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Abstract. In this paper, we anticipate geospatial population distributions to quantify the future number of people living in
earthquake-prone and tsunami-prone areas of Lima and Callao, Peru. We capitalize upon existing gridded population time
series data sets, which are provided on an open source basis globally, and implement machine learning models tailored for
time series analysis, i.e., Long Short-Term Memory-based (LSTM) networks, for prediction of future time steps. In detail, we
harvest WorldPop population data and learn LSTM and Convolutional LSTM models equipped with both unidirectional and
bidirectional learning mechanisms and derived from different feature sets, i.e., driving factors. To gain insights regarding the
competitive performance of LSTM-based models in this application context, we also implement multilinear regression and
Random Forest models for comparison. The results clearly underline the value of the LSTM-based models for forecasting
gridded population data: The most accurate prediction obtained with an LSTM equipped with a bidirectional learning scheme
features a root-mean-squared error of 3.63 people per 100 *100 meters grid cell, while maintaining an excellent model fit (R?

=0.995). We deploy this model for anticipation of population along a three-year interval until the year 2035. Especially in

areas of high peak ground acceleration of 207 — 210 22, the population is anticipated to experience a growth of almost 30 %
S

over the forecasted time span which simultaneously corresponds to 70 % of the predicted additional inhabitants of Lima. The
population in the tsunami inundation area is anticipated to grow by 61 % until 2035, which is substantially more than the
average growth of 35 % for the city. Uncovering those relations can help urban planners and policy makers to develop effective

risk mitigation strategies.

1 Introduction

Socio-natural disasters represent a perpetual peril to mankind. Such events frequently result in substantial losses. The
anticipated growth of the world population with a peak of 9.7 billion people in the year 2050 (United Nations, 2022) is expected
to expose more people to natural hazards than ever before (Iglesias et al., 2021; Cremen et al., 2022). The dynamic change of
geospatial population distributions due to both population growth and urbanization processes (UN Habitat, 2016), thus, induces
the need to constantly update and accurately anticipate future geospatial population distributions in hazard-prone areas. Such
approach enables urban planners and policymakers to develop effective strategies for risk mitigation. This need is also
embedded in the UN Sendai Framework for Disaster Risk Reduction, which explicitly stresses the importance of preparing for
future socio-natural disasters via strategies that minimize uncontrolled settlement development in areas at peril (UNISDR,

2015).
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As a key variable to characterize natural hazard-related exposure, obtaining geospatial data on population distribution is
essential. To anticipate future geospatial population distributions, different families of methods can be considered generally:
Rule-based methods establish a set of explicitly defined rules for transition trajectories over time. This family of methods
contains i) Cellular Automata techniques (Clarke, 2014) which represent discrete spatiotemporal dynamic systems based on
local rules; ii) Agent-based Modelling which simulates dynamic interactions among agents in a virtual environment (Abar et
al., 2017); iii) Markov Chain Models which represent a stochastic process that produces sequential states in which each
prediction is dependent on the previous state (Gagniuc, 2017).

However, especially recently, multiple authors used a second family of methods, i.e., techniques of Machine Learning (ML),
for predicting transition trajectories in the context of population modeling. The underlying idea is to infer a decision rule (e.g.,
a function) from properly encoded prior knowledge (i.e., labeled training samples) related to time series data to predict changes
(Zhu, 2023). For instance, Chen et al. (2020) integrate historical population maps and multiple machine learning algorithms,
i.e., XGBoost, Random Forest (RF), and a multi-layer perceptron neural network, to predict future built-up land and population
distributions. Kubota et al. (2022) implemented a Graph Convolutional Network for short-term population prediction based
on population count data collected through mobile phone signals. Zheng and Zhang (2020) implement a Convolutional LSTM
(ConvLSTM) network for weekly population distribution prediction based on geolocated social media data, i.e., Tencent
positioning data.

