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Abstract. Quantitative local paleoclimate reconstructions are an important tool for gaining insights into the climate history
of the Earth. The complex age—sediment—depth and proxy—climate relationships must be described in an appropriate way.
Bayesian hierarchical models are a promising method for describing such structures.

In this study, we present a new age—depth transformation in a Bayesian formulation by determining the uncertainty infor-
mation of depths in lake sediments at a given age. This enables data-driven smoothing of past periods, which allows for better

interpretation.
Furthermere;—~we-We introduce a systematic, machine learning based way to establish transfer-funetions-that-map-climate

vartablesto-btome-distributions-probabilistic transfer functions which connect spatial distributions of temperature and precipitation

to the spatial presence of specific biomes. This includes consideration of various machine learning algorithms for solving the
classification problem of biome presence and absence, taking into account uncertainties in the proxy—climate relationship.
For the models and biome distributions used, a simple feedforward neural network winsprovides the optimal choice of the
classification problem.

Based on this, we formulate a new Bayesian hierarchical model that generates local paleoclimate reconstructions. This is
applied to plant-based proxy data from the lake sediment of Lake Kinneret. Here, a priori information on the recent climate in
this region and data on arboreal pollen from this lake are used as boundary conditions. To solve this model, we use Markov
chain Monte Carlo sampling methods. During the inference process, our new method generates taxa weights and biome climate
ranges. The former shows that less weight needs to be given to Olea europaea to ensure the influence of the other taxa. In
contrast, the highest weights are found in Quercus calliprinos and Amaranthaceae, resulting in appropriate flexibility under the
given boundary conditions. In terms of climate ranges, the posterior probability of the Mediterranean biome reveals the greatest
change, with an average boreal winter (December—February) temperature of 10 °C and an annual precipitation of 700 mm for
Lake Kinneret during the Holocene. The paleoclimate reconstruction for this period shows comparatively low precipitation of

about 400 mm during 9-7 and 4-2 cal ka BP. The respective temperature fluctuate much less and stays around 10 °C.
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1 Introduction

Local paleoclimate reconstructions reveal information of the climatic history of relatively small regions. In the last few decades,
a lot of reconstructions were published, which showed the advantages and disadvantages of the respective methodologies. One
promising way is the idea of the indicator species approach, which is the basic of the model used in this study. Here, plant
distribution maps are linked to recent climate data to define a climate range where the corresponding taxon occurs. Finally,
when considering multiple taxa, these climatic ranges can be combined to determine the mutual climatic range (MCR).

We follow the idea of Kiihl et al. (2002), who developed a probabilistic interpretation of MCR. This addresses the problem of
overfitting by calculating uncertainty ranges for each taxon. These were initially based on two- or three-dimensional Gaussian
probability density functions (PDFs), which is why this is called the PDF method. This basic concept was extended and applied
for both local and spatial climate reconstructions. For example, Kiihl and Litt (2003) calculated January and July temperatures
for three sites in Central Europe during the last-InterglacialperiodLast Interglacial. Subsequently, spatial reconstructions of
Europe were performed in Gebhardt et al. (2008) for the Eemian, in Simonis et al. (2012) for the late-Late Glacial and Holocene,
and in Weitzel et al. (2019) for the mid-Holoeene-Mid-Holocene (MH). Over time, more complex machine learning methods
such as the Generalized Linear Model and Quadratic Discriminant Analysis (QDA) are used to determine the transfer functions
(e.g. Litt et al., 2012; Weitzel et al., 2019). Scholzel (2006) describes the PDF method in the context of a Bayesian hierarchical
model (BHM) and calls it Bayesian Indicator Taxa Model (BITM). This has the advantage that additional prior information can
regulate the transfer functions and thus the entire climate reconstruction. Among others, the BITM was applied in Neumann
et al. (2007) for Birkat Ram in Israel and in Thoma (2017) for Lake Prespa in Greece.

The basic of the climate reconstruction used in this work is first presented by Scholzel (2006). This is another BHM, the so-
called Bayesian Biome Model (BBM). In this process, certain plant taxa are assigned to different biomes. These are groups of
taxa that have similar vegetation zones under comparable climatic conditions (Prentice et al., 1992). One advantage of the BBM
is that no recent distribution maps for every plant occurring in the core is needed, but only for the biomes used. Applications
of this model can be found in Scholzel (2006), Litt et al. (2012), and Stolzenberger (2017) for the Dead Sea. Fheoma(2047H-

A first application of climate reconstructions to data from Lake Kinneret is shown in the work by Thoma (2017). He used the

time series information of the two major biomes which can be deduced from the LK core. The resulting BBM based paleo
climate reconstruction did show too little variability ' iomes-in temperature and

roach (Mediterranean, Irano-Turanian, Saharo-Arabian) as basis

recipitation suggesting that at least a three biome model a

for the BBM should be used. For numerical reasons a virtual or undefined biome will be introduced. The BBM also allows
reconstructions based on prior climate data. These come, for example, from other studies that suggest possible climate ranges
for the reconstruction site and period (Scholzel, 2006). Once set, they cannot be adjusted during the reconstruction process.

Although the above-mentioned methods for reconstructing the local climate are already quite well elaborated, they still have

some-disadvantages:need more modifications and improvements which can be summarized to four points
1. full-age-uncertainties-arenottakeninte-aceount-Quantitative inclusion of age uncertaint
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be-set-Evaluating effects of potential human impacts upon the climate reconstruction
Treating in a flexible way the spatial

plant-and-elimate-data—Including on the prior level user-defined (potentially subjective) decisions with respect to
taxa selection, transfer function parameter values and a choice of model structure

The-

The need for the last point is due to the model-assumption-that-the-relationship-assumption that relationships between recent
climate and plant distribution has not changed during the reconstruction period. A central message of our approach is that
the whole chain of modifications according to points (1) to (4) is based on Bayesian statistical methods together with its
numerical implementation. This provides a clear advantage over past attempts which have mostly seen single layers of the

methods described below. As one of the reviewers commented this will "automate some ad hoc decisions in the interests of

reproducibility and ease of use and raise the quality of reconstructions”.

summarized-above—The-This traceability of the proposed method for calculating quantitative paleoclimate reconstructions

results from the increased automation and the Bayesian statistical modelling rather than from additional assumptions. This

provide-new-The Bayesian approach does not only reconstruct a climate variable like temperature or precipitation but attempts
to model full joint probability density of the climate variables given the proxy data at a given age. This stochastic view includes

the most probable climate and its related uncertainty. By this it will provide additional insights into the importance of the
proxies studied and thus extend the knowledge from previous studies. We-wantto-As a worked out example we will apply the

new model to botanical proxy data (pollenaﬂd—maefefeeﬁ%s) from LK. Based-en-multiple prexy-infoermation,-there-are-a-variety

As-A comparison is possible following the results from previous
reconstruction studies of paleoclimate information in the Vlclnlty of LK (Schiebel and Litt, 2018; Miebach et al., 2022; Orland

et al., 2009) -

is—as-foHews:specifically the Dead Sea region (Litt et al.

2012). The latter exhibits certain deficits like biases at recent time

3

slices or extensive variability during Holocene times. The further aim of the present study is to evaluate the potential of those
former mentioned, additional environmental data in the vicinity of LK to enhance similarities and reduce differences between



90 quantitative climate reconstructions at LK based on the previous BBM methods and the information content of the additional
qualitative data.
The general a
likelihood) into the previous reconstruction forming the prior. The resulting posterior will not only provide a most probable
reconstruction of the paleo climate state given both type of input data but also an uncertainty estimate. This allows a comparison
95  of the prior reconstruction with the posterior one and an assessment of the gain of information by the assimilation without the
need of independent data. The theoretical concept presented in this study readily extents to the inclusion of such independent

data, which is a task for future work. In addition, already available data on lake level fluctuations can be used as independent
Lake Kinneret: (Hazan et al., 2005; Vossel et al

roach for inclusion is a Bayesian statistics based data assimilation of the new environmental data ( via a

roxies at least for precipitation changes for comparison with pollen-based reconstructions

100 This motivations lead to the following structure of the presented work. In Sect. 2 we give an overview of the study area. The
following Sect. 3 first deals with-the-botanieal-data-used-—The-observed palynological data serving as input, then the quantitative

reconstruction model treating bullet points 2 and 3 followed by introduction of the flexibility in the probabilistic transfer
functions. The resulting, individual modules of the proposed Bayesian framework are then-described in detail. Sect. 4 presents

105 the results of our new reconstruction method using the LK palynological data sets. These are then discussed, summarized, and
compared to previously available reconstruction with possible extensions suggested in Sects. 5 and 6.

