
 

General remark with respect to the Figures 

A new Fig 1 is added; Fig 6, Fig 7, Fig 8, Fig 9 and Fig 10 (in the first MS Figs 5 to 9 due to the added 

Fig.1) have been changed to include the results of the sensitivity study with respect to the explained 

variance relation between reconstruction and reference curve.   

 

Review 1 

We thank the reviewer for the very helpful  insights and remarks. Those are in italics 

Netzel et al. present a new method for pollen-based quantitative climate reconstructions based on 

the ‘mutual climate range’ approach. They develop an algorithm using Bayesian statistics to 

overcome the disadvantages of other methods such as age model uncertainties, criteria for plant taxa 

inclusion/exclusion, and human-induced impact on natural vegetation. The method is applied on a 

previously published palynological dataset from Lake Kinneret (Eastern Mediterranean region) that 

spans the past c. 9 kyrs suggesting a mean winter temperature of c. 10 oC throughout this time 

interval and a mean annual precipitation of about 400–700 mm. 

 

Although I am not an expert on the development of pollen-based climate reconstruction techniques, I 

have read this manuscript with great interest because of the necessity for robust and precise 

reconstructions of past climates. This is a well-structured manuscript and generally clearly written. In 

my view, however, there are several shortcomings that preclude publication in ‘Climate of the Past’ in 

its current form. 

 

Necessary citations from the original text are highlighted in color   

And followed by the corrections/remarks/additions to the text. 

 

Main concerns: 

 

   1. The authors argue that the comparison of the reconstructed climate parameters with those 

provided by other reconstruction methods will test the reliability of the results (Lines 67-68). I struggle 

to understand the logic behind this approach. For example, if the here-reconstructed values are 

comparable with those provided by other methods, the question that arises is why a new method is 

needed. If the results are not comparable, then the question that arises is how one can test which 

reconstructed values are more realistic. In my view, independent (i.e., non-pollen-based) climate 

reconstructions should be used to check the reliability of the here-reconstructed climate parameters. 

This aspect needs to be elaborated on in a revised manuscript. 

Line 67- 68: We will use these as a comparison for our quantitative statements to show similarities 

and differences and to check whether our new approach fits into the existing knowledge and thus 

provides realistic results. 

We changed and added: 



A comparison is possible following the results from previous reconstruction studies of paleoclimate 

information in the Dead Sea region (Litt et. al, 2012). These exhibit certain deficits like biases at 

recent time slices or extensive variability during Holocene times. Details will be discussed below. The 

aim of the present study is to evaluate the potential of those mentioned, additional  environmental 

data to enhance similarities and reduce differences between  reconstructions at LK based on the 

previous methods and the information content of the additional qualitative data. The general 

approach is a Bayesian statistics based data assimilation of the new data (likelihood)  into the 

previous reconstruction forming the prior. The resulting posterior will not only provide a most 

probable reconstruction of the paleo climate state given both type of input data but also an 

uncertainty estimate. The latter allows a comparison of the prior reconstruction  with the posterior 

one and an assessment of the gain of information by the assimilation without the need of 

independent data (e.g. from non-pollen data like stable isotopes).  The theoretical concept presented 

in this study readily extents to the inclusion of those independent data, which is a task for future 

work. In addition, already available data on lake level fluctuations can be used as independent 

proxies at least for precipitation changes for comparison with pollen-based reconstructions (Lake 

Kinneret: Hazan et al. 2005; Vossel et al. 2018; for regional scale Dead Sea: Stein et al. 2010, Litt et al. 

2012). 

----------------------------------------------------------------- 

   2. The authors consider ‘a priori that the climate reconstructions should explain about 50 % of the 

variance of the respective reference curves’ (Lines 182-183). If I understand correctly, this threshold 

value of 50 % is regarded as sufficient to address the human influence on vegetation dynamics. In my 

view, this is an important point that needs to be explained further. How is this ‘about 50 %’ defined? 

Is it based on statistical analysis or empirical observations? And how would the reconstructions be 

affected if this threshold value was higher or lower? Clearly, the human influence on natural 

vegetation has gradually intensified during the Holocene, and the manuscript does not explain how 

the new method elaborates on this. As such, the statement that the method ‘helps to reduce the 

human impact on vegetation during the reconstruction process’ (Line 412) is not fully substantiated. 

Line 182/183: To account for such uncertainties, we specify a priori that the climate reconstructions 

should explain about 50% of the variance of the respective reference curves. 

