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Abstract. In this paper, we anticipate geospatial population distributions to quantify the future number of people living in 

earthquake-prone and tsunami-prone areas of Lima and Callao, Peru. We capitalize upon existing gridded population time 15 

series data sets, which are provided on an open source basis globally, and implement machine learning models tailored for 

time series analysis, i.e., Long Short-Term Memory-based (LSTM) networks, for prediction of future time steps. In detail, we 

harvest WorldPop population data and learn LSTM and Convolutional LSTM models equipped with both unidirectional and 

bidirectional learning mechanisms and derived from different feature sets, i.e., driving factors. To gain insights regarding the 

competitive performance of LSTM-based models in this application context, we also implement multilinear regression and 20 

Random Forest models for comparison. The results clearly underline the value of the LSTM-based models for forecasting 

gridded population data: The most accurate prediction obtained with an LSTM equipped with a bidirectional learning scheme 

features a root-mean-squared error of 3.63 people per 100 *100 meters grid cell, while maintaining an excellent model fit (R2 

= 0.995). We deploy this model for anticipation of population along a three-year interval until the year 2035.. Especially in 

areas of high peak ground acceleration of 207 − 210
୫

ୱమ, the population will experience a growth of almost 30 % over the 25 

forecasted time span which simultaneously corresponds to 70 % of the predicted additional inhabitants of Lima. The population 

in the tsunami inundation area will grow by 61 % until 2035, which is substantially more than the average growth of 35 % for 

the city. Uncovering those relations can help urban planners and policy makers to develop effective risk mitigation strategies. 

1 Introduction 

Socio-natural disastersSocio-natural disasters represent a perpetual peril to mankind. Such events frequently result in 30 

substantial losses. The anticipated growth of the world population with a peak of 9.7 billion people in the year 2050 (United 

Nations, 2022) is expected to expose more people to natural hazards than ever before (Iglesias et al., 2021; Cremen et al., 

2022). The dynamic change of geospatial population distributions due to both population growth and urbanization processes 

(UN Habitat, 2016), thus, induces the need to constantly update and accurately anticipate future geospatial population 

distributions in hazard-prone areas. Such approach enables urban planners and policymakers to develop effective strategies for 35 

risk mitigation. This need is also embedded in the UN Sendai Framework for Disaster Risk Reduction, which explicitly stresses 

the importance of preparing for future socio-natural disastersdisasters via strategies that minimize uncontrolled settlement 

development in areas at peril (UNISDR, 2015).  

As a key variable to characterize natural hazard-related exposure, obtaining geospatial data on population distribution is 

essential. To anticipate future geospatial population distributions, different families of methods can be considered generally: 40 
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Rule-based methods establish a set of explicitly defined rules for transition trajectories over time. This family of methods 

contains i) Cellular Automata techniques (Clarke, 2014) which represent discrete spatiotemporal dynamic systems based on 

local rules; ii) Agent-based Modelling which simulates dynamic interactions among agents in a virtual environment (Abar et 

al., 2017); iii) Markov Chain Models which represent a stochastic process that produces sequential states in which each 

prediction is dependent on the previous state (Gagniuc, 2017).  45 

However, especially recently, a second family of methods, i.e., techniques of Machine Learning (ML), were also utilized for 

predicting transition trajectories in the context of population modeling. The underlying idea is to infer a decision rule (e.g., a 

function) from properly encoded prior knowledge (i.e., labeled training samples) related to time series data to predict changes 

(Zhu, 2023). For instance, Chen et al. (2020) integrate historical population maps and multiple machine learning algorithms, 

i.e., XGBoost, Random Forest (RF), and a multi-layer perceptron neural network, to predict future built-up land and population 50 

distributions. Kubota et al. (2022) implemented a Graph Convolutional Network for short-term population prediction based 

on population count data collected through mobile phone signals. Zheng and Zhang (2020) implement a Convolutional LSTM 

(ConvLSTM) network for weekly population distribution prediction based on geolocated social media data, i.e., Tencent 

positioning data.  