2 Study area

The lecationof Lake Kinneretis-marked-with-a-black-dotstudy area together with the details of the plant geographical territories
are show in Fig. ' i
110 itsHtakelevel-vartesbetween209-and-below-mean-seatevelJ+1 (b) with the mean annual precipitation sum at a high resolution

from a subjective analysis (Zohary, 1962) in (a). LK has a maximum water depth of ca. 42 m and a surface area of ca. 169 km?
(21 x 12 km at the maximum). The watershed-catchment area comprises 2730 km? (Berman et al., 2014).

The Sea of Galilee occupies the LK basin along the active Dead Sea fault. It is developed by several tectonic processes (Ben-
Avraham et al., 2014).

115 aﬂéNeegeiﬁméﬁersfeeeﬁeJe&%(Sﬂehe{ﬁl—BQS}wSmls such as terra rossa and rendzina form the surface cover of the
Galilee Mountains (Dan et al., 1972). Alluvial and lacustrine sediments of Pleistocene to Holocene ages fill the Jordan Valley

north and south of the Sea of Galilee (Sneh et al., 1998).

Switching to the climate data on the grid of 0.5° x 0.5° defining the Climate Research Unit (CRU) data set (Harris et al., 2020
in Fig. 2 (a) and (b) show the spatial distribution of the mean Peeember—February-December to February temperature (Tpjr)

120 and annual precipitation (Pann) that we will examine in more detail in this study. In particular, this means that they-this

combination will be reconstructed for the LK. The Mediterranean climate with hot, dry summers and mild, wet boreal winters

is typical of northern Israel, as shown by the Koeppen—Geiger classification Csa in the climate diagram of LK in Fig. 2 (c). The
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Figure 1. Mean annual precipitation and plant geographical territories of the southern Levant (after (Miebach et al,, 2019) based on

Zohary, 1962)). The Kinneret is situated in the North close to Tiberias, the Dead Sea is visible in the middle part of the figures

basin of the lake is characterized by 400 mm mean annual precipitation and 21 °C mean annual temperature. The surrounding
mountains, however, experience Pany rates of up to > 900 mm and annual temperatures of less than 15 °C. The climate dia-
gram reflects these relatively large variations, which result from the 0.5 ° x 0.5 © horizontal resolution of the Climate-Research
Unit{CRUdata(Harris-et-al5-2020)CRU data set. 90 % of the precipitation in the north of Israel comes from so-called Cyprus
lows, that form over the eastern Mediterranean. These mainly occur from October to May, with the heaviest rainfall between
December and March (Ziv et al., 2014).

Furthermore, Fig. 2 (d) shows the biome distributions considered in this work. The colored areas distinguish the following
biomes: The Mediterranean, the Irano-Turanian, the Saharo-Arabian, and the unspecified biome ~which is needed for numerical

We can see that the majority of the lake’s watershed can be ascribed to the Mediterranean biome, while the southern lakeshore
borders the Irano-Turanian biome (Zohary, 1962). The Mediterranean biome is distributed in areas exceeding 300 mm of Ponn
(cf. Fig. 2 (b)). The climax vegetation is dominated by trees and shrubs. Typical plants are Quercus ithaburensis, Q. boisseri,
Q. calliprinos, Olea europaea, Pistacia lentiscus, Arbutus andrachne, Ceratonia siliqua, Pinus halepensis, and Sarcopoterium
spinosum (Danin, 1988; Zohary, 1982). The Irano-Turanian steppe grows in areas below 300 mm of Pann (cf. Fig. 2 (b)).

The biome is rich in semi-shrubs, annual herbs, and geophytes. Common taxa are Artemisia herba-alba, Thymelaea hirsute,
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Figure 2. The mean December—February temperature Tpyr in (a) and annual precipitation Pann in (b) based on the current version CRU 4.07
data and the period 1961-1990. The black dot marks the location of LK. A climate diagram of the grid point closest to LK is shown in (c),
based on these CRU data. Panel (d) depicts the coarse grained biome definitions used in this work.

and various Poaceae and Amaranthaceae (including Chenopodiaceae) (Danin, 1992; Zohary, 1982) The Saharo-Arabian desert

vegetation type occurs in the southern part, where the mean annual precipitation falls below 100 mm. It is a vegetation type with

sparse plant cover and low diversity. Important representatives of the Saharo-Arabian vegetation are Zygophyllum dumosum.

Retama retam, Tamarix nilotica, Atriplex halimus and other Amaranthaceae. Sudanian vegetation occupies tropical oases of the
Jordan Valley. Mainly trees and shrubs such as Maerua crassifolia, Acacia radiana/Acacia tortilis, Balanites aegyptiaca, and

Ziziphus spina-christi compose this vegetation type (Zohary, 1962). This oasis vegetation is included into the Saharo-Arabian

biome.
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3 Material and methedsMethods
3.1 Material

The material used in this study originates from lacustrine sediment cores from the central Sea of Galilee. They were recovered
in March 2010 during a drilling campaign within the Collaborative Research Center 806 "Our Way to Europe" funded by the
German Research Foundation (DFG). Two parallel cores (KilO I with 13.3m core recovery and KilO II with 17.8 m core
recovery) were obtained at a water depth of 38.8 m. Both cores were combined to a 17.8 m composite profile. Besides a 25 cm

varved sequence at the top, the sediment comprises homogeneous grayish-brownish silts and clays (Schiebel and Litt, 2018).
3.2 Palynology

Additional samples were added to the palynological datasets by Schiebel and Litt (2018) and Langgut et al. (2013) to increase
the temporal resolution. The resulting dataset consists of 160 samples with a mean resolution of 11 cm. We followed a standard
preparation technique by Faegri and Iversen (1989) to extract pollen from the lake sediment (see Schiebel and Litt (2018) for
more details). At least 500 terrestrial pollen grains were identified under a light microscope at 400 x magnification with the help
of the pollen reference collection from the Institute-of-Geoseieneespalaeobotanical lab, University of Bonn, and pollen atlases
(Reille, 1995, 1998, 1999; Beug, 2004). Pollen percentages are based on the terrestrial pollen sum excluding indeterminable
pollen grains and obligate aquatic plants to exclude local taxa growing in the lake (Moore et al., 1991). Pollen zonation was

adapted from Schiebel and Litt (2018).

3.3 Relationship-between-Quantitative inclusion of age and-depthuncertainty

3.3.1 Age—depth model

We start with the Bayesian statistics based age—depth model from Miebach et al. (2022) to describe the relationship between
age and depth. It provides a probabilistic model of the sediment accumulation rate of the core necessary to reach the *C
ages at the available depths within the dating uncertainties. We use the Bacon model implemented in R (R Core Team, 2018;
Blaauw et al., 2020). Fhis-is-The well known OxCal dating approach (Ramsey, 2009) is similar to the strategy in the Bacon
model which is explained in detail and compared to OxCal in Blaauw and Christen (2011) and is only briefly described in the
following.

Bacon uses a self-adjusting Markov chain Monte Carlo (MCMC) simulation to calculate the conditional probability distribu-
tion P(¢,r, m|x), where ¢ contains the model parameterparameters, r the accumulation rate, m the memory effect inherent

in the sedimentation, and & the measurements such as '*C data.