Generally, earth observation data are very valuable to measure changes on the land surface in a spatially continuous way over
long time frames (Koehler and Kiinzer, 2020). Multiple authors deployed such data sets in combination with advanced ML
techniques to anticipate land-use and land-cover expansion (e.g., Zhu et al., 2021 a, b; Wang et al., 2022). By integrating earth
observation data, different initiatives offer continuous gridded geospatial population data over a long time frame: WorldPop
(Lloyd et al., 2017; Stevens et al., 2015), and LandScan (Dobson et al., 2000) provide yearly geospatial population estimates
starting in the year 2000. The data sets are created with a top-down approach by disaggregating census information based on
earth observation imagery and ancillary spatial covariates. In this study, from a data-oriented perspective, we mitigate the
often expensive process of compiling time series data through innovatively make use of existing time series global population
data sets, which are provided on an open source basis, to anticipate future geospatial population distributions along a three-
year interval up to the year 2035.

From a methodological point of view, we implement advanced ML models tailored for time series analysis, i.e., Long Short-
Term Memory-based (LSTM) networks (Hochreiter and Schmidhuber, 1997). We follow different model configurations to
exploit the sequential nature of the training data: we use unidirectional and bidirectional learning mechanisms. The first
mechanism analyzes the input data in a sequence from the first time step to the last, whereas the latter mechanism additionally
considers the reversed sequence from the last time step to the first, respectively. Moreover, to explicitly enable spatiotemporal
modeling, i.e., encode topological and spatial contextual relationships, we also implement ConvLSTM models (Shi et al.,
2015). Consequently, in the experimental evaluation, we exhaustively disentangle the prediction accuracies as a function of
the actual prediction model, the learning mechanism, and the deployed driving factors, i.e., different feature sets used for the
prediction, respectively. Experimental results are obtained from Peru’s capital Lima and Callao, which features a high
population dynamic. To gain insights regarding the competitive performance of LSTM-based models in this application
context, we also deploy multilinear regression (MLR) and RF models for comparison.

Regarding the application context of this study, solely a few works explicitly focused on applying time series ML methods for
mapping future natural hazard-related exposure and vulnerability. For instance, Johnson et al. (2021) simulated future urban
land use changes up to the year 2050 with a trend-based logistic regression cellular automata model and evaluate potential
flood exposure for the Philippines. Scheuer et al. (2021) model residential-choice behavior on a city level and examine how
this process can translate into future trends regarding exposure, vulnerability, and risk. Calderon and Silva (2021) forecast the

spatial distribution of population and residential buildings for the assessment of future seismic risk based on geographically
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weighted regression and multiple-agent systems for Costa Rica. Here, from an epistemological point of view, we uniquely
combine the forecasted population data with earthquake and tsunami hazard models to quantify the future number of people
living in earthquake-exposed and tsunami-exposed areas in Lima and Callao, Peru.

The remainder of the paper is organized as follows. In Sect. 2 we detail the proposed methodology. We describe the study area

and experimental setup in Sect. 3. Experimental results are revealed in Sect. 4 and concluding remarks are given in Sect. 5.

2 Material and Methods

Figure 1 provides an overview of the proposed workflow for spatiotemporal forecasting of population data and quantification
of exposure. First, multitemporal gridded population data is compiled and aligned to a set of geospatial covariates, i.e., driving
factors. The data is fed into the LSTM-based models to establish a population forecast. The modelled future population is
utilized with hazard models to quantify the number of people living in earthquake-exposed and tsunami-exposed areas in Lima

and Callao, Peru, in the year 2035.
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Figure 1: General workflow for the spatiotemporal forecasting of population data in earthquake and tsunami-exposed areas of
Lima and Callao, Peru.

2.1 Multitemporal gridded population data

As the key input variable for the spatiotemporal forecasting of population, we harvest multitemporal gridded population data
from the WorldPop initiative (Lloyd et al., 2017; Stevens et al., 2015). The data set consists of annual multitemporal gridded
population data with a spatial resolution of 100 meters for the period 2000-2020, which describes the residential population
(Fig. 2). Thereby, WorldPop provides population counts adjusted to the United Nations population estimations (United
Nations, 2022). The data set was created with a regression-tree-based semi-automated dasymetric modeling approach. First, a
weighting layer was created with an RF approach and multiple spatial covariates, including country-specific census counts,
land cover, Digital Flevation Model (DEM), nighttime lights, net primary productivity, weather data, road networks,
waterbodies and waterways, protected areas, and ‘facility’ locations such as hospitals, schools etc. The modeled layer was
subsequently deployed to perform a dasymetric redistribution of the census counts at a country level (Stevens et al., 2015).

