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Abstract. F10.7, the solar flux at a wavelength of 10.7 cm (F10.7), is often used as an important parameter input in various 10 

space weather models and is also a key parameter for measuring the strength of solar activity levels. Therefore, it is valuable 

to study and forecast F10.7. In this paper, the temporal convolutional network (TCN) approach in deep learning is used to 

predict the daily value of F10.7. The F10.7 series from 1957 to 2019 are used. The data during 1957–1995 are adopted as the 

training dataset, the data during 1996–2008 (solar cycle 23) are adopted as the validation dataset, and the data during 2009–

2019 (solar cycle 24) are adopted as the test dataset. The leave-one-out method is used to group the data set for multiple 15 

validations. The prediction results for 1-3 days ahead during solar cycle 24 have a high correlation coefficient (R) of 0.98 and 

a root mean square error (RMSE) of only 5.04~5.18 sfu. The overall accuracy of the TCN forecasts is better than the 

autoregressive (AR) model (it only takes past values of the F10.7 index as inputs) and the results of the US Space Weather 

Prediction Center (SWPC) forecasts, especially for 2 and 3 days ahead. In addition, the TCN model is slightly better than other 

neural network models like back propagation neural network (BP) and long short term memory network (LSTM) in terms of 20 

the solar radiation flux F10.7 forecast. The TCN model predicted F10.7 with a lower root mean square error, a higher 

correlation coefficient, and a better overall model prediction.  

1 Introduction 

Solar activity has a significant impact on the Earth's climate, electromagnetic fields and communication systems, among 

other things. F10.7 (2800 MHz, 10.7 cm solar flux) is a typical parameter for characterizing solar activity levels, representing 25 

the cyclical variability of solar activity (Tapping,2013). The F10.7 index is an important parameter for predicting atmospheric 

density for spacecraft orbits and ionospheric forecasts affecting communication. For example, F10.7 is used as a control 

parameter in ionospheric models to calculate the variation of radio signal properties (Ortikov et al.,2003). F10.7 is also widely 

used for satellite, navigation, communication, and terrestrial climate (Huang et al., 2009; Yaya et al., 2017). Therefore, accurate 
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forecasting of F10.7 is not only of great value for the conduct of application but is also of comparative importance in the 30 

scientific study of space weather forecasting (Katsavrias et al.,2021; Simms et al.,2023). 

F10.7 has a clear periodicity, e.g. 27 days, 11 years.But the cycles are not simply repetitive, but have similar but different 

fluctuations, so the core of the F10.7 prediction problem for time series data is to uncover the potential patterns of historical 

data and predict the future data as far as possible (Lampropoulos et al., 2016). The F10.7 index forecast model is based on a 

time series model. Many researchers have used different methods to build predictive models for F10.7. Mordvinov et al. (1986) 35 

used a multiplicative autoregressive model to forecast the monthly mean of F10.7, but the model had a large error in predicting 

the monthly mean F10.7.Warren et al. (2017) built optimized independent models for each forecast date, and the results showed 

that this approach typically predicted better than autoregressive methods. Zhong et al. (2010) utilized the singular spectrum 

analysis signal processing technique to predict the F10.7 index of solar activity for the next 27 days. The research result 

indicated that the method performed well in predicting the periodic variations of the F10.7 index. Henney et al. (2012) predicted 40 

F10.7 using the global solar magnetic field generated by the energy transport model, with a Pearson correlation coefficient of 

0.97 for 1-day ahead. Liu et al. (2018) applied two models by Yeates (Yeates et al., 2007) and Worden (Worden & Harvey, 

2000) to predict short-term variability in F10.7. During low levels of solar activity, the predicted values of the model were 

closer to the observed values. 

With the rapid development of machine learning and neural networks. Researchers are increasingly intrigued by the 45 

powerful learning capabilities of machine learning and neural networks, using them to study variations in solar activity. The 

support vector machine regression method was used by Huang et al. (2009) to predict daily values of solar activity F10.7. Xiao 

et al. (2017) used back propagation neural network (BP) to forecast the daily mean index F10.7 of solar activity for short-term 

prediction. The results showed that using BP neural networks to predict the solar activity daily index F10.7 was superior to the 

results of Huang et al(2009). Luo et al. (2020) proposed a method for predicting 10.7 cm radio flux in multiple steps. The 50 

method is a combination of the Empirical Mode Decomposition (EMD) and back propagation neural network (BP)  to construct 

an EMD-BP model for predicting F10.7 values. The method significantly reduces the prediction error for high levels of solar 

activity compared to support vector machine regression (SVR) and backward propagation neural network (BP). Zhang et al. 