“As a result Bacon describes
the posterior (conditional) probabilities of ¢, r, and m given the age data %3%14(3 .t the given sediment depth D. However,
as we will see in the next section, we are actually interested in the conditional probability of depth D at a fixed age A, which

can be derived using the accumulation rates r and applying Bayes’ theorem.
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Table 1. List of variables.

Variable shortcut  Description

Probability distribution
Climate: contains modern C'y, and past C}, climate information

Proxy: contains modern P, and past P, proxy information

Mw Qs

Selected plant proxy information

T

P Proxy pool: explained variances between additional proxies and C'
Biome information

Age of, e.g. lake sediments

Depth of, e.g. lake sediments

Contains the following parameters:

Link between C and B

£ e OU > W

Contains all information about the taxa weights

3.3.2 Age—depth transformation

Now we will consider how to use the probabilistic information from models like Bacon to calculate a transformation from
depth to age. For this purpose, it is useful to look at Table 1, which describes the variables used in this work. Using Bayesian
hierarchical modelling techniques, we can determine the joint probability density function (or probability mass function in
the case of discrete random variables) of the target variables Y, the age A, the proxy data P, and the required additional
parameters ©. These are of course all dependent on depth, but D is only an auxiliary variable due to the coring procedure.
Therefore, the full joint probability density/mass function that includes D can be marginalized (integrated) with respect to D.
In a second step, we apply the relationship between full, joined and the necessary conditional eresand marginal probability

distributions. This establishes the following equation:

P(Y,A,P,®)= /P(Y,A,P,D,@)dD
D
:/IP(Y |A,P,D.®)-P(D| A ,P,®) P(A P,O)dD. (1)
D

Y contains the variables we are interested in, e.g. C'. Now suppose that D is conditionally independent of P and ® and thus
fully dependent on A. This is exactly the information we get from the age—depth relationship. Furthermore, the variables Y’
should not depend on age if D is given. This assumption follows from the fact that initially any information drawn from the

sediment core are with respect to depth. Using this, we can transform Eq. 1 as follows:

P(Y | A,P,©) :/]P(Y |P,D,®)-P(D| A)dD. )
D



As we can see we need a tool for the calculation of P{B3Ajthe conditional probability distribution of sediment depth D given
the age A: P(D|A). This was developed for this work and can be found #a-as contribution to the rbacon package under the

function Bacon.d.Age. Bacon calculates the slopes (accumulation rates) of a series of flexible linear age—depth functions. Their
flexibility results from different 7 in a priori defined regular sections along the depth axis. If a certain age A = a is specified,

195 Bacon.d.Age searches for those sections where intersections between a and the respective age—depth functions exist. In this
way, we can calculate probability distributions of depths for each age within the reconstruction period.

P(D|A) obtained in this way indicates which depth has a higher or lower (possibly approaching zero) probability of con-
tributing to Y at a given age. Eq. 2 shows that the desired age-dependent target variables Y are calculated by a moving window
(convolution) stretching/compressing operation on the depth axis together with a smoothing of this axis at each sediment depth.

200 The shiding-moving windows are derived solely from the age—depth model data and do not necessarily follow a top-hat filter or
any other smoothing function.

Fig. 3 illustrates the entire process using arboreal pollen percentage (AP) from LK —as an example. The full model results
will be discussed below. In this case, the target variable is-AP-Y is AP-percentage and is shown in panel (a) as a function
of measured sediment depth. Fhe-Upon using the depth-age relation of the most probable age at a given depth the mean

205 age difference between the studied core intervals of 11 cm is-5+-yearsthickness is 51 years. Thus, in a first step we define a
regular temporal grid of 50 years viaP{(D{A)resulting in a total of 181 age steps —Applying-these-to-the-data-between 0.0
rbacon package the newly added function Bacon.d.Age determines those depth samples which belong to a given age on the
temporal grid with a probability between zero and one including the changing sedimentation rates in the lake over the past 9

210 kyrs modelled internally in rbacon. Applying Eq. 2 then weights depths either with near zero or with a finite probability value
given an age on the 50 year time grid between 0 and 9 kyr BP in 181 time steps. By this procedure the approach addresses
the full age-depth uncertainty. Since age is a given variable (by this not anymore a random variable as it is in the conditional

robability of age given the sediment depth) in principle any time stepping (10, 25, 100 yrs) could have been chosen, but the

215 Using the arboreal pollen percentages from panel (a) usingin Eq. 2, we get the result of the new age—depth transformation AP
values depicted in (b). In contrast, the orange line shows the result when the plant data in terms of depth are linked to the mean
age data from the age—depth model.
—The-

The standard use of the age depth relationship e.g. in (e.g. Litt et al., 2012; Schiebel and Litt, 2018; Torfstein et al., 2015; Neumann et al

220 isincorporated in Eq.(2) making the Bayesian statistics approach more general as the standard way of age depth calculation. It

.(3). It is achieved for a given age by selecting a single sediment depth with probabilit

is illustrated by the orange line in Fi

1 e.g. that depth at which the conditional probability of depths given the age is at a maximum and then computing formally
the integral. No information about the age-depth related uncertainty is used, only one sediment depth is determined for a given
age, clearly a case to be identified as “overfitting” indicated by the strongly fluctuating behaviour of this-AP-eurve-indicates
225 an-overfittingresult-orange AP percentage curve which makes interpretations difficult. With-As the results this new technique




(a) Arboreal pollen from Lake Kinneret with respect to depth
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Figure 3. The gray areas show the percentages of aggregated arboreal pollen from LK. Panel (a) depicts these data in terms of depth and (b)

in terms of age. On the one hand, in (b) we see the result when all probability information P(D | A) are taken into account (gray area). The

orange line, on the other hand, represents the output using the mean values of A.
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3.4 Enhancing the Reconstruction model

In this study, a—reformutation—an enhanced and extended version of the BBMis-used-to-caleutate-a-/BHM is presented to
calculate the quantitative climate reconstruction. A-The detailed derivation of the-enhaneed-and-extended-BBM-it can be found
in Appendix A —The-final-result-can-be-with the final result written as:

B(C| P.A.©) z/]P’(B | C,¢]P))(.g(g)| p)-P() ./]P’(B | P,P,,w)-P(P, | P,A,w)dP,dB 3)

B Ps

This is the basic model calculated Ngymple times with ¢ = 1, ..., Ngample for different w; and C; by systematically sampling from
the pools of plant information and transfer function distributions using MCMC techniques. In order to be able to describe
this in more detail, certain framework conditions must-need to be introduced. To this end, we will introduce reference curves
based, for example, on AP-AP-percentage data from lake sediments (see Fig. 3 (b)). If a reconstruction according to Eq. 3
is performed for certain w; and Cj, the resulting P(C; | P, A,®;) can be compared with these reference curves. Here-As
similarity measure the explained variances R? are-tised-as-a-simitarity-measure-of the regression of the reference curve vs the
mean or median curve derived from Eq.(3) are used and stored in a variable we call proxy pool P P. Based-on-thisidea;an

Then, the extended BHM can be constructed (the weighting term is omitted for eonvenieneeclarity):

P(C,® | P,A,PP)xP(PP|C,P,A,®)-P(C|P,A,©)-P(P| A ®) P(A,0O). (4)

At this point, one could add a variety of additional reference curves based on, for example, isotopes fromtake-sediments-time

series from lake or marine sediments, ice eeressolarradiation-orinformation—Seme-of themrare-used-inNetzeH2023a)-where

Y v as—guia fe O ne a ta H everarny opcan g1011;
technique-similar-to-the-one-deseribed-here—cores, or insolation

However, only proxies derived from botanical information are considered in this work.

time series or greenhouse gase information (Netzel, 2023a).