Actual census counts are redistributed from the smallest available administrative unit to the population grid with a higher
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spatial resolution. The modeled layer determines the weight of the population for each grid cell. Figure 2 also displays the
absolute population change per grid cell for the time interval 2000-2020. It is traceable that the core of the settlement area
faced a decrease in population, while the vast majority of grid cells document an increase in population over the last two

decades.

population 2000 population 2020 population change

10 20 km Absolut population per pixel (100 m) Absolut population change 2000 - 2020
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Figure 2: Starting point (population of the year 2000) and end point (population of the year 2020) of the annual gridded
population WorldPop time series data, which serves as input for the forecasting models, and corresponding visualized absolute
population change between 2000-2020 for Lima and Callao, Peru.

2.2 Driving factors

We compute a set of geospatial covariates, i.e., driving factors, for spatiotemporal forecasting of population data. The driving
factors are either time-variant or time-invariant (Fig. 3). Time-variant driving factors vary substantially over time and must
thus be computed consistently along the timely resolution of the time series data, whereas the latter remain rather static over
time. Land cover is an important driving factor for describing urban dynamics. The Moderate Resolution Imaging
Spectroradiometer (MODIS) Land Cover data (Fig. 3a) from the National Aeronautics and Space Administration (NASA) has
been provided annually since 2001 and thus matches the temporal resolution of the population data (Friedl and Sulla-Menashe,
2019). We group the thematic classes of the data set into four distinctive categories, i.e., “vegetation” “built-up”, “barren”, and
“water”. From this multi-class data set, we created one-hot layers for each of the four thematic classes to be used as input for
the models. Besides, the data feature a spatial resolution of 500 meters, which corresponds to the coarsest resolution among
all used input features. Consequently, we compute the second time-variant driving factor, i.e., distance to the boundary of
built-up areas (Fig. 3b) based on the Euclidean distance function, by deploying the higher spatially resolved multitemporal
gridded population data sets (Sect. 2.1). Especially the natural conditions of an area shape geospatial change trajectories. One
very important geographic input factor for population dynamics is the terrain since human settlements mostly appear on terrains
with flat or solely moderate slopes (Dobson et al., 2000). In this study, we used the Copernicus DEM (ESA, 2022), provided
by the European Space Agency (ESA), with a spatial resolution of 30 meters to compute slope estimates (Fig. 3c). The
Copernicus DEM data set also contains information about water bodies. We combined the data with the water bodies contained
in the OpenStreetMap (OSM) data set (2022) to compute a layer indicating the distance to water for the study area (Fig. 3d).

The OSM data set also served for the compilation of geospatial vector data representing roads and computing distances thereof

4
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(Fig. 3e). Lastly, we also computed a distance grid to the city center. In this study, we defined the center of our study area as
a point coordinate situated between the current central business district and the historic city center, i.e., the Centro Historico
of Lima (Fig. 3f). The compilation of a powerful and exhaustive set of geospatial covariates is frequently a challenge in the
context of implementing a robust study design. For instance, Zhu (2023) lists more than 50 predictor variables which were
employed in existing studies of land use and land cover prediction. Here, the collected driving factors represent frequently
adopted variables in studies of predicting geospatial change trajectories (Gomez et al. 2020; Liu et al. 2017; Pijanowski et al.
2002). In detail, we internalize the main variable categories (Zhu, 2023), i.e., land use-related variables (Fig. 3a-b,f),

environmental variables (Fig. 3c,d), infrastructural variables (Fig. 3¢), as well as socio-economic variables (Fig. 2).

TIME-VARIANT TIME-INVARIANT

land cover (2020) slope distance to water

.vegetation . built-up barren - water

o [N ____I

distance to boundary of built-up (2020) distance to roads distance to city center
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Figure 3: Driving factors deployed for spatiotemporal forecasting of population data.
2.3 LSTM-based models

The population data of time steps t4, t,, ..., t, and the corresponding driving factors are concatenated as the input for the LSTM
models, which map the input to a prediction of the population at time step ¢, ;. Generally, LSTM models belong to the family
of recurrent neural networks (RNN). The latter represents a generalization of feedforward neural networks with internal
memory and which are designed to process sequential information (Rumelhart et al., 1986). RNNs model the input as
sequentially arranged time steps while preserving the information of each past element as state memory in the hidden unit
(LeCun et al., 2015). Such networks are referred to as recurrent, since the architecture is repeated over the time steps, whereby
the weights are shared in the different temporal layers and the underlying function remains fixed over all time steps (Aggarwal,
2018). However, Hochreiter and Schmidhuber (1997) introduced LSTM networks to overcome the problem of vanishing

gradients. LSTM networks are equipped with complex blocks as hidden layers. Those blocks implement gates and memory

