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Abstract 7 

Numerical forecast products with high temporal resolution are crucial tools in atmospheric studies, 8 
allowing for accurate identification of rapid transitions and subtle changes that may be missed by lower-resolution 9 
data. However, the acquisition of high-resolution data is limited due to excessive computational demands and 10 
substantial storage needs in numerical models. Current deep learning methods for statistical downscaling still require 11 
massive ground truth with high temporal resolution for model training. In this paper, we present a self-supervised 12 
framework for downscaling atmospheric variables at arbitrary time resolutions by imposing a temporal coherence 13 
constraint. Firstly, we construct an encoder-decoder structured temporal downscaling network, and then pretrain this 14 
downscaling network on a subset of data that exhibits rapid transitions and is filtered out based on a composite 15 
index. Subsequently, this pretrained network is utilized to downscale the fields from adjacent time periods and 16 
generate the field at the middle time point. By leveraging the temporal coherence inherent in meteorological 17 
variables, the network is further trained based on the difference between the generated field and the actual middle 18 
field. To track the evolving trends in meteorological system movements, a flow estimation module is designed to 19 
assist with generating interpolated fields. Results show that our method can accurately recover evolution details 20 
superior to other methods, reaching 53.7% in the restoration rate on the test set. In addition, to avoid generating 21 
abnormal values and guide the model out of local optima, two regularization terms are integrated into the loss 22 
function to enforce spatial and temporal continuity, which further improves the performance by 7.6%. 23 

1 Introduction 24 

In the field of meteorology, temporal downscaling refers to the enrichment of time-series data by filling in 25 
the time gaps in observations or numerical products, which can provide a more continuous and comprehensive 26 
understanding of geophysical phenomena. Temporal downscaling in atmospheric fields holds considerable 27 
importance, given its extensive applications across a wide range of domains. In climate research, precise temporal 28 
interpolation plays a vital role in understanding long-term climate variations and assessing the impacts of climate 29 
change (Hawkins and Sutton, 2011; Michel et al., 2021; Papalexiou et al., 2018). By enriching historical climate 30 
records with temporally enhanced data, researchers gain a more detailed depiction of past climatic events (Barboza 31 
et al., 2022; Neukom et al., 2019). For example, the analysis of high-resolution data has revealed the relationship 32 
between global temperature rise and the frequency and intensity of extreme weather events, such as heatwaves and 33 
heavy rainfall (Kajbaf et al., 2022; Seneviratne et al., 2012). In the field of weather forecasting, accurate temporal 34 
downscaling significantly enhances the quality of short-term weather predictions (McGovern et al., 2017; Requena 35 
et al., 2021). Filling gaps between discrete atmospheric observations allows for precise tracking and prediction of 36 
various meteorological phenomena (Dong et al., 2013). For instance, the ability to capture rapid changes in wind 37 
patterns using high-resolution temporal data enables more accurate forecasting of severe storms, hurricanes, and 38 
their paths. This information is critical for issuing timely warnings, facilitating evacuations, and minimizing the 39 
potential damage caused by such weather events (Raymond et al., 2017). Furthermore, high-resolution time-series 40 
data aids in optimizing agricultural practices, optimizing energy production from renewable sources, and improving 41 
transportation planning by considering detailed weather patterns (Lawrimore et al., 2011; Lobell and Asseng, 2017). 42 

Current methods for temporally downscaling atmospheric fields mainly fall into two categories: dynamical 43 
downscaling and statistical downscaling. Starting from a specific initial condition, dynamical downscaling methods 44 
can interpolate or extrapolate atmospheric fields to a finer time scale by integrating governing equations over time. 45 
Early pioneering work by Lorenz (1963) established the basic framework of using governing equations of fluid 46 
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dynamics and thermodynamics to predict future atmospheric states. Since then, models such as the Weather 47 
Research and Forecasting (WRF) model (Skamarock et al., 2008) and the Community Earth System Model (CESM) 48 
(Hurrell et al., 2013) have been developed, incorporating advanced physical parameterizations and data assimilation 49 
techniques. These models have been widely used in producing high-temporal-resolution datasets, such as the 50 
European Centre for Medium-Range Weather Forecasts’ Integrated Forecast System (ECMWF IFS) updates (Bauer 51 
et al., 2015) and the High-Resolution Rapid Refresh (HRRR) forecasts (Benjamin et al., 2016). However, the 52 
computational expense of these models is a significant barrier, especially for high-resolution, long-term, or global-53 
scale studies (Maraun, 2010). In addition, these models require highly accurate initial conditions. Studies by Lorenz 54 
(1969) and Palmer et al. (2005) demonstrate how uncertainties in initial conditions and model parameters can lead to 55 
significant prediction errors over time, referred to as the ‘butterfly effect’. Most reanalysis products provide 56 
temporal resolution on the order of hours to days, which may not be sufficient for applications requiring finer details 57 
(Dee et al., 2011). 58 