Generally, earth observation data were recognized to be very valuable to measure changes on the land surface in a spatially 55 

continuous way over long time frames (Koehler and Künzer, 2020). Such data sets were used in combination with advanced 

ML techniques to anticipate land-use and land-cover expansion (Zhu et al., 2021 a, b; Wang et al., 2022). By integrating earth 

observation data, different initiatives offer continuous gridded geospatial population data over a long time frame: WorldPop 

(Lloyd et al., 2017; Stevens et al., 2015), and LandScan (Dobson et al., 2000) provide yearly geospatial population estimates 

starting in the year 2000. The data sets are created with a top-down approach by disaggregating census information based on 60 

earth observation imagery and ancillary spatial covariates. In this study, from a data-oriented perspective, we mitigate the 

often expensive process of compiling time series data through innovatively make use of existing time series global population 

data sets, which are provided on an open source basis, to anticipate future geospatial population distributions along a three-

year interval up to the year 2035.  

From a methodological point of view, we implement advanced ML models tailored for time series analysis, i.e., Long Short-65 

Term Memory-based (LSTM) networks (Hochreiter and Schmidhuber, 1997). We follow different model configurations to 

exploit the sequential nature of the training data: we use unidirectional and bidirectional learning mechanisms. The first 

mechanism analyzes the input data in a sequence from the first time step to the last, whereas the latter mechanism additionally 

considers the reversed sequence from the last time step to the first, respectively. Moreover, to explicitly enable spatiotemporal 

modeling, i.e., encode topological and spatial contextual relationships, we also implement ConvLSTM models (Shi et al., 70 

2015). Consequently, in the experimental evaluation, we exhaustively disentangle the prediction accuracies as a function of 

the actual prediction model, the learning mechanism, and the deployed driving factors, i.e., different feature sets used for the 

prediction, respectively. Experimental results are obtained from Peru’s capital Lima and Callao, which features a high 

population dynamic. To gain insights regarding the competitive performance of LSTM-based models in this application 

context, we also deploy multilinear regression (MLR) and RF models for comparison. 75 

Regarding the application context of this study, solely a few works explicitly focused on applying time series ML methods for 

mapping future natural hazard-related exposure and vulnerability. For instance, Johnson et al. (2021) simulated future urban 

land use changes up to the year 2050 with a trend-based logistic regression cellular automata model and evaluate potential 

flood exposure for the Philippines. Scheuer et al. (2021) model residential-choice behavior on a city level and examine how 

this process can translate into future trends regarding exposure, vulnerability, and risk. Calderon and Silva (2021) forecast the 80 

spatial distribution of population and residential buildings for the assessment of future seismic risk based on geographically 

weighted regression and multiple-agent systems for Costa Rica. Here, from an epistemological point of view, we uniquely 
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combine the forecasted population data with earthquake and tsunami hazard models to quantify the future number of people 

living in earthquake-exposed and tsunami-exposed areas in Lima and Callao, Peru. 

The remainder of the paper is organized as follows. In Sect. 2 we detail the proposed methodology. We describe the study area 85 

and experimental setup in Sect. 3. Experimental results are revealed in Sect. 4 and concluding remarks are given in Sect. 5. 

2 Material and Methods 

Figure 1 provides an overview of the proposed workflow for spatiotemporal forecasting of population data and quantification 

of exposure. First, multitemporal gridded population data is compiled and aligned to a set of geospatial covariates, i.e., driving 

factors. The data is fed into the LSTM-based models to establish a population forecast. The modelled future population is 90 

utilized with hazard models to quantify the number of people living in earthquake-exposed and tsunami-exposed areas in Lima 

and Callao, Peru, in the year 2035. 

 

Figure 1: General workflow for the spatiotemporal forecasting of population data in earthquake and tsunami-exposed areas of 
Lima and Callao, Peru.  95 

2.1 Multitemporal gridded population data 

As the key input variable for the spatiotemporal forecasting of population, we harvest multitemporal gridded population data 

from the WorldPop initiative (Lloyd et al., 2017; Stevens et al., 2015). The data set consists of annual multitemporal gridded 

population data with a spatial resolution of 100 meters for the period 2000-2020, which describes the residential population 

(Fig. 2). Thereby, WorldPop provides population counts which were adjusted to the United Nations population estimations 100 

(United Nations, 2022). The data set was created with a regression-tree-based semi-automated dasymetric modeling approach. 

