Y. (2022a) Impact of atmospheric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 543<br>544                                                                                                                                                | Lu H, Xie M, Liu B, Liu X, Feng J, Yang F, Zhao X, You T, Wu Z, Gao Y. (2022a) Impact of atmospheric thermodynamic structures and aerosol radiation feedback on winter regional persistent heavy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 543<br>544<br>545                                                                                                                                         | Lu H, Xie M, Liu B, Liu X, Feng J, Yang F, Zhao X, You T, Wu Z, Gao Y. (2022a) Impact of atmospheric<br>thermodynamic structures and aerosol radiation feedback on winter regional persistent heavy<br>particulate pollution in the Sichuan-Chongqing region, China. Sci Total Environ. Oct 10;842:156575.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 543<br>544<br>545<br>546                                                                                                                                  | <ul> <li>Lu H, Xie M, Liu B, Liu X, Feng J, Yang F, Zhao X, You T, Wu Z, Gao Y. (2022a) Impact of atmospheric thermodynamic structures and aerosol radiation feedback on winter regional persistent heavy particulate pollution in the Sichuan-Chongqing region, China. Sci Total Environ. Oct 10;842:156575.</li> <li>Lu, H., Xie, M., Liu, X., Liu, B., Liu, C., Zhao, X., Du, Q., Wu, Z., Gao, Y., and Xu, L. (2022b) Spatial-temporal</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 543<br>544<br>545<br>546<br>547                                                                                                                           | <ul> <li>Lu H, Xie M, Liu B, Liu X, Feng J, Yang F, Zhao X, You T, Wu Z, Gao Y. (2022a) Impact of atmospheric thermodynamic structures and aerosol radiation feedback on winter regional persistent heavy particulate pollution in the Sichuan-Chongqing region, China. Sci Total Environ. Oct 10;842:156575.</li> <li>Lu, H., Xie, M., Liu, X., Liu, B., Liu, C., Zhao, X., Du, Q., Wu, Z., Gao, Y., and Xu, L. (2022b) Spatial-temporal characteristics of particulate matters and different formation mechanisms of four typical haze cases in a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 543<br>544<br>545<br>546<br>547<br>548                                                                                                                    | <ul> <li>Lu H, Xie M, Liu B, Liu X, Feng J, Yang F, Zhao X, You T, Wu Z, Gao Y. (2022a) Impact of atmospheric thermodynamic structures and aerosol radiation feedback on winter regional persistent heavy particulate pollution in the Sichuan-Chongqing region, China. Sci Total Environ. Oct 10;842:156575.</li> <li>Lu, H., Xie, M., Liu, X., Liu, B., Liu, C., Zhao, X., Du, Q., Wu, Z., Gao, Y., and Xu, L. (2022b) Spatial-temporal characteristics of particulate matters and different formation mechanisms of four typical haze cases in a mountain city, Atmospheric Environment, 269, 118868.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 543<br>544<br>545<br>546<br>547<br>548<br>549                                                                                                             | <ul> <li>Lu H, Xie M, Liu B, Liu X, Feng J, Yang F, Zhao X, You T, Wu Z, Gao Y. (2022a) Impact of atmospheric thermodynamic structures and aerosol radiation feedback on winter regional persistent heavy particulate pollution in the Sichuan-Chongqing region, China. Sci Total Environ. Oct 10;842:156575.</li> <li>Lu, H., Xie, M., Liu, X., Liu, B., Liu, C., Zhao, X., Du, Q., Wu, Z., Gao, Y., and Xu, L. (2022b) Spatial-temporal characteristics of particulate matters and different formation mechanisms of four typical haze cases in a mountain city, Atmospheric Environment, 269, 118868.</li> <li>Ma, S., Shao, M., Zhang, Y., Dai, Q., and Xie, M. (2021) Sensitivity of PM<sub>2.5</sub> and O<sub>3</sub> pollution episodes to</li> </ul>                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>543</li> <li>544</li> <li>545</li> <li>546</li> <li>547</li> <li>548</li> <li>549</li> <li>550</li> </ul>                                        | <ul> <li>Lu H, Xie M, Liu B, Liu X, Feng J, Yang F, Zhao X, You T, Wu Z, Gao Y. (2022a) Impact of atmospheric thermodynamic structures and aerosol radiation feedback on winter regional persistent heavy particulate pollution in the Sichuan-Chongqing region, China. Sci Total Environ. Oct 10;842:156575.