
1 

 

Thermal infrared shadow-hiding in GOES-R ABI imagery: snow and 

forest temperature observations from the SnowEx 2020 Grand Mesa 

field campaign 

Steven J. Pestana1, C. Chris Chickadel1,2, Jessica D. Lundquist1 

1Civil and Environmental Engineering, University of Washington, Seattle 98105, USA 5 
2Applied Physics Laboratory, University of Washington, Seattle 98105, WA, USA 

Correspondence to: Steven J. Pestana (spestana@uw.edu) 

Abstract. The high temporal resolution of thermal infrared imagery from the Geostationary Operational Environmental 

Satellites R-series (GOES-R) presents an opportunity to observe mountain snow and forest temperatures over the full diurnal 

cycle. However, the off-nadir views of these imagers may impact or bias temperature observations, especially when viewing 10 

a surface composed of both snow and forests. We used GOES-16 and -17 thermal infrared brightness temperature observations 

of a flat snow and forest-covered study site at Grand Mesa, Colorado, USA, to characterize how forest coverage and view 

angle impact these observations. These two geostationary satellites provided views of the study area from the southeast (134.1° 

azimuth, 33.5° elevation) and southwest (221.2° azimuth, 35.9° elevation), respectively. As part of the NASA SnowEx field 

campaign in February 2020, coincident brightness temperature observations from ground-based and airborne IR sensors were 15 

collected to compare with those from the geostationary satellites. Observations over the course of two cloud-free days spanned 

the entire study site. The brightness temperature observations from each dataset were compared to find their relative 

differences, and how those differences may have varied over time and/or as a function of varying forest cover across the study 

area. GOES-16 and -17 brightness temperatures were found to match the diurnal cycle and temperature range within ~1 hour 

and ± 3 K of ground-based observations. GOES-16 and -17 were both biased warmer than nadir-looking airborne IR and 20 

ASTER observations. The warm biases were higher at times when the sun-satellite phase angle was near its daily minimum. 

The phase angle, the angle between the direction of incoming solar illumination and the direction from which the satellite is 

viewing, reached daily minimums in the morning for GOES-16 and afternoon for GOES-17. In morning observations, warm 

biases in GOES-16 brightness temperature were greater for pixels that contained more forest coverage. The observations 

suggest that a “thermal infrared shadow-hiding” effect may be occurring, where the geostationary satellites are preferentially 25 

seeing the warmer sunlit sides of trees at different times of day. These biases are important to understand for applications using 

GOES-R brightness temperatures, or derived land surface temperatures (LST), over areas with surface roughness features, 

such as forests, that could exhibit a thermal infrared shadow-hiding effect. 
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1 Introduction 

Mountain areas that receive seasonal snow are the headwaters of rivers that more than a billion people depend on globally 30 

(Immerzeel et al., 2020). Despite their importance, these are notoriously difficult places to gather hydrological or 

meteorological observations for predicting snow water equivalent (SWE) and the timing and magnitude of streamflow (Raleigh 

et al., 2013). Longwave radiation measurements, of which the upwards component is controlled by the diurnal cycle of snow 

surface temperature, have been identified as especially critical for modeling these snowmelt fed systems (Lapo et al., 2015; 

Raleigh et al., 2016). Distributed observations of surface temperatures at sub-daily temporal resolutions are needed for 35 

hydrologic and land surface models, and could aid real-time forecasting (Shamir and Georgakakos, 2014). Thermal infrared 

imagery from geostationary satellites that constantly view the same portions of Earth’s surface, such as GOES-R Advanced 

Baseline Imager (ABI), can make land surface temperature (LST) observations at very high temporal resolution (5 minutes or 

better), capturing the full diurnal cycle. These observations, however, have spatial resolutions of 2+ km, and view the land 

surface from off-nadir angles. 40 

The 2020 NASA SnowEx field campaign was a collaborative effort between government agencies and academic researchers 

to intercompare and evaluate snow remote sensing methods with extensive ground-based observations. This was conducted in 

early 2020 at Grand Mesa, a large flat-topped mountain in the western part of the US state of Colorado. As part of this 

campaign, a multi-sensor experiment was designed to investigate how the off-nadir views of GOES-R satellites affect their 

surface temperature retrievals over snow and forests by making thermal infrared brightness temperature observations and 45 

intercomparisons at a range of spatial and temporal scales (Table 1, Figure 1). This unique study site, a flat expanse of snow 

and conifer forest, allowed us to investigate how forests affect observed brightness temperatures, independent of the effects 

due to complex terrain. Ground based snow brightness temperature measurements provided a continuous point of comparison 

for GOES-R, while multiple overpasses from airborne IR imagery, gridded to 5 m spatial resolution, provided finer resolution 

distributed brightness temperature details over the course of two mornings. To benchmark the ground point measurements and 50 

airborne IR, which itself has a wide range of view angles (Pestana et al., 2019), we compared these with a coincident nadir-

looking ASTER thermal infrared image at 90 m spatial resolution. Specifically, we set out to address the following questions 

regarding GOES-R ABI thermal infrared brightness temperature observations during SnowEx: 1) What were the relative 

accuracies of each source of remotely sensed brightness temperature? 2) How did fractional forest cover impact the relative 

accuracy of GOES-R ABI brightness temperature across the study area? 3) How did the relative accuracy of GOES-R ABI 55 

brightness temperature change over the course of each day of observations? 

We hypothesized that among the brightness temperature observations collected, the best agreements would be between the 

nadir-looking ASTER, nadir-looking Airborne IR, and ground-based snow brightness temperatures. We further hypothesized 

that for GOES-R ABI pixels with greater forest canopy, the observed brightness temperatures would be greater than those 

from the nadir ASTER and airborne IR imagery. Finally, we hypothesized that these warm biases would be greatest in the 60 
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early morning observations by GOES-16 (East) and late afternoon observations by GOES-17 (West), when they are viewing 

the solar-illuminated side of trees. 

 

Figure 1. Conceptual illustration of how nadir and off-nadir looking remote sensing imagers see parts of a forest canopy and, 

depending on the direction of solar illumination, the shadows cast by trees. 65 

2. Background 

2.1 High temporal resolution thermal infrared imagery 

Land surface models are highly sensitive to their temperature and longwave forcing input (Mizukami et al., 2014; Raleigh et 

al., 2015), in both accumulation and ablation periods (Günther et al., 2019). This is especially important for sparsely 

instrumented mountain areas, where land surface models can have air temperature errors of ~3-4 °C (Tomasi et al., 2017). 70 

Differences in forcing inputs, or how surface energy fluxes are parameterized in land surface models, can result in hourly 

surface temperature errors of as much as 15 °C (Essery et al., 2013), and lead to snow disappearance date uncertainties spanning 

months (Hinkelman et al., 2015). Surface temperature observations at model-relevant time steps, such as hourly temporal 

resolutions, are needed especially to capture diurnal processes like snow melt-freeze cycles (Niu et al., 2011) and snow grain 

metamorphism, which in turn drive feedbacks in the surface energy balance through changes in emissivity and albedo (Flanner 75 

and Zender, 2006; Warren, 1982, 2019). 
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Thermal infrared satellite imagery can provide snow surface temperature observations for homogenous snow-covered 

landscapes (Hall et al., 2008; Wan et al., 2002), estimates of near-surface air temperature (Pepin et al., 2016; Shamir and 

Georgakakos, 2014), and dewpoint temperature (Raleigh et al., 2013), all of which are needed for modeling hydrologic 

processes. However, satellite observations at <100 m spatial resolution are made too infrequently (4-16 day repeat) for looking 80 

at snow surface energy balance processes at model-relevant timesteps. Observations from imagers like VIIRS or MODIS (250 

m to 1 km resolution) provide two observations per day each for mid-latitude locations. The observations from the sun-

synchronous orbiting MODIS or VIIRS imagers do not necessarily see the coldest and warmest times of day to capture the full 

diurnal temperature range (DTR), nor do they provide LST more frequently than every several hours. Their twice daily 

observations can also be obscured by cloud cover, creating large data gaps relative to the diurnal cycle of snow surface 85 

temperatures.  