The limitations of dynamical downscaling methods have prompted research into statistical alternatives, as 59 
they are computationally less expensive and can be easily applied across different spatial and temporal scales 60 
(Fowler et al., 2007). These methods, often employing regression techniques or machine learning algorithms, aim to 61 
identify and exploit statistical relationships between low-resolution and high-resolution data, such as weather 62 
generators (Gutmann et al., 2011; Lee et al., 2012), naïve (Chen et al., 2011; Jia-hong, 2006) and autocorrelation 63 
(Mendes and Marengo, 2010). However, as discussed by Maraun (2010), these methods often assume linear or local 64 
relationships in consecutive fields and may oversimplify complex atmospheric dynamics. 65 

In recent years, deep learning has been widely applied to meteorology for their potentials to extract 66 
complex patterns from large amounts of data (Reichstein et al., 2019). For example, Kajbaf et al. (2022) conducted 67 
temporal downscaling with artificial neural networks on precipitation time-series with a 3-hour time step. However, 68 
deep learning applications in meteorology so far have generally relied on supervised learning, requiring large 69 
amounts of high-resolution ground truth data for training, which could be difficult to acquire due to limited 70 
observation intervals, excessive computational demands and high cost of data restoration (Bolton and Zanna, 2019). 71 

In summary, although advancements have been made in temporal downscaling, there still exists significant 72 
demands for methods that can provide high temporal resolution with better physical consistency, improved 73 
computational efficiency and most importantly, less reliance on high-resolution ground truth data. This motivates 74 
our study, which aims to explore self-supervised learning as a potential solution to these challenges. As a form of 75 
unsupervised learning, self-supervised learning is a machine learning method that does not rely on supervision but 76 
leverages supervisory signals from the structure or properties inherent in data to train deep neural networks (Liu et 77 
al., 2020). This approach can leverage vast amounts of unlabeled data for training, thereby significantly enhancing 78 
the model’s generalization capabilities. It has been applied in diverse fields, including meteorology science (Eldele 79 
et al., 2022; Pang et al., 2022; Wang et al., 2022). 80 

 81 
Figure. 1. Illustration of time-evolving atmospheric fields. The green arrows represent the evolutions of an 82 
atmospheric field guided by physical laws with temporal coherence. The blue arrows represent the outputs of a 83 
temporal downscaling model, which seeks to approximate the physics-guided evolutions. 84 
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In fact, although atmospheric variables do not change linearly at different time steps, it is commonly 85 
believed that their evolutions are consistently guided by the same physical laws and thus exhibit temporal coherence 86 
over time (Lorenz, 1969). In other words, for the state  of any atmospheric variable at any time , it will 87 

transition from  to  following the mapping  guided by a set of physical laws, expressed as 88 

. Based on this invariant mapping constraint, time-series data themselves can be used as 89 

supervision information to train the deep learning model. To be specific, at any moment ,  can be taken as the 90 

truth value to train the mapping relationship from  to . As shown in the example in Fig. 1, for three 91 

consecutive fields ,  and  with an interval of 1 hour, if the goal is to train a downscaling model  92 

to fill the gaps at 1.5h and 2.5h and obtain , , after 93 

generating , the existing  can serve as supervision and the errors between 94 

 and  be utilized as loss to train . Therefore, it is clear that continuous atmospheric variables 95 
inherently contain sufficient information, which can be utilized as supervision for self-supervised temporal 96 
downscaling. 97 