We know that some sections of the AP-AP-percentage curves have fluctuations that are not due to elimatological-changes
climate variability (e.g. Panagiotopoulos et al., 2013; Miebach et al., 2016; Neumann et al., 2007; Litt et al., 2012; Schiebel
and Litt, 2018). In particular, the influence i ied-anthropogenic influence upon
vegetation in the study area (Fig.(2)) during the mid- to late Holocene complicates the interpretation of these curves. To account

for soebressminre e meib g sl b sl sl eee s eesle e el el ol s e el sl s s s noe s s

Thelatter gives-oursimilarities and to reduce differences between the reference and the reconstruction the regression between
the reference curve and the reconstruction is interpreted as a simple Bayesian data assimilation step with the reference forming
the prior and the reconstruction curve the likelihood explaining an anticipated amount of variance R?. To be inline with the
general Bayesian approach that amount is not a fixed number but described by a mean value and an uncertainty summarized

11
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Mean | Stdev | au | @
025 | 02 092 | 277
05 | 020|262 | 262
075 | 02 277 | 092

Table 2. Means and Standard deviations of beta distributions with the shape parameters a1 o

by the beta-distribution with the two shape parameters «

P(PP|-)=Beta(PP|aj,as). 5
A sensitivity analysis is performed by varying the mean value of R? from 25% to 50% and 75% with a typical standard
deviation (uncertainty) of 20% obeying the constraint that the explained variance can only vary between 0 and 100%. On one

side this gives the model the ability to capture a sufficiently large range of R? (Netzel-2023a)-Sueh-apropesat-can-be-deseribed

P(PP|-) = Beta(PP | 3,3).

This-(Netzel, 2023a), while on the other side additional moderators like human influence are allowed if represented in either
the climate reconstruction or the reference data set. The necessary combinations of mean and standard deviation vs. the two

shape parameters are given in Tab.(2).
This part of the model is the first term on the right of Eq. 4, which we call the proxy pool module.

The second term of Eq. 4 can be analyzed as follows:
P(C|P,A,0)=P(Cp|Cn,P,A,0)-P(C,, | P, A 0O). (6)

P(Cp | -) gives us-the-the model the ability to constrain the reconstructions based on additional climate information from the
past. These can be of different origins, for example, other local reconstructions, paleoclimate simulations, or speetfie-even
subjective expert knowledge based on vegetation studies—Ceonsideration-or other ecological studies. The latter is a common
roach in classical Bayesian statistical analysis (Berger, 2013). In the simplest case it would be a subjective probabilistic

statement with a number between zero and one (but excluding both) about the climate state C,, given the age and the prox

data. Inclusion of such past climate data information is shifted to future work, e.g. when high-resolution regional paleoclimate

simulations become available. The second term on the right of Eq. 6 allows us to insert constraints on the reconstructed modern
climate. We define the transition from modern times to the past at O cal a BP (calibrated years before the present), i.e. 1950
CE. This is because the temporal resolution of 50 years limits us, as we can only define the years 2000 CE or 1950 CE as the
most recent period. For such a modern climate, we use the CRU data presented in Fig. 2 and create probability distributions
as anchors for the reconstructions. These independent proposal distributions are described by a normal distribution as an

approximation for Tpyr and a gamma distribution for Ponn. All in all, we refer to the above as the prior climate module, which
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can be summarized as follows (with Unif being the uniform probability density):

P(Cp|-) if Cjp, is available,
P(Cp | Cm,P,A,0)= (7

Unif(1,...,Nage) otherwise,

T(Pann ) and N (Tpsem)  if A(Cy) < 0 cal BP,
PG,y | P.A.@) | T(Pam) and N (o) i A(C) ©

Unif(1,...,Nage) otherwise.
This means that reconstructions can be carried out with fewer restrictions even without prior climate information. This is made
possible by the use of uniform distributions that encompass the reconstruction period and thus all time slices Njge.

Finally, we consider the third term on the right of Eq. 4 in detail:
P(P|AO)=P(P|Aw,Y)=P(P|Aw)~P(P|w). 9)

First, we assume that the parameters w and 1) are a priori independent of each other. Then we state that P is independent of 1)

if no C is given. Finally, the updated taxa weights P(P | w) are determined under the assumption that they are conditionally

independent of Aand-thus-heldfer-the-,. This means that the additional data used to update the weights are assimilated over
the entire reconstruction period. At this point, taxa—wetghts-it is possible to introduce additional prior information for time
continuous reconstructions e.g. across a full glacial / interglacial cycle. The taxa weights updating could be split temperally

at-according to that temporal information such that after assimilation they differ for
syselected time periods. This approach is not explored further in this study and

could be included in future work.

The last term of Eq. 4 is the joint distribution of A and ®. We assume that all parameters ® are a priori independent of A.

Thus, this distribution can be formulated as follows:
P(A,0)=P(A) P(¢) P(w). (10)

The second term contains the parameters of the transfer functions and A is assumed to be uniform distributed if no depth
information are available. We see that already in the local reconstruction module in Eq. 3, where the relations between A
and D are inserted into our reconstruction scheme. With all the reformulations and simplifications listed above, Eq. 4 can be

summarized as follows:

P(C,® | P,A,PP)xP(PP|C,P,A,0)-P(Cp|Cn,P,A,0)

P(Crm | P,A,0)-P(¢) -P(P|w)-P(w). (11
Overall, taxa percentages and climate regions that better fit the constraints of the prior climate and proxy pool modules should
be weighted higher. How this is done in detail is described in the following.

In the context of MCMC sampling, we update P(P | w) using the random walk Metropolis—Hastings (rwMH) technique,

since a corresponding full conditional P(w | P) does not follow a probability distribution from which we can sample directly.
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Without further prior information, we assume a uniform distribution across all taxa K at the beginning of the MCMC simulation:

P(P | w) = Unif(1,...,K). (12)

The respective weights are determined with the help of an additional prior distribution:

1 1

HD(UJ) = Dir(wl7...,CJJK | 5, ceey 5

). (13)

Such a Dirichlet distribution allows us to determine the taxa weights as we have requested above. This means that the taxa
weights have values between zero and one and add up to one. The Jeffreys prior hyperparameters % of this distribution give
each taxon equal prior weight. Furthermore, these values provide a weaker constraint for determining the posterior taxa weights.

This property follows directly from the characteristics of the Jeffreys prior (Gelman et al., 2013).

Random walk Metropolis—Hastings sampling

Climate values Taxa weights Transfer function
age—depth model
P(C | ) P(P | w) parameters
: P(D,A)
=N:(C|) = Unif(1, ...,K) P(3)

N | S

Reconstruction module

P(B,)

P(C | P,A,@)z/]P(B|C’w)'P(C|¢)'P(¢) ‘/]P’(B\P,Ps,w)P(PsIP,A,w)dPsdB ]
B Py

R
Prior climate module

P(Cp | ) if Cp, is available,
B(Cp| Cm, P, A,©) =

Unif(1,...,Nage) otherwise

T'(Pann,m) and N (Tpjg,m)  if A(Cy) < 0 cal a BP,
P(lep,A,@): ( ANN, ) ( DIF, ) ( 1)

Unif(1,...,Nag) otherwise

Proxy pool module
P(PP|C,P,A,®)=Beta(PP|3,3)|"

Independent Metropolis—Hastings sampling

Figure 4. Directed acyclic graph of the Bayesian framework in Eq. 11. The gray boxes represent the quantities that will be inferred during
MCMC sampling, and the white boxes contain fixed quantities. The corresponding arrows represent the mutual dependencies, with their
direction pointing to the ascending hierarchical levels and the additional boxes indicate the respective sampling procedures of the modules

contained therein.
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As described above, we want to sample not only taxa weights but also climate values in the climate feature space of the
biome transfer function. In this way, we can identify preferred climate ranges based on the plant data and boundary conditions.
The parameters 1) remain unchanged because we assume that they are a good approximation for the Holocene. Instead, we
sample directly from the climate space and use P(C' | %)) from Eq. 3. Again, rwMH is used because we cannot sample directly
from the full conditional. In this case, we use double truncated normal distributions A; restricted to the climate range of the

transfer function as proposal distributions to exclude biologically unrealistic climate values:

P(C [9) =Ni(C | n(¢),0 (), a(t), b(¥)). (14)

The transfer function parameters 1) determine not only the truncation ranges a and b but also the expectation values p and
standard deviations o.