(2022) proposed a short-term forecast of the solar activity daily mean index F10.7 by a long short-term memory network 

(LSTM) method. The forecast had a high correlation coefficient (R) of 0.98 and a low root mean square error (RMSE) range 55 

of 6.20-6.35 sfu. Although the above recurrent neural network (RNN)-based architecture and its variants achieved good 

prediction accuracy of F10.7, the training process of a model often spends a significant amount of time and computational 

memory, and also frequently encounters issues such as gradient explosion or vanishing gradients during network 

training(Zachary et al.,2015; Yang et al.,2021). To this end, Bai et al. (2018) proposed a neural network called temporal 

convolutional network (TCN), in which long input sequences can be processed as a whole in the TCN. TCN uses convolutional 60 

operations for efficient parallel computation. In addition, the back propagation path of TCN is different from the time direction 

of the sequence, which makes TCN avoid the gradient problem in RNN. Given the above advantages and for the variability 

characteristics of F10.7 time-series data, this paper introduces machine learning-based TCN-related theories and techniques 
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into the forecasting of F10.7 and compares the results of TCN prediction with other classical models to verify the effectiveness 

and feasibility in the short-term forecasting. 65 

2 Data and Method 

2.1 Data source and Data processing 

F10.7 represents the solar radiation flux at a wavelength of 10.7 cm, and the magnitude of this index describes the intensity 

of solar activity. The 10.7cm solar flux is given in solar flux units (a sfu = 10-22W m-2 Hz-1). The 10.7 cm daily solar flux data 

were obtained from the website of the National Oceanic and Atmospheric Administration. Three flux determinations are made 70 

each day. Each 10.7cm Solar Flux measurement is expressed in three values: the observed, adjusted, and URSI Series D values 

(absolute values).The observed value is the number measured by the solar radio telescope. This is modulated by two quantities: 

the level of solar activity and the changing distance between the Earth and Sun. Since it is a measure of the emissions due to 

solar activity hitting the Earth, this is the quantity to use when terrestrial phenomena are being studied (Tapping, 1987). When 

studying the Sun, it is undesirable to have the annual modulation of the 10.7cm Solar Flux caused by the changing distance 75 

between the Earth and Sun. However, during the ephemeris calculations required for the solar flux monitors to accurately 

acquire and track the Sun, one of the by products obtained is the distance between the Sun and the Earth. Therefore, we generate 

an additional value called the adjusted value, which takes into account the variations in the Earth-Sun distance and represents 

the average distance. Absolute measurements of flux density are quite difficult. Astronomers attempt to match the solar flux 

density data at various frequencies with a frequency spectrum by applying a scale factor. By combining each wavelength with 80 

the calibrated spectrum, a series of D Flux is obtained, where D Flux equals 0.9 multiplied by the adjusted flux(Tanaka et 

al.,1973). 

Between March and October measurements are made at 1700, 2000 (local noon) and 2300UT. However, the combination 

of location in a mountain valley and a relatively high latitude makes it impossible to maintain these times during the rest of 

the year. Consequently, from November to February, the flux determination times are changed at 1800, 2000, and 2200, so 85 

that the Sun is high enough above the horizon for a good measurement to be made .Therefore, we chose the adjusted flux value 

of F10.7 measured at 8:00 p.m. UT (local noon). The data during 1957–1995 are adopted as the training dataset, the data during 

1996–2008(solar cycle 23) are adopted as validation set and the data during 2009–2019(solar cycle 24) are adopted as test set. 

Figure 1 shows the data. The black line represents the training dataset, the red line represents the validation dataset and the 

blue line is the testing dataset. 90 



4 

 

 

Figure 1: The daily values of F10.7 index from 1957 to 2019.Where the black line represents the training set(solar cycles 

19-22), red represents the validation set(solar cycle 23), and blue represents the test set(solar cycle 24) 

In this paper, the hardware environment used for the solar radiation flux F10.7 experiment is NVIDIA GeForce 940MX, 

CPU is Inter(R) Core(TM) i5-6200.We build a model  by Python and utilize some efficient frameworks including 95 

Pandas,Matplotlib, Tensorflow,and Sklearn. Pandas is a powerful data analysis library that provides several methods for 

processing and analysing the parameters of the solar flux F10.7, such as selective sorting, merging and aggregating, etc. 