In particular, the influence of humans on the vegetation around the lakes studied during the mid- to 

late Holocene complicates the interpretation of these curves. To account for similarities and to 

reduce differences the above mentioned Bayesian statistics based assimilation of the AP data is 

based on the notion that the regression of the climate reconstruction to the reference AP curve 

should explain an anticipated amount of variance. Inline with the general Bayesian approach that 

amount is not a fixed number but described by a most probable value and an uncertainty. By 

performing a sensitivity analysis the most probable value was varied in the steps 25% , 50% und 75% 

and a typical uncertainty of 20%  obeying the constraint that the explained variance can only vary 

between 0 and 100%.  This  gives the model the ability to capture a sufficiently large range of R2 

(Netzel, 2023a). For the 50% case such a proposal can be described by a beta distribution with shape 

parameters (3,3) (for 25%  it is (,), 75% (,))  

 

Here formula (5)  

 



This approach allows the climate reconstruction to the follow the trends of the AP references (or any 

other non-pollen data set) under the assumption that the biome information B provides sufficient 

variability through the probabilistic transfer function. On the other hand, additional moderators like 

human influence are allowed. The aspects of human impact related to the climate reconstruction 

method (line 412) will be explained in more detail the discussion chapter (see also response to 4). 

 

------------------------------------- 

 

   3. The mean winter temperature reconstructed values (Figure 9a) show almost no variability over 

the past 9 kyrs. Instead, a quasi-stable temperature of about 10 oC is suggested to have prevailed for 

such a long period of time. Arguably, the method is not sensitive enough to capture changes in 

temperature, despite the fact that the temperature reconstructions are generally easier than e.g. 

precipitation reconstructions. I suggest the authors to compare their temperature reconstructed 

values with other temperature records from the region (also non-pollen-based) and discuss vigorously 

what the limitations of the method are, and why the here-presented results provide meaningful and 

reliable climate reconstructions. 

 

Note that the presented method reconstructs a full probability density pdf of the joint Dec-Jan-Feb 

mean temperature and the annual precipitation sum at a given age. The apparent smoothness of the 

Dec-Jan-Feb mean temperature in Fig. 9a (commonly referred to as winter temperature on the 

Northern Hemisphere) results if one concentrates on the median of the reconstructed pdf without 

considering the inherent variability. The median temperature is that temperature value which divides 

the reconstructed temperature range into two equal probable intervals from which individual 

realisation of the NH-winter temperatures have to be drawn at random. This randomization 

introduces additional variability in the time series but requires the specification of the 

autocorrelation in time which is not modelled yet in the present method. The effects of such 

randomization in the climate field reconstruction of Holocene temperature in Europe has been 

demonstrated by Simonis et al (2012) (citation added) .  The comparison of the present 

reconstruction with other temperature reconstruction eg based on non-pollen data can only be done 

if these two type of information (the most probable or median value plus the implied variability) are 

quantitatively  available. The comparison is possible for the Dead Sea reconstruction from Litt et al. 

2012. The results will be discussed below.  

------------------------------------------------------------------------------ 

 

 4. The mean annual precipitation reconstructions (Figure 9b) mirror the variability in the arboreal 

pollen %, which in turn they predominantly reflect changes in the Olea percentage (compare 

Appendix B). As such, the precipitation reconstructions are misleading because Olea  is closely related 

to agricultural practices in the Eastern Mediterranean region. On this basis, there is a very strong 

human component in the reconstructed values that appears to obliterate the natural climate 

variability. This view is also supported by a close look at the timing of the Cichorioideae % peaks 

(compare Appendix B), which are also considered indicators of human-induced land use changes. 

Specifically, the precipitation drops at 4 and 3.2 cal. kyrs BP, which the authors attribute to short-

term climate changes related to the Bond events (Lines 371-372), conspicuously coincide with 

Cichorioideae % peaks. As such, the precipitation reconstructed values may also represent a human-



induced signal rather than climate variability. As for the temperature, the precipitation 

reconstructions provided by this new method should be compared with other precipitation records 

(also non-pollen-based) and vigorously discussed in a revised manuscript. 

To be added in the discussion chapter near Lines 371-372 

On the other hand, the decrease in oak pollen of 4 and 3.2 cal ka BP could be related to the Bond 

events of 4.2 and 3.2 associated with droughts in the Levant. 

 

We added: Olea europeaea is an integral part of the Mediterranean vegetation zone, even as an 

indicator species for the current geobotanical distribution of this biome (see Langgut et al. 

2019).Olea also grows as a cultivated tree mainly under Mediterranean climate conditions. When 

olive groves were planted in the past, the Mediterranean oak forests, which were predominantly 

deciduous, had to be cleared (e.g. Q. ithaburensis). Oak trees were therefore replaced by olives and 

vice versa (see Fig. B1 and B2). Both species have a similar chance of being recorded in the pollen 

record (high pollen producer based on wind pollination). It is also noteworthy that the bivariate 

conditional probability density functions (likelihood functions) of winter temperature (DJF) and 

annual precipitation are very similar for both species (see Neumann et al. 2007). 

