

1 Dear authors,
2 I would like to thank you for the effort put into addressing my comments. The discussion is the
3 best way to clarify the ideas and realize possible misunderstandings or drawbacks. Our
4 discussion can be perhaps useful also to journal readers.

5
6 **Dear Anonymous referee #1,**

7
8 **We thank you very much for your reply to our comments (AC1) that further stimulates
9 the discussion. We are pleased to note that the discussion has solved some possible
10 misunderstandings and brought constructive comments and feedback to our manuscript.
11 Of course, this discussion will be useful to journal readers, but it is also crucial for us to
12 take a critical look at our research.**

13
14 **Please, find below a point-by-point response to your comments.**

15
16 **We will incorporate all your constructive feedback in the revised version of our
17 manuscript if we receive a positive editor's response.**

18
19 **Sincerely,**

20
21 **The Authors**

22
23 1. I understood that you did not do hydrograph separation with stable isotopes. It is not
24 necessary to rewrite lines 165-172. The reader can obtain more detailed information from your
25 response to my comments.

26
27 **Ok, thank you for this.**

28
29 2. The key assumption of your approach is the exponential relationship between EC and young
30 water fraction. Could you try to justify it also in some other way than just mathematically (l.
31 176-190)?

32
33 **Thank you for this comment. We have realized that the exponential relationship between
34 EC and young water fraction could not appear robustly justified as presented in the
35 preprint. In this regard, we would like to incorporate the figure representing flow-specific
36 electrical conductivity vs flow-specific young water fractions (see Fig. 1 of AC1) in Section
37 2.2 (similarly to Figure 14 of Kirchner, 2016b). From this figure it is possible to visualize
38 the relationship between electrical conductivity and young water fraction. Indeed, we
39 observe that the decrease of EC with increasing young water fraction is well described by
40 the exponential model.**

41
42 3. I have downloaded and checked the discharge and EC data for your catchments. Some
43 thoughts are given below (you do not need to respond to them). Although I am still not
44 convinced about the use of EC, the manuscript describes the proposed approach clearly.

45 We are pleased to note that the discussion led you to reconsider the use of EC, also if you
46 are not fully convinced yet. As we have reported in our answers (AC1) to your comments
47 (RC1), we felt supported in the use of EC by previous published papers stating that not-
48 conservative tracers can be used to create mixing relationship with young water fraction
49 (Kirchner, 2016b) and that results achieved with EC are consistent with those obtained
50 with stable water isotopes (Riazi et al. 2022). Please, see the quote from Kirchner (2016b)
51 and Riazi et al. (2022) that summarize these points with related scientific references:
52

53 *“The young water fraction F_{yw} may also be helpful in inferring chemical processes from
54 streamflow concentrations of reactive chemical species. Because one can determine how F_{yw}
55 varies, on average, across different ranges of discharge, one can potentially construct mixing
56 relationships between F_{yw} and the concentrations of reactive species. If the measurable
57 range of F_{yw} is wide enough, one may even be able to estimate the end-member
58 concentrations corresponding to idealized “young water” ($F_{yw} = 1$) and “old water” ($F_{yw} =$*
59 *0*.”

60 Kirchner (2016b)
61

62 *“EC has been used successfully as a tracer in various previous studies and has compared*
63 *favourably with results from stable isotopes (Blume et al., 2008; Cano-Paoli et al., 2019;*
64 *Laudon & Slaymaker, 1997; Meriano et al., 2011; Mosquera et al., 2018). Nevertheless,*
65 *there are also so characteristics of EC that mean it does not meet the definition of an ideal*
66 *conservative tracer. One issue is that, as noted above, EC is the net effect of a variety of ions*
67 *that are influenced by various factors other than age, including geochemical processes*
68 *within the catchment, leading to some uncertainty regarding its usefulness. For example,*
69 *ion exchange and weathering likely mean that the ionic composition of water is non-*
70 *conservative, meaning that EC is also likely to behave non-conservatively (Singha et al.,*
71 *2011). Nevertheless, taken together, these past studies suggest that EC may provide useful*
72 *information on water age and hence conditioning travel time model simulations to EC may*
73 *prove useful.”*

74 Riazi et al. (2022)
75

76 Accordingly, although EC is not a conservative tracer, it has been used in the past to infer
77 information on water age with successful results. Our results also confirm that, despite
78 the EC limitations (that must be highlighted to use it with care), EC can be used to achieve
79 reliable information on water age.

