

Dear Editor,

Thank you very much for your handling our manuscript “**Rapid Iodine Oxoacids Nucleation Enhanced by Dimethylamine in Broad Marine Regions**” (Ms No.: egusphere-2023-1774). These comments are all valuable and very helpful for revising and improving our paper. We have revised the manuscript carefully according to the reviewers’ comments and the point-to-point responses are summarized below:

Reviewer #1:

Zu et al. investigate the influence of dimethylamine (DMA) on $\text{HIO}_3\text{-HIO}_2$ cluster formation using quantum chemical methods and atmospheric cluster dynamics simulations. This is an excellent and natural extension of the previous studies on iodine oxoacids by the same group. A funneling approach is used to identify the cluster configurations lowest in free energy. The final cluster structures are calculated using density functional theory ($\omega\text{B97X-D/6-311++G (3df,3pd)}$) and the single point energy is calculated using RI-CC2/aug-cc-pVTZ calculations. The calculated thermochemistry is applied as input to the atmospheric cluster dynamics code (ACDC) to simulate new particle formation rates in various marine regions (Mace Head, Zhejiang and Aboa). The main finding is that the $\text{HIO}_3\text{-HIO}_2$ cluster formation rates does not correspond to the NPF observations, but DMA enhance the cluster formation rate by several orders of magnitude, thereby increasing the agreement between the modelling and the observations. I only have some minor quarrels with the applied methodology. The cluster formation simulations are very sensitive to the quantum chemical data, so some sensitivity runs should be performed to see how robust the conclusions are to the applied level of theory. In addition, the influence of other nucleation precursors (SA, MSA, multiple bases, etc.) should be further discussed in the manuscript to emphasize that the $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ mechanism is not the only explanation for the gap between theory and measurements. However, the authors do not need to carry out the actual calculations, just discuss the potential importance of other species. Overall, I believe the chosen systems and current study at hand is an interesting addition to the literature. The manuscript is easy to follow and the topic falls within the scope of ACP.

Response: Thanks for the reviewer’s valuable comments, and we have revised our manuscript accordingly.

Major Comment 1. Introduction: I am missing some introduction to what we, in general, know about cluster formation from previous quantum chemical studies. Please put the current study into context of the whole field and not just iodine studies. What vapours have previously been studied and found important and what are the main findings of previous work?

Response: Thanks for the reviewer’s professional and valuable suggestions. According to the reviewer’s suggestion, we have added the introduction about the potential nucleation vapours and the relevant main findings that have been previously found important in the Introduction of the revised manuscript. The revised statements highlighted in yellow in the revised manuscript are as follows:

“Atmospheric aerosols, the intricate suspension formed by fine particles in the atmosphere, exert far-reaching influences on global climate (Haywood and Boucher 2000; Murphy and Ravishankara 2018; Lee et al. 2019), radiation balance (Haywood and Boucher 2000), and human health (Pope and Dockery 2006; Gong et al. 2014). A significant source of atmospheric aerosols on the world-wide scale is the new particle formation (NPF), encompassing nucleation and subsequent growth (Zhang 2010). The nucleation

is identified as the key process of NPF events. Therefore, understanding the nucleation mechanism is vital for comprehending the behavior of aerosols (Zhang et al. 2012; Kalivitis et al. 2015).

Sulfuric acid (H_2SO_4) is considered a crucial precursor for the nucleation in continental regions. However, under actual atmospheric conditions, the H_2SO_4 -Water (W) binary nucleation is far from sufficient to explain the observed strong NPF events (Elm 2021a). Therefore, additional components are essential for nucleation. Specifically, abundant atmospheric bases, such as ammonia (A) and alkylamines [methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA)] (Elm et al., 2017; Kirkby et al., 2011; Kurtén et al., 2008; Weber et al., 1996; Xie and Elm, 2021), are recognized as important stabilizers for H_2SO_4 -driven nucleation. Computational work by Kurtén et al. (Kurtén et al. 2008) and experimental studies by Almeida et al. (Almeida et al. 2013) indicated that, despite the lower atmospheric concentration of DMA (few pptv.), the promoting effect of DMA on the H_2SO_4 -driven nucleation rate is several orders of magnitude higher than that of A. Moreover, nitric acid (NA) is also a potential precursor in the nucleation process (Knattrup and Elm, 2022). Liu et al. (Liu et al. 2018; Liu et al. 2021) showed the significant promoting effect of NA on the classical H_2SO_4 -A and H_2SO_4 -DMA nucleation mechanisms by theoretical methods. Additionally, Wang et al. (Wang et al. 2020) studied the nucleation process of mixed vapor of NA and A under atmospheric conditions in the CLOUD chamber at the European Organization for Nuclear Research, and subsequently considered the promoting effect of H_2SO_4 on NA-A system (Wang et al. 2022).