Geostationary satellite imagery may help overcome these drawbacks, providing high temporal resolution LST, potentially 

seeing between intermittent periods of cloud cover, though at coarser spatial resolutions (2+ km) and off-nadir view angles. In 

the complex terrain and forest vegetation of mountain watersheds, the individual image pixels from thermal infrared 

observations will report an LST signature that is a mixture of the subpixel snow and forest surface temperatures (Dozier, 1981; 90 

Selkowitz et al., 2014). Snow and vegetation can have significant temperature differences, especially on clear days where 

incoming solar radiation warms forest canopies more than the high albedo snow surface and during the snowmelt period, when 

daytime snow surface temperatures are capped at 0 °C (Pestana et al., 2019). Sections 4.4 and 5.4 describe how we tested the 

uncertainty around the assumption that the brightness temperatures of surfaces within a pixel’s footprint scale linearly to a 

mean brightness temperature, and the geolocation uncertainty of GOES ABI pixel footprints. 95 

2.2 Off-nadir views and shadow-hiding 

Imagery from geostationary satellites comes with the drawback of having off-nadir view angles. These view angles are 

dependent on the location of the area of interest on Earth’s surface and the satellite’s orbital position (Schmit et al., 2017). 

Interpretation of off-nadir thermal infrared images require consideration of the parallax effect over rough surfaces, the angular 

emissivity of different surface materials, and longer atmospheric path lengths.  100 

In thermal infrared satellite imagery, the parallax effect can lead to different brightness temperatures being observed for the 

same area of interest at different view angles. Geostationary satellites view the mountains of North America from the south; 

therefore, south-facing mountain slopes appear lengthened, occupying a larger portion of an image, north-facing mountain 

slopes are foreshortened, and steeper north-facing mountain slopes may be completely occluded from view. Prior work 

compared brightness temperatures from off-nadir GOES-16 thermal infrared imagery to coincident nadir-looking ASTER and 105 

MODIS thermal infrared imagery over the Sierra Nevada of California (Pestana and Lundquist, 2022). This work showed that 

GOES-16 imagery preferentially viewed south-facing slopes, which receive more solar illumination in the daytime, heating 

up more than shaded north-facing slopes. GOES-16 brightness temperatures were therefore biased warm in comparison to 

those from ASTER and MODIS, which being nadir-pointing, could see both the sunlit and shaded sides of mountain slopes.  
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The parallax effect is also important at smaller spatial scales, such as that of individual trees in a forested landscape (Figure 110 

1). Tree profiles (rather than canopy tops) come into view when observed from off-nadir angles, causing each tree to take up 

more space in the image. Off-nadir imagery of landscapes with snow and forests will also have trees obscuring the snow 

surface behind and beneath them (Balick et al., 2002; Pestana et al., 2019). Much like at the scale of mountain slopes, daytime 

solar illumination, especially at low sun angles, will warm up one side of trees more than the other shaded side. The observed 

thermal infrared brightness temperature of mountainous or forested terrain is therefore dependent on both view angle and the 115 

angle of solar illumination. The angle between the two is the phase angle (Henderson et al., 2003). The same landscape can 

therefore appear warmer at small phase angles when solar illuminated surfaces are in view and shaded areas are occluded, or 

colder at large phase angles when more shaded areas are in view and sunlit areas are occluded (Figure 1). With visible and 

NIR imagery, this effect is referred to as “shadow-hiding,” or creating a “hotspot” (really a bright spot), over surface roughness 

features, such as trees (Hall et al., 1993; Bréon et al., 2002) or wind forms in snow, such as sastrugi (Warren et al., 1998). With 120 

nadir-pointing satellite imagers in sun-synchronous orbits (e.g. MODIS or VIIRS), the phase angle changes slowly on an 

annual cycle, but with a geostationary satellite able to observe at high temporal resolution, the phase angle changes 

continuously over each diurnal cycle (Pestana et al., 2023). 

Due to the off-nadir view angles of the GOES-R ABI observations, the angular emissivity of surfaces observed, a snow-

covered forested landscape, must also be considered. The near blackbody-like emissivity of vegetation, such as the conifers 125 

that dominate the study area (Section 3.1), does not vary with view angle. The emissivity of snow, however, does vary with 

view angle and with grain size (Dozier and Warren, 1982). The emissivity of snow is smaller at larger view angles, however 

over rough snow surfaces such as the wind-formed sastrugi observed over the westernmost portion of the mesa, there is a wide 

distribution of view angles normal to the snow surface even for a nadir-looking imager. At the view angles that GOES-16 and 

-17 observed our study area (Section 3.3.1), snow emissivity could range from 0.95 for coarse-grained snow (such as > 1 mm 130 

melt forms) to 0.99 for fine-grained snow (such as < 1 mm fragmented dendritic precipitation particles) (Hori et al., 2006; 

Warren, 2019). At the lowest end of this emissivity range, a snow surface at 260 K would have a brightness temperature about 

3 K colder seen by the off-nadir looking GOES compared to a nadir looking satellite imager, and about 0.5 K colder at the 

highest end of this range. Snow pit observations (Vuyovich et al., 2021) coinciding with the GOES observations used in this 

work reported predominately fine-grained decomposing and fragmented precipitation particles of < 1 mm at the snow surface. 135 

We can therefore expect to see in our comparison of brightness temperatures from imagers with different view angles that 

GOES ABI observations may be biased low by 0.5 K relative to nadir observations due to emissivity alone. GOES-R ABI 

brightness temperatures may also be biased low in comparison with a nadir-looking view due to their longer atmospheric path 

lengths, but this effect can be negligible for cloud-free high-altitude winter conditions when absorption of thermal infrared 

radiation by water vapor is minimal (Pestana and Lundquist, 2022). See Section 6.1 for further discussion of atmospheric 140 

effects. 
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3 Study site and observations 

3.1 SnowEx 2020 field campaign study site 

The 2020 NASA SnowEx field campaign intensive observation period (IOP) took place at Grand Mesa in western Colorado 

(39.02°, -108.12°) from 26 January to 14 February 2020 (Figure 2). This period of the field campaign brought together snow 145 

remote sensing researchers to test new instruments and methods, and to collect extensive ground-based observations for 

validation. Grand Mesa, a large flat-topped mountain with elevations above 3000 m, is located within the watersheds of the 

upper Colorado river and its tributary, the Gunnison River. This region was chosen as a location to evaluate remote sensing 

observations of mountain snow because of its flat terrain, where the additional complications of view angles and complex 

terrain are minimized. The site is also beneficial for thermal infrared remote sensing because at its high elevation, the 150 

atmospheric path length, and therefore magnitude of absorption of thermal infrared radiation by water vapor in the atmosphere, 

is lower than that of sites at lower elevations. The high emissivities of both snow and conifer trees provide us with a scene 

where brightness temperatures are close to true surface temperatures (Kim et al., 2018; Warren, 2019). 