Matplotlib is a plotting Python library that provides a rich set of customisation options for this paper to visualise the predicted 

results of the solar flux F10.7 as well as to analyse the related results. Sklearn is an open-source, third-party library for machine 

learning model training and big data mining that provides a unified interface for many machine learning algorithms and a 100 

number of tools for evaluating model performance and tuning hyperparameters.TensorFlow is also an open-source machine 

learning library for building, training, and deploying a variety of model types, including regression, classification, 

convolutional neural network and recurrent neural network construction, among others. In this paper, the network construction, 

training, parameter tuning, and evaluation of the prediction model for solar radiation flux F10.7 are based on the above two 

machine learning libraries. 105 

2.2 Method 

TCN was proposed by Bai et al. (2018). Some scholars have demonstrated that TCN not only achieves better performance 

but also reduces the computational cost for training, compared to that of RNN (Lea et al.,2017; Bai et al.,2018; Dieleman et 

al.,2018). TCN combines both RNN and convolutional neural network (CNN) architectures and is a convolutional neural 

network variant designed to handle time series modelling problems. TCN is well adapted to the temporal nature of the data by 110 
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using both causal and extended convolutional structures to extract feature information. The convolutions in TCN are causal, 

meaning there is no information leakage from future time steps. This distinguishes TCN from other recurrent neural networks 

such as LSTM, GRU, which require gate mechanisms. As a result, TCN achieves higher accuracy and longer memory without 

the need for gate mechanisms. Long input sequences can be processed as a whole in TCN. TCN does not have the advantages 

of gradient disappearance and gradient explosion problems. Here, TCN is introduced to model the prediction of F10.7. 115 

For the prediction of a univariate time series, the TCN model takes lagged observations of the time series as inputs and 

predicts future F10.7 sequence values as outputs. Each set of input patterns consists of moving a fixed length window in the 

time series. The principle of forecasting is represented in Fig.2. The original F10.7 data is lengthy, and during training, a 

continuous subsequence needs to be inputted. The output and input lengths of the temporal convolutional network (TCN) are 

equal, meaning the length of the output sequence generated by the TCN is equal to the specified input length. To meet the 120 

prediction requirements, the specific number of steps to forecast (referred to as output length) should not exceed input length, 

allowing for partial overlap between the input and output sequences. 

 

Figure 2: Diagram of F10.7 sequence data prediction. The blue part represents the original sequence, the green part 

represents the input subsequence, and the orange part represents the overlap and the actual predicted lengths 125 

Supposed the input of F10.7 is 𝑥 = (𝑥0, 𝑥1, … , 𝑥𝑇) , the desired output sequence is 𝑦 = (𝑦0 , 𝑦1, . . . , 𝑦𝑇) , where the two 

sequences 𝑥, 𝑦 satisfy the causal relationship.The input   𝑥0, 𝑥1, . . . , 𝑥𝑡−1 observed at the previous moment be used to predict 

the output 𝑦𝑡 at moment t . The modelling objective of the TCN network is to generate any hidden function mapping, which 

means that the prediction of the F10.7 sequence can be represented as:  

�̂�1, . . . , �̂�𝑇+1 = 𝑓(𝑥0, 𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑇)     (1) 

where 𝑥𝑖 and �̂�𝑖 are the observed and predicted values of F10.7 at time 𝑖, respectively, and 𝑓 is the mapping of the function 130 

trained by the TCN network. 
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TCN is one of the algorithms developed on the basis of convolutional neural network (CNN). That uses a one-dimensional 

convolutional network, consisting of an inflated causal convolution and a residual module.  

One-dimensional convolution operates on time series and extracts various features, but as the length of the time series grows, 

a regular convolutional network requires more convolutional layers to receive longer sequences. Extended convolution, on the 135 

other hand, improves on convolution by allowing interval sampling of the input for convolution with a number of layers L and 

a convolution kernel of size k with an acceptance domain of: 

𝑟 = 2(𝐿−l)𝑘 (2) 

The causal extended convolution operation 𝐹 for element 𝑠 in a time series is defined as: 

𝐹(𝑠) = (𝑥 ∗ 𝑓)(𝑠) = ∑ 𝑓(𝑖) ⋅ 𝑥𝑠−𝑑⋅𝑖

𝑘−1

𝑖=0

 

  

(3) 

where: 𝑥 = (𝑥0, 𝑥1, … , 𝑥𝑇) is the input vector, 𝑑 is the expansion factor, ∗ is the causal expansion convolution operator, 𝑓 is 

the convolution kernel vector, 𝑘 is the convolution kernel size, and 𝑠 − 𝑑 ∙ 𝑖 indicates the past direction of the input. 140 