80
81 Thanks for pointing out the clarity of our approach description.
82

83 4. You may think about using the list of symbols, because there are many symbols from earlier
84 works and some other symbols used in your study. Such a list might be helpful to someone
85 who is not so familiar with all the literature and would like to use your method.

86
87 Thank you for this comment. Yes, there are many symbols in our work and a “List of
88 symbols” could be very useful for the readers: we did not think about it. We will add a

89 **“List of symbols” in the revised version of our manuscript if we receive a positive editor
90 response.**

91
92 5. It is clear that “old water” in your study is related to the young water fraction (the metric
93 calculated from seasonal isotope variability); i.e., “old water” = 1-young water fraction.
94 However, this term is the same as the “old water” from the isotopic hydrograph separation
95 conducted by a mixing formula. To avoid the confusion, it may be useful to explain, e.g., in the
96 List of symbols that your “old water” is different.

97
98 **Thank you for this. Yes, the term “old” is used with different meanings in the scientific
99 literature and this can bring confusion. We will specify what the term “old” means in the
100 revised version of the manuscript. We will do this in the “List of symbols” as you have
101 suggested. We already thought about the use of a different word (e.g., “elderly water
102 fraction = 1 - young water fraction”), but we definitely used the term “old” since it is the
103 term commonly used in past papers about young water fraction.**

104
105 6. Despite my comments on the manuscript, if the editor and other reviewer(s) decide that the
106 manuscript can be published, I will not have a problem to accept such a decision.

107
108 **We appreciate very much that you have reconsidered your initial decision and that you
109 have provided useful comments that will improve our manuscript.**

110
111 7. I agree that you acknowledged many uncertainties related to the use of the method. What I
112 mind is this:

113
114 A. We (the hydrological community) know for decades that determination of the input (tracer
115 concentration of the water entering the system, e.g., a catchment) is uncertain. The composition
116 of water infiltrating into the soil that eventually appears in the output (e.g., in catchment runoff)
117 is almost always unknown. We acknowledge this uncertainty and use tracer content in
118 precipitation, because that is what we can (more easily) measure and in sometimes adjust it
119 using different approaches.

120
121 B. We know that tracer variability in the input varies both temporally and spatially. The range
122 of temporal variability differs in different years. We acknowledge this uncertainty and
123 approximate the input concentration by the sine curve having the same amplitude over different
124 years. Spatial variability in larger catchments is often neglected.

125
126 C. Several approaches are used to estimate the sine curve’s amplitude (limiting or accepting
127 the outliers) for weighted or unweighted data. Study periods are sometimes shorter than several
128 years. All this brings the uncertainty which we acknowledge and determine the amplitude.

129
130 D. From the amplitudes we calculate the metric (an exact number) characterizing studied
131 system. For many years it was the mean residence/transit time. After the inspiring work by
132 Kirchner (2016) we prefer to use the metric called young water fraction.