The subfamilies Cichorioideae and Asteroideae, both belonging to the Asteraceae family), are 

components of the Irano-Turanian steppe vegetation. They might also occur in the anthropogenic 

influenced Mediterranean vegetation zone (batha, garrigue). However, it must be stressed that the 

Cichoioideae peaks appear in a phase which was less influenced by human impact (Miffle Bronze Age 

after the decrease of Olea cultivation and increase of Q. ithaburensis type). Therefore we assume a 

stronger climate signal related to Cicorioideae peaks (dryer conditions).  

 

And after line 444 we added: It is interesting to note that the reconstructed Dead Sea lake level curve 

as an independent proxy for precipitation (Stein et al., 2010) correlates very well with the pollen-

based paleoclimate reconstruction (Litt et al., 2012). However, it must be stressed that the older 

reconstruction method based on a Bayesian Biome Model has some weaknesses compared to the 

new approach which are not detectable by the correlation, namely systematic shifts (biases) with 

respect to present climate, e.g. the mean Dec-Jan-Feb temperature in Litt et al. (2012) is clearly to 

low due to the inclusion of temperature values of the Mediterranean vegetation zone in the northern 

part of the study area.  

Other comments: 

Line 7: Unclear phrasing ‘…that map climate variable to biome distributions’. 

 Furthermore, we introduce a systematic way to establish transfer functions that map climate 

variables to biome distributions. 

We introduce a systematic machine learning based way to establish probabilistic transfer functions 

which connect spatial distributions of temperature and precipitation to the spatial presence of 

specific biomes. Mean Dec-Jan-Feb temperature grid point values and the annual sum of 

precipitation at that grid point are used to classify the presence or absence of the biomes.   

 

 



Line 13: Do you refer to arboreal pollen percentages? Please specify here and throughout the text. 

Here, a priori information on the recent climate in this region and data on arboreal pollen from this 

lake are used as boundary conditions. 

Here, a priori information on the recent climate in this region and data on arboreal pollen 

percentages from this lake are used as boundary conditions. 

… and changed throughout the text 

Line 23: Add references. 

In the last few decades, a lot of reconstructions were published, which showed the advantages and 

disadvantages of the respective methodologies. 

We added: In the last decades, several reconstructions were published (e.g. Neumann et.al, 2007; 

Langgut et. al. 2013; Litt et.al (2012), Langgut et. al. 2019), which showed the advantages and 

disadvantages of the respective methodologies. 

 

Lines 44-45: It is unclear what the previously application of the BBM approach on the Lake Kinneret 

dataset has shown. Please expand the text and explain what is the relevance for this study. 

Thoma (2017) applied the BBM to Lake Kinneret (LK), also known as the Sea of Galilee, with the result 

that the two biomes used showed too little variability and suggested an expansion to at least three 

biomes.  

We added and replaced into: A first application to Lake Kinneret (LK), also known as the Sea of 

Galilee, is shown in the work by Thoma (2017). He used the time series information of the two major 

biomes which can be deduced from the LK core. The resulting BBM based paleo climate 

reconstruction did show too little variability in temperature and precipitation suggesting that at least 

a three biome model as basis for the BBM should be used. Together with changes in  derivation of 

the transfer functions, the assimilation of the present time and arboreal pollen percentage time 

series a three biome approach (Mediterranean,  Irano-Turanian, Saharo-Arabian) plus a virtual biome 

necessary for the actual biome vs. climate transfer function calculations will be implemented in the 

following. The virtual or undefined biome summarizes all neighbouring biomes in the Levante not 

covered by the three physical ones. It is especially needed in in the neuronal network NNET method 

but to compare these results it is also used in the three other methods.  Finally, the BBM also allows 

reconstructions based on prior climate data. These come, for example… 

 

Lines 74-76: What is the relevance of the information on the lake’s characteristics for this study. 

Please explain or delete. 

The location of Lake Kinneret is marked with a black dot in Fig. 1 (a). LK is a warm, monomictic and 

meso-eutrophic inland lake being part of the Jordan river catchment and its lake level varies between 

209 and 215m below mean sea level. It has a maximum water depth of ca. 42m and a surface area of 

ca. 169km2 (21×12km at the maximum). The watershed area comprises 2730km2 (Berman et al., 

2014). 

We deleted some information on lake´s characteristics and replaced into: 

Lake Kinneret in Galilee (Israel) is part of the Jordan river catchment. It has a maximum water depth 

of ca. 42 m and a size of 21 x 12 km (Bermann et al., 2014).  