Fig. 4 summarizes graphically how this local reconstruction framework works. The boxes in the upper row contain the
input variables, while those in the white boxes are not inferred during the MCMC simulation. The parameters of the transfer
functions are defined in the next Sect. 3.5 and the age—depth relationship is described in Miebach et al. (2022). The upper gray
boxes describing the inference of the taxa weights and the climate values via rweMH sampling. This is done by comparing the
sampled climate reconstructions (reconstruction module) with additional recent climate data and an AP percentage reference

curve (prior climate and proxy pool modules) and constraining them accordingly. These comparisons are made using the

independent Metropolis—Hastings sampling. All in all, the procedure presented here not-only-avoids-disadvantages-two-to-six
from-the-introduction;-but-also-offers-comprehensive-extenstons-leads to comprehensive extensions outlined above.

3.5 Transfer functions

One objective of this work is to systematically test a variety of possible methods to determine the transfer function P(B | C, )
from Eq. 3 and select the most appropriate algorithm for the task at hand. For this purpose we use the R package caret (Kuhn
et al., 2019). This stands for classification and regression techniques and provides a variety of models that can be used to
solve corresponding problems. The package supplies a simple way to compare the selected models via cross-validation. In this
process, the provided data (cf. Fig. 2 (d)) are split into a training and a validation dataset. Cross-validation is performed on
the training set (James et al., 2013), which accounts for 70 % of all data. Statistical verification distributions result from this,
which are used to derive the performance of the models. Cross-validation is also performed for a certain number of different
parameters for the respective machine learning (ML) algorithms (model tuning). The entire process is very easily accessible in
caret and runs completely automatically after the initial parameters have been defined. The remaining 30 % (hold-out set) are
used to validate the models obtained by cross-validation on the remaining 70 %. This has the advantage that they can be tested
on an independent data set, further minimizing the risk of overfitting.

As can be seen in Fig. 2 (d), the defined biomes (minority classes) and the unspecified biome (majority class) are unbalanced.
This means that the number of gridpoints covering the different classes varies greattylargely. In a balanced data set, they would
be roughly equal. One could reduce the size of the entire map section so that the groups are more balanced. However, the

models then deliver significantly worse and sometimes mere-even unrealistic results. This problem-is-discussed-for-example
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Table 3. Machine learning algorithms which are used for the competition:

Algorithm: Shortcut:  Citation:

Artificial Neural Networks NNET Venables and Ripley (2002a)
Quadratic Discriminant Analysis QDA Venables and Ripley (2002b)
Mixture Discriminant Analysis MDA Leisch et al. (2017)

Gradient Boosting Machines GBM Greenwell et al. (2019)

in-Thema(2017)-or-in—Weitzel et-al(2019)—Thusmeans, a model could provide higher probabilities of occurrence, on the

one hand, where the biomes does-do not occur in the feature space and, on the other hand, where the climate values are
biologically unrealistic. This problem is discussed for example in Thoma (2017) or in Weitzel et al. (2019). When the map
section is enlarged, this problem recedes, especially if the absence values can serve as a boundary. This is the case when
the occurrence domain is enclosed by the absence domain in the two dimensional feature space spanned by Tpyr and Pann.
The reduction of the map section is analogous to the techniques of random under-sampling (Hoens and Chawla, 2013). The
majority class is randomly reduced to the size of the minority class, potentially losing important information. In contrast,
random oversampling of the minority class risks overfitting. To solve this problem, the Synthetic Minority Oversampling
Technique (SMOTE) is used (Bowyer et al., 2011). Here, a minority class instance is first randomly selected and its k-nearest
minority class neighbors are determined. A line segment is then formed between one randomly selected neighbor in feature
space. A synthetic instance of the minority class is created by selecting a random point along this line (Hoens and Chawla,
2013). SMOTE can only do this with one minority class at a time. Therefore, we use this technique separately for each of the
three minority classes compared to the majority class. Finally, all four classes consist of a similar number of data points. These
are the input for the calculation of the transfer function in the ML competition. So only the training data are processed with
SMOTE. For the model verification on the hold-out set, the original data are used.

Table 3 lists four ML models that we compete against each other. We have removed Support Vector Machines (SVMs) from
this list as they are not competitive due to their disproportionately long prediction time. Similar difficulties with SVMs are also
found in Jergensen et al. (2020), where a ML competition for forecast models of convective storms is presented.

Comparatively simple classification problems arise in this work, so relatively simple artificial neural network structures
(ANN) can be used. These deliver similarly good results with significantly less computational cost and the risk of overfitting is
generally lower with simpler structures. After initial tests, the ANN from the nnet package is chosen in this work (NNET). It is
a feedforward neural network that allows one hidden layer with an arbitrary number of hidden neurons (Venables and Ripley,
2002a).

Discriminant analysis involves the development of discriminants, i.e. linear combinations of independent variables that dis-
criminate the categories of the dependent variable (James et al., 2013). QDA, for example, extracts discriminants that maximize

separation between groups and then uses them to perform a Gaussian classification. QDA accounts for heterogeneity in the
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covariance matrices of these groups. Mixture Discriminant Analysis (MDA) can be considered as an extension that modifies
the within-group multivariate density of predictors by a mixture (i.e., a weighted sum) of multivariate normal distributions
(Rausch and Kelley, 2009).

Gradient Boosting Machines (GBM) is chosen to introduce an ML algorithm based on decision trees. It is a generalization
of tree-boosting that attempts to mitigate the following problems: Speed, interpretability, and robustness to overlapping group
distributions and, most importantly, mislabeling of the training data (Hastie et al., 2009). Thus, it creates an accurate and
effective standard procedure.

The approach presented here to systematically identify the most appropriate method to describe the relationship between

botanical data and climate remedies the last disadvantage mentioned in the introduction.

4 Results

This section first presents the results of the machine learning competition. Afterwards, the reconstruction of Lake Kinneret and

the corresponding MCMC data are shown.

4.1 Machine learning competition

(a) Machine learning competition (b) Architecture of NNET (c) NNET in climate feature space
1.0
O Input with SMOTE 1500 Mediterranean biome
——1—— —— O Inputwithout SMOTE Bl B2 50 % Probability
\ H1 Irano-Turanian biome
0.8 4 50 % Probability
\ Saharo-Arabian biome
> ‘\\ H2 01 Med 50 % Probability
8 \i\ 1000
> 0.6 y/ =
g Tosr 11 H3 Alozia | E
g > E
3 3
€04 Pann (12 \\H4 03 sah| <
T 500 4
o '\HS /, 04 Uns
0.2 4 | = Input Feature /
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O = Output 04
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Figure 5. Panel (a) summarizes the balanced accuracy of all ML algorithms based on the original input data and the data modified with
SMOTE. The winner of this ML competition is the feedforward neural network shown in (b). The thickness of the respective lines reflects
the relative absolute value of the parameters. Furthermore, the gray lines stand for negative values and the black lines for positive values.
In panel (c) the classification in the feature space of Tpjr and Pann is shown: the colored solid lines represent the 50 % probability of the

biomes occurring based on the transfer function from (b). The corresponding original input data are also shown as colored dots.

In the following, the results of the machine learning competition are analyzed in detail. The evaluation focuses on the
problem of unbalanced data sets. These are augmented with SMOTE until the input values are balanced. Subsequently, the

models are trained on these data sets and finally evaluated with a fraction of the original data.
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In our work, this classification is based on the so-called balanced accuracy (BA), which is calculated using 2 x 2 contingency
tables of predicted data compared to hold-out validation data. From these, the true positive and true negative rates can be cal-
culated, referred to as sensitivity and specificity, respectively. (Chicco et al., 2021). The arithmetic mean of these two measures
is the BA, which is an appropriate metric for trained ML models designed to describe an unbalanced data set (Brodersen et al.,
2010). BA varies between zero and one, with values close to one indicating well-performing classifications.