The expanding causal convolution for a convolution kernel size k of  3 is illustrated in Fig. 3. where the output 𝑦1 at moment 

t is determined by the current input as well as the previous inputs. That is 𝑥0, 𝑥1, … , 𝑥𝑛. it shows that the predicted output is 

not affected by future information and therefore avoids information leakage. In addition, the introduction of the expansion 

factor 𝑑 to the input of the convolutional layer matrix is sampled at intervals. In the first hidden layer, the sampling interval 

rate 𝑑 = 1 which represents each point of the input is sampled. In the second hidden layer, the sampling interval rate 𝑑 =  2 145 

i.e., every two points are taken, ignoring one neuron. At higher layers using the 𝑑 grows exponentially, thus allowing for fewer 

layers to achieve a larger receptive field with fewer layers.The expanding causal convolution can be adjusted by varying the 

number of layers, perceptual field size, convolution kernel size, and expansion coefficient. This helps to address the challenge 

in CNNs where the length of temporal modelling is limited by the size of the convolution kernel. Compared to traditional 

neural networks like LSTM and BP, TCN overcomes issues such as gradient vanishing and exploding. At the same time, TCN 150 

possesses advantages such as lower memory consumption, stable gradient, improved parallelism, and flexible perceptual field. 

 
Figure 3: Expansion causal convolutional structure diagram  
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The structure of the residual module in the TCN is shown in Fig.4. Using ReLU as an activation function. To avoid the problem 

of gradient explosion, add the weight normalisation layer. To avoid overfitting, a dropout layer is added for regularisation. The 155 

residual links allow the network to pass information across layers, thus avoiding information loss due to too many layers. 

Residual convolution is introduced for layer hopping and 1 × 1 convolution is performed to ensure that the input and output 

remain consistent. 

 
Figure 4: Expansion causal convolutional structure diagram 160 

2.3 Selection of training parameters 

A key component of the machine learning model training process is called the loss function, which gives direction to the 

optimization of the model by measuring the difference between the model output �̂� and the observation 𝑦. The smaller the loss 

function, and the better the robustness of the model. The L1 norm loss function is extensively utilized in deep learning tasks 

(Zhao et al.,2017). It possesses a notable advantage of being insensitive to outliers and exceptional values, consequently 165 

avoiding the gradient explosion issue. Moreover, The loss function provides a more robust solution by offering stability. 
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Therefore, the L1 loss function is chosen to construct the loss function for the predicted and observed values of the F10.7 

sequence. The function is defined as:    

𝐿(�̂�, 𝑦) = ∑ |�̂�𝑖 − 𝑦𝑖|

𝑛

𝑖=0

 
 

(4) 

where �̂�𝑖 is the predicted value of F10.7 at moment 𝑖, and 𝑦𝑖   is the observed value of F10.7 at moment 𝑖. 

To build the TCN model that is not merely a linear regression model, it is essential to introduce non-linearity by adding a 170 

ReLU activation function at the top of the convolutional layers. The function is defined as: 

𝑓(𝑥) = max (0, 𝑥) (5) 

where: 𝑥 = (𝑥0, 𝑥1, … , 𝑥𝑇) is the input vector.  

To counteract the problem of gradient explosion, weights are normalized at each convolutional layer. To prevent overfitting, 

each convolutional layer is followed by a dropout for regularization. After several training sessions, the optimal parameters 

for model training are shown in Table 1: 

Table 1. Training parameters of the TCN model 175 

Parameter Value Parameter explaination 

batch_size None Batch size 

time_steps 20 Step length 

epochs 30 Number of training sessions 

input_dim 1 Dimension 

input_shape 20 Input shape size 

tcn_layer.receptive_field / The perceptual wildness of the convolutional 

layer 

Dense(1) / Fully connected layer 

optimizer adam Optimizer 

loss L1 Loss function 

activation= relu Activation function 

filters 64 Number of channels for the input and output of 

the convolution kernel 

kernel_size 3 Convolution kernel size 

stacks 1 Determining the depth of the network 

dilations {1,2,4,8,16,32} Expansion coefficient 

padding causal Fill factor 

2.4 Forecast evaluation criteria 

In order to quantify the forecast performance of the model. We chose five evaluation metrics. The chosen performance 
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metrics include the mean absolute error (MAE), the mean absolute percentage error(MAPE) and the root mean square 

error( RMSE) for accuracy, the correlation coefficient(R) for association, and the error(𝜎) for bias. Five commonly used model 

evaluation metrics for assessing predictive performance (Liemohn et al.,2021). 180 