To continue:  (New) Fig. 2 (a) and (b) show … 

 

Lines 86 and 92-95: The Kinneret basin cannot be seen in Figure 1, and by extension, the prevalent 

climate conditions and vegetation biomes in the study area. As such, Figure 1 has to be redrawn.   

We added a new Fig. 1 (catchment area southern Levent including Lake Kinneret and Dead Sea Basin, 

biome distribution, annual precipitation). 

Older Fig. 1 is now Fig. 2: 

This remark by the reviewer is difficult to understand: the maps have a (CRU) grid size of 0.5° * 0.5° 

(~50 * 50 km) with the maximum extension of LK being 12 * 21 km, thus well represented by the 

black dot in the three maps in Fig. 2 (Fig. 1 in the old version).  

 

 

Line 94: The vegetation and climate characteristics of the Saharo-Arabian biome are not presented, 

despite this biome is discussed in both the ‘results’ and ‘discussion’ sections. Please also explain what 

is the ‘unspecified biome’ and why it is worth mentioning in the text as long as it not found in the 

catchment area of Lake Kinneret.   

We added: Saharo-Arabian desert vegetation occurs in the southern part, where the mean annual 

precipitation falls below 100 mm. It is a vegetation type with sparse plant cover and low diversity. 

Important representatives of the Saharo-Arabian vegetation are Zygophyllum dumosum, Retama 

retam, Tamarix nilotica, Atriplex halimus and other Amaranthaceae. Sudanian vegetation occupies 

tropical oases of the Jordan Valley. Mainly trees and shrubs such as Maerua crassifolia, Acacia 

radiana/Acacia tortilis, Balanites aegyptiaca, and Ziziphus spina-christi compose this vegetation type 

(Zohary, 1962). 

 

Lines 155-162: I don’t understand how the use of a 50 years grid (which is defined based on the 51 

years average temporal resolution of the pollen record) addresses the ‘full age uncertainties’ (see line 

50). How does the new method elaborate on the changing sedimentation rates in the lake over the 

past 9 kyrs? 

In this case, the target variable is AP and is shown in panel (a) as a function of sediment depth. The 

mean age difference between the studied core intervals of 11 cm is 51 years. Thus, we define a 

regular temporal grid of 50 years via P(D|A), resulting in a total of 181 age steps. Applying these to 

the data from panel (a) using Eq. 2, we get the result of the new age–depth transformation depicted 

in (b). In contrast, the orange line shows the result when the plant data in terms of depth are linked 

to the mean age data from the age–depth model. So far, this is a very common procedure (e.g. Litt et 

al., 2012; Schiebel and Litt, 2018; Torfstein et al., 2015; Neumann et al., 2007;  Miebach et al., 2019; 

Seppä et al., 2005). The strongly fluctuating behaviour of this AP curve indicates an overfitting result, 

which makes interpretations difficult. With this new technique, we can circumvent such problems 

and have eliminated the first disadvantage mentioned in the introduction. 

We changed into:  

In this case, the target variable is AP-percentage and is shown in panel (a) as a function of measured 

sediment depth. Upon using the depth-age relation of the most probable age at a given depth the 



mean age difference between the studied core intervals of 11 cm thickness  is 51 years. Thus, in a 

first step  we define a regular temporal grid of 50 years resulting in a total of 181 age steps between 

0.0 and 9 kyr BP. Based on the results of the full probabilistic analysis of the sedimentation-time 

relationship available from the rbacon  package the newly added function Bacon.d.Age determines 

those depth samples which belong to a given age with a probability between zero and one including 

the changing sedimentation rates in the lake over the past 9 kyrs modelled internally in rbacon. 

Applying equation (2) then weights depth either with near zero  or with a finite probability value 

given an age on the 50 year time grid between 0 and 9 kyr BP. By the integration in Eq. (2) the depth 

related probabilistic reconstructions are data-dependent stretched or compressed in time and 

smoothed in time over that interval with finite, non-zero probabilities of depths given the desired 

age.  By this procedure the approach addresses the full age-depth uncertainty. Since age is a given 

variable (by this not anymore a random variable as it is in the conditional probability of age given the 

sediment depth) in principle any time stepping (10, 25, 100 yrs) could have been chosen but the 50 yr 

time step is to some instance determined by the data set itself.  