The results of all trained models are shown in Fig. 5 (a). A distinction is made between models trained on the original data
set (without SMOTE) and those trained on data augmented with SMOTE. It is immediately noticeable that the results marked

by the blue boxplots have a BA of ~ 0.5 {exceptNNET)—In-these-instanees;-or the sensitivity is always zero and the specificity
is one, which means that no presence is predicted. In contrast, the other fits (orange boxplots) have an average BA of about

0.92, which is-a-signifieantinereaseprovides a clear improvement in BA. Thus, we can not only obtain fitted models with high

significance, but also reduce the boundary effects in the feature space, resulting in more closed probability contour lines as
shown in Fig. 5 (c). Although all algerithms-provide-good-four algorithms provide well trained models on their own (cf. Fig.
5 (a)), the direct comparison between them leads to the result-final selection that a simple artificial neural network emerges as
the winner. The structure of this NNET is shown in Fig. 5 (b), where the two climate variables represent the input layer and the
three biomes with the unspecified biome the output layer. Furthermore, six hidden neurons proved to be the best compromise

between BA and overfitting in model tuning. This network structure is finally used for the following climate reconstruction.

In summary the results of the ML competition for estimating the transfer functions between the presence of biomes and their
feature space of DJF temperature and annual sum of precipitation do automate decisions in the interests of reproducibility and
by this raise the quality of transfer functions calculations. This introduces a higher flexibility in case of analyses of a network
of proxy data sets e.g. as a basis for climate field reconstructions.

4.2 Quantitative reconstruction

Due to the large number of parameters and data points, we decide to generate 1 million MCMC samples. To-make-such

a-reconstruetion—as—fast-as-possible-This_makes the numerical problem difficult to be solved fully in a R (or python)
programming interface. Therefore as much as possible subroutines are implemented in the compiler language C++ is-tsed:
Thus;-a-reconstruction-and embedded into the R code. By this approach the reconstruction model can be implemented on a
standard €PY-takes-onty-laptop or stand-alone PC with commercially available, standard eight core central processor and uses

about 40 seconds—Finally-thef quarter-of-the-sample e onstdered-burn-tn—and-every h-tteratton—of-the-rematnineg

erforming their evaluation.
First, the stochastic behaviour of this MCMC simulation must be tested for convergence. For this, we use the multivariate

extension of the Gelman—Rubin convergence indicator (Brooks and Gelman, 1998). The closer this is to one, the more likely
it is that convergence has been achieved. Gelman et al. (2013) recommend a value of less than 1.1. In our case, this is 1.001,

from which we conclude that this simulation setup converges.
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Figure 6. Posterior and prior taxa weights. The continuous, solid black line indicates the prior and the boxplots the posterior taxa weights.

The short black line and the color dots within each box plot indicate the median weight under the explained variance mean value of 0.5, 0.25
turquoise) and 0.75 (orange). The latter vary clearly only for Olea europaea and the two Quercus taxa. In addition, the assignment of each

taxon to the three biomes is color-coded.

430 Fig. 6 summarizes the posterior taxa weights P(P | w) determined by this simulation in boxplots. It is immediately apparent
that, with the exception of Olea europaea, Quercus calliprinos and Q. ithaburensis, and Amaranthaceae, the mean posterior
taxa weights deviate only slightly from the prior uniform distribution. In particular, the olive taxon receives a considerably
lower weight, which is due to the generally high pollen percentage in the core (see Appendix B for details). To ensure a
sufficiently high variability with respect to the reference curve of AP percentage in Fig. 3 (b), the new reconstruction method

435 weights Quercus calliprinos and Amaranthaceae highest especially under the prior R? = 0.5.
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Figure 7. In panels (a)—(c), the prior biome probabilities of 50 % are indicated with dashed black lines and the corresponding posterior biome

probabilities are depicted with solid black lines for the case explained variance R® = 0.5 by the reference arboreal pollen percentage and
in color (turquoise and orange) for RZ = 0.25and0.75. In (d), the ratios of the 95 % credible interval (CI) of the corresponding prior and

posterior distributions from panels (a)—(c) Mm are shown.

Fig. 7 shows the prior and posterior probability distributions P(B | C', 1)) based on the NNET classification under SMOTE.
We see the largest changes from prior to posterior within the Mediterranean biome in (a) but almost no changes of the posterior
between the imposed explained variances R? = 0.25,0.5,0.75. The branch with lower temperature and precipitation of this
distribution leads to reconstructions that cannot fulfil the beundary-conditionsCRU imposed boundary conditions with respect
to temperature. The corresponding posterior probability reveals an average Tpyr of 10°C and an Pony of 700 mm. For the
two remaining biomes the changes between prior and posterior as well as within the three posterior with the different imposed
explained variances 12 = 0.25,0.5,0.75 are minor, The results for the three other classification algorithms are of similar

structure. In panel (d) we see the reduced posterior variances over the prior variance of the climate variables within the biomes

due to the ingestion of the additional information of the reference curve and the CRU climate. The temperature distribution of
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Figure 8. The prior proposal distributions (orange lines) and the posterior samples (gray areas for R = 0.5, color lines turquoise and brown

W) of Tpyr in (a), Pann in (b) and the explained variance R? of the reconstructions Lv\hgggompared to the arboreal pollen

percentage reference curve with the three different explained variances R?=10.25.0.5,0.75 in (c).

the Saharo-Arabian biome, for example, must be constrained so that it does not contradict the CRU boundary conditions of the
most recent temperature data. Overall, it can be seen that the posterior temperatures settle at around 10 °C and thus show less
variability than the corresponding precipitation distribution.

The posterior samples described above are determined with the prior boundary conditions in Fig. 8. We also see the corre-
sponding posterior distributions as gray areas for the case R? = (.5. It is noticeable that the temperature in (a) and the precip-
itation in (b) have slightly
values but the changes from prior to the posteriors are mainly visible in the spread around the maximum corresponding to the

results in Fig.(7 d). In contrast the largest changes from prior to posterior are found in the explained variances of the arboreal

smaller maximum

pollen percentage curve in (c). Based on the taxa weights and the values of the transfer functions from Fig. 6 and Fig. 7, it can

be concluded that a trade-off with respect to recent climate conditions is reached when the median R? is around 0.65 (50 % CI

from 0.50 to 0.80) -reached with the prior choice of Beta distribution with maximum and mean at R> = .5. In contrast to the
rior choice R? = 0.25 and 0.75 this leaves enough degrees of freedom to increase the posterior to 0.65 (50 % CI from 0.50 to

0.80) which does not happen that clearly with the two remaining choices.
In the following, we describe the final reconstruction. It is divided into the percentages of the reconstructed biomes P(B |

P, A w) in Fig. 9 and the reconstructed Tpyr and Pany in Fig. 10. From the former, we can infer the importance of these
biomes in specific periods.

The period 9-7 cal ka BP can be associated mainly with the Pottery Neolithic. The vegetation is described in Schiebel
and Litt (2018) with a strong influence of steppe vegetation in the catchment area of LK. They conclude that this is due to

increasing drought, which is confirmed by the increased percentages of the Saharo-Arabian and Irano-Turanian biomes. In
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Figure 9. Posterior biome percentages in relation to cal ka BP. The colors indicate the probability density values, the black solid lines its

median for the reconstruction based on the explained variance B2 = 0.5 by the AP-percentage, and the dashed black lines the first and third
quartiles, turquoise and brown lines are the medians for R* = 0.25,0.75.

contrast, the Mediterranean biome records comparatively low percentages during this period. This leads, on the one hand, to

465 the highest average Tpyg of over 10 °C and, on the other hand, to relatively low Pany of about 400 mm. Furthermore, Miebach
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Figure 10. As Fig. 9, but for the quantitative paleoclimate reconstruction of the Lake Kinneret region. In (a) the reconstructed Tpyr in °C and

in (b) the Pann in mm are shown.

et al. (2022) infers a weak cooling trend and precipitation decrease during 7.8—6.6 cal ka BP from carbon isotope signals of the
Sea of Galilee. These qualitative statements are confirmed by the new climate reconstruction within both variables.