In light of this consideration, we present TemDeep, the first self-supervised framework for downscaling 98 
atmospheric fields at arbitrary Temporal resolutions based on Deep learning. This framework addresses this issue by 99 
imposing a temporal coherence constraint across time-series fields, which means multiple consecutive fields 100 
themselves are leveraged as supervision information to train the model. Firstly, we construct an encoder-decoder 101 
structured temporal downscaling network, which is capable of performing interpolation at any resolution (see 102 
Section 3.5), and pretrain this downscaling network by designing a composite index to filter out a subset of data with 103 
rapid changes (see Section 3.2). The pretraining stage allows the model to initially capture general patterns and 104 
features present in the atmospheric data. In the next step, we utilize this pretrained model to downscale the fields 105 
from adjacent time periods and subsequently infer the field at the middle time point (see Section 3.3). Then, the 106 
model is further trained based on the difference between the inferred field and the actual middle field, according to 107 
the temporal coherence inherent in atmospheric variables. To effectively track the evolving trends in meteorological 108 
system movements, the network adopts a flow estimation module to assist with synthesizing fields. We have also 109 
designed a module to process terrain data, which enables the model to better perceive the prior information of the 110 
underlying surface. In experiments, our method demonstrates effectiveness in accurate downscaling various 111 
atmospheric variables at different temporal resolutions, reaching over 53.7% in the restoration rate, superior to other 112 
existing unsupervised methods. 113 

The structure of this paper is as follows: Section 2 presents the details of the study area and data sources 114 
used in our study. In Section 3, we explain our methodology, specifically detailing the entire training process and 115 
network architecture. In Section 4, we conduct extensive experiments to assess the model’s effectiveness. Finally, 116 
Section 5 summarizes the methods and contributions made in this study and points out possible future works and 117 
applications. 118 

2 Study area and dataset 119 

Our study focuses on the geographic area bounded by longitude 100°E to 125°E and latitude 20°N to 45°N 120 
with a spatial resolution of 0.25°×0.25° (see Fig. 2), and data for this region was downloaded from the European 121 
Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis dataset. The dataset comprising 87,660 122 
two-hour-interval samples from 2001 to 2020 is used as the training dataset. The testing dataset consists of 8,760 123 
one-hour-interval samples in 2021. To evaluate the generalization performance of the TemDeep method, 124 
experiments were conducted on three atmospheric variables: 2-meter air temperature (t2m), 850hPa geopotential 125 
height (z) and 850hPa relative humidity (rh). Horizontal and vertical wind volumes are utilized to calculate wind 126 
speed as part of a composite index (see Section 3.2). Recognizing the influence of topography on local climate and 127 
weather patterns, we have also included terrain data with a resolution of 15km, sourced from NASA’s Shuttle Radar 128 
Topography Mission (Hennig et al., 2001). 129 
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 130 
Figure. 2. Satellite image of the study area. The study area is outlined by the red rectangle. This area lies in a zone 131 
of climatic transition, including subtropical, temperate and cold temperate climate zones, and therefore is highly 132 
representative for climate change studies (base map imagery provided by Esri WorldImagery). 133 

3 Methods 134 

3.1 Problem definition and overview 135 

Given the initial atmospheric fields  represented as a continuous gridded dataset with a 136 

temporal resolution of , our goal is to achieve temporal downscaling at any resolution . 137 

Here,  and  denote the number of grid points in the horizontal and vertical directions, respectively. That is, for 138 

a given period of weather process occurring between the interval , we aim to accurately generate the 139 

interpolated field at any time point . To achieve this goal, a self-supervised framework is presented for 140 
temporal downscaling (see Fig. 3), in which the training procedure consists of two primary stages. In the first stage, 141 
we pretrain our model on a subset of data to simulate the training process on a real high-resolution dataset by 142 
selecting scenarios with rapid transitions. Then, the model is further trained under guidance of a temporal coherence 143 
constraint, leveraging supervision information inherent in the low-temporal-resolution time-series. In addition, two 144 
regularization terms are utilized in the loss function to guide the model out of local optima and prevent abnormal 145 
values. 146 
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 147 
Figure. 3. Overview of the proposed TemDeep framework for self-supervised temporal downscaling. The 148 
overall network structure for temporal downscaling is depicted in the top right portion of the figure, which is 149 
composed of an encoder-decoder structured field prediction network and a flow estimation module, taking 150 
consecutive fields and terrain data as input. Firstly, we pretrain the downscaling network on scenarios that exhibit 151 
rapid transitions. Then, we conduct self-supervised learning based on the temporal coherence constraint. After two 152 
rounds of inference, we compare the generated field at the time of  with the original field and calculate the 153 
loss to further train the network. In the bottom half of the figure, the green checkmark denotes the original data 154 
point, while the black cycle represents the interpolated results. 155 