Applying it to the data from panel (a) using Eq. 2, we get the result of the new age–depth 

transformation depicted in (b). In contrast, the orange line shows the result when the plant data in 

terms of depth are linked to the mean age data from the age–depth model. So far, this is a very 

common procedure (e.g. Litt et al., 2012; Schiebel and Litt, 2018; Torfstein et al., 2015; Neumann et 

al., 2007;  Miebach et al., 2019; Seppä et al., 2005). The strongly fluctuating behaviour of this AP 

curve indicates an overfitting result, which makes interpretations difficult. With this new technique, 

we can circumvent such problems and have eliminated the first disadvantage mentioned in the 

introduction. 

 

Line 194: Please explain what do you mean with ‘specific expert knowledge’ and how this can be used 

in a quantified manner that is required for the climate reconstructions.   

P(Cp | ·) gives us the ability to constrain the reconstructions based on additional climate information 

from the past. These can be, for example, other local reconstructions, paleoclimate simulations, or 

specific expert knowledge based on vegetation studies. 

Changed into: P(Cp | ·) gives us the ability to constrain the reconstructions based on additional 

climate information from the past. These can be, for example, other local reconstructions, 

paleoclimate simulations, or even subjective expert knowledge based on vegetation studies. Often, 

the latter is a common approach in classical Bayesian statistical analysis (see new citation Berger, 

2013).  In the simplest case it would be a subjective probabilistic statement with a number between 

zero and one (but excluding those)  about the climate state Cp given the age and the proxy data. 

 

Lines 210-213: I am not sure if I understand this correctly. Do the authors mean that the method 

cannot be applied for long time periods that would require changes in the taxa weights? Please 

explain in more detail in order to make clear to non-experts any limitations of the method (e.g., 

continuous reconstructions for a whole glacial-interglacial cycle). 

 

First, we assume that the parameters ω and ψ are a priori independent of each other. Then we state 

that P is independent of ψ if no C is given. Finally, the updated taxa weights P(P | ω) are determined 

under the assumption that they are conditionally independent of A and thus hold for the entire 

reconstruction period. At this point, taxa weights could be split temporally based on additional prior 



information, so that they differ for specific time periods (e.g. glacials/interglacials). This approach is 

not explored further in this study and could be included in future work. 

Changed into: First, we assume that the parameters ω and ψ are a priori independent of each other. 

Then we state that P is independent of ψ if no C is given. Finally, the updated taxa weights P(P | ω) 

are determined in the present case from the AP-percentages under the assumption that they are 

conditionally independent of the age A. This means the additional data used to update the weights 

are assimilated over the entire reconstruction period. At this point, it is possible to introduce 

additional prior information for time continuous reconstructions across a full glacial / interglacial 

cycle. The taxa weights updating could be split according to that temporal information  so that after 

assimilation they differ for specific time periods.  This approach is not explored further in this study 

and could be included in future work. 

 

Line 328: Explain for non-experts what is ‘C++’ and ‘standard CPU’. 

Due to the large number of parameters, we decide to generate 1 million MCMC samples. To make 

such a reconstruction as fast as possible, C++ is used. Thus, a reconstruction on a standard CPU takes 

only about 40 seconds. 

Changed into: Due to the large number of parameters, we decide to generate 1 million MCMC 

samples. This makes the numerical problem difficult to solve fully in a R (or python) programming 

interface. Therefore as much as possible subroutines are implemented in the compiler language C++ 

and embedded into the R code.  By this approach the reconstruction model can be implemented on a 

standard laptop or stand-alone PC with commercially available, standard central processors and uses 

about 40 – 60 seconds for the MCMC samples and their evaluation.  

Line 364: Higher than what? 

Schiebel and Litt (2018) assume climate change towards higher precipitation, which is also confirmed 

by our reconstruction. 

We changed and added: Schiebel and Litt (2018) assume climate change towards higher precipitation 

compared to the previous time slice (9-7 cal ka). In addition, Hazan et al. (2005) and Vossel et al. 

(2018) describe a high Kinneret lake level during the Chalcolithic and Early Bronze Age, which is also 

confirmed by our reconstruction. 

 

 

 

 

Review 2 

 

Citations from  RC2 are in italics 

Netzel et al consider a series of developments to the Bayesian Biome Model (BBM) of 

Schoetzel et al (2006), a Bayesian hierarchical paleoclimate reconstruction approach which 

incorporates a probabilistic interpretation of mutual climatic range which is applied by 

assigning taxa to biomes and considering the relative influence of two or three biomes in the 



fossil assemblage. This model has previously been applied to a series of reconstructions, most 

recently including Lake Kinneret (Thoma, 2017). The authors identify a series of weaknesses 

in the existing approach (which may apply more generally than to only BBM). These can be 

summarised as neglect of age uncertainty, neglect of effects of human impacts, assumption of 

fixed spatiotemporal species-climate relationships and the need for user-defined (subjective) 

decisions in respect of taxa selection, parameter values and choice of model choice. They 

address these through a series of modifications to the published method. 