First, a weighting layer was created with an RF approach and multiple spatial covariates, including country-specific census 

counts, land cover, Digital Elevation Model (DEM), nighttime lights, net primary productivity, weather data, road networks, 

waterbodies and waterways, protected areas, and ‘facility’ locations such as hospitals, schools etc. The modeled layer was 

subsequently deployed to perform a dasymetric redistribution of the census counts at a country level (Stevens et al., 2015). 105 

Actual census counts are redistributed from the smallest available administrative unit to the population grid with a higher 

spatial resolution. The modeled layer determines the weight of the population for each grid cell. Figure 2 also displays the 
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absolute population change per grid cell for the time interval 2000-2020. It is traceable that the core of the settlement area 

faced a decrease in population, while the vast majority of grid cells document an increase in population over the last two 

decades. 110 

 

Figure 2: Starting point (population of the year 2000) and end point (population of the year 2020) of the annual gridded 
population WorldPop time series data, which serves as input for the forecasting models, and corresponding visualized absolute 

population change between 2000-2020 for Lima and Callao, Peru. 

Figure 2: Starting point (population of the year 2000) and end point (population of the year 2020) of the annual gridded 115 
population WorldPop time series data, which serves as input for the forecasting models, and corresponding visualized absolute 

population change between 2000-2020 for Lima and Callao, Peru. 

2.2 Driving factors 

We compute a set of geospatial covariates, i.e., driving factors, for spatiotemporal forecasting of population data. The driving 

factors are either time-variant or time-invariant (Fig. 3). Time-variant driving factors vary substantially over time and must 120 

thus be computed consistently along the timely resolution of the time series data, whereas the latter remain rather static over 

time. Land cover is an important driving factor for describing urban dynamics. The Moderate Resolution Imaging 

Spectroradiometer (MODIS) Land Cover data (Fig. 3a) from the National Aeronautics and Space Administration (NASA) has 

been provided annually since 2001 and thus matches the temporal resolution of the population data (Friedl and Sulla-Menashe, 

2019). We group the thematic classes of the data set into four distinctive categories, i.e., “vegetation” “built-up”, “barren”, and 125 

“water”. From this multi-class data set, one-hot layers were created for each of the four thematic classes to be used as input 

for the models. Besides, the data feature a spatial resolution of 500 meters, which corresponds to the coarsest resolution among 

all used input features. Consequently, we compute the second time-variant driving factor, i.e., distance to the boundary of 

built-up areas (Fig. 3b) based on the Euclidean distance function, by deploying the higher spatially resolved multitemporal 

gridded population data sets (Sect. 2.1). Especially the natural conditions of an area shape geospatial change trajectories. One 130 

very important geographic input factor for population dynamics is the terrain since human settlements mostly appear on terrains 

with flat or solely moderate slopes (Dobson et al., 2000). In this study, the Copernicus DEM (ESA, 2022), provided by the 

European Space Agency (ESA), with a spatial resolution of 30 meters was used to compute slope estimates (Fig. 3c). The 

Copernicus DEM data set also contains information about water bodies, which were combined with the water bodies contained 
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in the OpenStreetMap (OSM) data set (2022) to compute a layer indicating the distance to water for the study area (Fig. 3d). 135 

The OSM data set also served for the compilation of geospatial vector data representing roads and computing distances thereof 

(Fig. 3e). Lastly, we also computed a distance grid to the city center. In this study, the center of our study area was defined as 

a point coordinate situated between the current central business district and the historic city center, i.e., the Centro Histórico 

of Lima (Fig. 3f). The compilation of a powerful and exhaustive set of geospatial covariates is frequently a challenge in the 

context of implementing a robust study design. For instance, Zhu (2023) lists more than 50 predictor variables which were 140 

employed in existing studies of land use and land cover prediction. Here, the collected driving factors represent frequently 

adopted variables in studies of predicting geospatial change trajectories (Gómez et al. 2020; Liu et al. 2017; Pijanowski et al. 

2002). In detail, we internalize the main variable categories (Zhu, 2023), i.e., land use-related variables (Fig. 3a-b,f), 

environmental variables (Fig. 3c,d), infrastructural variables (Fig. 3e), as well as socio-economic variables (Fig. 2).The 

collected driving factors represent frequently adopted variables in studies of predicting geospatial change trajectories (Gómez 145 

et al. 2020; Liu et al. 2017; Pijanowski et al. 2002). 

 

Figure 3: Driving factors deployed for spatiotemporal forecasting of population data. 