3.2 Reconstructing a pretraining dataset through self-similarity 156 

It is easily understood that scenarios with rapid transitions could reflect a condensed evolution of 157 
atmospheric processes, where changes that might typically occur over longer durations are instead experienced in a 158 
compressed time period. Therefore, these scenarios occurring within shorter time intervals in low-temporal-159 
resolution data can potentially serve as ‘pseudo labels’ for scenarios within longer time intervals in high-temporal-160 
resolution data. 161 

Based on this kind of self-similarity across time scales, we propose to reconstruct a pretraining dataset by 162 
establishing a composite index to filter out scenarios with rapid transitions. This composite index is designed based 163 
on four physical variables that are indicative of weather system transformations, respectively rh, t2m, 850hPa wind 164 
speed (v) and 850hPa vertical velocity (w). Rapid changes in wind speed can indicate major weather phenomena, 165 
and similarly, humidity changes are key to atmospheric stability and sudden shifts can trigger severe convection. 166 
t2m gradients drive atmospheric circulation, with steep gradients signifying developing weather fronts. Lastly, 167 
vertical velocity indicates vertical air movement and can signal cloud formation or precipitation.  168 

Given an atmospheric variable ,  the normalized change for each time step  is defined as 169 

, where  represents the standard deviation of the variable  over 170 

the entire period. Let  denote the vector of normalized changes, 171 

and  be the respective weight vector, the composite index CI can be expressed as 172 
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 . (1) 173 

Here, the superscript  denotes vector transposition, and the summation extends over all unique pairs of variables 174 

. The parameter  is a scaling factor set at 0.02, which can be adjusted to regulate the influence of the 175 

interaction terms.  represents the weights linked with the interaction terms, ensuring that each variable has the 176 

same magnitude before multiplication. The first component  is a linear combination of normalized 177 

changes to quantify individual influence of each variable, while  is introduced to 178 

account for synergistic effects among variables by measuring the product of changes between pairs of variables. 179 
Finally, we empirically set a threshold  for the composite index at 0.75, and scenarios with a  value above the 180 
threshold are considered to exhibit rapid transitions: 181 

 , (2) 182 

where  denotes scenarios with rapid transitions. Finally, we obtain a collection of 1,391 scenarios with 12,531 183 
consecutive fields and group these samples every 3 fields into 4,177 sets. During the pretraining process, we train 184 
the model by providing the model with the two adjacent fields as input and tasking it to generate a result that is close 185 
to the middle field in the sequence. 186 

3.3 Self-supervised training leveraging temporal coherence 187 

In our approach, we propose a self-supervised training process, which leverages temporal coherence within 188 
continuous atmospheric fields to generate interpolated fields at arbitrary time resolutions. Taking inspiration from 189 
the success of unpaired data to data translation in a variety of fields (Gao et al., 2022; Reda et al., 2019; Zhou et al., 190 
2016; Zhu et al., 2017), we define a time-domain temporal coherence constraint, ensuring that the interpolated data 191 
point  created at time  right between  and  must consist with the original middle data 192 

point . That is, as illustrated in Fig. 3, for a given triplet of consecutive data fields, we generate two 193 
intermediate data points in the first inference: one between the first two data points 194 

, where  is our downscaling network (see Section 3.5), and the other between 195 

the last two data points . Then in the second inference, we generate an 196 
interpolated data point between these newly created intermediate data points, 197 

. In this case,  should match the original middle input data 198 

point , illustrating the concept of temporal coherence. By changing the time parameter 199 

, our method is capable of generating an array of interpolated data points that maintain 200 
temporal coherence over time, effectively enriching the temporal resolution of the atmospheric dataset. To enforce 201 
temporal coherence, we aim to minimize the difference between  and , expressed as 202 