</li> <li>Lu, H., Xie, M., Liu, X., Liu, B., Liu, C., Zhao, X., Du, Q., Wu, Z., Gao, Y., and Xu, L. (2022b) Spatial-temporal characteristics of particulate matters and different formation mechanisms of four typical haze cases in a mountain city, Atmospheric Environment, 269, 118868.</li> <li>Ma, S., Shao, M., Zhang, Y., Dai, Q., and Xie, M. (2021) Sensitivity of PM<sub>2.5</sub> and O<sub>3</sub> pollution episodes to meteorological factors over the North China Plain, Science of The Total Environment 792, 148474.</li> </ul>                                                                                                                                                                                                                                             |
| <ul> <li>543</li> <li>544</li> <li>545</li> <li>546</li> <li>547</li> <li>548</li> <li>549</li> <li>550</li> <li>551</li> </ul>                           | <ul> <li>Lu H, Xie M, Liu B, Liu X, Feng J, Yang F, Zhao X, You T, Wu Z, Gao Y. (2022a) Impact of atmospheric thermodynamic structures and aerosol radiation feedback on winter regional persistent heavy particulate pollution in the Sichuan-Chongqing region, China. Sci Total Environ. Oct 10;842:156575.</li> <li>Lu, H., Xie, M., Liu, X., Liu, B., Liu, C., Zhao, X., Du, Q., Wu, Z., Gao, Y., and Xu, L. (2022b) Spatial-temporal characteristics of particulate matters and different formation mechanisms of four typical haze cases in a mountain city, Atmospheric Environment, 269, 118868.</li> <li>Ma, S., Shao, M., Zhang, Y., Dai, Q., and Xie, M. (2021) Sensitivity of PM<sub>2.5</sub> and O<sub>3</sub> pollution episodes to meteorological factors over the North China Plain, Science of The Total Environment 792, 148474.</li> <li>Miao, Y., Che, H., Zhang, X., and Liu, S. (2020) Integrated impacts of synoptic forcing and aerosol radiative</li> </ul>                                                                                                                      |
| <ul> <li>543</li> <li>544</li> <li>545</li> <li>546</li> <li>547</li> <li>548</li> <li>549</li> <li>550</li> <li>551</li> <li>552</li> </ul>              | <ul> <li>Lu H, Xie M, Liu B, Liu X, Feng J, Yang F, Zhao X, You T, Wu Z, Gao Y. (2022a) Impact of atmospheric thermodynamic structures and aerosol radiation feedback on winter regional persistent heavy particulate pollution in the Sichuan-Chongqing region, China. Sci Total Environ. Oct 10;842:156575.</li> <li>Lu, H., Xie, M., Liu, X., Liu, B., Liu, C., Zhao, X., Du, Q., Wu, Z., Gao, Y., and Xu, L. (2022b) Spatial-temporal characteristics of particulate matters and different formation mechanisms of four typical haze cases in a mountain city, Atmospheric Environment, 269, 118868.</li> <li>Ma, S., Shao, M., Zhang, Y., Dai, Q., and Xie, M. (2021) Sensitivity of PM<sub>2.5</sub> and O<sub>3</sub> pollution episodes to meteorological factors over the North China Plain, Science of The Total Environment 792, 148474.</li> <li>Miao, Y., Che, H., Zhang, X., and Liu, S. (2020) Integrated impacts of synoptic forcing and aerosol radiative effect on boundary layer and pollution in the Beijing–Tianjin–Hebei region, China, Atmos. Chem.</li> </ul>                      |
| <ul> <li>543</li> <li>544</li> <li>545</li> <li>546</li> <li>547</li> <li>548</li> <li>549</li> <li>550</li> <li>551</li> <li>552</li> <li>553</li> </ul> | <ul> <li>Lu H, Xie M, Liu B, Liu X, Feng J, Yang F, Zhao X, You T, Wu Z, Gao Y. (2022a) Impact of atmospheric thermodynamic structures and aerosol radiation feedback on winter regional persistent heavy particulate pollution in the Sichuan-Chongqing region, China. Sci Total Environ. Oct 10;842:156575.</li> <li>Lu, H., Xie, M., Liu, X., Liu, B., Liu, C., Zhao, X., Du, Q., Wu, Z., Gao, Y., and Xu, L. (2022b) Spatial-temporal characteristics of particulate matters and different formation mechanisms of four typical haze cases in a mountain city, Atmospheric Environment, 269, 118868.</li> <li>Ma, S., Shao, M., Zhang, Y., Dai, Q., and Xie, M. (2021) Sensitivity of PM<sub>2.5</sub> and O<sub>3</sub> pollution episodes to meteorological factors over the North China Plain, Science of The Total Environment 792, 148474.</li> <li>Miao, Y., Che, H., Zhang, X., and Liu, S. (2020) Integrated impacts of synoptic forcing and aerosol radiative effect on boundary layer and pollution in the Beijing–Tianjin–Hebei region, China, Atmos. Chem. Phys. 20, 5899-5909.</li> </ul> |

27