2.3 LSTM-based models 

The population data of time steps 𝑡ଵ, 𝑡ଶ, … , 𝑡௡ and the corresponding driving factors are concatenated as the input for the LSTM 150 

models, which map the input to a prediction of the population at time step 𝑡௡ାଵ. Generally, LSTM models belong to the family 

of recurrent neural networks (RNN). The latter represents a generalization of feedforward neural networks with internal 

memory and which are designed to process sequential information (Rumelhart et al., 1986). RNNs model the input as 

sequentially arranged time steps while preserving the information of each past element as state memory in the hidden unit 
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(LeCun et al., 2015). Such networks are referred to as recurrent, since the architecture is repeated over the time steps, whereby 155 

the weights are shared in the different temporal layers and the underlying function remains fixed over all time steps (Aggarwal, 

2018). However, Hochreiter and Schmidhuber (1997) introduced LSTM networks to overcome the problem of vanishing 

gradients. LSTM networks are equipped with complex blocks as hidden layers. Those blocks implement gates and memory 

cells, which control the flow of information and accumulate the state information in order to obtain the capability of long-term 

memory. The blocks, or the so-called ‘LSTM-cells’, contain an internal recurrence mechanism additional to the outer 160 

recurrence mechanism of the RNN (Goodfellow et al., 2016). Thus, LSTMs can be considered for sequence learning and 

forecasting, especially when long-term dependencies should be encoded from the input data. The main model architecture 

comprises an LSTM unit with the equations in (1): 

𝑖௧ = 𝜎(𝑊௫௜𝑋௧ + 𝑊௛௜𝐻௧ିଵ + 𝑊௖௜ ∘ 𝐶௧ିଵ + 𝑏௜)         (1) 

𝑓௧ = 𝜎(𝑊௫௙𝑋௧ + 𝑊௛௙𝐻௧ିଵ + 𝑊௖௙ ∘ 𝐶௧ିଵ + 𝑏௙) 165 

𝐶௧ = 𝑓௧ ∘ 𝐶௧ିଵ + 𝑖௧ ∘ 𝑡𝑎𝑛ℎ (𝑊௫௖𝑋௧ + 𝑊௛௖𝑋௧ିଵ + 𝑏௖) 

𝑜௧ = 𝜎(𝑊௫௢𝑋௧ + 𝑊௛௢𝐻௧ିଵ + 𝑊௖௢ ∘ 𝐶௧ + 𝑏௢) 

𝐻௧ = 𝑜௧ ∘ tanh (𝐶௧) 

where 𝑋௧ represents the input to the cell, 𝐶௧  the memory state, and 𝐻௧  the hidden state. The notation ‘∘’ denotes the Hadamard 

product or element-wise product. In the equations, 𝑖௧, 𝑓௧, and 𝑜௧ refer to the input, forget, and output gates, respectively, 𝑡 is 170 

the time-step, 𝜎 the sigmoid activation function, tanh the hyperbolic tangent function, and 𝑊 are the weight matrices and 𝑏 

the biases, respectively (Fig. 4a).  

To enable spatiotemporal modeling, ConvLSTMs were employed. ConvLSTMs further contain convolutional structures with 

respect to both the input-to-state and state-to-state transitions. Thus, ConvLSTMs predict the future state of an entity (e.g., 

image pixel) from the current and past states of its surrounding entities (Shi et al., 2015). The inputs, cell outputs, hidden states, 175 

and gates are 3-dimensional tensors with rows and columns of the 2-dimensional input image as the last two dimensions. The 

internal operations thus use convolutions, which encode the spatial information (ibid.). The architecture of a ConvLSTM is 

similar to an LSTM with the addition of the convolutional operator (Fig. 4b). Equations in (2) describe the ConvLSTM, which 

differ from the LSTM equations regarding the convolution operator, denoted by ‘*’: 

𝑖௧ = 𝜎(𝑊௫௜ ∗ 𝑋௧ + 𝑊௛௜ ∗ 𝐻௧ିଵ + 𝑊௖௜ ∘ 𝐶௧ିଵ + 𝑏௜)        (2) 180 

𝑓௧ = 𝜎(𝑊௫௙ ∗ 𝑋௧ + 𝑊௛௙ ∗ 𝐻௧ିଵ + 𝑊௖௙ ∘ 𝐶௧ିଵ + 𝑏௙) 

𝐶௧ = 𝑓௧ ∘ 𝐶௧ିଵ + 𝑖௧ ∘ tanh (𝑊௫௖ ∗ 𝑋௧ + 𝑊௛௖ ∗ 𝑋௧ିଵ + 𝑏௖) 

𝑜௧ = 𝜎(𝑊௫௢ ∗ 𝑋௧ + 𝑊௛௢ ∗ 𝐻௧ିଵ + 𝑊௖௢ ∘ 𝐶௧ + 𝑏௢) 

𝐻௧ = 𝑜௧ ∘ tanh (𝐶௧) 

 185 
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Figure 4: Implemented LSTM components and network architectures: a) LSTM cell, b) ConvLSTM cell, c) unidirectional forward 
network, and d) bidirectional network. 

