

1 Dear Anonymous Referee #1,

2 We thank you for your appreciation about our effort in developing a multi-tracer method
3 for advancing the knowledge of young water in catchment hydrology. We thank you for
4 your comments, also if, in our opinion, the method has not been fully understood.

5 We think that many of the criticisms made should be supported by scientific results in
6 the literature to bring substance to the discussion. In this regard we answered point-by-
7 point to your comments by citing published works that support our assumptions and
8 methodology. Moreover, many problems that have been listed have already been
9 addressed by the authors along the manuscript.

10 Perhaps, we will have to clarify some points better and we will be glad to do so in the
11 revised version of the manuscript if we receive a positive editor's response.

12 Accordingly, we kindly ask to reconsider the decision of not-recommending the
13 manuscript for publication in light of our answers.

14 With kind regards,

15 The Authors

16 1. Hydrograph components, i.e. the event and pre-event water, do not represent young
17 and old water fractions defined by the young water fraction concept.

18 Please, note that we are not subdividing the hydrograph into event water and pre-event
19 water. This can be done by applying a time-source separation with the only use of stable
20 water isotopes as tracer (Klaus and McDonnell, 2013). This cannot be done with
21 geochemical tracers like ECs.

22 What we actually do is partially described in Kirchner (2016b):

23 *“The young water fraction F_{yw} may also be helpful in inferring chemical processes
24 from streamflow concentrations of reactive chemical species. Many reactive species
25 exhibit clear concentration–discharge relationships. Because one can determine how
26 F_{yw} varies, on average, across different ranges of discharge, one can potentially
27 construct mixing relationships between F_{yw} and the concentrations of reactive
28 species. If the measurable range of F_{yw} is wide enough, one may even be able to
29 estimate the end-member concentrations corresponding to idealized “young water”
30 ($F_{yw} = 1$) and “old water” ($F_{yw} = 0$)”*

31 Accordingly, what we did is to construct a mixing relationship between F_{yw} and the
32 concentrations of reactive species (integrated in the ECs measure): the exponential decay
33 of ECs with increasing F_{yw} (see Eq. 5 of the preprint). From this mixing relationship, we
34 can separate the hydrograph in young water and old water by choosing appropriate end-

35 members. If possible, one could potentially measure the EC of young water (< 2-3 months)
 36 and old water (> 2-3 months) in the stream when flow specific young water fractions are
 37 equal to 1 or 0, respectively (Kirchner, 2016b). Since the flow conditions in which $F_{yw} = 1$
 38 or $F_{yw} = 0$ are rare scenarios (see line 189-193 of the preprint), we obtain the two EC end-
 39 members through calibration because we have additional information deriving from
 40 stable water isotopes that we can use to constrain the two end-members: the flow-
 41 weighted average young water fraction (F_{yw}^*) and the time-weighted average young water
 42 fraction (F_{yw}) (both obtained with the amplitude ratio approach). The calibrated optimal
 43 EC_{ow} and EC_{yw} we have obtained are respectively higher and lower than the maximum
 44 and minimum ECs measured in the stream, thus suggesting that they are the idealized old
 45 water ($F_{yw} = 0$) and young water ($F_{yw} = 1$) EC endmembers (see lines 256-263 of the
 46 preprint).

47 Another way to obtain the endmembers, by strictly following Kirchner (2016b), is to look
 48 at how flow-specific young water fractions vary with the selected tracer (EC_S in this case)
 49 measured in the same flow-regime. We report hereafter flow-specific EC_S (median values)
 50 against flow-specific young water fractions for the three study catchments (Fig. 1). First,
 51 we observe a non-linear relationship that confirms the mixing relationship presented in
 52 the Eq. (5) of our manuscript (i.e., an exponential decrease of EC_S with increasing F_{yw}).
 53 Second, by fitting an exponential model on data we can obtain the end-members (EC_{ow}
 54 and EC_{yw}) values evaluating the $EC_S(F_{yw})$ equation for $F_{yw} = 0$ and $F_{yw} = 1$. The main
 55 problem is that these end-members would be highly uncertain since the curve is poorly
 56 constrained at very low and very high F_{yw} (see Fig. 1).

57 We did not insert this analysis in the manuscript, but we are glad to add it in the revised
 58 version to better clarify our method.