The beginning of the period 7-5 cal ka BP is accompanied by an increase in Olea europaea and thus, the Mediterranean
biome. Schiebel and Litt (2018) assume climate change towards higher precipitation --compared to the previous time slice (9-7
Early Bronze Age, which is also confirmed by our reconstruction. This change is well accompanied by the changes in the
median position when varying the prior explained variance by the AP percentage reference curve which is hardly visible e.g.
for the early period 9-7 cal ka BP.
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The average Pann is about 500 mm and temperatures surrounding 10 °C. During the Chalcolithic (ca. 6.5-5.5 cal ka BP),
precipitation shows a local maximum, which decreases after about 5.5 cal ka BP. Such behaviour could be related to the
transition from the Chalcolithic to the Early Bronze Age.

The Early Bronze Age to Iron Age within 5-2.3 cal ka BP reflects not only human-induced but also climatically driven

vegetation changes -

a-human-influenee—On—the-other-with almost no differences between the medians of the three sensitivity calculations based

on the prior choices of explained variances R? = 0.25.0.5.0.75 On the one hand, the decrease in oak pollen of 4 and 3.2
cal ka BP could be related to the Bond events of 4.2 and 3.2 associated with droughts in the Levant. During this period, the

precipitation shows a steady decline from ca. 500 mm to about 400 mm, while the temperature remains around 10 °C. Atthe

same-time;-the-Mediterranean-biome-On the one hand, Schiebel and Litt (2018) describe the end of olive cultivation around 5
cal ka BP as a human influence. Therefore, a decrease in olive pollen around 5 cal ka BP cannot be associated with changed
climatic conditions and is also not visible in the reconstruction. This is made possible by the lower weighting of this taxon and
supports the choice of the prior beta distribution parameters of ° = 0.5. Olea europaea is an integral part of the Mediterranean
vegetation zone, even as an indicator species for the current geobotanical distribution of this biome (Langgutet al., 2013)
:Olea also grows as a cultivated tree mainly under Mediterranean climate conditions. When olive groves were planted in the
past, the Mediterranean oak forests, which were predominantly deciduous, had to be cleared (e.g. Q. ithaburensis). Oak trees
were therefore replaced by olives and vice versa (see Fig.(6)). Both species have a similar chance of being recorded in the

ollen record (high pollen producer based on wind pollination). It is also noteworthy that the bivariate conditional probabilit

density functions (likelihood functions) of Dec-Jan-Feb temperature and annual precipitation are very similar for both species

(see Neumann et al. (2007)). The subfamilies Cichorioideae and Asteroideae (both belonging to the Asteraceae family), are
components of the Irano-Turanian steppe vegetation. They might also occur in the anthropogenic influenced Mediterranean
vegetation zone (batha, garrigue). However, it must be stressed that the Cichoioideae peaks appear in a phase which was less
influenced by human impact (Middle Bronze Age after the decrease of Olea cultivation and increase of Q. ithaburensis type).
Therefore we assume a stronger climate than anthropogenic signal related to Cicorioideae peaks (dryer conditions).

Between 4 and 3.2 cal ka BP apparently the Mediterranean biome decreases and the others increase. The climate change
to lower precipitation around 4 cal ka BP could be related to the transition from the Early to the Middle Bronze Age. The

second and larger variation during 3.2 cal ka BP might be related to the collapse of the Late Bronze Age (Langgut et al., 2013).
Furthermore, the Iron Age in the Near East lasted from about 3.1 - 2.5 cal ka BP (Langgut et al., 2013). This corresponds to
an increase in precipitation at the beginning and ends in a minimum with values around 400 mm. 2.5 cal ka BP marks the
transition from the Iron Age to the Babylonian—Persian period, which lasted about 200 years and is accompanied by a slight

increase in precipitation. #

The years from 2.3-1.5 cal ka BP are marked by the Hellenistic and Roman—Byzantine periods. This can be associated with

the Roman Climatic Optimum (Langgut et al., 2013) and a noticeable increase in precipitation can be seen in the reconstruction.
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Figure 11. Paleoclimate reconstruction of the Dead Sea, modified after Litt et al. (2012). In (a) the Tpyr anomaly in °C and in (b) the Pann
in mm are shown. The thicker white lines are the expectation values and the thinner white lines describe the respective linear climate trends.

The thicker black lines mark the mode and the thinner black lines indicate the interdecile and interquartile ranges.

Orland et al. (2009) recognize from isotopic data from Soreq Cave a decrease in precipitation during the period 1.9-1.3 cal
ka BP. They suggest that this climate change weakened the economic system of the Roman and Byzantine Empires, which
contributed to the decline of their rule in the Levant.

This leads us to the early Islamic period to the present from 1.5-0 cal ka BP. The reconstructed Ponn shows relatively high
values and exhibits only minor variations. Finally, the climate PDFs of the youngest timeslice are the same as the posterior
distributions depicted in Fig. 8 (a) and (b).

In comparison with the quantitative climate reconstruction of the Dead Sea in Fig. 11, we can observe some similarities.
During the early Holocene, relatively low precipitation is reconstructed up to 6.5 cal ka BP. These increase markedly during the

mid-Holocene up to 3.3 cal ka BP. They then fall significantly and rise in the further course until the youngest time slice. With
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the corresponding Tpyg, the trend is exactly the opposite. Overall, we see similar patterns, although the temperature fluctuations
in Litt et al. (2012) are larger, which is due to the special location of the Dead Sea as a transition zone of the three biomes.

520 Note that the presented method as well as that of (Litt et al., 2012) reconstruct a full probability density pdf of the joint

Dec-Jan-Feb mean temperature and the annual precipitation sum at a given age. The apparent smoothness of the Dec-Jan-Feb
mean temperature in Fig (10 a) results if one concentrates on the median of the reconstructed pdf without considering the
inherent variability indicated by the color shading. The median temperature is that temperature value which divides the
reconstructed temperature range into two equal probable intervals from which individual realisation of the DJF-temperatures

525 have to be drawn at random, This randomization introduces additional variability in the time series but requires the specification
of the autocorrelation in time beyond that whoch is introduced by the AP-percentage reference curve. The effects of such
randomization in the climate field reconstruction of Holocene temperature in Europe has been demonstrated by (Simonis et al., 2012)
- The comparison of the present reconstruction with other temperature reconstruction e.g. based on non-pollen data can only.
be done if these two type of information (the most probable or median value plus the implied variability) are quantitatively

530  available (see Gneiting and Raftery (2007)).

5 Discussion and possible extensions

Our new approach of a local climate reconstruction offers a systematic method to investigate the variability of the data under
certain boundary conditions. These partly originate from sources other than the original botanical proxy data. In this way, it can
be determined whether a physically and biologically realistic climate reconstruction is possible with the given proxy data. The
535 new method shows, for example, that the probability of the Mediterranean biome with lower temperatures and precipitation in
Fig. 7 (a) cannot be used when constrained by recent climate data and arboreal pollen reference. So far, the full distributions
have been included in the reconstructions. This new flexibility in terms of transfer functions accounts for the assumption that
the relationship between recent biome distributions and the corresponding climate remains unchanged in space and time. The
posterior distributions in Fig. 9 show where these might have been on average during the reconstruction period for the Sea of

540 Galilee.
Further useful information can be obtained from the posterior taxa weights. From this, it can be deduced to what extent
a particular taxon is included in the reconstruction based on its occurrence in the sediment core. Thus, this automatically
determined data can expand the underlying expert knowledge. Here it seems that less weight needs to be given to olive pollen,
which dominates at certain depths, to ensure the influence of the other taxa. This shows how the highest possible variability
545 can be obtained from the proxy information under the assumed boundary conditions. With a comparatively higher weighting
of Quercus calliprinos, the recent precipitation distribution at the Sea of Galilee can be approximated as well as possible.
Furthermore, we find the highest weights in relation to the Irano-Turanian and Saharo-Arabian biomes in the taxa Poaceae and
Amaranthaceae. This makes it possible to reconstruct the lower precipitation in the periods 9—7 cal ka BP and 3.2-2 cal ka BP.
It also helps to reduce the human impact on vegetation during the reconstruction process. This is particularly striking in the

550 Mediterranean biome around 5 cal ka BP, where we see only minor changes.
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In the posterior distribution of the explained variance between the reconstructed precipitation and AP percentage in Fig. 8
(c), values of 0.65 occur on average starting from the prior information that the mean R? = 0.5 with an assumed uncertainty
of £0.2. These relatively high positive posterior correlations confirm the relationship between these two variables proposed in
Schiebel and Litt (2018) and allow the quantitative exploration of that proposal. We also see the order of magnitude in which
this must be present to allow a compromise with the other boundary conditions in Fig. 8 (a) and (b).