133
134 E. Young water fraction (an exact number) is defined as “the fraction of runoff with transit
135 times of less than roughly 0.2 years” (Kirchner, 2016). It represents an average over the study
136 period. It seems obvious that when the discharge in a study catchment increases, the young
137 water fraction should likely be greater than in the low flow periods when the streamflow is
138 supplied by water that probably stayed in the catchment longer (we do not know how much
139 longer than 2-3 months, but part of that water may be in the catchment not much longer 2-3
140 months, i.e. 4, 5, 6?).
141
142 F. We introduce a new metric called discharge sensitivity of the young water fraction and
143 assume the exponential relationship between the young water fraction and a virtual young water
144 fraction for discharge equal to zero.
145
146 G. It is fascinating and potentially very useful to know how big is the young water fraction on
147 every day, hour, etc. We continue with the development of methodology and calculate daily
148 young water fractions using another, non-conservative tracer (EC) and two-component
149 hydrograph separation. We estimate the unknown tracer concentrations for the two end
150 members through calibration. We assume that there is exponential relationship between the
151 tracer and young water fraction and optimize the daily values so that their average is the same
152 as the young water fraction obtained from seasonal variations of stable isotopes. We
153 acknowledge possible uncertainties.
154
155 H. Having the daily young water fractions, we can investigate their relationships with
156 meteorological drivers, and so on and so forth.
157
158 I. A to H indicate that we are adding uncertainties with every step in the development of our
159 methodology. Please note I am saying “adding” not “accumulating”, because I do not know if
160 the uncertainty increases in the described chain of methodology development.
161
162 J. We are acknowledging the uncertainty, but continuing to develop the methodology and
163 adding other uncertainties. The result is that since the 1970’/1980’ we moved from a simple
164 method providing a rough, but useful characteristic (especially in groundwater hydrology,
165 because it matters if possible pollutant enters an aquifer with mean transit time 6 or 26 months
166 for example) to a complex methodology involving many acknowledged uncertainties providing
167 “exact” numbers for the short time steps.
168
169 K. I am not sure how much can the obtained numbers be trusted and whether we are obtaining
170 a substantially new knowledge about the subject of our study, e.g., catchment hydrological
171 cycle (in addition to the information on tracer dynamics). Benetin et al (2022) noted: “In the
172 light of the complexity of the theoretical apparatus underlying time-variant TTDs ..., one might
173 wonder if this effort is actually worthwhile and all this complexity is really needed for practical
174 purposes. Our claim is that, while time-variance might not be needed a priori to characterize
175 transport processes in a catchment, it directly affects tracers and solute signals in stream water

176 and plant water. Therefore, acknowledging and incorporating this time variance may be
177 necessary to capture and explain both high-frequency and long-term tracer dynamics.”
178

179 **We have understood what you mind. We would like to make some clarification about**
180 **some points:**

182 **Data translates to us what nature is saying since we do not speak the language of nature.**
183 **As with every translation, it is not perfect, but data is the starting point for our research.**
184 **Sometimes data is sufficient to infer something useful and reliable about how nature**
185 **works. Some other time, we have to elaborate data by using some methods. Elaborating**
186 **data (e.g., assuming that input concentration can be represented as a sine curve having**
187 **the same amplitude over different years) is necessary to extract further information from**
188 **data or simply to quantify the information that would remain otherwise qualitative.**
189 **Accordingly, we have to choose the elaboration method that preserves as much as possible**
190 **the information provided by data. Kirchner (2016a) demonstrated that if we use the**
191 **isotope data measured in precipitation and streamflow, the convolution approach is not**
192 **suitable to infer the Mean Transit Time (MTT) as reliable info. MTT is subject to the**
193 **aggregation error. Thus, Kirchner (2016a) proposed a new metric (the young water**
194 **fraction) that is not affected by this error (thus, it better preserves the information that**
195 **measured data can provide us).**

197 **About hydrologic nonstationarity, Kirchner (2016b) demonstrates that “young water**
198 **fractions can also be estimated separately for individual flow regimes” and that “one can**
199 **also estimate the chemical composition of idealized “young water” and “old water” end-**
200 **members, using relationships between young water fractions and solute concentrations**
201 **across different flow regimes”.**