| 557 | Miao, Y., Guo, J., Liu, S., Liu, H., Li, Z., Zhang, W., and Zhai, P. (2017) Classification of summertime synoptic  |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 558 | patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution,              |
| 559 | Atmospheric Chemistry and Physics 17, 3097-3110.                                                                   |
| 560 | Ning, G., Wang, S., Ma, M., Ni, C., Shang, Z., Wang, J., and Li, J. (2017) Characteristics of air pollution in     |
| 561 | different zones of Sichuan Basin, China, The Science of the total environment 612, 975-984.                        |
| 562 | Ning, G., Yim, S. H. L., Wang, S., Duan, B., Nie, C., Yang, X., Wang, J., and Shang, K. (2019) Synergistic         |
| 563 | effects of synoptic weather patterns and topography on air quality: a case of the Sichuan Basin of                 |
| 564 | China, Climate Dynamics 53, 6729-6744.                                                                             |
| 565 | Pilinis, C., Seinfeld, J. H., and Grosjean, D. (1989) Water content of atmospheric aerosols, Atmospheric           |
| 566 | Environment 23, 1601-1606.                                                                                         |
| 567 | Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., Borrmann, S., Farmer, D. K.,        |
| 568 | Garland, R. M., Helas, G., Jimenez, J. L., King, S. M., Manzi, A., Mikhailov, E., Pauliquevis, T.,                 |
| 569 | Petters, M. D., Prenni, A. J., Roldin, P., Rose, D., Schneider, J., Su, H., Zorn, S. R., Artaxo, P., and           |
| 570 | Andreae, M. O. (2010) Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the                    |
| 571 | Amazon, 329, 1513-1516.                                                                                            |
| 572 | Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M.      |
| 573 | O. (2008) Flood or Drought: How Do Aerosols Affect Precipitation?, Science 321, 1309-1313.                         |
| 574 | Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A. (2001) Modeling the formation of            |
| 575 | secondary organic aerosol within a comprehensive air quality model system, Journal of Geophysical                  |
| 576 | Research: Atmospheres 106, 28275-28293.                                                                            |
| 577 | Scott Archer-Nicholls, Douglas Lowe, David M. Schultz, and Gordon McFiggans.                                       |
| 578 | (2016)Aerosol-radiation-cloud interactions in a regional coupled model: the effects of convective                  |
| 579 | parameterisation and resolution, Atmos. Chem. Phys., 16, 5573-5594.                                                |
| 580 | Shu, Z., Liu, Y., Zhao, T., Xia, J., Wang, C., Cao, L., Wang, H., Zhang, L., Zheng, Y., Shen, L., Luo, L., and Li, |
| 581 | Y. (2021) Elevated 3D structures of PM <sub>2.5</sub> and impact of complex terrain-forcing circulations on heavy  |
| 582 | haze pollution over Sichuan Basin, China, Atmos. Chem. Phys. 21, 9253-9268.                                        |
| 583 | Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X. (1990) The second generation regional acid             |
| 584 | deposition model chemical mechanism for regional air quality modeling, Journal of Geophysical                      |
| 585 | Research: Atmospheres 95, 16343-16367.                                                                             |





| 586 | Su, T., Li, Z., and Kahn, R. (2018) Relationships between the planetary boundary layer height and surface            |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 587 | pollutants derived from lidar observations over China: regional pattern and influencing factors, Atmos.              |
| 588 | Chem. Phys. 18, 15921-15935.                                                                                         |
| 589 | Tewari, M., Chen, F., Wang, W., Dudhia, J., Lemone, M. A., Mitchell, K. E. (2004). Implementation and                |
| 590 | verification of the unified Noah land-surface model in the WRF model [presentation]. In 20th                         |
| 591 | Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction.                      |
| 592 | American Meteorological Society: Seattle, WA, US.                                                                    |
| 593 | Twomey, S. (1977) The Influence of Pollution on the Shortwave Albedo of Clouds, Journal of Atmospheric               |