My initial reaction was that the approach was rather scattergun, addressing a range of 

different and unrelated reconstruction issues, and that it might be of limited scientific value 

because it is unclear what it teaches us is needed to progress. Overarchingly, the paper 

proposes and implements a series of modifications together with a single reconstruction of 

Lake Kinneret from this revised model which is compared against a published reconstruction 

on a core from the Dead Sea (Litt et al 2012). For me, demonstrating that these two 

reconstructions are consistent is not very convincing because it does little besides suggest that 

the modifications haven’t made things worse, and in fact have made little material difference? 

In part this work is an attempt to automate some ad hoc decisions in the interests of 

reproducibility and ease of use (and quality of reconstructions). But even for this motivation I 

think a more complete validation is needed to justify choices and additional complexity. 

In my opinion the paper should be restructured and expanded to address the question of 

which, if any, of these modifications are materially useful and how they influence the 

reconstruction. Firstly, I think the paper should be more clearly set out to identify which 

modification relates to which weakness e.g. with clearly headed subsections in both the 

methods and results that relate back to the weaknesses identified in the introduction. More 

importantly, each modification should be analysed and discussed in isolation, for instance by 

starting with the baseline model (of Thoma 2017?) and performing a reconstruction with and 

without that modification. Something like this is needed to isolate and understand the effects 

of each modification, not only on the reconstructed value but also on the uncertainty 

associated with the reconstruction. Note that I am deliberately using ‘modification’ and 

resisting ‘improvement’ because I am not confident this has been demonstrated yet. 

 

We thank the reviewer for these very helpful  insights and remarks. 

The paper can indeed be ordered according to the subtopics coming from the evaluation of 

past reconstructions using pollen based BBM, the central point of the paper is that this can all 

be done under the umbrella of Bayesian statistics namely starting with  

(1) Quantitative inclusion  of age uncertainty,  

and then proceeding to  

(2) Evaluate effects of potential human impacts upon the climate reconstruction  

(3) More flexible treatment of the spatial taxa-climate relationships (transfer functions) 

(4) Include on the prior level user-defined (subjective) decisions in respect of taxa 

selection, parameter values and choice of model choice. 



These new guidelines are discussed first and then implemented based on the experiences from 

BBM eg in Thoma  (2017) or Litt et al 2012.  

Regarding the point that “demonstrating that these two reconstructions are consistent is not 

very convincing because it does little besides suggest that the modifications haven’t made 

things worse” is a look  at the final outcome only. Rather the whole chain of implementations  

of points (1) to (4) under the Bayesian thinking provides a clear advantage over past attempts. 

The central one is indeed the point made by the reviewer “to automate some ad hoc decisions 

in the interests of reproducibility and ease of use and raise the quality of reconstructions”. 

These points will be addressed in the motivation and at the start of the discussion chapter 

(..and – as  a side remark -- the numerical solution by Markov Chain Monte Carlo underlines 

the view of a chain of implementations).  

We included explicitly: indeed the point made by the reviewer “to automate some ad hoc 

decisions in the interests of reproducibility and ease of use and raise the quality of 

reconstructions”. 

One point which makes the comparison with the previous reconstruction difficult is the 

introduction of the probabilistic age-depth relationship and its influence upon the 

reconstruction. As already outlined in the manuscript previous reconstructions use a specific 

version of the conditional probability of age given the sediment depth. Very often this is the 

maximum (mode value) of that conditional probability or the estimated expectation of age 

under the conditional probability. The version we put forward utilizes a very different 

conditional probability namely that of sediment depth with a give age, for details we refer to 

our remarks with respect to the  “Lines 155-162” comment by reviewer 1 (see above). The use 

of Eq, (2) in the proposed chain of changes leads to two very different data set which cannot 

directly be compared on neither the sediments depth axis nor the time axis. This also holds for 

other data sets based on sediment cores, it would not hold for data from climate model 

simulation which could give hints of the quality of the reconstructions. But this is well outside 

the present aim of the manuscript.    

This point is explicitly discussed in the respective chapter on age modelling 

Specific points 

Section 3.3.2 discusses the age model and compares pollen percentages due to the revised age 

model, which has the effect of smoothing the signal. Can this plot instead / in addition plot a 

comparison of reconstructed climate? I suppose the signal must be smoother, but how much, 

and what are the effects if any on the uncertainty? Smoothing is only useful to the extent the 

original variability is spurious, can you justify this - why does “strongly fluctuating behaviour 

of this AP curve indicates an overfitting result”? Bronk Ramsey developed a Bayesian carbon 

dating approach OxCal which incorporates the constraint that increasing depth implies 

increasing age, and which provides useful information through the calibration curve because 

atmospheric C14 varied over time. Could you comment on this, perhaps only in your response 

if that’s sufficient, my knowledge of this is rather old and perhaps outdated! I would be 

interested what effect using the Bronk Ramsey approach might have on your age depth 

profile. 