203 **Following the statements of Kirchner (2016b), we designed the *EXPECT* method.**
204 **With the *EXPECT* method it is possible to estimate the discharge sensitivity of young**
205 **water fraction differently from the method presented in Gallart et al. (2020). These are**
206 **two distinct methods with two different uncertainties that can, at the latest, be compared.**
207 **In this regard, we compared the discharge sensitivity estimated with the *EXPECT* method**
208 **with past estimates of discharge sensitivity (estimated in Gallart et al. 2020) and with**
209 **flow-specific young water fractions (estimated in von Freyberg et al. 2018).**

211

- 212 **Our discharge sensitivity estimates are consistent with past discharge sensitivity**
213 **estimates (estimated in Gallart et al. 2020 with a different method) and with past**
214 **estimates of flow-specific young water fractions.**
- 215 **The standard errors of the parameters S^*_d and F^*_o are lower than those obtained**
216 **by using the method of Gallart et al. (2020).**
- 217 **We have obtained additional information on young water and old water EC**
218 **endmembers.**
- 219 **The mathematical (biunivocal) relationship between F_{yw} and Q of Gallart et al.**
220 **(2020) does not consider possible hysteretic behavior between discharge and young**

220 water fractions during rainfall and after events (Benettin et al. 2017). With the
221 *EXPECT* method we can potentially take into account this behavior by using daily
222 young water fractions estimated from daily EC (that is subject to hysteretic
223 behavior).

224 • We can investigate the short-term variability of young water fractions.
225 • We jointly use stable water isotopes and EC. The latter is not a conservative tracer,
226 but it is measured data that can give information (with some uncertainties) about
227 the water age (Riazi et al. 2022 cum bibl.).

228
229 From these points we conclude that we are providing a novel method that could
230 potentially provide new insights for new knowledge.

231
232 Finally, we want to underline that when we talk about water age, we are always dealing
233 with “estimates” since water age cannot be measured. What we can do is to estimate water
234 age based on the use of tracers (stable water isotopes and EC in our study) that can be
235 measured. Indeed, our daily young water fraction estimates cannot be validated by using
236 “water age measurements”. However, in the obtained numbers you can trust since we
237 successfully validated our results by using past estimates of flow-specific young water
238 fractions (estimated in von Freyberg et al. 2018) and of discharge sensitivity (estimated
239 in Gallart et al. 2020), both used as a benchmark.

240
241 I have downloaded the discharge and EC data from your catchments and period October 1st,
242 2010-November 30th, 2015 which is approximately your study period according to Table 1.

243
244 1. I agree with you that discharge increase almost always corresponds to EC decrease and
245 vice versa.

246
247 2. A few thoughts on the optimized EC values of the endmembers: The low flow periods in the
248 study catchments are never very long (even in winter). Yet, the difference between the
249 optimized EC of the old water fraction in ERL (501 $\mu\text{S.cm}^{-1}$) and the **minimum (do you mean**
250 **maximum?)** EC values measured in the stream in period October 2010-November 2015 (334.3
251 $\mu\text{S.cm}^{-1}$) is quite high. Even the absolute EC **minimum (do you mean maximum?)** in ERL
252 (439.5 $\mu\text{S.cm}^{-1}$) between January 1978 and February 2023 (daily data) that was measured on
253 23rd January 1990, i.e. outside of your study period, was quite different from the optimized
254 value. I am therefore not sure if the optimized EC values are correct. The young water fraction
255 was maybe not very big in January 1990 at catchment discharge of about 0.3 l.s^{-1} . I would
256 assume that streamflow EC would be closer to that of the groundwater, i.e. the measurements
257 over long periods could identify this end member. Similarly, the optimized EC values of the
258 young water fractions seem to be a little higher than data on Central European precipitation
259 suggest (Monteith et al., 2023), but it can be argued that the young water fraction contains some
260 soil water with higher EC.