Compared to previous local climate reconstructions based on Bayesian statistics, the proxy information considered can be
included without further processing. This means that it is not necessary to pre-select specific plant data and set thresholds for
their probability of occurrence. In addition, the boundary conditions such as climate anchor points and reference curves can be
extended. For example, isotope data from the Mediterranean Sea such as Medstack (Colleoni et al., 2012) or from speleothems
in the Soreq Cave (Bar-Matthews et al., 2003) can be used as guidelines. In addition, PDFs for the MH from paleoclimate
simulations (Braconnot et al., 2011) can be included. The new reconstruction method can therefore be easily adapted and used
accordingly in future studies.

The age uncertainty accounted for in this study with the new age—depth transformation presented allows for data-driven
smoothing along with stretching/compressing of the original depth axis of the proxy information, as well as arbitrarily high
resolution and a regular temporal grid. This means that reference proxies can now be examined in spectral space. For example,
the fluctuations around 4 and 3.2 cal ka BP could be compared with the ice rafted debris of the North Atlantic using wavelet
power spectra (Debret et al., 2007). We thus see that the reconstruction method presented can be extended with additional
independent proxy information, so that quantitative multiproxy analyses are possible as well as the inclusion of results from

paleoclimate simulations.

6 Conclusions

In this study, we present new techniques for generating local paleoclimate reconstructions based on botanical proxies. For this
purpose, we use a newly developed BHM solved with MCMC sampling. To place the proxy information in a temporal context,
a new probabilistic method is used to assign age information to depths in sediment cores. In particular, the uncertainty of age
is accounted for by a separate BHM introduced in this work. Climate variables such as Tpyr and Pann were included using
a transfer function based on biome occurrence. We determine these functions with a machine learning competition. Such a
systematic identification of the most appropriate method to describe the relationship between botanical data and climate is
performed here for the first time.

These new techniques are applied to plant data from the Sea of Galilee during the Holocene. The reconstructed climate
variables reflect the qualitative climate reconstructions explained in Schiebel and Litt (2018); Miebach et al. (2022); Orland
et al. (2009). Moreover, the algorithm is able to find climate changes that can be associated with Bond events and known
archeelogieal-archaeological and cultural changes in the Levant. Furthermore, there is a connection with the quantitative re-
construction of the Dead Sea in Litt et al. (2012), where similar climatological trends are reconstructed, It is interesting to

note that the reconstructed Dead Sea lake level curve as an independent proxy for precipitation (Stein et al., 2010) correlates
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very well with the pollen-based paleoclimate reconstruction (Litt et al., 2012). However, it must be stressed that the older
reconstruction method based on a Bayesian Biome Model has some weaknesses compared to the new approach which are
not detectable by the correlation, namely systematic shifts (biases) with respect to present climate, e.g, the mean Dec-Jan-Feb
temperature in Litt et al. (2012) is clearly to low due to the inclusion of temperature values of the Mediterranean vegetation
zone in the northern part of the study area.

Overall, our new methods provide an additional way to calculate quantitative paleoclimate reconstructions. From our results,
we conclude that more automatic, statistics-based techniques complement those that require additional assumptions. Further-
more, our model provide additional information such as taxa weights and biome climate ranges with corresponding uncertainty
estimates. From this, we can gain new insights into possible biological mechanisms involved in ecological changes caused
by past climate variability. The new methods not only remedies all the disadvantages mentioned in the introduction, but also
represents an attempt to solve complex BHMs with little computational cost. Extending this to multiple proxy sources and
applying it to other geographical areas could qualitatively and quantitatively expand knowledge about the climate history of

the Earth.

Code and data availability. There are two Zenodo repositories, written in R (Netzel, 2023b) and in Python (Netzel, 2023c). These each in-
clude the Bayesian framework with the MCMC simulation in C++. The required input data from the sediment core, from the ML competition

and from the age—depth model are available in the corresponding repositories.
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600 Appendix A: Derivation of the local reconstruction model

Using Bayes’ theorem, we can express the probability distribution for climate C' given pollen and macrofossils P, depth D,

and parameter ©. In the process, we also introduce the biome information B:
P(C | P,D,0®) = /]P’(C | P,B,D,®)-P(B|P,D,0O)dB. (Al)
B

In the case of a finite number of taxa, the integral is a corresponding sum. Consider P(C' | P, B, D, ®) in more detail:

1. P(B|C.¢)-P(C[¢)-P(¢)
P(B,) '

605 P(C|P,B,D,©)XF(C|.B,D,0)XP(C|B,6)XF(C|B,y)~ (A2)
With the following assumptions and applications:

1. C'is conditionally independent of P if B is given. This assumes that B explains enough variability of the core.

2. The link between C and B is conditionally independent of depth. This means that the relationship between these quan-
tities is assumed to be unchanged for any depth and thus any age of the core. The assumption that this relationship has
610 not changed over time is an important part of our reconstruction method. When we look at older time periods, we need

to keep this in mind, as the relationship may well have changed due to evolutionary processes.

3. The connection between C and B is described only by the parameter 1. Furthermore, 1 and w are a priori independent:
P(@) =P(¢) - P(w).

4. Application of Bayes’ theorem.

615 If we substitute Eq. A2 into Eq. Al, we get:

P(C|P,D,®) =~ / PB| C,wlp))(-g(g; ¥) - P(v) .P(B| P,D,w)dB. (A3)

B

Eq. 2 allows us to transform this model from depth to age:

P(C | P,A,©) :/IP’(C'|P D,©)-P(D | A)dD

Equ// BIC'TP (T’b).]P(B|P’D,w)dB'P(D|A)dD

B | C,¢)-P(y) .
620 / FB.3) D/]P’(B|P, D,w)-P(D|A)dDdB
k2 [(P(B|C,v)-P(y) w
~ / FB.9) P(B|P,A,w)dB. (A4)
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Consider P(B | P, A,w) in more detail:

P(B|P,Aw) = /IP’(B | P,Ps,A,w) -P(Ps | P,A,w)dPs (AS)

P
The first term in the integral contains the information about which selected plant proxies P, from the lake sediment belong to
625 which biome. Note that a more detailed relationship in terms of age A could be added at this point. Because we consider the
Holocene in this study, we assume that the probabilities for the biomes are conditionally independent of age if selected plant
proxies are given. The second term describes the plant information from the sediment core in terms of age. Finally, we can

substitute Eq. AS into Eq. A4 and obtain the reformulated BBM:

P(C|P,A,®) z/P(B | C’ﬁ('g(g)' ) P(¥) -/P(B|P,Ps,w).}P>(P3|P,A,w)dPsdB. (A6)

B PS

630 Appendix B: Figures of the taxa spectrum
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Figure B1. Percentage distribution of terrestrial pollen sums as a function of depth for some taxa from the Sea of Galilee. In the middle, the

aggregated arboreal pollen are shown in dark green. The other colors correspond to the assignment to the respective biome.
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Figure B2. As Fig. B1, but with the new transformation from depth to age of sediment core.
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