59

60

61 **Fig.1** Median flow-specific ECs against flow-specific F_{yw} for the three study catchments. Horizontal bars indicate
 62 the flow-specific F_{yw} standard error. The black curve indicates the exponential fit, while the dashed black lines
 63 indicate the 90% prediction bounds.

64 **In summary, we do not separate the hydrograph by using the stable water isotopes (thus**
 65 **obtaining event water and pre-event water). We separate the hydrograph by using ECs**
 66 **and by calibrating the EC end-members to reflect the age of the two components (young**
 67 **water and old water). We can rewrite lines from 165 to 172 of the preprint to clarify this**
 68 **point better.**

69 **In light of this clarification, we think that your first comment is derived from a**
 70 **misunderstanding of the hydrograph separation we actually did and how we have**
 71 **operated to perform it. Of course, event and pre-event water do not represent young and**
 72 **old water. Event water is a portion of young (< 2-3 months) water while old (> 2-3 months)**
 73 **water is a portion of pre-event water.**

74 2. The conceptual problem in my opinion is that if the young water fraction is defined as
 75 a characteristic (metric) calculated from the seasonal variability of a tracer, it is attributed
 76 to the seasonal time scale. Thus, it is not meaningful to “improve” the temporal resolution
 77 of such a characteristic for finer scales (hydrographs) if the tracer streamflow data is
 78 sparse.

79 **There is no conceptual problem in our method. We have obtained a young water fraction**
 80 **timeseries (at daily or sampling resolution) so that its (unweighted) average is equal to**
 81 **F_{yw} and its flow-weighted average is equal to F_{yw}^* and these are the definitions of F_{yw} and**
 82 **F_{yw}^* obtained from seasonal tracer cycles. See the quote from Kirchner (2016b):**

83 ***“Flow-weighted fits to the seasonal tracer cycles accurately predict the flow-weighted***
 84 ***average F_{yw} in streamflow, while unweighted fits to the seasonal tracer cycles***
 85 ***accurately predict the unweighted average F_{yw} ”***

86 **Of course, the young water fraction is calculated from seasonal tracer cycles as a**
 87 **characteristic at the seasonal time scale. However, “the fraction of runoff with transit**

88 times of less than roughly 2-3 months (Kirchner, 2016a)" is a definition that could be
89 applied also to finer scales. Since the young water fraction calculated from seasonal tracer
90 cycles is an average value (Kirchner 2016a, b) over the period of isotope sampling, it
91 depends on the young water fractions we have in the hydrograph at each (finer) time-step
92 over the period of isotope sampling. Accordingly, it is very useful to improve the temporal
93 resolution of young water fraction estimation: this gives additional information on the
94 hydrological processes and conditions occurring in a catchment that cannot be perceived
95 at the seasonal time scale and that can potentially explain the low or high average young
96 water fraction value.

97 Moreover, we would not say that "is meaningful to improve the temporal resolution of
98 such a characteristic for finer scales" since previous papers in the scientific literature
99 have addressed the problem of understanding how the young water fraction varies with
100 different flow regimes, and thus over time (e.g. by using automatic water samples
101 triggered by time and by flow, see Gallart et al. 2020a, 2020b). In this regard, von
102 Freyberg et al. (2018) and, subsequently, Gallart et al. (2020b) worked on the sensitivity
103 of young water fraction to discharge (Q), the latter considered as a proxy of the catchment
104 wetness. By studying how the young water fraction changes with Q is implicitly an
105 investigation of how the young water fraction varies over time since Q varies over time.
106 In this regard, we report here a quote of von Freyberg et al. (2018) paper: "*In individual
107 catchments, one would also expect young water fractions (and thus seasonal isotope cycles)
108 to be variable in time, i.e. to be larger during periods of stronger precipitation forcing and
109 wetter antecedent conditions, as shallower, faster flow paths become more dominant, and as
110 the stream network extends farther into the landscape, shortening the average path length
111 of subsurface flow (Godsey and Kirchner, 2014).*"

112 Please, note that the method used to estimate the so-called discharge sensitivity of young
113 water fraction has been designed to be applied in catchments in which tracer streamflow
114 data is sparse. In this regard, again, we report here a quote of von Freyberg et al. (2018)
115 paper: "...we calculated the linear slope of the relationship between Q and F_{yw} , using a
116 method that does not require breaking the streamwater isotope time series into separate flow
117 regimes (and thus has more modest data requirements...)"