In this study, we train both models with a unidirectional forward (Fig. 4c) and bidirectional (Fig. 4d) learning mechanism, 

respectively. 𝑥௧  refers to the input data stacks for the chosen input years, i.e., 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥௡. 𝑦௧  and 𝑧௧  are the generated 190 

output vectors at each time step, with the chosen hidden dimension of 64. For the bidirectional network, the forward layer 

outputs 𝑦௧  are computed iteratively using the input data in a sequence from the first time step to the last, while the backward 

layer outputs 𝑧௧ are calculated from a reversed sequence of the inputs from the last time step to the first. To retrieve a one-

dimensional output that represents the predicted population number 𝑝௡ାଵ at time step 𝑛 + 1, a linear layer is applied to the last 

output vectors. For the bidirectional networks the last outputs 𝑦௡ and 𝑧௡ were concatenated. The ConvLSTM networks have 195 

the same architecture as in Fig. 4 c-d, but with convolutional operations included in the ConvLSTM cells as shown in (Fig. 

4b). 

2.4 Hazard models: Earthquake and Tsunami 

Earthquake and tsunami simulation data for this study were provided by the RIESGOS 2.0 project, which focuses on the 

creation of scenario-based multi-risk assessment in the Andes region (RIESGOS, 2022). The simulations are based on the 200 

historical earthquake of the year 1746 with an off-shore epicenter and a magnitude of 8.9 (Gomez-Zapata et al., 2021). To 

assess the population affected by this earthquake and correspondingly triggered tsunami, spatially distributed peak ground 

accelerations (Fig. 5a) and maximum flow depths (Fig. 5b) are used, respectively. The ground motion fields are generated 

based on ground motion prediction equations according to Montalva et al. (2017). The tsunami simulations (Androsov et al., 

2023) are based on parameters proposed by Jimenez et al. (2013). The two data sets are provided with 1-kilometer and 10-205 

meter spatial resolution, respectively, and were resampled to the spatial resolution of 100 meters of the population grid for the 

exposure analysis. 
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Figure 5: Considered hazard models: (a) peak ground acceleration characterizing the historical earthquake of 1746 with an off-
shore epicenter and a magnitude of 8.9 and (b) corresponding tsunami characterized by maximum flow depth. 210 

Figure 5: Considered hazard models: (a) peak ground acceleration characterizing the historical earthquake of 1746 with an off-
shore epicenter and a magnitude of 8.9 and (b) corresponding tsunami characterized by maximum flow depth. 

3 Experimental Setup 

As aforementioned, the study area comprises the settlement area of Peru’s capital Lima and the neighboring province of Callao, 

which has a spatial coverage of approximately 6500 square kilometers. All data sets were reprojected to the WorldPop 215 

projection EPSG:4326, the World Geodetic System 1984, and resampled to the spatial resolution of 100 meters of the gridded 

population data. All layers were normalized individually and then stacked to a multidimensional array of the shape (20, 10, 

888, 888). Thereby, the first position carries the twenty years of gridded population data, whereas the second position contains 

the driving factors, while establishing an image size of 888 * 888 elements. The WorldPop time series data is deployed along 

a three-year interval (which provides a suitable tradeoff here between the forecasting capability of the model and having a 220 

sufficient number of time steps available for training the model) and split into training data set and validation data set along 

the temporal dimension. The training data set contains the earlier six time steps (2002, 2005, …, 2017), whereas the validation 

data set contains the later six time steps (2005, 2008, …, 2020) of the time series. In both training and validation data sets, the 

variables of the first five time steps were adopted as input and the last time step was used as the ground truth labels. As such, 

the target of the training data set is to predict the population of the year 2017, and the goal of the validation data set is to 225 

forecast the population map for the year 2020. (Fig. 6).  

We carry out experiments with three sets of driving factors deployed for forecasting: i) all driving factors described in Sect. 

2.2; ii) solely the time-invariant driving factors, i.e., slope, and distances to water bodies, roads, and the city center, 

respectively; iii) the population data only. Here it can be noted that the latter two reduced sets of variables enable the prediction 

of multiple time steps in the future. When including also time-variant driving factors, i.e., land cover and distance to the 230 

boundary of built-up areas, solely one future time step can be predicted: a model learns the changes between a specific time 

interval and can thus predict the same time interval in the future.  