Starting with the eldest problem: the Bronk Ramsey Bayesian OxCal results are compared in 

the original bacon paper  Blaauw,M. and Christen, J. A. (2011). As such the bacon model for 

age-depth analysis is a more elaborated and advanced method than those acc Bronk Ramsey. 



The usual application of either model is the analysis of the derived (posterior) conditional 

probability of age given a sediment depth. However, here in Sect 3.3.2 we discuss the 

conditional probability of sediment depth given a specific age, or in other words if an age (on 

a time grid of 50 years between 0 and 9000 yr BP) is prescribed, which sediment depth belong 

with a finite probability (clearly larger than 0) to that age. If these probabilities are know 

Eq.(2) tells the reader that the posterior data set is evaluated by that integral, there is a data 

dependent stretching or compressing of the sediment depth samples together with a data 

dependent smoothing of the respective reconstruction values obtained from each sediment 

depth. The choice of arboreal pollen percentage in Fig. 2 is at this point for illustrative 

purposes, any other sediment depth defined data set can be used instead, in the discussion part 

we will use the reconstructed probability density function of the climate variables temperature 

and precipitation. But the course of the analysis of this way to include age-depth uncertainties 

is identical. The new conditional probability of sediment depth given age is part of the new 

bacon version (rbacon) described in Blaauw, M., Christen, J. A., and Aquino L., M. A. 

(2020).  

Reg. I suppose the signal must be smoother, but how much, and what are the effects if any on 

the uncertainty? 

This is indeed a relevant question, which is not yet solved in its completeness. It needs the 

repeated simulation of random white noise at the sediment depths, the application of Eq. 2, 

computing the Fourier spectrum of the resulting stretched/compressed/smoothed output 

unstructured noise (which can only done on the regular time grid)  and the squared averaging 

of the resulting spectrum to derive the equivalent of the gain function known from classical 

Fourier transform.  This general outline shows that several data dependent steps are involved 

ranging from the rbacon internal modelling, to the input of the sediment depth and the C14 

anchor data. This makes the result strongly dependent on the specific original data sets and 

actually to a result of the extended rbacon modelling with a potential addendum in rbacon to 

be discussed with the bacon authors.   

Smoothing is only useful to the extent the original variability is spurious, can you justify this - 

why does “strongly fluctuating behaviour of this AP curve indicates an overfitting result “ 

The standard use of the age depth relationship is already incorporated in Eq.2 (therefore the 

Bayesian statistics approach is more general as the standard way of age depth calculation) and 

illustrated by the orange line in Fig.2. It is achieved for a given age by selecting a single 

sediment depth with probability 1  e.g. , that depth at which the conditional probability of 

depths given the age is at a maximum (mode value) and then computing formally the integral. 

No information about the age depth related uncertainty is used, only one sediment depth is 

determined for a given age, clearly a case to be identified as “overfitting”.  

This point is now explicitly mentioned in the text. 

You “specify a priori that the climate reconstructions should explain about 50 % of the 

variance of the respective reference curves”. This seems a rather ad hoc assumption, could 

you e.g. explore the sensitivity of the reconstruction to this assumption, perhaps with two 

extreme (but justifiable) choices? 

Apparently this approach is not clearly described in the original manuscript as both reviewers 

refer to it. At this point we would refer to the answer given above to reviewer 1, comment to  

Line 182/183.  



What effect does the prior have on your reconstruction? Again, a comparison with and 

without the CRU prior seems appropriate. This is another modification that will presumably 

smooth your reconstruction, is this smoothing justified? I don’t really understand why, given 

that climate change/variability is usually the thing of interest, you would want to inhibit that 

by applying a prior that assumes no change? 

As outlined in the answer to RC1 above (the line 182/183 one) we include the sensitivity 

study of the prior choice analysing the reconstructions for the prior choices 25%, 50% and 

75%. The results are discussed in the respective chapter and clearly show the anthropogenic 

contributions (from Olea vs Quercus) onto the reconstruction. This is mainly found in the new 

Fig 6, Fig 7, Fig 8, Fig 9 and Fig 10. We also discuss the point how the prior distribution of 

the R² (which does not only involve the mode values 25,50 and 75%, but also an assumed 

uncertainty of 20% under the Beta distribution, a table is added with the necessary Beta shape 

parameters depending on the means and variance) changes into the posterior distribution 

under the influence of the original BBM reconstruction and the additional taxa based 

reconstruction to match the arboreal pollen percentage line with the posterior realisation of R². 