118 3. ***EC is not a conservative tracer** although it is generally true that the longer the
119 water stays in the catchment, the more ions it contains. However, EC varies also with
120 air (water) temperature despite temperature compensation employed in the sensors
121 and if an event water meets very soluble minerals, it can have high EC as well.

122 About the combined use of not conservative tracers and the young water fraction, please
123 see, again, the quote from Kirchner (2016b):

124 "The young water fraction F_{yw} may also be helpful in inferring chemical processes
125 from streamflow concentrations of reactive chemical species. Many reactive species
126 exhibit clear concentration–discharge relationships. Because one can determine how

127 *F_{yw} varies, on average, across different ranges of discharge, one can potentially*
128 *construct mixing relationships between F_{yw} and the concentrations of reactive*
129 *species. If the measurable range of F_{yw} is wide enough, one may even be able to*
130 *estimate the end-member concentrations corresponding to idealized “young water”*
131 *($F_{yw} = 1$) and “old water” ($F_{yw} = 0$)”.*

132 *According to Kirchner (2016b), we do not need a conservative tracer to construct a
133 mixing relationship with F_{yw} . Thus, we do not understand why you think it is incorrect to
134 use ECs.

135 Of course, the use of ECs has some limitations, but we have been extremely transparent
136 about this: we have dedicated the whole section 3.3 of the manuscript regarding the
137 limitations of the *EXPECT* method (including the limitations of ECs as a tracer).
138 Accordingly, the application of the *EXPECT* method, as it is, could be critical in some
139 catchments with very soluble minerals (please, note that we have underlined this
140 limitation in the paper, see lines 353-357 of the preprint), but could be successful in many
141 other catchments (like the three alpine catchments investigated in this work).

142 In conclusion, we think that is crucial to underline the limitations of ECs as a tracer (as
143 we did in the section 3.3 of the preprint) to separate the young water from the old water,
144 but that it is wrong to say that it cannot be used since it is not a conservative tracer.

145 We can integrate in section 3.3 of the manuscript the influence of air (water) temperature
146 on ECs despite temperature compensation employed in the sensors, as you have
147 suggested. Thank you for this.

148 4. Exponential relationship* between EC and discharge (increasing event water**
149 contribution) appears when the long-term data (combining many events) is analysed.
150 However, measurements I have seen*** did not document such a relationship for
151 individual runoff events (hydrographs). While generally the EC does decrease with
152 increasing discharge for many events, it does not happen so for each event. In fact, in
153 my experience a decrease in EC with increase in discharge was evident only during
154 larger events****. Thus, it is in my opinion incorrect to apply the general relationship
155 emerging from the long-term data for all individual events.

156 *If possible, please indicate the equation number of the relationship you are referring to
157 since it is unclear. If you are referring to Eq. (5), please note that $ECs(t_i)$ decreases
158 exponentially with increasing $F_{yw}(t_i)$ (since we construct a mixing relationship between
159 $F_{yw}(t_i)$ and $ECs(t_i)$, Kirchner, 2016b), but we do not have discharge in the equation.
160 Accordingly, we are not assuming that $ECs(t_i)$ decreases with increasing $Q(t_i)$. The fact
161 that $F_{yw}(t_i)$ increases with $Q(t_i)$ is a result of the paper (not an assumption) as visible in
162 Fig. 4 of the preprint (and consistent with results of Gallart et al. 2020b).

163 ** We are not referring to event water; we are referring to young water.

164 ***Also, we do not understand what are the measurements you have seen: are you
165 referring to the measurements of the three catchments reported in this manuscript? Are
166 you referring to measurements of your study catchments? Are you referring to specific
167 works published in literature? If so, it would be nice to know the temporal resolution of
168 measurements you are referring to (is it the same as our data?) and to see what the
169 boundary conditions of such measurements are (e.g., latitude, longitude, hydro-climatic
170 regime, mean annual precipitation, geology, catchment area, mean catchment elevation,
171 influence of human activities, presence of karst systems...) in order to have some concrete
172 material for discussion.