Equation (3) describes this relation:  

𝑡௡ାଵ = 𝑡௡ + 𝑖             (3) 
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with 𝑡௡ାଵ being the forecasted year, 𝑡௡ the year of the last input, and 𝑖 the interval size.Equation (3) describes this relation, 235 

with 𝑡௡ାଵ being the forecasted year, 𝑡௡ the year of the last input, and i the interval size: 

𝑡௡ାଵ = 𝑡௡ + 𝑖             (3) 

Here, we trained all models with an interval 𝑖 of three years including every third year as training data from the WorldPop time 

series data. To be more specific, if we input the years 2008, 2011, 2014, 2017, and 2020, the model is expected to produce an 

estimation for the year 2023. Subsequently, the year 2026 can be forecasted with the data of the year 2023 as input. The time-240 

invariant driving factors can be assumed to be valid for 2023 too, and the corresponding population data was predicted prior. 

In contrast, no valid estimates for 2023 are available regarding the time-variant driving factors. Thus, excluding the time-

variant driving factors from the training enables iterative predictions of multiple intervals. This sliding time window approach 

was conducted similarly to the forecasting strategy deployed by Wang and Lee (2021) and is displayed in Fig. 6. 

 245 

Figure 6: Forecasting concept: the training data set utilizes the earlier six time steps (e.g., 2002, 2005, …, 2017), whereas the 
validation data set utilizes the later six time steps (e.g., 2005, 2008, …, 2020) of the time series. We used the variables of the first 

five time steps as input and the last time step as the ground truth labels. The aim of the training data set is to predict the 
population of the year 2017, and the aim of the validation data set is to forecast the population map for the year 2020, respectively. 
Forecasting beyond the year 2023 is obtained with a sliding time window strategy, where previous forecasted years are deployed 250 

for model training (adapted from Wang and Lee, 2021). 

Figure 6: Training, validation and forecasting concept: The training data set utilizes the earlier six time steps (2002, 2005, …, 
2017), whereas the validation data set utilizes the later six time steps (2005, 2008, …, 2020) of the time series. The variables of the 

first five time steps were adopted as input and the last time step was used as the ground truth labels. As such, the aim of the 
training data set is to predict the population of the year 2017, and the aim of the validation data set is to forecast the population 255 

map for the year 2020, respectively. Forecasting beyond the year 2023 is obtained with a sliding time window strategy, where 
previous forecasted years are deployed for model training (adapted from Wang and Lee, 2021). 

All the tested models were trained for 50 epochs, the optimizer was Adam, the loss function was mean squared error loss, and 

the initial learning rate was set to 0.0012 and was reduced by the factor 0.1 through a learning rate scheduler, when the error 

reached a minimum plateau. To evaluate the proposed framework, two baseline methods were adopted, i.e., MLR and RF. 260 

Thereby, the hyperparameters of RF were tuned heuristically as follows: ntree = 500 and mtry = 1,2, ⋯,51. 

4 Experimental Results and Discussion 

4.1 Model evaluation 

To provide a first comparative overview regarding prediction accuracy, Fig. 7 contains scatter plots of the different methods 

for the predicted year 2020. Thus, it illustrates the deviations of the forecasts (y-axis) concerning the actual population values 265 
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(x-axis). Each point corresponds to one grid cell in the study area. The color coding reflects the point density in %, the red line 

is the regression line of forecasts and population values, and the black line corresponds to the identity line where 𝑦 = 𝑥, 

respectively. It reveals that all models feature a substantial concentration of the density along the identity line, which underlines 

the overall validity of our setup. However, traceable differences regarding the different models exist. The majority of the 

baseline models based on linear regression and RF feature a lower point density along the identity line compared to the LSTM-270 

based models, especially for grid cells with medium and high population values. The corresponding root-mean-squared error 

(RMSE) values also clearly indicate that the LSTM-based models outperform both the ConvLSTM models and the baseline 

methods. In detail, the uncertainty in terms of RMSE could be reduced from 4.298 (RF), 4.109 (MLR), and 3.946 (ConvLSTM 

- bidirectional), respectively, to 3.629 (LSTM - bidirectional) while maintaining an excellent model fit (R2 = 0.995). Along 

this line of models, this corresponds to an increase of more than 14 percentage points in terms of model accuracy.  275 

It can be noted that using the static features for the baseline models, i.e., MLR and RF, and solely deploying the population 

data for the LSTM and ConvLSTM with bidirectional learning mechanism enabled the respective best predictions. 