5
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cells, which control the flow of information and accumulate the state information in order to obtain the capability of long-term
memory. The blocks, or the so-called ‘LSTM-cells’, contain an internal recurrence mechanism additional to the outer
recurrence mechanism of the RNN (Goodfellow et al., 2016). Thus, LSTMs can be considered for sequence learning and
forecasting, especially when long-term dependencies should be encoded from the input data. The main model architecture
comprises an LSTM unit with the equations in (1):

ip = o(WyiXe + WyiHp g + W0 Gy + by) (1)
fe = oWy Xy + WypHe g + Wep o Coyq + by)

Ce = fro Coq + iy o tanh(Wyc Xy + Wy X1 + be)

0r = 0(Wyo Xy + WioHp—q + Weo © G + by)

H; = o; o tanh(C,)

where X, represents the input to the cell, C; the memory state, and H, the hidden state. The notation ‘o’ denotes the Hadamard
product or element-wise product. In the equations, i, f;, and o, refer to the input, forget, and output gates, respectively, t is
the time-step, o the sigmoid activation function, tanh the hyperbolic tangent function, and W are the weight matrices and b
the biases, respectively (Fig. 4a).

To enable spatiotemporal modeling, we also employed ConvLSTMs. ConvLSTMs further contain convolutional structures
with respect to both the input-to-state and state-to-state transitions. Thus, ConvLSTMs predict the future state of an entity
(e.g., image pixel) from the current and past states of its surrounding entities (Shi et al., 2015). The inputs, cell outputs, hidden
states, and gates are 3-dimensional tensors with rows and columns of the 2-dimensional input image as the last two dimensions.
The internal operations thus use convolutions, which encode the spatial information (ibid.). The architecture of a ConvLSTM
is similar to an LSTM with the addition of the convolutional operator (Fig. 4b). Equations in (2) describe the ConvLSTM,
which differ from the LSTM equations regarding the convolution operator, denoted by “*’:

ip =Wy xXe + Wy * Hey + Wi 0 Coy + by) (2)

fe = U(fo * Xy + WhpxHeq + Wepo Ceq + bf)

Ce = fro Gy + iy o tanh(Wye * Xy + Wi * X¢—q + be)

0 = 0(Wyo * Xy + Wi * H_q + Weo 0 Cp + by)

H; = o; o tanh(C,)
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Figure 4: Implemented LSTM components and network architectures: a) LSTM cell, b) ConvLSTM cell, c¢) unidirectional forward
network, and d) bidirectional network.

In this study, we train both models with a unidirectional forward (Fig. 4c) and bidirectional (Fig. 4d) learning mechanism,
respectively. x; refers to the input data stacks for the chosen input years, i.e., Xy, X5, X3, ..., X, Y and z; are the generated
output vectors at each time step, with the chosen hidden dimension of 64. For the bidirectional network, the forward layer
outputs y, are computed iteratively using the input data in a sequence from the first time step to the last, while the backward
layer outputs z, are calculated from a reversed sequence of the inputs from the last time step to the first. To retrieve a one-
dimensional output that represents the predicted population number p,,,; at time step n + 1, a linear layer is applied to the last
output vectors. For the bidirectional networks the last outputs y,, and z, are concatenated. The ConvLSTM networks have the

same architecture as in Fig. 4 c-d, but with convolutional operations included in the ConvLSTM cells as shown in (Fig. 4b).

2.4 Hazard models: Earthquake and Tsunami

The RIESGOS 2.0 project, which focuses on the creation of scenario-based multi-risk assessment in the Andes region, provided
earthquake and tsunami simulation data for this study (RIESGOS, 2022). The simulations are based on the historical
earthquake of the year 1746 with an off-shore epicenter and a magnitude of 8.9 (Gomez-Zapata et al., 2021). To assess the
population affected by this earthquake and correspondingly triggered tsunami, spatially distributed peak ground accelerations
(Fig. 5a) and maximum flow depths (Fig. 5b) are used, respectively. The ground motion fields are generated based on ground
motion prediction equations according to Montalva et al. (2017). The tsunami simulations (Androsov et al., 2023) are based
on parameters proposed by Jimenez et al. (2013). The two data sets are provided with 1-kilometer and 10-meter spatial
resolution, respectively, and we resampled the data sets to the spatial resolution of 100 meters of the population grid for the

exposure analysis.
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Figure 5: Considered hazard models: (a) peak ground acceleration characterizing the historical earthquake of 1746 with an off-
shore epicenter and a magnitude of 8.9 and (b) corresponding tsunami characterized by maximum flow depth.