173 Looking at daily Q and EC data of our three catchments it is clear that the dominant
174 functioning is a decrease in $ECs(t_i)$ if $Q(t_i)$ increases and viceversa. This is visible from
175 Fig. 2 of the preprint, but also from an in-depth analysis we did and that we report
176 hereafter. Looking at what happens day-by-day in our data, we calculate the number of
177 days in which to an increase in stream discharge corresponds a decrease in ECs (i.e.,
178 $Q(t_{i+1}) - Q(t_i) > 0$ AND $ECs(t_{i+1}) - ECs(t_i) < 0$) OR in which to a decrease in stream
179 discharge corresponds an increase in ECs (i.e., $Q(t_{i+1}) - Q(t_i) < 0$ AND $ECs(t_{i+1}) - ECs(t_i) >$
180 0). Our results show that in 88%, 82% and 84% of the days at ERL, LUE and VOG
181 catchments, respectively, we observe this functioning. When this is not true, we calculate
182 the absolute difference in ECs in the two adjacent days (i.e., $ECs(t_{i+1}) - ECs(t_i)$). The
183 frequency distributions of these differences reveal a third quartile of 10.9, 6.8 and 4.8
184 $\mu\text{S}/\text{cm}$ for ERL, LUE and VOG, respectively. These are little differences if compared with
185 the range of variation of ECs in these catchments, ranging from about 80 $\mu\text{S}/\text{cm}$ to 400
186 $\mu\text{S}/\text{cm}$.

187 According to these results, we overall agree that ECs does not decrease with increasing
188 discharge at each time-step, but in our study catchments this happens only in a very
189 limited number of days over a study period of about 5 years. Nevertheless, this fact does
190 not affect the validity of Eq. (5) since we assume that $ECs(t_i)$ decreases exponentially with
191 increasing $F_{yw}(t_i)$, not with increasing $Q(t_i)$.

192 ****Hydrograph separation by using ECs has been applied in a previous study where
193 ECs decreases with increasing Q during both larger and smaller events (Cano-Paoli et al.
194 2019), and not only during larger events.

195 In conclusion, we think that it is limiting to evaluate the goodness of our method by only
196 considering its application in catchments studied during its own experience (of which we
197 do not have any information). Indeed, the behavior of such catchments turned out to be
198 different from other catchments studied in literature (e.g., Cano-Paoli et al. 2019) in
199 which the method, as it is, could potentially work well (as in the three alpine catchments
200 of our study).

201 The applicability of the method in catchments with different characteristics (e.g., in karst
202 systems with very soluble minerals or in catchments where ECs increases with Q) is a

203 possible future development of this work: at present, we have detailed the limitations of
204 the *EXPECT* method by explaining the conditions in which it can work fine or badly.

205 5. I agree that catchments with a greater number of runoff events (i. e. more frequent
206 higher discharge) likely have higher young water fraction. Therefore, I appreciate the idea
207 of calibrating separated **event/pre-event water components*** for all the events of period
208 used to determine the young water fractions to estimate the proportion of “young water
209 fractions” (see comment 2) in **individual events****. However, as I argue above, the EC
210 does not provide the reliable information. Furthermore, I think that isotopes (atoms of
211 elements forming water) and EC (ions of compounds saluted in water) may not provide the
212 same (compatible) information about the streamwater sources. Last but not least, catchment
213 runoff response is nonlinear. It is therefore questionable to assume that the young water
214 fractions of **individual events**** are proportional to distribution of the event water
215 fractions.

216 *We are calibrating the young/old water EC endmembers

217 **We are not looking at specific individual events: we are estimating daily (or sampling)
218 young water fractions. In both cases we use daily Q and ECs data. To work at the event-
219 scale, a finer (e.g., hourly) resolution data should be used.

220 Thank you for appreciating the idea of calibrating young/old water EC endmembers to
221 estimate the young water fractions at each time step. However, we do not agree about the
222 fact that ECs cannot provide reliable information. Of course, the use of ECs has some
223 limitations, and it should be used with care (see section 3.3 of the preprint), but our results
224 show the opposite of what you are saying. We have found consistency between the $F_{yw}(Q)$
225 relationship found by Gallart et al. 2020b (using only stable water isotopes
226 measurements) and our $F_{yw}(Q)$ relationship found by using both daily ECs measurements
227 and average young water fractions (estimated with the amplitude ratio approach) to
228 constrain the endmembers. Our results reveal a good compatibility of information.