Counterintuitively, the LSTM models outperform the ConvLSTM models unambiguously. Past works showed that the 

inclusion of additional spatial context information via ConvLSTMs can be beneficial for increasing prediction accuracy (Shi 

et al., 2015; Gavahi et al., 2021). However, in our idiosyncratic data setting, some inconsistencies in the WorldPop data can 280 

be found: water bodies, conservation areas, or industry districts were traceably not masked during the disaggregation, which 

lead to mostly non-zero grid cell values in these areas. Solely individual grid cells lying in these regions hold zero values in 

the WorldPop data. All convolutional models predict these grid cells with non-zero population, as they learn from the 

surrounding grid cells. This can be seen in Fig. 7 at 𝑥 = 0, where the actual population is zero, but the prediction differs quite 

strongly. Nevertheless, across all models, MAE values indicate a deviation of less than three people per grid cell, which stresses 285 

the overall soundness of our setup. 

 

Figure 7: Scatter plots and corresponding error measures, i.e., mean absolute error (MAE), median absolute error (MedAE), 
RMSE, and R2, respectively, for the predicted year 2020 as a function of the actual prediction model, the learning mechanism, and 

the deployed driving factors. 290 

Figure 8 provides prediction differences to the actual numbers of 2020 from a spatial perspective. Grid cells with overestimated 

population numbers are colored in green, whereas grid cells with underestimated population numbers are colored in red. 
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Thereby, it can be traced that the LSTM-based and ConvLSTM-based predictions overestimate population numbers for the 

majority of grid cells, while both the MLR-based and RF-based predictions underestimate population numbers for the majority 

of grid cells (also revealed by the regression line in Fig. 7). However, both the LSTM-based models and ConvLSTM-based 295 

models follow consistently the overall trend of an area: in tendency, they exaggerate population numbers in areas of an 

increasing population and underestimate population numbers in areas of a decreasing population (see also Fig. 2 for a 

visualization of areas of increasing and decreasing population numbers in Lima and Callao). MLR-based and RF-based 

predictions do not reflect this overall trend, whereby over- and underestimations are more dispersedly distributed across the 

study area. 300 

Figure 8 provides prediction differences to the actual numbers of 2020 from a spatial perspective. Grid cells with overestimated 

population numbers are colored in green, whereas grid cells with underestimated population numbers are colored in red. 

Thereby, it can be traced that the LSTM-based and ConvLSTM-based predictions overestimate population numbers for the 

majority of grid cells, while both the MLR-based and RF-based predictions underestimate population numbers for the majority 

of grid cells (also revealed by the regression line in Fig. 7). However, both the LSTM-based models and ConvLSTM-based 305 

models follow consistently the overall trend of an area: in tendency, they exaggerate population numbers in areas of an 

increasing population and underestimate population numbers in areas of a decreasing population (see also Fig. 2 for a 

visualization of areas of increasing and decreasing population numbers in Lima and Callao). The baseline models do not reflect 

this overall trend, whereby over- and underestimations are more dispersedly distributed across the study area. 

 310 

Figure 8: Maps of prediction differences of the models with respect to the actual numbers of 2020. 

4.2 Population forecasting 

The actual population forecasting, which is deployed for the subsequent exposure analysis, was carried out based on the most 

favorable model, i.e., the LSTM learned on the population data with a bidirectional learning mechanism. We implemented this 

model in our forecasting concept (Fig. 6), where forecasting beyond the year 2023 is obtained with a sliding time window 315 

strategy, i.e., previously forecasted years are deployed for model training. Figure 9 displays both the forecasted population and 

the change between subsequent time steps until the year 2035. Thereby, the population increases by about 3.6 million, which 

accounts for 35 % of Lima’s population in 2020. 
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Figure 9: The upper part provides a visualization of the WorldPop data for the year 2020 and forecasted population until the year 320 
2035 along a three-year interval. The lower part contains the corresponding predicted change of the population for the different 

time intervals. 