𝑀𝐴𝐸 =
1

N
∑ ∣ 𝑓𝑖 − 𝐹𝑖 ∣

𝑁

𝑖=1
 

 (6) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑓𝑖 − 𝐹𝑖)

2
𝑁

𝑖=1
 

  

(7) 

𝑀𝐴𝑃𝐸 =
1

𝑁

∑ ∣ 𝑓𝑖 − 𝐹𝑖 ∣𝑁
𝑖=1

𝑓𝑖

 
 (8) 

𝑅 =
∑ (𝑓𝑖 − 𝑓‾)(𝐹𝑖 − 𝐹‾)

𝑁

𝑖=1

√∑ (𝑓𝑖 − 𝑓‾)2𝑁

𝑖=1
√∑ (𝐹𝑖 − 𝐹‾)2𝑁

𝑖=1

 

  

(9) 

𝜎 = 𝑓𝑖 − 𝐹𝑖   (10) 

Where MAE denotes mean absolute error, MAPE denotes mean absolute percentage error, RMSE denotes root mean square 

error, R denotes linear correlation coefficient, N denotes number of samples, 𝑓𝑖 denotes forecast and 𝐹𝑖 denotes observation, 𝑓 ̅

is the mean of 𝑓𝑖, and �̅�   the average of 𝐹𝑖. Each indicator evaluates the model in a different perspective. Among them, MAE 

represents the average absolute error between predicted values and actual values. RMSE represents the root mean square error 

between predicted values and actual values. R represents the degree of trend fitting between predicted values and actual values. 185 

𝜎 represents the error between predicted values and actual values. Therefore, the smaller the MAE , MAPE, and RMSE and 

the larger the R, the better the model prediction. 

3 Results and Discussions 

The TCN model is used to predict the values of F10.7 for 1-3 days ahead. Table 2 shows the evaluation metrics of TCN 

model predictions compared to observations for different years of the 24 solar cycle. The table represents the performance of 190 

the TCN model in different years. In Table 2, it can be seen that the TCN model predicts F10.7 with a root mean square error 

(RMSE) ranging from 1 to 9 sfu for 1-day ahead, and an average absolute error (MAE) ranging from 0 to 6 sfu. The highest 

correlation coefficient reaches up to 0.98. For 2 and 3 days ahead, the RMSE ranges from 1 to 9 sfu, the MAE ranges from 1 

to 6 sfu, and the highest correlation coefficient remains at 0.98. Irrespective of the lead time, be it one, two, or three days, the 

TCN model demonstrates consistent performance with relatively small ranges of root mean square error and mean absolute 195 

error, accompanied by a consistently high correlation coefficient. The results demonstrate the stability of the TCN model. 

However, the magnitude of prediction errors for 1-3 days ahead forecasts varies across different years. For example, the RMSE 

for a 1-day ahead forecast is 1.09 sfu in 2009, while its value is 8.88 sfu in 2014. Li et al. (2023) defined the years in which 

the mean value of F10.7 is greater than 110sfu as high solar activity, and the years in which the mean value is less than 110sfu 

as low solar activity. In this paper, the annual average of F10.7 from 2011 to 2015 is greater than 110sfu, so the years from 200 

2011 to 2015 are called high solar activity years and the remaining years are called low solar activity years. Table 2 shows that 
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solar activity has a periodic effect, and the prediction accuracy of the model is negatively correlated with the intensity of solar 

activity.The magnitude of error is related to the year of high and low solar activity. 

Table 2. The prediction errors (MAE, RMSE) and R of the TCN model for the F10.7 data during 2009–2019 

To further validate the performance of the model, we use the leave-one-out method for cross validation (Aminalragia et 205 

al.,2020). We leave iteratively one solar cycle out as a test dataset and rerun the model each time (e.g. keep solar cycle 23 as 

test dataset and train the model with the remaining solar cycles, then keep solar cycle 22 as test dataset and train the model 

with the remaining solar cycles, etc.). The results of the tests are shown in the table 3. It can be seen that cycles with stronger 

solar activity are found to have larger model forecast errors. For cycles with weaker solar activity, the results are better. Solar 

cycles 20 and 24 have about the same intensity of solar activity and are both weaker. The model forecasts are better, Solar 210 

cycles 21 and 22 have about the same intensity of solar activity and are both stronger. The model forecasts are poorer. However, 

the overall average prediction results do not change much compared to solar cycle 24. The prediction accuracy of the model is 

negatively correlated with the intensity of solar activity.The results show that the change of prediction accuracy of the model 

is related to the intensity of solar activity.The F10.7 data has a solar cycle effect.The TCN model does not large affect the final 

F10.7 forecasts due to specific properties of the data. 215 

Table.3 The prediction errors (MAE, RMSE) and R of the TCN model for the F10.7 data during different solar cycles. 