During the IOP field campaign, the ground surface was entirely snow-covered, with no bare ground surfaces visible in remotely 

sensed imagery. The westernmost portion of Grand Mesa is sparsely forested, and forest cover increases across the mesa 155 

towards the east. Mixed conifer forests of Engelmann spruce (Picea engelmannii), subalpine fir (Abies lasiocarpa), and 

lodgepole pine (Pinus contorta var. latifolia) species dominates the vegetation that stood above the snow, with some stands of 

deciduous Aspen (Populus tremuloides) trees (Currier et al., 2019). 
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Figure 2. Map of the study area at Grand Mesa, Colorado, and inset map showing its location within the contiguous United States. 160 
Polygons outline GOES-16 (orange) and GOES-17 (purple) ABI pixel footprints, and airborne IR image mosaic swaths (blue dashed 

lines). Snow pit #2S10, where automated continuous snow brightness temperatures were observed, is indicated by the white circle, 

and instantaneous snow surface temperature observations at other snow pits are indicated by white +’s. Dark green areas indicate 

forests within the area covered by the thermal infrared remote sensing imagery. 

3.2 Ground-based observations 165 

Ground-based observations at Grand Mesa included continuous automated measurements of snow brightness temperature, and 

instantaneous manual snow surface temperatures measurements taken as part of the data collection at individual snow pits. 

Snow brightness temperatures were measured continuously by an Apogee SI-111 radiometer (8 – 14 μm) installed at snow pit 

#2S10 in the western portion of the mesa (39.0195, -108.19214). This radiometer viewed the snow surface at an angle of 45° 

from nadir and was mounted 2 m above the ground surface, which at this time was 1.27 m above the snow surface. The 170 

radiometer had an instantaneous field of view of 44°, giving it an approximately elliptical footprint of 1.45 m x 2.45 m on the 

top of the snow surface. Snow brightness temperatures measured by this radiometer were recorded at a 5-minute temporal 

resolution (Pestana and Lundquist, 2021). More than 150 snow pits were dug by the field teams over the course of the IOP 

(Vuyovich et al., 2021), and among the measurements recorded at each snow pit were snow grain size and types, snow surface 

temperature, and the time of the surface temperature measurement. Snow surface temperatures were measured by a stem 175 
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thermometer inserted into the top-most 1 cm of snow and shaded from direct sunlight. These snow pit data were accessed from 

the SnowEx database through the snowexsql Python library (Johnson et al., 2023). The USGS National Elevation Dataset 1 

arc-second (~ 30 m) DEM (US Geologic Survey, 2017) and Tree Canopy Cover (TCC) product from the National Land Cover 

Database (NLCD) 2016 (Coulston et al., 2012) were used to compute zonal statistics of elevation and fractional vegetated area 

(fveg), respectively, across the study site. 180 

Table 1. Ground-based and remotely sensed temperature observations from the SnowEx 2020 field campaign used in this study. 

Dataset 
Spatial 

resolution 

Temporal 

resolution 
Spectral range 

Specified accuracy 

Ground-based observations:     

Continuous snow brightness 

temperature  

1.5x2.5 m  

spot size  

5 minute  8 – 14 μm ± 0.2 K 

Instantaneous snow surface 

temperature  

n/a n/a n/a ± 1 K 

Remote sensing observations:     

Airborne IR image mosaics 5 m ~10 minute 8 – 14 μm ± 2 K 

ASTER IR image 

(AST L1T) 

90 m n/a (one 

image) 

10.95 - 11.65 μm 2% (±1.1 K @ 260 K) 

GOES-16 and -17 ABI band 13 

(ABI-L1b-RadC) 

~ 2 km 5 minute 10.05 – 10.55 μm 1.5% (±0.7 K @ 260 K) 

GOES-16 and -17 ABI band 14 

(ABI-L1b-RadC) 

~ 2 km 5 minute 10.8 – 11.6 μm 1.5% (±0.8 K @ 260 K) 

GOES-16 and -17 ABI LST 

(ABI-L2-LSTC) 

~ 2 km 1 hour n/a ± 2.5 K 

 

3.3 Remote sensing observations 

3.3.1 GOES-R ABI 

Images from the Advanced Baseline Imager (ABI) onboard GOES-16 and GOES-17 were retrieved for the duration of the 185 

study period in February 2020. The 5-minute temporal resolution Level 1b top-of-atmosphere Radiance CONUS product (L1b-

RadC) for thermal infrared bands 13 (10.3 μm) and 14 (11.2 μm), and the 1-hour temporal resolution Level 2 Land Surface 

Temperature CONUS product (L2-LSTC), were downloaded as NetCDF files via the goespy library (Mello and Pestana, 2022). 

Both satellites viewed the Grand Mesa study site from similar view angles, though with GOES-16 in the southeastern sky 

(azimuth 134.1°, or 45.9° from due south) and GOES-17 in the southwestern sky (azimuth 221.2°, or 41.2° from due south), 190 

with elevation of angles of 33.5° and 35.9° respectively. 

The specific ABI pixel footprints that overlapped the study area on top of Grand Mesa were identified by first orthorectifying 

(Pestana et al., 2022; Pestana and Lundquist, 2022) 2 km L1b-RadC imagery clipped to the region surrounding Grand Mesa 

from each of GOES-16 and GOES-17. Vector polygons outlining the ABI pixel footprints were created from these sample 

images, and the resulting polygons were then used to compute land surface elevation summary statistics from the 30 m 195 
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resolution DEM (US Geologic Survey, 2017). We sampled ABI pixels with footprints on top of Grand Mesa that covered an 

area with a mean elevation greater than or equal to 3000 m and standard deviation of elevation less than or equal to 60 m. For 

GOES-16, this resulted in six pixels selected, and for GOES-17, seven pixels (Figure 2). The pairs of overlapping GOES-16 

and -17 pixels were labeled “NW” for the pixels covering the northwestern most portion of Grand Mesa, and “A” – “E” for 

the pixels running roughly west to east across the study area. Two GOES-17 pixels are labeled “C1” and “C2” to indicate that 200 

they both primarily overlapped with GOES-16 pixel “C.” Timeseries of the thermal infrared radiance, brightness temperatures 

(both from L1b-RadC), and LST (from L2-LSTC) were compiled for each of these pixels from imagery covering 8 to 15 

February 2020. 

These pixel footprints were used to delineate areas of different fractional vegetation cover for comparison across the mesa. 

The NLCD TCC map was converted to a binary forest map with a vegetation threshold at 20% TCC. This threshold was chosen 205 

to visually match the forest above the snow surface in the ASTER visible image from the morning of 8 February (Figure 5a). 

For each GOES ABI pixel footprint, the fractional vegetation area (fveg) was calculated as the fraction of the pixel footprint 

classified as forest in the binary forest map. 

This work uses brightness temperatures computed from high temporal resolution GOES-R ABI top-of-atmosphere radiance 

(L1b-RadC), rather than the LST product (L2-LSTC). Though the LST product corrects for atmospheric absorption and surface 210 

emissivity, they are only generated hourly, rather than the much higher 5-minute temporal resolution available from the 

radiance product. The hourly LST observations were also not available for most of the daytime periods. The ABI Cloud Mask 

algorithm is generally used to determine when and where the land surface is not obscured by clouds to determine if LST should 

be computed. However, identifying cloud cover over snow is notoriously difficult due to their similar appearance in remote 

sensed imagery across the visible through infrared spectrum (Rittger et al., 2019; Stillinger et al., 2019). Only four daytime 215 

LST observations on 8 February were available, and on 11 February there were three daytime and nine nighttime LST 

observations. Additionally, the ground-based radiometer and airborne thermal infrared imagery (discussed in the next section) 

provided brightness temperature observations and were not corrected for atmospheric absorption or surface emissivity to derive 

an LST product from each. Therefore, we focus primarily on radiance and brightness temperature in our analysis. 