229 Moreover, there are previous papers that conveniently used ECs and stable water
230 isotopes obtaining coherent results (e.g., Cano-Paoli et al. 2019, Mosquera et al. 2018).
231 Also, in a recent paper Riazi et al. (2022) said that water from different sources within
232 the catchment is likely to have different ages. Hence, EC can potentially provide useful
233 information on water age (lines 169-170 of the preprint).

234 Concluding, we report again the quote from Kirchner (2016b) about the synergic use of
235 young water fraction and reactive chemical species:

236 *“The young water fraction F_{yw} may also be helpful in inferring chemical processes
237 from streamflow concentrations of reactive chemical species. Many reactive species
238 exhibit clear concentration–discharge relationships. Because one can determine how
239 F_{yw} varies, on average, across different ranges of discharge, one can potentially
240 construct mixing relationships between F_{yw} and the concentrations of reactive*

241 *species. If the measurable range of F_{yw} is wide enough, one may even be able to*
242 *estimate the end-member concentrations corresponding to idealized “young water”*
243 *($F_{yw} = 1$) and “old water” ($F_{yw} = 0$)”.*

244 **Please be clearer (e.g., indicate the lines of the manuscript) about the fact that we assume**
245 **that “young water fractions of individual events are proportional to distribution of the**
246 **event water fractions”. We did not make this assumption (or we do not understand what**
247 **you are referring to).**

248 **References**

249 Cano-Paoli, K., Chiogna, G., and Bellin, A.: Convenient use of electrical conductivity
250 measurements to investigate hydrological processes in Alpine headwaters, *Science of The*
251 *Total Environment*, 685, 37–49, <https://doi.org/10.1016/j.scitotenv.2019.05.166>, 2019.

252 Gallart, F., Valiente, M., Llorens, P., Cayuela, C., Sprenger, M., and Latron, J.: Investigating
253 young water fractions in a small Mediterranean mountain catchment: Both precipitation forcing
254 and sampling frequency matter, *Hydrological Processes*, 34, 3618–3634,
255 <https://doi.org/10.1002/hyp.13806>, 2020a.

256 Gallart, F., von Freyberg, J., Valiente, M., Kirchner, J. W., Llorens, P., and Latron, J.: Technical note: An improved discharge sensitivity metric for young water fractions, *Hydrology*
257 and *Earth System Sciences*, 24, 1101–1107, <https://doi.org/10.5194/hess-24-1101-2020>,
259 2020b.

260 Kirchner, J. W.: Aggregation in environmental systems-Part 2: Catchment mean transit times
261 and young water fractions under hydrologic nonstationarity, *Hydrology and Earth System*
262 *Sciences*, 20, 299–328, <https://doi.org/10.5194/hess-20-299-2016>, 2016.

263 Klaus, J. and McDonnell, J. J.: Hydrograph separation using stable isotopes: Review and
264 evaluation, *Journal of Hydrology*, 505, 47–64, <https://doi.org/10.1016/j.jhydrol.2013.09.006>,
265 2013.

266 Mosquera, G. M., Segura, C., and Crespo, P.: Flow Partitioning Modelling Using High-
267 Resolution Isotopic and Electrical Conductivity Data, *Water*, 10, 904,
268 <https://doi.org/10.3390/w10070904>, 2018.

269 Riazi, Z., Western, A. W., and Bende-Michl, U.: Modelling electrical conductivity variation
270 using a travel time distribution approach in the Duck River catchment, Australia, *Hydrological*
271 *Processes*, 36, e14721, <https://doi.org/10.1002/hyp.14721>, 2022.

272 von Freyberg, J., Allen, S. T., Seeger, S., Weiler, M., and Kirchner, J. W.: Sensitivity of young
273 water fractions to hydro-climatic forcing and landscape properties across 22 Swiss catchments,
274 *Hydrology and Earth System Sciences*, 22, 3841–3861, <https://doi.org/10.5194/hess-22-3841-2018>, 2018.