Figure 5 displays the frequency distribution of the difference between the observed value and the predicted value of the model. 

 

Year 

1-Day ahead 2-Days ahead 3-Days ahead 

MAE 

(sfu) 

RMSE  

(sfu) 

R MAE 

(sfu) 

RMSE 

(sfu) 

R MAE 

(sfu) 

RMSE  

(sfu) 

R 

2009 0.77 1.09 0.9279 1.05 1.29 0.9308 1.20 1.49 0.9274 

2010 1.66 2.27 0.9131 1.59 2.14 0.9146 1.82 2.44 0.9093 

2011 3.37 5.11 0.9774 3.37 5.11 0.9773 3.47 5.19 0.9771 

2012 4.39 6.53 0.9375 4.40 6.60 0.9353 4.43 6.61 0.9363 

2013 3.59 4.88 0.9690 3.62 4.96 0.9673 3.58 4.95 0.9677 

2014 5.87 8.88 0.9460 5.87 8.96 0.9442 5.65 8.97 0.9451 

2015 4.12 8.28 0.9099 4.13 8.25 0.9100 4.00 8.23 0.9107 

2016 2.15 2.99 0.9662 2.24 2.99 0.9654 2.20 3.02 0.9662 

2017 1.97 4.64 0.9072 2.16 5.51 0.8696 2.23 5.51 0.8778 

2018 0.84 1.15 0.9323 1.26 1.50 0.9330 1.12 1.43 0.9292 

2019 0.80 1.17 0.9044 1.19 1.52 0.9073 1.15 1.47 0.9048 

Total 2.69 5.04 0.9860 2.80 5.16 0.9852 2.81 5.18 0.9854 

Solar  

cycle 

1-Day ahead 2-Days ahead 3-Days ahead 

MAE 

(sfu) 

RMSE  

(sfu) 

R MAE 

(sfu) 

RMSE 

(sfu) 

R MAE 

(sfu) 

RMSE  

(sfu) 

R 

19 4.35 9.03 0.9880 4.29 7.84 0.9908 4.42 8.51 0.9897 

20 3.35 5.16 0.9924 3.86 5.76 0.9928 3.40 5.37 0.9926 

21 4.59 7.51 0.9921 4.48 7.16 0.9927 4.65 7.45 0.9930 

22 4.71 7.89 0.9908 5.36 8.57 0.9908 4.75 8.05 0.9903 

23 3.76 6.46 0.9917 4.30 7.01 0.9915 3.91 6.73 0.9912 

24 3.03 5.60 0.9846 2.78 5.49 0.9833 3.23 5.52 0.9850 

Mean 3.97 6.94 0.9899 4.18 6.97 0.9903 4.06 6.94 0.9903 
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To maintain the compactness of the histogram, differences greater than 15 sfu and smaller than -15 sfu are not displayed.As 

can be seen from Figure 5 that the prediction differences for 2-day ahead are skewed towards the right. The differences in 

predictions for 3-days ahead are skewed towards the left. Despite these differences, frequency is maximized when the 220 

difference between the observed and predicted values is in the vicinity of zero and most predictions (88.5% of the 1-3 days 

ahead forecast) were located within ±6sfu of error. 

 

Figure 5: shows the frequency distribution of the difference between the observed values and the model predictions 

during 2009-2019 (solar cycle 24) for 1-day ahead (Panel (a)), 2-days ahead (Panel (b)), and 3-days ahead (Panel (c))  225 

The high solar activity years of 2013- 2014, and the low solar activity year of 2018 are chosen for comparison in solar cycle 