| 594 | Sciences 34, 1149-1152.                                                                                              |
| 595 | Wang, C., Jia, M., Xia, H., Wu, Y., Wei, T., Shang, X., Yang, C., Xue, X., and Dou, X. (2019) Relationship           |
| 596 | analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar, Atmos.                  |
| 597 | Meas. Tech. 12, 3303-3315.                                                                                           |
| 598 | Wang, Z., Huang, X., and Ding, A. (2018) Dome effect of black carbon and its key influencing factors:                |
| 599 | a one-dimensional modelling study, Atmos. Chem. Phys. 18, 2821-2834.                                                 |
| 600 | Wang, Y., Gao, W., Wang, S., Song, T., Gong, Z., Ji, D., Wang, L., Liu, Z., Tang, G., Huo, Y., Tian, S., Li, J., Li, |
| 601 | M., Yang, Y., Chu, B., Petäjä, T., Kerminen, VM., He, H., Hao, J., Kulmala, M., Wang, Y., and                        |
| 602 | Zhang, Y. (2020) Contrasting trends of $PM_{2.5}$ and surface-ozone concentrations in China from 2013 to             |
| 603 | 2017, National Science Review 7, 1331-1339.                                                                          |
| 604 | Xiao, Q., Zheng, Y., Geng, G., Chen, C., Huang, X., Che, H., Zhang, X., He, K., and Zhang, Q. (2021)                 |
| 605 | Separating emission and meteorological contributions to long-term PM <sub>2.5</sub> trends over eastern China        |
| 606 | during 2000–2018, Atmos. Chem. Phys. 21, 9475-9496.                                                                  |
| 607 | Xie, M., Liao, J., Wang, T., Zhu, K., Zhuang, B., Han, Y., Li, M., and Li, S. (2016) Modeling of the                 |
| 608 | anthropogenic heat flux and its effect on regional meteorology and air quality over the Yangtze River                |
| 609 | Delta region, China, Atmospheric Chemistry and Physics 16, 6071-6089.                                                |
| 610 | Xie, M., Zhu, K., Wang, T., Feng, W., Gao, D., Li, M., Li, S., Zhuang, B., Han, Y., Chen, P., and Liao, J. (2016)    |
| 611 | Changes in regional meteorology induced by anthropogenic heat and their impacts on air quality in                    |
| 612 | South China, Atmos. Chem. Phys. 16, 15011-15031.                                                                     |
| 613 | Xu, Y., Xue, W., Lei, Y., Huang, Q., Zhao, Y., Cheng, S., Ren, Z., and Wang, J. (2020) Spatiotemporal variation      |
| 614 | in the impact of meteorological conditions on $PM_{2.5}$ pollution in China from 2000 to 2017,                       |
|     |                                                                                                                      |

615 Atmospheric Environment 223, 117215.





| 616 | Yang, T., Chen, R., Gu, X., Xu, J., Yang, L., Zhao, J., Zhang, X., Bai, C., Kang, J., Ran, P., Shen, H., Wen, F., |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 617 | Huang, K., Chen, Y., Sun, T., Shan, G., Lin, Y., Wu, S., Zhu, J., Wang, R., Shi, Z., Xu, Y., Ye, X.,              |
| 618 | Song, Y., Wang, Q., Zhou, Y., Ding, L., Yang, T., Yao, W., Guo, Y., Xiao, F., Lu, Y., Peng, X., Zhang,            |
| 619 | B., Xiao, D., Wang, Z., Zhang, H., Bu, X., Zhang, X., An, L., Zhang, S., Cao, Z., Zhan, Q., Yang, Y.,             |
| 620 | Liang, L., Cao, B., Dai, H., van Donkelaar, A., Martin, R. V., Wu, T., He, J., Kan, H., and Wang, C.              |
| 621 | (2021) Association of fine particulate matter air pollution and its constituents with lung function: The          |
| 622 | China Pulmonary Health study, Environment International 156, 106707.                                              |
| 623 | Yang Dasheng, Wang Pucai. 2012. Characteristics of Vertical Distributions of Cloud Water Contents over China      |
| 624 | during Summer. Chinese Journal of Atmospheric Sciences, 36(1): 89-101.                                            |
| 625 | Yin, Z., and Wang, H. (2017) Role of atmospheric circulations in haze pollution in December 2016, Atmos.          |
| 626 | Chem. Phys. 17, 11673-11681.                                                                                      |
| 627 | Yu, R., Wang, B., and Zhou, T. (2004) Climate Effects of the Deep Continental Stratus Clouds Generated by the     |
| 628 | Tibetan Plateau, Journal of Climate 17, 2702-2713.                                                                |