4.3 Exposed future population 

The hazard models (Sect. 2.4) and the predicted population distribution (Sect. 4.2) are deployed to compute the future 

population count as a function of different hazard intensity levels. Figure 10 provides accumulated population numbers for 325 

different levels of peak ground acceleration (a) and maximum flow depth (b) along the 3-year time interval. It can be observed 

that the majority of future population, i.e., 12.5 million inhabitants, lives in areas of a high peak ground acceleration, i.e., PGA 

≥ 207 m/s². These numbers of future exposed population are induced by a growth of almost 30 % over the forecasted time 

span. This is less than the 35 % growth in the whole Lima Metropolitan area. However, already today more than 82 % of 

Lima’s inhabitants reside in these districts. Consequently, this growth accounts for more than 70 % of the predicted additional 330 

people in Lima. Furthermore, more than 600,000 people are anticipated to live in areas which are at peril of a maximum 

tsunami flow depth of more than two meters. The population in the tsunami inundation area will grow by 61 % until 2035, 

much more than the average growth of 35 %. Waves of up to 20 meters are modeled, and most of the affected people would 

be hit by waves of from 6 to 11 meters. The areas with the largest modeled waves of more than 12 meters only have a small 

part of the population today, but these will even double in the forecasted 15 years. 335 
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Figure 10: Predicted number of people affected by different hazard intensity levels along a 3-year interval (2002-2035) regarding 
earthquake (a) and tsunami (b). 

The forecasted spatial distribution of the population along with hazard intensities is visualized in Fig. 11 from a south-western 

viewing angle. We aggregated the grid cells from the 100-meter resolution to a 1-kilometer resolution for visual representation. 340 

The visual inspection uncovers new future hot spots of the exposed population, i.e., areas that face simultaneously high 

population increases and severe hazard intensities, such as Lima and Callao’s north-western and south-western settlement 

areas along the coastline. Anticipating those patterns can help urban planners and policy makers to proactively develop 

effective strategies for risk mitigation. For instance, the created information about exposed population can be part of modern 

decentralized information systems for (multi)-risk assessment (Schöpfer et al., 2023). Here, one core element is to enable end 345 

users to explore various scenarios (“stories”) of multiple hazards, cascading effects and their impacts by quantifying different 

what-if scenarios. Utilizing such a narrative-driven methodology empowers individuals to replicate diverse situations within a 

predetermined, multi-risk context, enabling them to assess and contrast outcomes. This multi-scenario approach proves 

invaluable for crafting strategies that fortify or enhance resilience, evaluating the effectiveness of proposed or already executed 

measures (e.g., benchmark scenarios) in the face of various hazard scenarios (acting as a 'stress test'), or in response to evolving 350 

conditions. Thereby, the importance of implementing mechanisms to visualize epistemic and aleatory uncertainties of the risk 

assessment procedure in graphical form is stressed to allow appropriate communication with end users. 
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 355 

Figure 11: Maps of the predicted population affected by earthquake (upper figure) and tsunami (lower figure) for the year 2035 
with corresponding hazard intensities. The solid grey bars indicate the population of the year 2020. The additional colored bar (on 
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top) or textured bar indicate the estimated increase or decrease of the population until the year 2035, respectively. The 
corresponding color coding indicates the hazard intensity. 

5 Conclusions and Outlook 360 

In this paper, we learned population-related geospatial change trajectories over time and provide population forecasts for Peru’s 

capital Lima and Callao to identify future hotspots of earthquake and tsunami exposure. The experimental results underline 

the superior performance of temporal models, i.e., LSTM-based networks, in accurate forecasting of the changes in population 

distribution. Given that the source dataset of the tested data is openly accessible and has global coverage, our workflow can 

be generalized to forecast population changes in other locations with solely a few adaptations (e.g., determine the best model 365 

hyperparameters empirically for a specific area/data set) for optimal forecasting accuracies. 

Several extensions can be explored in future work: foremost it is crucial to obtain a picture on future risks and not solely on 

aspects of the exposure, i.e., the population at risk. This would require the collection of time series data for model training 

with multiple risk-related target variables including population, building types, occupancies, among others, to also align 

vulnerability information, i.e., earthquake and tsunami-related fragility functions. Thus, a more thorough forecasting of future 370 

earthquake and tsunami risks can be conducted. From a methodological point of view, the consideration of multiple risk-related 

target variables also enables the development of multitask learning models, which can encode interdependencies between the 

considered target variables to enhance the prediction accuracy (Geiß et al., 2022). Also, a multitask model is able to learn the 

time-variant driving factors for enhanced forecasts and, thus, drawing a more robust picture of future risks.  
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