Given the vast expanses of the ocean, marine aerosols play an indispensable role in the global aerosol system (O'Dowd and de Leeuw 2007). Over the oceans, H_2SO_4 and methanesulfonic acid (MSA), the oxidation products of dimethylsulfide (DMS), is considered as important nucleation precursors over the oceans (Elm 2021b). Theoretical calculations (Chen, Li, Wang, Liu, et al. 2020; Chen, Li, Wang, Luo, et al. 2020; Shen et al. 2020) have indicated that basic precursors such as A, MA, and DMA can promote MSA-based nucleation processes. However, a recent study on aerosol acidity showed that global models substantially overestimate the concentrations of A, especially in polar regions (Nault et al. 2021). This may slightly weaken the influence of H_2SO_4 -based and MSA-based nucleation in marine atmosphere (He et al. 2023)."

Major Comment 2. Line 38: How high are the HIO_3 and HIO_2 concentrations measured at Mace Head? Please state the concentrations here as well.

Response: According to the measurement in Mace Head (Sipila 2016), the concentrations of HIO_3 and HIO_2 are up to 10^8 and 2×10^6 molecules cm^{-3} , respectively. We have added the concentrations of HIO_3 and HIO_2 in the revised *Introduction* section.

Major Comment 3. Line 73-74: "Firstly, the ABCluster program (Zhang and Dolg, 2015) was performed to generate up to 120000 initial isomer structures using the artificial bee algorithm." Where does the number 120000 come from? Is this the ABCluster population value (SN) times the number of generations? Some more information on the ABCluster parameters would be a useful addition.

Response: Thanks for the valuable suggestion. We have listed the detailed information on the ABCluster parameters in Section S1 of the revised Supporting Information. As the reviewer pointed out, the number of initial isomer structures (120000) is obtained by multiplying the population size ($SN = 300$) by the maximal generations ($g_{\max} = 400$).

Information	Parameters
Population size (SN)	300
Maximal cycle number (g_{\max})	400
Scout limit (g_{limit})	3
Estimated cluster size (Å)	3 - 13
Number of local minima (LMs) to be saved	1000

Major Comment 4. Line 75-91: I am missing some comments on the accuracy of the applied configurational sampling methodology and the applied quantum chemical methods.

Only saving 1000 local minima from the ABCluster search sounds a bit low. How certain are the authors that they have located the global minimum? As the UFF forcefield cannot handle bond breaking a more diverse pool of clusters is usually desirable. This is usually done by performing ABCluster runs with ionic monomers as well (see Kubečka et al., <https://doi.org/10.1021/acs.jpca.9b03853>). Only selecting the lowest 100 cluster configurations based on PM7 could lead to the global minimum cluster being missed (see Kurfman et al., <https://doi.org/10.1021/acs.jpca.1c00872>). Could the authors comment on this aspect?

Response: Thanks for the reviewer's professional comments. We apologize for missing to show some information about the configurational sampling methodology. We had utilized ion monomers for sampling during the cluster configuration search and had manually constructed some potential stable clusters with multiple hydrogen/halogen bonding sites based on the chemical intuition. The relevant statements have been added in lines 97-102 and 111-112 of the revised Manuscript as follows:

“Due to the inability of the UFF force field to effectively handle bond breaking issues, we utilized ion monomers for sampling during the configuration search of ternary clusters (Kubecka et al., 2019). From the most stable configuration of binary HIO_2 -DMA clusters (Figure S4), it showed that the proton transfer from HIO_2 to DMA is forbidden in all cluster except for $(\text{HIO}_2)_1(\text{DMA})_1$, indicating that this process is difficult to occur spontaneously. Hence, we only considered the ion monomers where HIO_3 donates protons or HIO_2/DMA accept protons.”

“Additionally, we manually constructed some potential stable clusters with multiple hydrogen/halogen bonding sites based on the chemical intuition.”

Considering the computational cost, we saved 1000 local minima from the ABCluster search and selected the lowest 100 cluster configurations based on PM7, which may lead to the global minimum cluster being missed. The relevant statements have been added in lines 108-112 of the revised Manuscript as follows:

“Notably, even though we try our best to search for the global minimum configurations of clusters considering the computational cost, saving 1000 local minima from the ABCluster search and selecting the lowest 100 cluster configurations based on PM7 may lead to the global minimum cluster being missed (Kurfman, Odbadrakh and Shields, 2021).”