, then the coherence loss  can be defined in the form of  loss: 203 

 . (3) 204 

3.4 Spatio-temporal continuity regularization 205 

Despite the application of the temporal coherence constraint to train the model, which allows for the 206 
simulation of evolving weather systems, it is still necessary to regulate the model to prevent it from local optima and 207 
avoid generating abnormal values. To address this concern, our approach leverages the inherent continuity of 208 
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atmospheric fields in space and time, which is integrated into our model training process as a regularization term in 209 
the loss function. An example of spatial and temporal gradients in t2m fields is provided in Fig. 4, and Fig. 5 210 
indicates that 99.59% of the horizontal gradients and 99.31% of the vertical gradients are lower than 3K 211 
respectively. Similarly, in the continuously varying fields, 99.55% of the temporal gradients are lower than 3K. 212 
Therefore, it can be assumed that the majority of grid points in t2m fields exhibit strong spatial and temporal 213 
continuity, as well as other densely distributed atmospheric variables, such as geopotential height and relative 214 
humidity. Here, spatial continuity implies that nearby locations should share similar atmospheric conditions and our 215 
model incorporates a spatial continuity loss term to ensure smoothness in both horizontal and vertical directions: 216 

,217 

 (4) 218 

where  represents the model's prediction at time  and location . Meanwhile, temporal continuity 219 
assumes that the atmospheric conditions do not change abruptly over short periods, and accordingly, our loss 220 
function includes a temporal continuity term that penalizes substantial differences between the model's predictions at 221 
three consecutive time steps: 222 

 , (5) 223 

where  denotes the model's prediction at time , and  is a parameter set at 0.35 to control the weight of 224 
temporal continuity in the loss function. 225 

 226 
Figure. 4. Spatial and temporal gradients in t2m fields. 227 

 228 

Figure. 5. Cumulative percentage of spatial and temporal gradients. 229 

3.5 Network architecture 230 

In this section, we will introduce the network architecture of TemDeep for generating interpolated fields. 231 
As illustrated in Fig. 3, the field prediction network, serving as the backbone network, adopts an encoder-decoder 232 
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structure to generate intermediate fields (see Fig. 6, Section 3.5.1). Meanwhile, the flow estimation module adopts a 233 
unique combination of larger convolutional kernels and Leaky ReLU activations to capture long-range motions (see 234 
Fig. 7, Section 3.5.2). Finally, intermediate fields and estimated flow are fused to synthesize interpolated fields 235 
(Section 3.5.3). 236 

3.5.1 Field prediction network 237 

The field prediction network is composed of an encoder-decoder architecture with the inclusion of residual 238 
blocks. It takes consecutive single-element fields and terrain data as input and outputs intermediate fields. 239 

The encoder part includes four primary components, each comprised of a convolutional layer and a 240 
subsequent residual block. These convolutional layers, coupled with ReLU activation functions, process input data 241 
through multiple filter sizes (64, 128, 256, and 512 filters respectively). Notably, the first convolutional layer 242 
incorporates a 7×7 kernel with a stride of 2 and padding of 3, enabling more robust feature extraction at the initial 243 
stage, while subsequent layers employ 3×3 kernels with a stride of 1 and padding of 1. After each convolutional 244 
layer, a corresponding residual block follows, with in-channels and out-channels matching the corresponding 245 
convolutional layer’s filter size. These residual blocks consist of two convolutional layers and ReLU activation 246 
functions, which helps in preserving the identity function and facilitates deeper model learning without the problem 247 
of vanishing gradients.  248 

The decoder part is designed to upsample and reconstruct the encoded field back to its original resolution. 249 
It consists of four deconvolutional layers, each applying the ConvTranspose2d function for upsampling, and these 250 
layers upsample the data from 512 filters back to 2 filters, which corresponds to the output flow. Notably, the kernel 251 
size used in these layers is 4 with a stride of 2 and padding of 1, which efficiently enlarges the spatial dimensions 252 
back to the original size. After a convolutional layer, we obtain forward and backward prediction results:  and .  253 