3.3.2 Airborne IR imagery 220 

Airborne IR imagery (Chickadel et al., 2022) was collected on four days with the UW Applied Physics Laboratory’s Compact 

Airborne System for Imaging the Environment (CASIE), consisting of thermal infrared cameras and an infrared radiometer, 

mounted on the Twin Otter research aircraft from the Naval Postgraduate School (NPS) Center for Interdisciplinary Remotely 

Piloted Aircraft Studies (CIRPAS). CASIE was installed on the aircraft to be primarily nadir-looking, and had three DRS 

UC640-17 thermal infrared cameras (8 – 14 μm) pointing with bore-sight incidence angles of 19°, 0° (nadir-looking), and 21° 225 

from port to starboard on the aircraft. These three cameras have overlapping fields of view of 25° (left camera) and 40° (center 

and right cameras) perpendicular to the aircraft flight direction, with a total field of view of about 72.5° (Lundquist et al., 

2018). The aircraft flew at about 1 km above the top of Grand Mesa, giving the three cameras a total swath width of about 2.5 
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km perpendicular to the direction of flight, and a raw ground resolution of 1 m. A nadir-looking Heitronics KT15.85D infrared 

radiometer with spectral range 9.6-11.5 um and narrow 1.9° field of view provides a precise brightness temperature 230 

measurement for a spot on the ground surface at the center of the center camera’s field of view. This higher precision radiometer 

data was used to calibrate the thermal infrared cameras (Pestana et al., 2019) prior to mosaicking images together using the 

aircraft INS-GPS navigation data from their original ~1.1 m spatial resolution to 5 m. 

Imagery from two flights on 8 February (from about 08:00 – 10:00 and 11:00 – 13:00) and one flight on 11 February (from 

about 10:00 – 13:00) were used as these days had the least cloud-cover over the study site. Flightlines over the study site were 235 

along two sets of parallel tracks that would overlap with ground observations at snow pits (Figure 2). One set of parallel tracks 

ran east-west, and the other tracks ran roughly northwest-southeast to capture the northwest portion of the mesa. The airborne 

IR imagery collection was in part planned to coincide with the collection of satellite imagery by ASTER on 8 February.  

3.3.3 Terra ASTER 

The NASA Terra satellite made an overpass of the Grand Mesa study site and imaged it with ASTER at 11:07 (local time, 240 

UTC-7) on 8 February 2020. ASTER provides a reliable source of surface brightness temperature information at 90 m spatial 

resolution (Abrams, 2000), fine enough to capture the surface temperature variabilities across the Grand Mesa study area and 

resolve forest stands from open snow. For this single observation of the Grand Mesa study site, the ASTER Level 1 Precision 

Terrain Corrected Registered At-Sensor Radiance (AST L1T) product (Meyer et al., 2015) for band 14 (11.3 μm) was used. 

The top-of-atmosphere radiance was converted to brightness temperatures (Thome, 1999) for comparison with the other 245 

ground-based and remote sensing observations. 

4 Methods 

4.1 Evaluating airborne IR image mosaics against ASTER 

To first assess the accuracy of the airborne IR imagery, two airborne IR mosaics from 8 February at 11:07 and 11:19, running 

east-west across the mesa, were compared against the coincident ASTER image captured at 11:07. The airborne IR mosaics 250 

were first resampled to the same spatial resolution of ASTER by taking the mean of the original 5 m spatial resolution images 

within each 90 m ASTER pixel. The differences between ASTER and each of the two resampled airborne IR mosaics were 

then computed, producing two difference maps, and the mean and standard deviation of differences were computed for each. 

Means and standard deviations of differences were also computed for the portions of the difference maps within each of the 

GOES-16 ABI pixel footprints. The difference maps were inspected qualitatively for patterns in the imagery across the study 255 

site to better characterize properties of the airborne IR imagery.  
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4.2 Comparison of airborne IR, ASTER and ground observations 

To determine how representative the ground-based point brightness temperature measurements were of their surrounding areas, 

airborne IR imagery and the single ASTER satellite image were compared with ground-based data at the times when each 

passed over the study site. From each airborne IR mosaic, a 1 x 1 km square was extracted from around the automated snow 260 

brightness temperature measurement site at snow pit #2S10 (Figure 3). Only airborne images that covered at least 30% of this 

1 km2 area were used. The mean, median, and standard deviation of brightness temperatures from this area in each airborne 

IR image were computed. This provided us with a timeseries of snow brightness temperatures at each time that the aircraft 

flew over the ground site. The same 1 km2 region around the snow brightness temperature measurement site was sampled from 

the single ASTER image from the morning of 8 February to compute the brightness temperature mean, median, and standard 265 

deviation as seen by ASTER. The correlation between the timeseries of airborne IR snow brightness temperature observations 

and ground-based snow brightness temperatures were computed for each day, while the difference between the ground-based 

snow brightness temperature measurements and ASTER observations were computed at the time of its overpass. 

To compare the snow surface temperature observations taken at each snow pit against coincident airborne IR imagery, all of 

the snow pits sampled from 8 February and 11 February that were along the aircraft’s flight path within +/- 30 minutes of the 270 

flight overpass were compared to the images from that flight. The mean and standard deviation of airborne IR observed 

brightness temperatures within a 100 m2 square centered on the snow pit were then compared with these ground-based 

observations to determine how the differences between the two varied over time and across the study area. One snow pit 

overflown by the aircraft was about 50 m south of a forest stand, while all other snow pits were 250 m or more away from the 

nearest forest stand. 275 

The sensitivity of the comparisons between airborne IR imagery, ASTER, and point ground-based temperature observations 

was tested by reducing the size of the square area from which temperatures were sampled from the airborne IR images (Figure 

3), from a square with sides ranging from 1000 m to 100 m (a single ASTER pixel is 90 m), and then for the airborne imagery 

ranging from 1000 m to 5 m (the size of a single airborne IR pixel) (Table 2). All airborne IR images were included in this 

analysis, rather than excluding images that covered less than 30% of the area, as was done in the prior analysis of airborne IR 280 

and ground data. The mean, median, and standard deviation of brightness temperatures were computed for the sampled region 

in each image. The mean difference, and root mean squared difference between all the airborne IR brightness temperature 

observations of these areas and the coincident ground-based temperature measurements, were computed. The smallest area 

sampled was a single 5 m airborne IR pixel that should contain the ~2.5 m footprint of the ground-based radiometer that was 

measuring snow brightness temperatures. However, the geolocation accuracy of the airborne IR mosaic imagery is only about 285 

+/- 10 m (Pestana et al., 2019). The single-pixel sampled therefore may not actually overlap completely with the ground-based 

radiometer footprint, but rather be directly adjacent to it.  
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Figure 3. Airborne a) visible, and b) IR image of the area around the snow brightness temperature observation site at snow pit 

#2S10. Boxes indicate regions from which the mean airborne IR brightness temperature information was taken for comparison with 290 
the ground-based observations (only the boxes with sides of 1000, 500, 250, and 100 m are shown). Map coordinates are in UTM 

zone 13N. c) Histograms of the airborne IR brightness temperatures from this example image plotted alongside the ground-based 

snow brightness temperature at this time (vertical dashed line). 