24. We chose predicted values from January 15 to February 15 in 2013, 2014, and 2018 to compare with observed values and 

improve image representation. Figure 6 shows the predicted effects for solar activity high years in the Panel (a)-(b) and solar 

activity low year in the panel(c) in solar cycle 24. The black line represents observed values, while the blue dots represent 

predicted values. As can be seen from Fig.6, it shows that the TCN model effectively predicts the trend of F10.7 and exhibits 230 

good agreement in terms of magnitude between the observed and predicted values for the majority of the time. Especially 

during the peak of F10.7, the TCN model's predictions align well with the actual values, and it performs exceptionally well 

during periods of high solar activity. 
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Figure 6: shows the predicted effects for solar activity high years in the Panel(a)-(b) and solar activity low years in the 235 

panel(c) for 1-day ahead in solar cycle 24. The black line represents observed values, while the blue dots represent 

predicted values 

To assess the model's effectiveness, we compare the TCN model's forecasting results with those of the SWPC forecast 

(https://www.swpc.noaa.gov/sites/default/files/images/u30/F10.7%20Solar%20Flux.pdf) and the AR model (Du et al., 2020) 

for 1-3 days ahead. Furthermore, we compare the predictions with the BP model (Xiao et al., 2017) and LSTM (Zhang et al., 240 

2022) for 3-days ahead. 

Figure 7shows the prediction results of the SWPC compared to the TCN model for 1-day ahead in panel (a), 2-days ahead 

in panel (b) and 3-days ahead in panel(c). The blue bars represent the predicted outcome parameters for SWPC and the yellow 

bars represent the predicted outcome parameters for the TCN model. Figure 7 shows that the TCN model's predictions are 

generally better than the forecasts of the SWPC. Compared with F10.7 values for 1-3 days ahead, the TCN model's prediction 245 

for 1-day ahead is 0.07 sfu higher than the SWPC forecast only in 2012. While in other years, the TCN model consistently 

outperformed the SWPC forecast. Particularly for 2 and 3 days ahead predictions, the TCN model's performance is significantly 

better than the SWPC forecast. The RMSE of TCN is 5.11sfu for 1-day ahead, while the RMSE of the SWPC is 5.61 sfu in 

2011. The RMSE of TCN is 0.50 sfu lower than SWPC, representing a relative decrease of  10%. For 2-days ahead prediction, 

the RMSE of TCN is 5.11sfu, while the SWPC of RMSE is 9.17 sfu in 2012. The RMSE of TCN is approximately 4.06 sfu 250 

lower than SWPC, representing a relative decrease of 79%. For 3-days ahead prediction in 2011, the RMSE of TCN is 5.19 

sfu, while the RMSE of the SWPC is 11.46 sfu. The RMSE of TCN is approximately 6.27sfu lower than SWPC, representing 

a relative decrease of 120%. All these show that the TCN model proposed in this paper has better performance relative to the 

SWPC model.The TCN model is feasible for F10.7 prediction. 

https://www.swpc.noaa.gov/sites/default/files/images/u30/F10.7%20Solar%20Flux.pdf
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 255 
Figure 7: Comparison of the prediction performance of SWPC and TCN for Panel(a) for 1-day ahead, Panel (b) for 2-

days ahead, and Panel (c) for 3-days ahead during different years. 

Figure 8 shows the prediction results of the AR model compared to the TCN model for 1-day ahead in panel (a), 2-days 

ahead in panel (b) and 3-days ahead in panel(c). The blue bars represent the predicted outcome parameters for AR, and the 

yellow bars represent those for the TCN model. As can be seen in Fig.8, the TCN model outperforms the AR model overall in 260 

forecasting for 1-3 days ahead. The TCN model only has forecasts that are 0.96sfu and 0.04sfu larger than the AR model 

pattern for 1-day ahead in 2014 and 2019, respectively. In addition, the TCN model outperforms the AR model in forecasting 

for both 2 and 3 days ahead. The RMSE of TCN is only 5.19 sfu for predicting outcomes for 3-days ahead in 2011, while the 

RMSE of AR model is 10.43 sfu. The stability and prediction accuracy of the TCN model in predicting F10.7 is again verified. 

 265 
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Figure 8: Comparison of the prediction performance of AR and TCN for Panel(a) for 1-day ahead, Panel (b) for 2-days 

ahead, and Panel (c) for 3-days ahead during different years. 