3 Experimental Setup

As aforementioned, the study area comprises the settlement area of Peru’s capital Lima and the neighboring province of Callao,
which has a spatial coverage of approximately 6500 square kilometers. We reprojected all data sets to the WorldPop projection
EPSG:4326, the World Geodetic System 1984, and resampled to the spatial resolution of 100 meters of the gridded population
data. We normalized all layers individually and stacked them to a multidimensional array of the shape (20, 10, 888, 888).
Thereby, the first position carries the twenty years of gridded population data, whereas the second position contains the driving
factors, while establishing an image size of 888 * 888 elements. The WorldPop time series data is deployed along a three-year
interval (which provides a suitable tradeoff here between the forecasting capability of the model and having a sufficient number
of time steps available for training the model) and split into training data set and validation data set along the temporal
dimension. The training data set contains the earlier six time steps (2002, 2005, ..., 2017), whereas the validation data set
contains the later six time steps (2005, 2008, ..., 2020) of the time series. In both training and validation data sets, we used the
variables of the first five time steps as input and the last time step as the ground truth. As such, the target of the training data
set is to predict the population of the year 2017, and the goal of the validation data set is to forecast the population map for the
year 2020. (Fig. 6).

We carried out experiments with three sets of driving factors deployed for forecasting: i) all driving factors described in Sect.
2.2; ii) solely the time-invariant driving factors, i.e., slope, and distances to water bodies, roads, and the city center,
respectively; iii) the population data only. Here it can be noted that the latter two reduced sets of variables enable the prediction
of multiple time steps in the future. When including also time-variant driving factors, i.e., land cover and distance to the
boundary of built-up areas, solely one future time step can be predicted: a model learns the changes between a specific time
interval and can thus predict the same time interval in the future. Equation (3) describes this relation:

b1 =ty 3)

with t,,,; being the forecasted year, t, the year of the last input, and i the interval size. Here, we trained all models with an
interval i of three years including every third year as training data from the WorldPop time series data. To be more specific, if
we input the years 2008, 2011, 2014, 2017, and 2020, the model is expected to produce an estimation for the year 2023.

Subsequently, the year 2026 can be forecasted with the data of the year 2023 as input. The time-invariant driving factors can
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be assumed to be valid for 2023 too, and we predicted the corresponding population data prior. In contrast, no valid estimates
for 2023 are available regarding the time-variant driving factors. Thus, excluding the time-variant driving factors from the
training enables iterative predictions of multiple intervals. We implemented the sliding time window approach similarly to the

forecasting strategy deployed by Wang and Lee (2021). A corresponding scheme is displayed in Fig. 6.

AVAILABLE TIME SERIES

Training
Validation
Forecasting
Forecasting
Forecasting
Forecasting

Forecasting

Available years used for training Sliding time window
Forecasted years used for training

Forecasted year

Figure 6: Forecasting concept: the training data set utilizes the earlier six time steps (e.g., 2002, 2005, ..., 2017), whereas the
validation data set utilizes the later six time steps (e.g., 2005, 2008, ..., 2020) of the time series. We used the variables of the first
five time steps as input and the last time step as the ground truth labels. The aim of the training data set is to predict the
population of the year 2017, and the aim of the validation data set is to forecast the population map for the year 2020, respectively.
Forecasting beyond the year 2023 is obtained with a sliding time window strategy, where previous forecasted years are deployed
for model training (adapted from Wang and Lee, 2021).

We trained all the tested models for 50 epochs, used Adam as optimizer, implemented mean squared error loss as loss function,
and set the initial learning rate to 0.0012. We reduced the learning rate by the factor 0.1 through a learning rate scheduler when
the error reached a minimum plateau. To evaluate the proposed framework, we adopted two baseline methods, i.e., MLR and

RF. Thereby, we tuned the hyperparameters of RF heuristically as follows: ntree = 500 and mtry = 1,2, ---,51.