How accurate are the RI-CC2/aug-cc-pVTZ calculations? The leading terms in the CC2 equations are MP2-like, at the cost of N5. Hence, you could get accurate DLPNO-CCSD(T)/aug-cc-pVTZ calculations at essentially the same computational cost. The authors admit that previous agreement with experiments is caused by random cancellation of errors. Our previous work has shown (Schmitz et al., <https://doi.org/10.1021/acsomega.0c00436>) that RI-CC2/aug-cc-pVTZ is severely overbinding, i.e. yielding too negative binding energies, thus leading to too stable clusters. Where is the remaining error cancellation coming from? All missing effects in the simulations (hydration, ionic effects, anharmonicity, potential inadequate sampling, etc ...) would make the clusters more stable and hence make the current results agree less with experiments.

Response: Thanks for the reviewer's professional comments. We agree with the reviewer's opinions that using RI-CC2/aug-cc-pVTZ method may lead to too stable clusters and added the statement in Section S2 of the revised Supporting Information as follows:

"Compared to DLPNO-CCSD(T) results, the RI-CC2 results overestimate the ΔG of clusters to some extent, leading to higher cluster formation rates in ACDC simulations (Schmitz and Elm, 2020)."

We have added the discussion on the cancellation of errors in Section S2 of the revised Supporting Information as follows:

"The cancellation is coming from two types of error: the overestimation of binding energy obtained at RI-CC2 method compared with other methods (Schmitz and Elm, 2020) and the underestimation of cluster formation rates simulated by ACDC compared with the experimental results, possibly due to the lack of consideration of hydration, ionic effects, and inadequate sampling, etc."

ACDC simulations are extremely sensitive to the applied QC methods, and we can essentially get whatever we want by tweaking the level of theory. Hence, some further information on how we can trust the results is warranted. How robust are the conclusions to the applied level of theory? I suggest the authors test if the ω B97X-D/6-311++G(3df,3pd) calculations without RI-CC2 are yielding the same conclusions. Hence, this would not require additional calculations, but vastly improve the reliability of the study.

Response: We conducted additional calculations for the entire ternary system ($n = 6$) at the DLPNO-CCSD(T)/aug-cc-pVTZ level of theory. Furthermore, we compared the simulated cluster formation rates obtained at ω B97X-D/6-311++G(3df,3pd), RI-CC2/aug-cc-pVTZ, and DLPNO-CCSD(T)/aug-cc-pVTZ level of theory with the CLOUD experiment results (Figure 1, which is the Figure S1 of the Supporting Information) to assess the reliability of results obtained at RI-CC2/aug-cc-pVTZ method. As shown in Figure 1, without performing single-point energy correction, the cluster formation rates simulated at ω B97X-D/6-311++G(3df,3pd) level of theory (the diamonds) are significantly lower than the experimental results (the circles). Therefore, we chose to perform the single-point correction to obtain simulated cluster formation rates that agree more with the experimental results. Compared to the results obtained at the DLPNO-CCSD(T)/aug-cc-pVTZ level of theory, employing the single-point energy at RI-CC2/aug-cc-pVTZ level of theory leads to a slight overestimation of the simulated cluster formation rates (Schmitz and Elm, 2020). This overestimation is more pronounced at lower concentrations of iodine oxoacids, reaching approximately two orders of magnitude. It is worth noting that, compared to the results obtained at the DLPNO-CCSD(T)/aug-cc-pVTZ level of theory, the simulated cluster formation rates at the RI-CC2/aug-cc-pVTZ level of theory appear to be more in line with the CLOUD experiment, especially at lower temperatures. The simulation results in Figure 1 demonstrate that ACDC simulations are highly sensitive to the quantum chemical methods. Considering that the RI-CC2 method agree the

most with experimental results while saving computational resources, we chose the RI-CC2 method for single-point correction. We have added these discussions in lines 117-122 of the revised Manuscript and Section S2 of the revised Supporting Information.