261
262 This is a key point of our results. You can potentially find the EC of the old water equal
263 to the maximum EC measured in the stream during low flow periods only if the young

264 water fraction is equal to 0 in such flow conditions (i.e., all the streamwater is old water
265 and you can measure the old water endmember), see also Kirchner (2016b):

266
267 *"If the measurable range of F_{yw} is wide enough, one may even be able to estimate the end-
268 member concentrations corresponding to idealized "young water" ($F_{yw} = 1$) and "old water"
269 ($F_{yw} = 0$)."*

270
271 From results of flow-specific young water fraction (see Fig. 4 of the preprint), at very low
272 and very high flow conditions the young water fraction resulted to be roughly equal to
273 0.2 and 0.5, respectively, in the three study catchments. This suggests that the streamflow
274 is (very likely) always a mixture of young and old water. Thus, you will never be able to
275 directly measure the old water endmember in the stream. However, the old water EC
276 endmember we have obtained from calibration in the ERL catchment:

- 277 • is higher than the maximum EC value measured in the stream during the whole
278 observation period. This makes sense: if streamflow is always a mixture of young
279 and old water, the old water EC endmember is necessarily higher than the
280 maximum EC measured in the stream.
- 281 • is consistent with EC of around $500 \mu\text{S cm}^{-1}$ in groundwater, measured in the
282 deepest monitoring well (6.8 m) in the catchment during fall-winter (see lines
283 246-249 of the preprint)

284
285 We can do a similar reasoning for young water. Thank you for the reference of data on
286 Central European precipitation. We will include in our discussion that the young water
287 fraction can contain some soil water with higher EC.

288
289 3. According to the coefficient of determination, Q explains about 50% of daily EC variability
290 in your catchments. It would be great if part of the variability could be explained by young
291 water fraction. However, how can it be confirmed or rejected if daily young water fractions
292 were estimated on the basis of EC?

293
294 You can look at median electrical conductivity in specific flow regimes (EC^Q) versus flow
295 specific young water fractions (F^Q_{yw}) or median discharge in each flow regime (Q^Q).
296 Accordingly, EC^Q and F^Q_{yw} have been obtained independently. For example, in the ERL
297 catchment the adjusted R^2 obtained by fitting a linear model on EC^Q vs F^Q_{yw} is 0.83, while
298 that obtained by fitting a linear model on EC^Q vs Q^Q is 0.59. This result suggests that the
299 young water fraction explains a larger portion of EC variance than discharges in the ERL
300 catchment.

308 **References:**
309
310 **Gallart, F., von Freyberg, J., Valiente, M., Kirchner, J. W., Llorens, P., and Latron, J.:**
311 **Technical note: An improved discharge sensitivity metric for young water fractions,**
312 **Hydrology and Earth System Sciences, 24, 1101–1107, <https://doi.org/10.5194/hess-24-1101-2020>, 2020.**
313
314
315 **Kirchner, J. W.: Aggregation in environmental systems-Part 1: Seasonal tracer cycles**
316 **quantify young water fractions, but not mean transit times, in spatially heterogeneous**
317 **catchments, Hydrology and Earth System Sciences, 20, 279–297,**
318 **<https://doi.org/10.5194/hess-20-279-2016>, 2016.**
319
320 **Kirchner, J. W.: Aggregation in environmental systems-Part 2: Catchment mean transit**
321 **times and young water fractions under hydrologic nonstationarity, Hydrology and Earth**
322 **System Sciences, 20, 299–328, <https://doi.org/10.5194/hess-20-299-2016>, 2016.**
323
324 **Riazi, Z., Western, A. W., and Bende-Michl, U.: Modelling electrical conductivity**
325 **variation using a travel time distribution approach in the Duck River catchment,**
326 **Australia, Hydrological Processes, 36, e14721, <https://doi.org/10.1002/hyp.14721>, 2022.**
327 **von Freyberg, J., Allen, S. T., Seeger, S., Weiler, M., and Kirchner, J. W.: Sensitivity of**
328 **young water fractions to hydro-climatic forcing and landscape properties across 22 Swiss**
329 **catchments, Hydrology and Earth System Sciences, 22, 3841–3861,**
330 **<https://doi.org/10.5194/hess-22-3841-2018>, 2018.**
331
332
333