From those three posterior distribution (see updated Fig. 8) one can conclude that the choice 

of the prior beta distribution R² with a mode value of 50% and 20% uncertainty leaves enough 

degrees of freedom for optimizing (data assimilating) the arboreal pollen percentage time 

series by varying the influence of single taxa because the posterior density shifts its model 

value to larger R² plus enough uncertainty to avoid the collapse to only a very few selected 

taxa (which happens at both 25% and 75%). Further, the two runs with 25% and 75% prior 

mode values exhibit only small changes of the posterior mode values, in case of the 75% even 

a slight reduction.  

The additional CRU based prior information is applied to the whole reconstruction and serves 

as a bias correction together with the new transfer functions e.g. shifting the Litt et al 2012 

DJF temperature reconstruction for recent time slices from unrealistic 0°C to more realistic 

10°C without affecting the temporal variability of the complete time series.   

All points are summarized and discussed in the text now. 

 

A machine learning competition is used which selects the NNET algorithm as that maximises 

the ‘balanced accuracy’ under cross validation. I would like to see a comparison of the 

reconstructions from the four approaches. Are they quantitatively distinguishable, i.e. is the 

additional complexity of SMOTE justified? Are they qualitatively distinguishable, for instance 

because they behave differently under extrapolation beyond the training set, so that BA is an 

insufficient metric to decide the “best” model? 

This is already (but apparently not in full completeness) summarized in Fig. 4.  Fig.4a shows 

the gain of all four methods which they achieve with respect to the SMOTE approach. 

Balanced accuracy is a performance metric for two by two contingency tables estimating the 

joint probabilities of real (test) data occurrence vs that derived from either of the four 

classification algorithms taking into account that one combination (here true negative case 

absence of a  biome vs predicted absence of that biome at all grid points in the study area, 

Fig.1 and 2)  is much larger than the three other possible cases ( true positive case presence of 

a  biome vs  predicted presence of that biome, false positive true presence of a  biome vs 

predicted absence of that biome, false negative absence of a  biome vs predicted presence of 

that biome), a so called unbalanced data set which is still used for the test data. SMOTE is a 



way to re-balance the input data in the training phase such that actual number of observed 

biome grid points is artificially enhanced to match the overall number of available grid points. 

The effects of SMOTE is very well documented by the increase of the balanced accuracy 

from roughly 0.5 (non-SMOTE) to about 0.92 for the SMOTE treated training data sets. In 

terms of BA all four classification methods including the classical QDM behave similar, the 

choice of NNET is justified in the text. The comparison of the four different ways to derive 

the transfer functions in the final reconstruction is in principle possible but requires a 4 by 4 

comparison of reconstructed probability densities to measure the full information content of 

the pdf’s e.g. by using an entropy measure and an evaluation of that in terms of the common 

signal of the reconstructions, the added value of either reconstruction over the other etc to 

allow for a clear and reproducible discussion. A three by three approach for Gaussian pdf’s 

(which is not applicable in the present case) is described in Glowienka-Hense et. al (2020): 

Glowienka-Hense, R., Hense, A., Brune, S., & Baehr, J. (2020). Comparing forecast systems 

with multiple correlation decomposition based on partial correlation. Advances in Statistical 

Climatology, Meteorology and Oceanography, 6(2), 103-113.). Such a comparison being 

indeed useful and necessary is currently beyond the scope of this manuscript. A classical 

comparison e.g. based on the mean or median time series would ignore specific  aspects of the 

full reconstruction model.   

Are they qualitatively distinguishable, for instance because they behave differently under 

extrapolation beyond the training set, so that BA is an insufficient metric to decide the “best” 

model? 

No, the experiments (details can be found in Netzel 2023a) indicate no significant differences 

when applied to the left-out part of the data set (test part). We  mention this at the appropriate 

place in the text. 

I wasn’t clear, is it intended that the ML competition is run on any new data set, or are you 

concluding NNET is the best model in general for this problem? i.e. is does your algorithm 

incorporate the competition or does it apply NNET by default? 

Yes, one conclusion of the current manuscript is that the ML competition needs to be run on 

any new sediment core after, actually the conclusion is  that the full model with its 4 steps 

needs to be used to arrive at pointwise data sets which can serve as input to climate field 

reconstructions at a given age (time slice) and as sequences of several time slices e.g. the full 

Holocene or the  transition from the last glacial maximum into the Holocene etc. This point is 

discussed in the conclusions section.  