Additionally, to process topographic information and integrate it into input, we introduce a Convolutional 254 
Terrain Integration Module (CTIM). The CTIM employs a convolutional layer with 3×3 kernels, to create an 255 
intermediate feature map topographic information. Subsequent to the convolution operation, batch normalization is 256 
applied to accelerate the training process, followed by a ReLU activation function to introduce non-linearity. This 257 
output then passes through a second convolutional layer with 3×3 kernels to further refine the feature representation. 258 
Once again, we apply batch normalization and ReLU activation to this output. The resulting output from the CTIM 259 
is a set of terrain feature maps, ready to be fed into the prediction network. 260 

 261 
Figure. 6. Field prediction network. 262 

3.5.2 Flow estimation module 263 

The flow estimation module aims to estimate motion information and calculate forward and backward flow, 264 
which is then fused with the intermediate fields from the field prediction network to assist with generating 265 
interpolated fields. Fig. 8 provides an example of calculated flow in t2m fields.  266 

The flow encoder is structured similarly to the encoder of the field prediction network, which comprises 267 
four convolutional layers, each followed by a Leaky ReLU activation function. The initial layer utilizes a 7×7 268 
convolutional kernel to extract features from the input, stepping down to a stride of 2 and padding of 3. Following 269 
this, the subsequent layers use 3×3 convolutional kernels with a stride of 1 and padding of 1, moving from 64 to 270 
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128, 256, and finally to 512 filters for a more detailed and intricate feature extraction. The subspace features 271 

obtained at this layer, after undergoing convolution and ReLU, yield an activation map  (see Eq. 6).  272 

The flow decoder includes five deconvolution layers that upscale the downsampled encoder outputs. Each 273 
layer employs a bilinear upsampling technique to double the spatial dimension, followed by two convolutional 274 
layers and a Leaky ReLU activation. Finally, we obtain forward flow  and backward flow 275 

 after two convolutional layers. 276 

 277 
Figure. 7. Flow estimation module. 278 

 279 
Figure. 8. Forward and backward flow visualization. a and b represent the t2m fields at 08:00 and 12:00 on 280 
January 1, 2021, while c and d represent the forward flow from 08:00 to 12:00 and backward flow from 12:00 to 281 
08:00, respectively. 282 

3.5.3 Fusion and loss function 283 

We can synthesize the target field  by fusing the outputs from the field prediction network and the 284 
flow estimation module as follows:  285 

 , (6) 286 

where  is a warping function (Jiang et al., 2017).  represents the activation map, referring to whether pixels 287 

remain activated when moving forward from  to  and  is calculated by 288 

.  289 

In order to make the estimated flow more closely resemble the actual flow, we utilize it as motion 290 
information to further assist in enhancing the quality of field reconstruction, and accordingly, the flow estimation 291 
loss can be defined as 292 
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  (7) 293 

Finally, the loss function to train the model can be expressed by combing the coherence loss  (Section 3.3), flow 294 

estimation loss  (Section 3.5.3), and continuity loss  (Section 3.4) as 295 

 , (8) 296 

where  is a parameter set at 0.35 to adjust the weight of continuity regularization. 297 

4 Results and discussion 298 

We conduct experiments on an Ubuntu 20.04 system equipped with eight A100 GPUs. The TemDeep 299 
model is trained using the adam optimizer (Kingma and Ba, 2014) with an initial learning rate of 1e-5, and a mini-300 
batch size of 256. Downscaling results of t2m, z and rh fields at different time resolutions, respectively 2, 3, 4, 5 and 301 
6 hours, into 1-hour time intervals, are shown in Table 1. 302 

4.1 Evaluation metrics 303 

In order to evaluate the performance of our model, we propose three metrics: restoration rate (Re), 304 
consistency degree (CS), and continuity degree (CT). Among them, Re is primarily utilized for the evaluation of the 305 
discrepancy between the downscaled results and the true values, while CS and CT are auxiliary metrics for the 306 
analysis and comparison of different methods. 307 

The restoration rate measures the degree to which our model recovers lost information compared to simple 308 
linear interpolation, and a larger Re indicates a better downscaling performance. Let the restoration rate of linear 309 
interpolation as zero, then the formula for calculating Re is as follows: 310 

 . (9) 311 

In this formula,  is the ground truth,  is the data generated by our model,  is calculated through linear 312 

interpolation and  represents all pixels in the field. 313 

The consistency degree is a metric used to evaluate the level of consistency in generated fields, and a larger 314 