4.3 Comparison of high temporal resolution GOES-R ABI with continuous ground observations 

GOES-16 and -17 brightness temperature observations were compared against the ground-based snow brightness temperature 295 

observations at snow pit #2S10. A timeseries of brightness temperatures for bands 13 and 14 at 5-minute temporal resolution 

was created for 8 to 12 February 2020 for the GOES-16 and -17 ABI pixels, which contained snow pit #2S10 (both labeled 

pixel A). Two cloud-free periods, 8 February (7:00 – 18:00), and 11 February (00:00 – 18:00) were manually identified by 

inspecting the GOES imagery and brightness temperatures for cold cloud tops obscuring the study site. The ground-based 

snow brightness temperature observations at snow pit #2S10 over these same time periods were resampled to match the 5-300 

minute temporal resolution of GOES ABI brightness temperatures. All timeseries were then smoothed with a 30-minute 

running mean to remove the highest frequency variability (median < ± 0.02, σ < 0.6 K) from the data and fill data gaps. The 

daily maximum and minimum temperatures and diurnal temperature range (DTR) were then found for both the ground-based 

snow brightness temperature observations, and for the GOES ABI brightness temperatures. The mean and root mean squared 

difference between GOES ABI brightness temperatures and the ground-based snow brightness temperatures were also 305 

computed. For 8 February, because there was cloud-cover at night obscuring the study area until 7:00, we only compared the 

timing of maximum daytime temperature between GOES and the ground-based observations. 

4.4 Comparison of GOES-R ABI, airborne IR, and ASTER imagery 

The differences between GOES-16 and -17 ABI brightness temperatures for 8 February (7:00-18:00) and 11 February (21:00 

10 Feb. -18:00 11 Feb.) were computed for each pair of corresponding pixels (NW, A, B, C/C1, C/C2, D, and E) across the 310 

mesa. This comparison was performed with both ABI bands 14 and 13. The mean difference, standard deviation of differences, 

and range of differences for each pixel were plotted against the corresponding pixel’s fveg value to inspect for any apparent 
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correlation between these differences and the forest fraction within each pixel footprint. The comparison of GOES-16 to -17 

is complicated because they view the scene from different perspectives. For example, the pair of pixels “A” from GOES-16 

and -17 overlap each other, but they do not have the same footprint on the ground, have slightly different values of fveg, and 315 

may include different amounts of the edges of the mesa. 

From each airborne IR mosaic, if the airborne imagery covered at least 30% of each of the GOES-16 and -17 ABI pixel 

footprints on top of the mesa, the region was sampled from the mosaic (Figure 4). The mean, median and standard deviation 

of temperatures within each footprint were computed for comparison against the ABI band 14 brightness temperature and LST 

of that pixel for a 10-minute window around the aircraft overpass time. The use of the GOES ABI pixel footprints to sample 320 

the finer spatial resolution airborne images assumes a direct linear scaling of the finer spatial resolution brightness temperatures 

to a mean brightness temperature at the coarser GOES ABI spatial resolution (Pestana and Lundquist, 2022). The sensitivity 

of the results to this assumption, and to the geolocation accuracy of a pixel footprint, were tested by comparing GOES ABI 

brightness temperatures with airborne brightness temperatures sampled from an area larger than a single pixel footprint. An 

example of the 500 m buffer around a GOES ABI pixel footprint is illustrated in Figure 4b. Similarly, the GOES-16 and -17 325 

ABI pixel footprints and expanded footprints were used to extract the mean, median and standard deviation of top-of-

atmosphere radiance from the single ASTER image. These were  then converted to brightness temperature for comparison 

against ABI band 14 brightness temperatures. 
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Figure 4. Example of sampling (a,b) 5 m spatial resolution airborne IR image mosaics and (c,d) 90 m spatial resolution ASTER 330 
image using the GOES-R ABI pixel footprints, or (dashed line in b) pixel footprints with an additional 500 m buffer. 

5 Results 

5.1 Evaluating airborne IR image mosaics against ASTER 

The airborne IR imagery was found to have a warm bias compared with ASTER brightness temperatures. The mean differences 

between the two resampled airborne IR image mosaics and the ASTER image from the morning of 8 February were 0.4 K and 335 

0.8 K and had standard deviations of 1.5 K and 1.4 K, respectively. Using the GOES-16 ABI pixel footprints labeled A-E, we 

found that the mean differences between the airborne IR and ASTER did not vary with vegetation cover. 
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Figure 5. Comparison of airborne and ASTER a) visible and b) IR observations on the morning of 8 February 2020. Two overlapping 

airborne swaths of visible (a) and IR (b) imagery are outlined in white dashed (northern flightline at 11:07 UTC-7, east to west flight 340 
direction) and solid (southern flightline at 11:19 UTC-7, west to east flight direction) lines. c) The difference between airborne IR 

image mosaics and the ASTER image (at 11:07 UTC-7). 

There were, however, systematic patterns in the difference between airborne IR and ASTER observed brightness temperatures. 

The brightness temperature difference maps for each of the two coincident airborne IR image mosaics exhibit a gradient across 

their field of view, perpendicular to the aircraft’s flight direction (Figure 5). Along the southern edge of each image mosaic, 345 

the airborne IR brightness temperatures are about 0.5 K colder than ASTER brightness temperatures, and along the northern 

edge about 0.5 K warmer. Though other airborne IR images did not have coincident ASTER observations for comparison, 

there was an apparent brightness temperature gradient present in most of the images from east-west flight tracks, but not in 

any from north-south flight tracks. 
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The apparent brightness temperature gradients could be due to the temperature of the thermal infrared cameras themselves, 350 

view angle effects as described in Section 2.2, or a combination of the two. Since the airborne IR image mosaics are created 

from individual images from three cameras, these differences may stem from the three cameras having different temperatures. 

Following the east-west flightlines, solar heating (sunlit on the southern side, shaded on the northern side) on the aircraft could 

contribute camera temperature differences (Pestana et al., 2019). Likewise, prevailing wind direction could preferentially cool 

one side of the camera set, versus the other. Though centered at nadir, the three airborne IR cameras together have view angles 355 

from 31.5° on the left to 41.0° on the right. At larger off-nadir view angles near the image edges more of the sides of trees will 

be visible. Along the east-west flightlines across, the north looking cameras are seeing the south-facing and sunlit side of trees 

and fewer tree shadows, an overall slightly warmer scene than a nadir view would provide. At the same time, south looking 

cameras are seeing the north-facing side of trees and more snow surface shaded by the trees, an overall slightly colder scene 

than a nadir view would provide. A similar effect could be taking place with undulations in the snow surface where at different 360 

view angles the cameras see either the warmer south-facing sunlit side or cooler shaded north-facing side of waves or dunes 

in the snow surface (Figure 3b). 

Whatever the source of the apparent brightness temperature gradient in some of the airborne IR imagery, we considered its 

impact on the results as negligible. The gradient only had a magnitude of 1 K across the image swaths, which is less than the 

cameras’ accuracy of ±2 K (Table 1). The difference between airborne IR and ASTER brightness temperatures in the nadir-365 

looking center of the swaths is 0 K. The east-west flightlines passed directly over most of the ground observations locations, 

observing them from very close to nadir where airborne IR and ASTER brightness temperatures agree  (Figure 1). In 

comparisons between GOES ABI and airborne IR infrared brightness temperatures, the airborne IR images are aggregated to 

a mean brightness temperature within a GOES ABI pixel footprint across the image swaths (Figure 4). This aggregation may 

compensate for the erroneous gradients since it averages together the positively and negatively biased edges of the swaths. 370 

Also of note, the easternmost portion of the airborne IR mosaic from 11:19 shows a large cold feature, which, by inspecting 

the visible airborne imagery, we identified as a small cloud (Figure 5c), not visible in the airborne or ASTER image from 12 

minutes prior. This portion of the mosaic was excluded from later analysis.  