4 Experimental Results and Discussion
4.1 Model evaluation

To provide a first comparative overview regarding prediction accuracy, Fig. 7 contains scatter plots of the different methods
for the predicted year 2020. Thus, it illustrates the deviations of the forecasts (y-axis) concerning the actual population values
(x-axis). Each point corresponds to one grid cell in the study area. The color coding reflects the point density in %, the red line
is the regression line of forecasts and population values, and the black line corresponds to the identity line where y = x,
respectively. It reveals that all models feature a substantial concentration of the density along the identity line, which underlines
the overall validity of this study’s setup. However, traceable differences regarding the different models exist. The majority of
the baseline models based on linear regression and RF feature a lower point density along the identity line compared to the
LSTM-based models, especially for grid cells with medium and high population values. The corresponding root-mean-squared
error (RMSE) values also clearly indicate that the LSTM-based models outperform both the ConvLSTM models and the
baseline methods. In detail, the uncertainty in terms of RMSE could be reduced from 4.298 (RF), 4.109 (MLR), and 3.946
(ConvLSTM - bidirectional), respectively, to 3.629 (LSTM - bidirectional) while maintaining an excellent model fit (R? =

0.995). Along this line of models, this corresponds to an increase of more than 14 percentage points in terms of model accuracy.
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It can be noted that using the static features for the baseline models, i.e., MLR and RF, and solely deploying the population
data for the LSTM and ConvLSTM with bidirectional learning mechanism enabled the respective best predictions.
Counterintuitively, the LSTM models outperform the ConvLSTM models unambiguously. Past works showed that the
inclusion of additional spatial context information via ConvLSTMs can be beneficial for increasing prediction accuracy (Shi
et al., 2015; Gavahi et al., 2021). However, in our idiosyncratic data setting, some inconsistencies in the WorldPop data can
be found: water bodies, conservation areas, or industry districts were traceably not masked during the disaggregation, which
lead to mostly non-zero grid cell values in these areas. Solely individual grid cells lying in these regions hold zero values in
the WorldPop data. All convolutional models predict these grid cells with non-zero population, as they learn from the
surrounding grid cells. This can be seen in Fig. 7 at x = 0, where the actual population is zero, but the prediction differs quite
strongly. Nevertheless, across all models, MAE values indicate a deviation of less than three people per grid cell, which stresses

the overall soundness of this study’s setup.
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Figure 7: Scatter plots and corresponding error measures, i.e., mean absolute error (MAE), median absolute error (MedAE),
RMSE, and R?, respectively, for the predicted year 2020 as a function of the actual prediction model, the learning mechanism, and
the deployed driving factors.

Figure 8 provides prediction differences to the actual numbers of 2020 from a spatial perspective. Grid cells with overestimated
population numbers are colored in green, whereas grid cells with underestimated population numbers are colored in red.
Thereby, it can be traced that the LSTM-based and ConvLSTM-based predictions overestimate population numbers for the
majority of grid cells, while both the MLR-based and RF-based predictions underestimate population numbers for the majority
of grid cells (also revealed by the regression line in Fig. 7). However, both the LSTM-based models and ConvLSTM-based
models follow consistently the overall trend of an area: in tendency, they exaggerate population numbers in areas of an
increasing population and underestimate population numbers in areas of a decreasing population (see also Fig. 2 for a
visualization of areas of increasing and decreasing population numbers in Lima and Callao). MLR-based and RF-based
predictions do not reflect this overall trend, whereby over- and underestimations are more dispersedly distributed across the

study area.
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Figure 8: Maps of prediction differences of the models with respect to the actual numbers of 2020.
4.2 Population forecasting

We carried out the actual population forecasting, which is deployed for the subsequent exposure analysis, based on the most
favorable model, i.e., the LSTM learned on the population data with a bidirectional learning mechanism. We implemented this
model in our forecasting concept (Fig. 6), where forecasting beyond the year 2023 is obtained with a sliding time window
strategy, i.e., previously forecasted years are deployed for model training. Figure 9 displays both the forecasted population and
the change between subsequent time steps until the year 2035. Thereby, the population increases by about 3.6 million, which

accounts for 35 % of Lima’s population in 2020.
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Figure 9: The upper part provides a visualization of the WorldPop data for the year 2020 and forecasted population until the year
2035 along a three-year interval. The lower part contains the corresponding predicted change of the population for the different
time intervals.