| 629 | Zhan, Cc., Xie, M., Fang, Dx., Wang, T., Wu, Z., Lu, H., Li, Mm., Chen, P., Zhuang, Bl., Li, S., Zhang,           |
| 630 | Zq., Gao, D., Reng, Jy., and Zhao, M. (2019) Synoptic weather patterns and their impacts on                       |
| 631 | regional particle pollution in the city cluster of the Sichuan Basin, China, Atmospheric Environment              |
| 632 | 208(1): 34-47.                                                                                                    |
| 633 | Zhan, C., Xie, M., Lu, H., Liu, B., Wu, Z., Wang, T., Zhuang, B., Li, M., and Li, S.(2023) Impacts of             |
| 634 | urbanization on air quality and the related health risks in a city with complex terrain, Atmos. Chem.             |
| 635 | Phys., 23, 771–788,                                                                                               |
| 636 | Zhang, J., Lin, Z., 1985. Climate in China. Shanghai Publication House, Shanghai, p. 603.                         |
| 637 | Zhang, S., Zeng, G., Wang, T., Yang, X., and Iyakaremye, V. (2022) Three dominant synoptic atmospheric            |
| 638 | circulation patterns influencing severe winter haze in eastern China, Atmos. Chem. Phys. 22,                      |
| 639 | 16017-16030.                                                                                                      |
| 640 | Zhang, Y., Ding, A., Mao, H., Nie, W., Zhou, D., Liu, L., Huang, X., and Fu, C. (2015) Impact of synoptic         |
| 641 | weather patterns and inter-decadal climate variability on air quality in the North China Plain during             |
| 642 | 1980–2013, Atmospheric Environment 124, Part B: 119-128.                                                          |
| 643 | Zhao, B., Liou, KN., Gu, Y., Li, Q., Jiang, J. H., Su, H., He, C., Tseng, HL. R., Wang, S., Liu, R., Qi, L., Lee, |
| 644 | WL., and Hao, J. (2017) Enhanced PM <sub>2.5</sub> pollution in China due to aerosol-cloud interactions,          |
|     |                                                                                                                   |

645 Scientific Reports 7, 4453.





| 646 | Zhao, C., Yang, Y., Fan, H., Huang, J., Fu, Y., Zhang, X., Kang, S., Cong, Z., Letu, H., and Menenti, M. (2020) |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 647 | Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau, National Science           |
| 648 | Review 7, 492-495.                                                                                              |
| 649 | Zhao, S., Yu, Y., Yin, D., Qin, D., He, J., and Dong, L. (2017) Spatial patterns and temporal variations of six |
| 650 | criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin, China, The Science of        |
| 651 | the total environment 624, 540-557.                                                                             |
| 652 | Zheng, B., Tong, D., Li, M., et al. (2018) Trends in China's anthropogenic emissions since 2010 as the          |
| 653 | consequence of clean air actions, Atmos. Chem. Phys., 18, 14095-14111.                                          |
| 654 | Zhong, J., Zhang, X., Wang, Y., Wang, J., Shen, X., Zhang, H., Wang, T., Xie, Z., Liu, C., Zhang, H., Zhao, T., |
| 655 | Sun, J., Fan, S., Gao, Z., Li, Y., and Wang, L. (2019) The two-way feedback mechanism between                   |
| 656 | unfavorable meteorological conditions and cumulative aerosol pollution in various haze regions of               |
| 657 | China, Atmospheric Chemistry and Physics 19, 3287-3306.                                                         |
| 658 | Zhong, J., Zhang, X., Yunsheng, D., Wang, Y., Liu, C., Wang, J., Zhang, Y., and Che, H. (2018) Feedback         |
| 659 | effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during                 |
| 660 | winter heavy pollution episodes in Beijing from 2013 to 2016, Atmospheric Chemistry and Physics 18,             |
| 661 | 247-258.                                                                                                        |
| 662 | Zhou, M., Zhang, L., Chen, D., Gu, Y., Fu, TM., Gao, M., Zhao, Y., Lu, X., and Zhao, B. (2019) The impact of    |
| 663 | aerosol-radiation interactions on the effectiveness of emission control measures, Environmental                 |
| 664 | Research Letters 14, 024002.                                                                                    |
| 665 |                                                                                                                 |