5.2 Comparison of airborne IR, ASTER and ground observations 

Snow brightness temperatures observed by the airborne IR and ASTER imagers were biased warm in comparison with the 375 

ground-based snow brightness temperature observations at snow pit #2S10. Aircraft flights on two cloud-free days during the 

study period provided us with 15 overpasses over the ground sites on the western mesa. Two flights were made on 8 February 

(Figure 6a,b). On the first flight, three overpasses occurred about an hour after sunrise (7:13 UTC-7) between 8:00 and 9:30. 

The second flight of that day made six overpasses between 10:30 and 13:00. The second flight was coincident with the ASTER 

image taken at about 11:08. On 11 February, a single flight made another six overpasses of the ground site between 9:30 and 380 

13:00 (Figure 6c,d). 
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Figure 6. Timeseries for a) 8 Feb. and c) 11 Feb. of the ground-based snow brightness temperatures from the Apogee radiometer at 

snow pit #2S10 (black line), along with GOES-16 (dashed orange) and GOES-17 (dashed purple) band 13 brightness temperatures, 

GOES-17 LST (red +), airborne IR (blue circles), and ASTER (red diamonds) mean brightness temperatures for the 1 km2 area 385 
around the ground site. Plots of ground-based snow brightness temperature against remote sensing brightness temperatures on b) 

8 Feb. and d) 11 Feb. 

On 8 Feb., snow brightness temperatures as seen by the airborne IR and ASTER imagery appeared more uniform than on 11 

Feb. around snow pit #2S10, and therefore less sensitive to the size of the area sampled from the imagery to compare with 

ground-based observations (Table 2). ASTER on 8 February matched most closely to the ground-based brightness temperatures 390 

with its single pixel value, though this difference only increased by ~ 0.3 K as the size of the sampled region increased. Snow 

brightness temperatures as seen in the airborne IR imagery were more uniform across the study area on 8 February (with 

standard deviations across the 1 km2 area of 0.2 to 0.6 K) than on 11 February (with standard deviations of 0.7 to 1.0 K) which 

had colder air temperatures and higher wind speeds.  
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Table 2. Mean difference between ground-based snow brightness temperatures and remotely sensed brightness temperatures (K) 395 
from both ASTER and airborne IR imagery, sampled from square areas with sides 5 to 1000 m. 

Box size of 

image area 

sampled (m) 

Mean Difference (K) with Ground-based Tb at Snow Pit 2S10 

ASTER, 8 Feb. Airborne IR, 8 Feb. Airborne IR, 11 Feb. 

1000 0.3 0.6 2.0 

500 0.3 0.9 2.3 

250 0.1 0.9 2.0 

100 0.0 0.9 1.8 

50 - 0.9 1.7 

25 - 0.9 1.5 

10 - 0.9 1.6 

5 - 1.0 1.4 
 

Only four snow pits on 8 February (1N1, 1S2, 6N16, 2S7), and two snow pits on 11 February (1N3, 2S6) were captured in the 

airborne IR imagery within +/-30 minutes of their snow surface temperature measurements. On the 8th, two of the snow pit 

surface temperature measurements (1S2, 2S7) were within +/- 1 K of the brightness temperatures in the airborne IR images, 400 

two (1N1, 6N16) were ~2 K warmer, and on 11 February, both snow pit temperature observations were 3 – 4 K warmer. 

Measuring the temperature of the top-most centimeter of snow is not trivial, as the stem thermometers used can heat up if 

exposed in sunlight, and are in contact with both snow grains and the air space between snow grains. Near the top of the 

snowpack, the air temperature can be close to that of the above-surface air (Colbeck, 1989), potentially biasing these snow 

surface temperature readings more towards that of warmer ambient air temperatures. 405 

5.3 Comparison of high temporal resolution GOES-R ABI with continuous ground observations 

Both GOES-16 and -17 reported surface brightness temperatures warmer than the ground-based snow brightness temperature 

observations (Figure 6), though this difference varied over the course of each day (Figure 7). Compared to the ground-based 

observations, the band 14 brightness temperatures had smaller mean and root-mean-squared differences than did the band 13 

brightness temperatures. ABI brightness temperatures and ground-based temperature observations show a hysteresis patterns, 410 

with GOES ABI brightness temperatures more closely matching the ground-based observations in the nighttime (11 Feb.) and 

early morning (8 Feb.) than during the day. This pattern is more apparent on 11 Feb., with GOES brightness temperatures 

warming up in the morning, and cooling down in the evening, faster than the ground-based snow brightness temperatures. 

GOES-16 and -17, bands 13 and 14, all observed daily Tmin and Tmax within 1 hour or less of those measured on the ground, 

and the DTR matched within +/- 3 K on both days. On 8 February, GOES-16 and -17, bands 13 and 14, all observed Tmax 415 

within 30 minutes of ground-based Tmax. Both GOES-16 and -17 observed a DTR ~3 K larger in this time period than the DTR 

measured on the ground. On 11 February, GOES-16 bands 13 and 14 observed the time of Tmax 30 minutes later than the 

ground-based Tmax, and Tmin within 15 minutes. GOES-17 saw Tmax almost 1 hour later than ground-based Tmax, and a Tmin 
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within 20 minutes of ground-based Tmin. On this day, the DTR observed by GOES ABI was ~3 K smaller than the DTR from 

the ground-based snow brightness temperature observations. 420 

5.4 Comparison of GOES-R ABI, airborne IR, and ASTER imagery 

The band 13 and 14 brightness temperatures from both GOES-16 and -17 were mostly warmer than those from airborne IR 

and ASTER imagery, and this warm bias was larger for GOES-16, especially for ABI pixels which contained larger forest 

fractions. The mean differences between GOES-16, compared to GOES-17 and airborne IR observations, across all pixels 

during the first flight on 8 February decreased over time from a positive to a negative biases (Figure 7a,b). During the second 425 

flight on 8 February, the mean differences between GOES-16 and airborne IR generally decreased from about 2 K to 0 K, 

while the mean differences between GOES-17 and airborne IR increased over time from -1 K to 1 K. On 11 February, the 

mean differences between GOES-17 and airborne IR were relatively constant throughout the morning of observations, while 

GOES-16 mean differences decreased similarly to what was seen on 8 February, from 5 K to 2 K (Figure 7c,d). The brightness 

temperature differences also showed some variation due to the airborne image swaths sampling only part of the ABI pixel 430 

footprints on alternating flight tracks (as seen in Figure 7b,d). The mean differences between GOES-16 and the morning 

airborne IR observations were found to be larger for ABI pixel footprints with higher fveg, while the differences with GOES-

17 did not correlate with fveg (Figure 8). Similarly, the mean differences between GOES-16, but not GOES-17, and the morning 

ASTER observation were larger for ABI pixel footprints with larger fveg. These results were also robust to uncertainty in the 

geolocation accuracy of GOES ABI pixel footprints, which is discussed in Section 6.1. 435 
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Figure 7. Difference between GOES-16 ABI band 13 brightness temperature, and brightness temperature observations from GOES-

17 ABI band 13, airborne IR imagery, ASTER imagery, and ground-based brightness temperature observations. Plots for (a,b) 8 

February 2020 and (c,d) 11 February 2020 for pixels (a,c) A (fveg~15%) and (b,d) E (fveg~45%). The times that GOES-16 and GOES-

17 have their daily minimum phase angle are marked with vertical dashed orange and purple lines, respectively. 440 

The difference between GOES-16 and -17 brightness temperatures showed a prominent pattern over the course of each day, 

with GOES-16 reporting warmer brightness temperatures by as much as 3 K in the morning, peaking at about 10:00, and 

GOES-17 reporting warmer brightness temperatures by nearly 3 K in the afternoons, peaking at about 15:00. The maximum 

and minimum differences between GOES-16 and -17 were larger for the more forested pixel E than the mostly open snow 

pixel A. However, there was no correlation found between the magnitude of these differences and the fveg value of each pixel. 445 
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Figure 8. Mean differences between GOES-16 and -17 ABI brightness temperatures, airborne IR (blue dots) and ASTER (red 

diamonds), plotted against the fractional vegetated area (fveg) value of each ABI pixel footprint. 