4.3 Exposed future population

The hazard models (Sect. 2.4) and the predicted population distribution (Sect. 4.2) are deployed to compute the future
population count as a function of different hazard intensity levels. Figure 10 provides accumulated population numbers for
different levels of peak ground acceleration (a) and maximum flow depth (b) along the 3-year time interval. It can be observed
that the majority of future population, i.e., 12.5 million inhabitants, lives in areas of a high peak ground acceleration, i.e., PGA
> 207 m/s% These numbers of future exposed population are induced by a growth of almost 30 % over the forecasted time
span. This is less than the 35 % growth in the whole Lima Metropolitan area. However, already today more than 82 % of
Lima’s inhabitants reside in these districts. Consequently, this growth accounts for more than 70 % of the predicted additional
people in Lima. Furthermore, more than 600,000 people are anticipated to live in areas which are at peril of a maximum
tsunami flow depth of more than two meters. The population in the tsunami inundation area will grow by 61 % until 2035,
much more than the average growth of 35 %. Waves of up to 20 meters are modeled, and most of the affected people would
be hit by waves of from 6 to 11 meters. The areas with the largest modeled waves of more than 12 meters only have a small

part of the population today, but these will even double in the forecasted 15 years.
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Figure 10: Predicted number of people affected by different hazard intensity levels along a 3-year interval (2002-2035) regarding
earthquake (a) and tsunami (b).

The forecasted spatial distribution of the population along with hazard intensities is visualized in Fig. 11 from a south-western
viewing angle. We aggregated the grid cells from the 100-meter resolution to a 1-kilometer resolution for visual representation.
The visual inspection uncovers new future hot spots of the exposed population, i.e., areas that face simultaneously high
population increases and severe hazard intensities, such as Lima and Callao’s north-western and south-western settlement
areas along the coastline. Anticipating those patterns can help urban planners and policy makers to proactively develop
effective strategies for risk mitigation. For instance, the created information about exposed population can be part of modern
decentralized information systems for (multi)-risk assessment (Schopfer et al., 2023). Here, one core element is to enable end
users to explore various scenarios (“stories”) of multiple hazards, cascading effects and their impacts by quantifying different
what-if scenarios. Utilizing such a narrative-driven methodology empowers individuals to replicate diverse situations within a
predetermined, multi-risk context, enabling them to assess and contrast outcomes. This multi-scenario approach proves
invaluable for crafting strategies that fortify or enhance resilience, evaluating the effectiveness of proposed or already executed
measures (e.g., benchmark scenarios) in the face of various hazard scenarios (acting as a 'stress test'), or in response to evolving
conditions. Thereby, the importance of implementing mechanisms to visualize epistemic and aleatory uncertainties of the risk

assessment procedure in graphical form is stressed to allow appropriate communication with end users.
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5 Conclusions and Outlook

In this paper, we learned population-related geospatial change trajectories over time and provide population forecasts for Peru’s
capital Lima and Callao to identify future hotspots of earthquake and tsunami exposure. The experimental results underline
the superior performance of temporal models, i.e., LSTM-based networks, in accurate forecasting of the changes in population
distribution. Given that the source dataset of the tested data is openly accessible and has global coverage, our workflow can
be generalized to forecast population changes in other locations with solely a few adaptations (e.g., determine the best model
hyperparameters empirically for a specific area/data set) for optimal forecasting accuracies.

Several extensions can be explored in future work: foremost it is crucial to obtain a picture on future risks and not solely on
aspects of the exposure, i.e., the population at risk. This would require the collection of time series data for model training
with multiple risk-related target variables including population, building types, occupancies, among others, to also align
vulnerability information, i.e., earthquake and tsunami-related fragility functions. Thus, a more thorough forecasting of future
earthquake and tsunami risks can be conducted. From a methodological point of view, the consideration of multiple risk-related
target variables also enables the development of multitask learning models, which can encode interdependencies between the
considered target variables to enhance the prediction accuracy (GeiB et al., 2022). Also, a multitask model is able to learn the

time-variant driving factors for enhanced forecasts and, thus, drawing a more robust picture of future risks.
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