A comparison of the TCN model with other commonly used neural network models ,like BP model (Xiao et al., 2017) and 

LSTM model (Zhang et al., 2022) for 3-days ahead prediction is shown in Table 4. The RMSE of BP and LSTM models in 

predicting F10.7 in the high solar activity year of 2003 is 14.28sfu and 7.04sfu, respectively. However, the RMSE of TCN 3-270 

days ahead is 4.71 sfu in 2003. The mean absolute percentage error( MAPE )of BP and LSTM models in predicting F10.7 in 

the low solar activity year of 2009 is 1.84 and 1.05, respectively. However, the MAPE of TCN 3-days ahead is 1.49 in 

2009.Which is better than those of other classical models. The TCN model predicts F10.7 better than the LSTM and BP model's 

results.There could be three reasons for such results. Firstly, the TCN model use a structure of convolutional layers and residual 

connections, which enables it to better capture long-term dependencies in time series data (Bai et al., 2018). In comparison, 275 

although the LSTM model can also handle long-term dependencies in sequential data, its gated unit structure may not fully 

capture the complex nonlinear relationships in the data (Zhang et al., 2022). On the other hand, the BP model is simpler and 

lacks specialized structures for handling time series data, which may result in an ineffective capture of temporal features (Xiao 

et al., 2017). The residual connections in the TCN model can help mitigate the vanishing gradient problem and improve the 

stability of the model. This is particularly important for long-term prediction tasks, as the model needs to propagate gradients 280 

through multiple time steps. In contrast, the LSTM model may encounter issues of vanishing or exploding gradients in long-

term prediction, leading to difficulties in training and unstable predictions (Zhang et al., 2022). The BP model, as a traditional 

feedforward neural network, may also face similar problems. The TCN model possesses higher flexibility and adaptability, 

being able to automatically learn appropriate feature representations based on the characteristics of the data. In comparison, 

the LSTM and BP models require manual feature design and selection, which may not fully leverage the information in the 285 

data. The adaptive nature of the TCN model helps it better adapt to different time series data and improve the accuracy of 

predictions. Therefore, it is precisely because of the advantages mentioned above that TCN performs better in F10.7 prediction. 

Table 4. Results of the TCN model's forecast performance 3-days ahead compared to other models 

 
Year 

 BP/TCN LSTM/TCN 

RMSE 

(sfu) 

MAPE 

(%) 

R RMSE  

(sfu) 

MAPE 

(%) 

R 

2003 14.82/4.71 8.15/3.63 0.9937/0.9704 7.04/4.71 3.70/3.63 / 

2004 9.74/3.14 7.05/3.12 0.9960/0.9612 5.14/3.14 3.22/3.12 0.9603/0.9612 

2008 2.15/1.22 2.11/1.11 0.9996/0.9198 1.22/1.22 1.20/1.11 0.9200/0.9198 

2009 1.84/1.49 1.91/1.40 0.9996/0.9540 1.05/1.49 1.07/1.40 / 

4 Conclusion 

The F10.7 solar flux is an important indicator of solar activity. Its applications in solar physics include serving as an indicator 290 

of solar activity level and predicting solar cycle characteristics.In view of the long observation time and certain periodicity of 

F10.7, this paper introduces for the first time the theory and technique related to TCN based on machine learning into the F10.7 



15 

 

sequence prediction of space weather.  

Firstly, we analyze the ability of the TCN model to predict daily F10.7 during  solar cycle 24 using training samples from 

1957 to 1995. In addition we use the leave-one-out method for cross validation. The results show that the change of prediction 295 

accuracy of the model is related to the intensity of solar activity .The TCN model does not large affect the final F10.7 forecasts 

due to specific properties of the data. This proves that the TCN model is robust to some extent. 

Secondly, we compared the predictive performance of the TCN model with the SWPC forecast results and autoregressive 

(AR) model forecast results. The results show that the TCN model outperformed the SWPC and AR models in terms of 

prediction accuracy. The predictive accuracy of the TCN model do not significantly vary with the lead time of short-term 300 

forecasts (1-day, 2-days, and 3-days). This demonstrates the stability of the TCN model's predictions.  

Thirdly, the TCN model has been compared to other classic models such as the BP model and the LSTM model. The TCN 

model outperformed these models with lower root mean square error (RMSE) and mean absolute percentage error(MAPE).This 

validates the effectiveness and reliability of the TCN model in predicting the F10.7 solar radio flux. The TCN model is capable 

of capturing sudden increases or decreases in F10.7, indicating extreme enhancements in solar activity. Therefore, the TCN 305 

model has significant implications in predicting F10.7, as it can help us better understand and forecast changes in solar activity.  

Although the TCN method has proven to be a viable method for predicting F10.7, there is still room for further improvement 

in its predictive ability. Future work could attempt to introduce the variable of sunspot number into the model and use a more 

scientific approach to improve the generalization ability of the model. 
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