6 Discussion 

6.1 Intercomparison of remote sensing data 450 

The mean differences between brightness temperatures observed by all remote sensing sources and ground-based observations 

ranged from about 0 to 5 K, with remote sensing sources (airborne IR, ASTER, GOES ABI) typically reporting warmer 

brightness temperatures than those measured on the ground. The airborne IR and ASTER images best matched the ground-

based snow brightness temperature observations because they could resolve separate snow and forest temperatures, whereas 
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the coarser 2+ km spatial resolution GOES-R ABI pixels reported a mixture of forest and snow temperatures (Table 3). This 455 

was apparent even for the mostly forest-free westernmost portion of Grand Mesa (pixels A) with fveg≈15%. Additionally, there 

were some thin high-altitude clouds on the morning of 8 February, visible in the GOES-R ABI near-infrared “cirrus band” 

(band 4, 1.37 μm). The timeseries of band 13 and 14 brightness temperatures during this time show rapid changes, and possibly 

colder temperatures than would be reported if those thin clouds had not been present.  

Table 3. Summary of mean differences (K) between the various brightness temperature (Tb) data sources (aggregated across all 460 
ABI pixel footprints where applicable) for two days of coincident observations during the SnowEx 2020 field campaign. Cells are 

colored by sign and magnitude of the difference, with positive differences in red and negative differences in blue. 

 Ground 
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2.4 3.5 - 0.5 0.3 0   
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Over the course of each morning, the airborne IR imagery tracked the morning warm-up of the snow surface closely, with a 

constant warm bias relative to the ground-based observations (Figure 6). GOES-16 and -17 ABI also tracked the ground-based 465 

snow brightness temperature observations over the course of the day, though their biases relative to those observations changed 

over time (Figure 7). Snow brightness temperatures were more uniform across the western mesa on 8 February than on 11 

February, as seen in airborne imagery (Table 2). This was also reflected in ABI brightness temperatures more closely matching 

the ground-based observations on 8 February. Both GOES-16 and -17 captured the timing of daily Tmin and Tmax on these two 

days within ~1 hour, and the diurnal temperature range within +/- 3 K. This uncertainty in the DTR is similar to the range seen 470 

in the mean differences over each day and across the mesa between GOES-R ABI and the ground-based observations (1-3 K), 

ABI and ASTER (2 – 3 K), and ABI and the airborne IR imagery (0 – 5 K). 

Our use of a ground-based infrared radiometer, and thermal infrared imagers all within the 8-14 μm window allowed us to 

directly compare their observed brightness temperatures (Pestana and Lundquist, 2022). However, the radiometer and 

imagers viewed the study site through different atmospheric path lengths. These different path lengths would subject the 475 
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observations to different amounts of atmospheric absorption and emission of infrared radiation by water vapor. This impact 

is somewhat alleviated at our high-elevation continental study site, where the atmospheric path to a satellite imager is shorter 

and atmospheric water vapor concentrations are less than those at more coastal or lower elevations. To quantify these effects, 

the impact of atmospheric path length for the airborne and satellite thermal infrared imagers was simulated with MODTRAN 

(Berk et al., 2014) for a mid-latitude winter atmosphere. These simulations showed that GOES-R ABI brightness 480 

temperature observations could be as much as 4 K colder than true brightness temperatures due to atmospheric absorption. 

The GOES-R ABI LST product, which is designed to account for these atmospheric effects, reported surface temperatures 

very close to GOES-R ABI brightness temperatures (Figure 6). Absorption by water vapor along the atmospheric path 

between the snow surface and the radiometer mounted < 2 m above the snow surface is negligible; however, for the airborne 

IR observations with a path length of ~1 km, the MODTRAN simulation showed that brightness temperatures could be as 485 

much as 2 K colder than true brightness temperatures. Due to their different atmospheric path lengths alone, we would 

expect satellite observations of top-of-atmosphere brightness temperature to be biased colder than airborne observations 

from ~1 km. Our results, however, show that GOES-R ABI brightness temperatures were biased warmer than airborne 

observations, suggesting that the magnitude of the atmospheric effect is surpassed by view angle related effects.  

The mean differences between ground-based snow brightness temperature observations and ABI band 14 brightness 490 

temperatures were smaller than those for band 13 by about 0.2-0.4 K. This, however, doesn’t necessarily mean that band 14 

was providing a more accurate snow brightness temperature reading. Band 14 covers wavelengths where we can expect 

some absorption of infrared radiance by atmospheric water vapor, whereas band 13 sits within the “clean IR” window with 

minimal to no infrared absorption by water vapor (Schmit et al., 2018). With no atmospheric water vapor absorption, the 

difference between band 13 and 14 brightness temperatures would be negligible. Any atmospheric water vapor present can 495 

result in band 14 brightness temperatures being colder than band 13, as was the case seen here. Though we chose generally 

cloud-free time periods of observations, any trace amounts of water vapor could be causing band 14 to appear colder, and 

which coincidentally more closely matched higher-resolution snow brightness temperatures on Grand Mesa. 

The results of this intercomparison were robust even if the geolocation accuracy of a GOES ABI pixel footprint was an order 

of magnitude larger (± 500 m) than their reported accuracy (±50 m; Tan et al., 2018). To test the sensitivity of our results to 500 

geolocation accuracy, the analysis was repeated but with airborne and ASTER imagery clipped to the area of expanded GOES 

ABI pixel footprints. These expanded footprints included a 500 m buffer around the original footprint perimeter (Figure 4b), 

making them 1 km wider and taller than the original pixel footprints, representing large location uncertainty and overlap 

between adjacent pixel fields of view. This also tested the assumption that the radiance detected by GOES ABI for a given 

pixel originated only from the land surface contained within the pixel footprint (i.e. that true brightness temperatures, 505 

represented by 5 m airborne or 90 m ASTER, should linearly scale to an average brightness temperature detected by GOES 

ABI). The analysis using these expanded footprints did not significantly change the results of this work. The warm biases seen 

in GOES ABI brightness temperatures were larger, likely due to the expanded pixel footprints including warmer lower 

elevation areas off the edge of Grand Mesa (Figure 2). 
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 510 

Figure 9. Approximately nadir airborne a) visible and b) IR images over Grand Mesa, Colorado from 2020-02-11 10:25:51 UTC-7, 

and c) a temperature profile across a forest stand, showing the presence of very cold tree shadows, and warm southeast forest edges 

in full sun. The temperature profile is parallel with the view direction of GOES-16, and nearly perpendicular to the view direction 

of GOES-17. 