CS indicates a smaller discrepancy between the estimated flow  and the true flow . It is 315 
calculated based on the flow estimation module and can be expressed as 316 

 . (10) 317 

The continuity degree measures how smoothly the preceding field transitions to the next, and a larger CT 318 
indicates more smoothness. The mathematical representation is 319 

 , (11) 320 

where  is the interpolated field and  is the preceding field. 321 
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Table 1 Performance comparison among different methods based on Re. According to Eq. 9, the result of linear 322 
interpolation is set to 0 as the basis for comparing other methods. Among all unsupervised comparison methods, 323 
TemDeep achieved the best performance, closely approaching the supervised TemDeep*. 324 

Methods t2m (2h→1) t2m (3h→1) t2m (4h→1) t2m (5h→1) z (2h→1) rh (2h→1) 

Linear 0.000 0.000 0.000 0.000 0.000 0.000 

Cubic spline 0.102 0.041 0.019 0.018 0.135 0.074 

Optical flow 0.219 0.188 0.102 0.059 0.342 0.236 

non-flow 0.462 0.431 0.359 0.307 0.505 0.417 

non-regular 0.499 0.470 0.397 0.325 0.525 0.488 

non-pretrain 0.528 0.501 0.433 0.372 0.568 0.489 

 0.537 0.508 0.442 0.376 0.576 0.498 

 0.682 0.641 0.579 0.430 0.701 0.553 

4.2 Quantitative analysis 325 

In order to evaluate the effectiveness of our proposed method on temporal downscaling, we select several 326 
methods that do not require supervision information for comparison, namely linear interpolation, cubic spline 327 
interpolation and optical flow-based interpolation. The linear interpolation method computes the average value 328 
between adjacent fields, while cubic spline interpolation, using four data fields, achieves a smooth curve with cubic 329 
polynomials. Additionally, optical flow-based interpolation estimates pixel motion between fields to predict their 330 
state at a desired time point. As illustrated in Table 1, for the six tasks of t2m (2h→1), t2m (3h→1), t2m (4h→1), 331 
t2m (5h→1), z (2h→1), and rh (2h→1), the TemDeep method scores 0.537, 0.508, 0.442, 0.376, 0.576, and 0.498 in 332 
Re, respectively, all considerably higher than the scores achieved by other methods under unsupervised conditions. 333 
Without the pretraining stage, Re is relatively lower on all tasks, suggesting that this stage is important in initially 334 
capturing general patterns in atmospheric data. The supervised training condition TemDeep* method scores the 335 
highest, implying that supervised training can further enhance the downscaling performance of the TemDeep 336 
method. 337 

 338 
Figure. 9. Visualized comparison. a, b, and c respectively represent the true values of rh fields on January 1, 2021. 339 
d represents the wind direction and speed at 850 hPa at 06:00, where the wind in the central region points towards 340 
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the southeast, driving the dry air mass in the same direction, resulting in the expansion of the dry area towards the 341 
southeast. e, f, and g display the interpolation results at 06:00 obtained through different methods. h represents the 342 
result from TemDeep when the spatio-temporal continuity regularization is removed. 343 

The flow estimation module provides an improvement of 0.075 in Re by guiding the model to learn the 344 
movement of weather systems, and the result demonstrates more consistency with the trends of weather system 345 
movements, as illustrated in Fig. 9g. In contrast, if completely ignoring the motion of weather systems, the result of 346 
time interpolation would simply be an average of the preceding and succeeding fields, leading to significant errors 347 
compared to the ground truth, as shown in Fig. 9e. The spatio-temporal continuity regularization also provides an 348 
improvement of 7.6% from 0.499 to 0.537 in Re by ensuring the generated fields be consistent with the observed 349 
patterns in the input data. As depicted in Fig. 9h, without this regularization, the model occasionally produces 350 
erroneous estimates of the intensity and direction of motion. Nevertheless, with the inclusion of the regularization 351 
term, the results are inevitably constrained to linear changes to a certain degree, which has conflicts with the actual 352 
non-linear evolutions. 353 

 354 
Figure. 10. Model performance under the enforcement of spatio-temporal continuity with varying weights. a 355 
shows Re of TemDeep trained under self-supervised conditions and supervised conditions (denoted as 356 

)  at different . b shows consistency degree and continuity degree of TemDeep at different . 357 