6.2 Sun-satellite phase angle and thermal infrared shadow-hiding 515 

Even with the flat terrain of Grand Mesa controlling for effects of viewing mountain terrain from off-nadir angles (Pestana 

and Lundquist, 2022), we observed a morning warm bias between GOES-16 and the coincident nadir-looking ASTER, airborne 

IR imagery, and GOES-17 (Figure 7). The GOES-16 brightness temperatures were potentially exhibiting a hotspot effect when 

the angle between the sun and the view angle of GOES-16 (phase angle) reached a daily minimum. The hotspot effect seen in 

remote sensing imagery of forests is understood to be explained by shadow-hiding in imagery of reflected sunlight in the 520 

visible and NIR wavelengths (Deering et al., 1999; Hapke et al., 1996). 
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When the airborne IR and ASTER images were taken (7:00-13:00), the sun was rising in the southeastern sky, in the same 

direction from which GOES-16 was viewing Grand Mesa. At about 10:00 on 11 February, when we see the largest warm 

biases between GOES-16 and all other datasets, the sun had reached 26.9 degrees elevation at an azimuth of 139.1 degrees 

(26.1 and 139.6 on the 8th). The angle between GOES-16’s view and the sun’s position (phase angle) was at its minimum of 525 

~ 8 degrees on 11 February at 9:59 (~9 degrees at the same time on 8 February). At this time, the sun was illuminating and 

warming the southeastern facing sides of trees that GOES-16 is viewing, which in the airborne IR imagery were as much as 5 

K warmer than the shaded side of trees (Figure 9). In addition to viewing the sunlit side of trees, snow in tree shadows was 

considerably colder than snow in the sunlight (by ~10 K) and would also be hidden from the view of GOES-16.  

The airborne IR and ASTER images viewed the study area from nadir, and the difference between these two image sources 530 

did not vary with fveg. GOES-17 surface brightness temperatures had smaller mean differences compared to airborne and 

ASTER than GOES-16, and these differences did not correlate with fveg. GOES-17, viewing Grand Mesa from the southwest, 

would similarly be viewing the southwest facing sides of trees, though during the morning these would be partially in sun and 

partially in shade. In the afternoon we see that GOES-17 is warmer than GOES-16, peaking at about 15:00. The minimum 

phase angle between the sun and GOES 17 is ~8 degrees at 14:37 on 11 February (~9 degrees on 8 Feb.). 535 

Though we see that the warm bias in GOES-16 imagery correlates with fveg, the presence of these same warm biases and their 

patterns over time (e.g. warm biases peaking at the time of minimum phase angle) in the mostly open snow pixels (Figure 7a,c) 

suggests that other sources of surface roughness may also be contributing to this effect, such as greater than meter-scale dunes, 

or sub-meter-scale ripples and sastrugi (Kochanski et al., 2019; Warren et al., 1998).  

6.3 Applications for downscaling GOES-R ABI thermal infrared imagery 540 

Downscaling methods for coarse spatial resolution thermal infrared imagery rely on finer spatial resolution maps of land cover 

properties and statistical relationships to model and therefore correct for the expected biases in the coarse imagery. Prior 

methods have used vegetation (Inamdar and French, 2009; Kustas et al., 2003) and terrain maps (Walters, 2013), and biases 

in GOES-16 ABI imagery have been related to their off-nadir views of complex terrain (Pestana and Lundquist, 2022). Our 

results demonstrate that for high temporal resolution GOES-R ABI thermal infrared imagery, not only does the fractional forest 545 

coverage of each ABI pixel have some control on surface temperature biases, but so does the solar illumination angle, and the 

phase angle between the satellite and sun. Thus, any downscaling of GOES-R data must explicitly consider time of day and 

time of year. These solar and satellite view angle controls on surface temperature observation biases were observed over both 

the forested and open snow regions of Grand Mesa, suggesting that surface roughness features as large as trees but perhaps as 

small as sastrugi contributed to the hotspot effect seen. This information will be needed to determine if, when, and what 550 

magnitude a hotspot or thermal infrared shadow-hiding effect will have on the surface temperature bias of the coarser resolution 

GOES-R ABI.  
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7 Conclusions 

During the NASA SnowEx field campaign in February 2020, we conducted an intercomparison of thermal infrared remote 

sensors for retrieving surface brightness temperatures of snow and forests. The flat study site at Grand Mesa in western 555 

Colorado, USA, allowed us to investigate the impact that forest cover has on thermal infrared remote sensing from GOES-16 

and GOES-17 at off-nadir view angles and high temporal resolution. Snow brightness temperatures observed by the airborne 

IR and ASTER imagers were biased warm in comparison with the ground-based snow brightness temperature observations, 

and the airborne IR imagery itself was found to have a warm bias compared with ASTER, all with mean differences within < 

1 K of each other. GOES-16 and GOES-17 observed daily maximum and minimum brightness temperatures within ~1 hour 560 

of those measured in situ, and the diurnal temperature range matched within +/- 3 K. GOES-16 and GOES-17 reported warmer 

surface brightness temperatures than the ground-based, airborne IR, and ASTER observations. This warm bias was larger for 

GOES-16 in the mornings when the aircraft and ASTER passed over the study site. The maximum warm biases in GOES-16 

and GOES-17 occurred when the sun-satellite phase angle was at its daily minimum, suggesting that a thermal infrared shadow-

hiding effect may cause these off-nadir imagers to sense warmer temperatures than nadir-looking imagers. Therefore, land 565 

surface roughness features such as trees, and the diurnal changes in phase angle should be considered when interpreting GOES-

R ABI observations of land surface or brightness temperatures. 

The thermal infrared imagery and ground-based snow temperature observations collected as part of SnowEx 2020 provide a 

unique dataset for characterizing the high temporal resolution observations from geostationary satellites. It could be used 

further for testing methods for spatially downscaling coarse GOES-R ABI imagery of snow and forests to finer spatial 570 

resolutions with statistical models, sensor fusion methods (Quan et al., 2018; Weng and Fu, 2014), or using spectral mixture 

models to separate snow and forest temperatures (Lundquist et al., 2018). This work demonstrates that future applications of 

GOES-R ABI imagery for land surface temperature observations of landscapes like mountain snow and forests must account 

for the continuously changing phase angle and resulting thermal infrared shadow hiding at small phase angles. Though this 

work focuses on a single site in a short time period, other geostationary satellites comparable to GOES-R ABI, such as 575 

Fengyun-4 and Himawari-8, provide similar views of High Mountain Asia and other mountains in the Eastern hemisphere 

where these observations are needed. We expect the processes described here to be important for interpreting geostationary 

thermal infrared observations all around the globe. 

8 Code availability 

The code used in the analysis of these datasets, including python scripts and Jupyter Notebooks to generate plots and figures, 580 

are available at https://github.com/spestana/snowex2020/tree/v1.0 (Pestana, 2023) 
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9 Data availability 

All data used in this work is publicly accessible. The continuous snow brightness temperature observations (Pestana and 

Lundquist, 2021), instantaneous snow surface temperatures (Vuyovich et al., 2021; Johnson et al., 2023), and airborne IR 

imagery (Chickadel et al., 2022) are available through the National Snow and Ice Data Center (NSIDC). The ASTER imagery 585 

is accessible through the USGS LPDAAC (https://lpdaac.usgs.gov/), and NOAA Geostationary Operational Environmental 

Satellites (GOES) 16 & 17 imagery from https://registry.opendata.aws/noaa-goes/ with goespy (Mello and Pestana, 2022). 
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