To strike a balance between the spatio-temporal continuity regularization and actual non-linear evolutions, 358 
we introduce a parameter  in the loss function to adjust the weight for regularization and conduct ablation studies, 359 

with the results shown in Fig. 10. A larger  implies that the model emphasizes on regularization, and thus CT 360 

increases while CS decreases. Finally,  is set at 0.35 and Re reaches a maximum of 0.537. 361 

Fig. 11 shows the restoration rate of the test set in these experiments. Increasing the training dataset size 362 
consistently improves model performance, but the impact diminishes gradually. Once the amount of training data 363 
reaches a critical value (e.g., 8,760), further increases no longer result in significant improvements, suggesting the 364 
model is reaching its performance limits. When the data volume reaches 26,280, doubling the data leads to only a 365 
modest 1-2% improvement. 366 
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 367 
Figure. 11. Average test loss on t2m fields. 368 

4.3 Case study 369 

In this section, a case study is employed to explore TemDeep’s ability in recovering evolving details of 370 
t2m, z and rh fields, as shown in Fig. 12. Hourly interpolation is conducted between 08:00 and 12:00 on January 1, 371 
2021, to obtain three interpolated fields at 09:00, 10:00 and 11:00.  372 

In the temporal interpolation of t2m fields, the selected area in January exhibits a noticeable temperature 373 
difference between the sea and the land at 12:00 compared to 08:00, and the gradual changes occurring at 09:00, 374 
10:00, and 11:00 are clearly reproduced by the TemDeep method. Due to the sensitivity of t2m to altitude, the 375 
temperature gradient near the Sichuan Basin is clearly depicted, exactly aligning with the contour of the actual 376 
altitude gradient, as marked by the rectangle. Most importantly, at 10:00, regions marked by the triangles exhibit 377 
large surrounding gradients and non-linear abrupt changes, resulting in a lower continuity degree of 0.54. In this 378 
case, the TemDeep method still achieves a high precision in reproducing the field, with a restoration rate of 0.49, 379 
reaching 0.48 and 0.52 at the preceding and following field, respectively. Hence, it can be concluded that the 380 
TemDeep method effectively captures non-linear transitions during the downscaling process. 381 

For the 850hPa z fields, their variations are relatively simpler compared to the t2m fields, making 382 
downscaling easier and leading to less precision fluctuation. The average Re over the three-hour period reaches 0.56. 383 
At 08:00, there exists a high-pressure region on the western edge, surrounded by low pressure, resulting in a 384 
significant gradient. In the generated z fields, this gradient gradually diminishes from 09:00 to 11:00, and the central 385 
high-pressure region moves northeastward and eventually dissipates, as marked by the ellipse and arrow, which 386 
evolves exactly in accordance with the ground truth. 387 

Similarly, in the three generated rh fields, the drier region on the eastern edge can be observed slowly 388 
moving eastward, consistent with the ground truth. At 08:00, the drier region is still located some distance away 389 
from the 125°E line, but after four hours of continuous changes, the easternmost part of the dry region has already 390 
crossed the 125°E line, and TemDeep has reproduced this movement of dry air mass, rather than simply averaging 391 
the fields. 392 
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 393 
Fig. 12. Case study. 394 

5 Conclusions 395 

This paper proposes a self-supervised model for downscaling atmospheric fields at arbitrary time 396 
resolutions by leveraging temporal coherence. This model combines an encoder-decoder structured field prediction 397 
network with a flow estimation module, fuses intermediate fields and motion information of weather systems and 398 
finally synthesizes fields at desired time points. We first pretrain the model based on a reconstructed dataset to 399 
initially capture data patterns, and then further utilizes existing consecutive fields as supervision for model training. 400 
Experiments on three variables (t2m, z, rh) indicate that the proposed TemDeep model can accurately reconstruct the 401 
evolutionary process of atmospheric variables to a finer time scale, superior to other unsupervised methods.  402 

As for future research, we will explore multi-modal data fusion to leverage complementary information 403 
from various sources. Further, we plan to extend our downscaling model based on previous work of self-supervised 404 
weather system classification (Wang et al., 2022), that is, to downscale temporal and spatial data by referring to 405 
similar types of weather systems through similarity search in the historical dataset.  406 
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