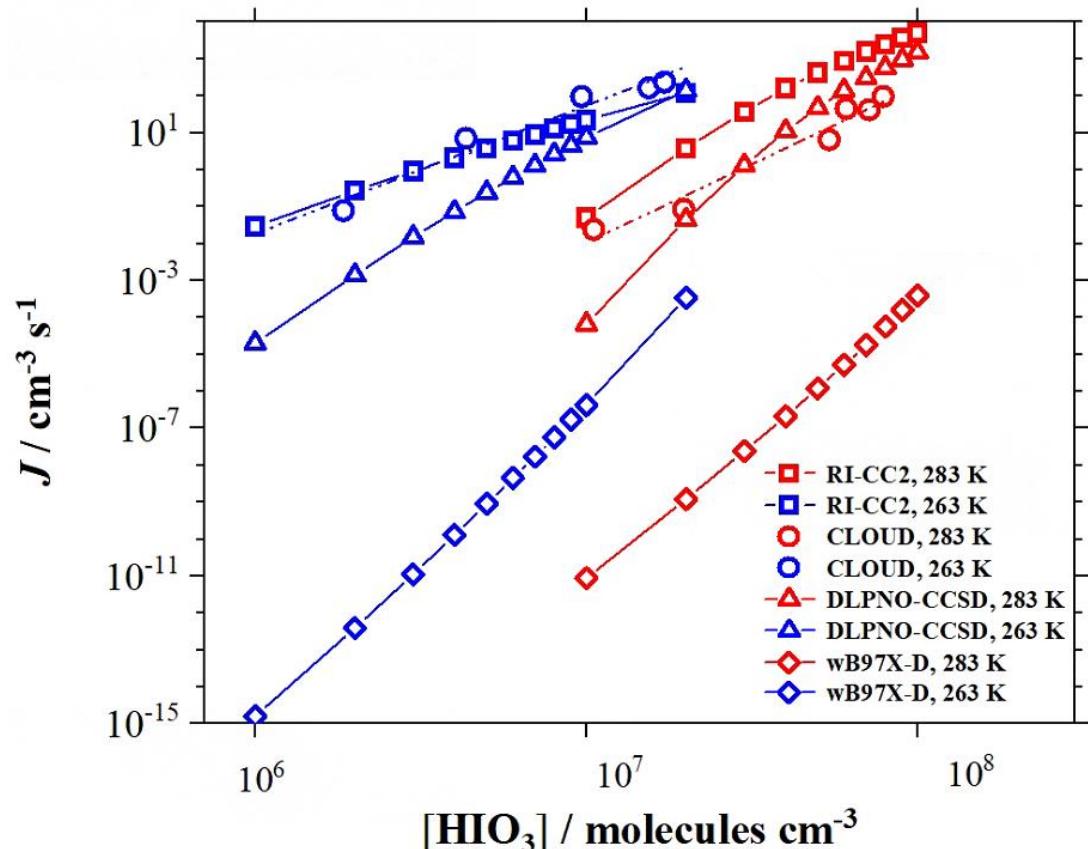


Figure 1. The cluster formation rates (J , $\text{cm}^{-3} \text{s}^{-1}$) of $\text{HIO}_3\text{-HIO}_2$ system obtained from experiment (CLOUD) and theoretical results at RI-CC2 and DLPNO-CCSD level of theory. The simulation was performed under the same conditions of $[\text{HIO}_3] = 10^6 - 10^8$, $[\text{HIO}_2] = 2 \times 10^4 - 2 \times 10^6$, $T = 283$ (red) / 263 (blue) K, and $\text{CS} = 2.2 \times 10^{-3} \text{s}^{-1}$. The circles represent the experimental results, the squares represent the theoretical results at RI-CC2/aug-cc-pVTZ (for H, C, N and O atoms) + aug-cc-pVTZ-PP with ECP28MDF (for I atom) level of theory, the triangles represent the theoretical results at DLPNO-CCSD(T)/aug-cc-pVTZ (for H, C, N and O atoms) + aug-cc-pVTZ-PP with ECP28MDF (for I atom) level of theory, and the diamonds represent the theoretical results at wB97X-D/6-311++G(3df,3pd) (for H, C, N and O atoms) + aug-cc-pVTZ-PP with ECP28MDF (for I atom) level of theory.

Major Comment 5. Line 113-115: Please also mention the boundary conditions here in the main text. Setting the boundary clusters as clusters consisting of only six molecules could lead to artefacts in the ACDC simulations, thereby yielding too high cluster formation rates (see Besel et al., <https://doi.org/10.1021/acs.jpca.0c03984>). For some acid-base systems the “critical cluster” is already found within the initial 2x2 cluster system, however this depends on the given base (<https://doi.org/10.1021/acs.jpca.3c00068>). Overall, I am not entirely convinced that the boundary conditions are adequate in the current study and might yield too high cluster formation rates. Please elaborate on this aspect.

Response: Thanks for the reviewer's valuable comments. We have expanded the size of the entire nucleation system to six molecules, and accordingly, the conditions of boundary clusters have also been altered. The new boundary clusters in this work were set to be the clusters formed by the combination of kinetically stable clusters ($\beta c/\Sigma\gamma > 1$) with six molecules ($n = 6$) and the corresponding monomers at the concentration c . In addition, for acid-base clusters such as $\text{HIO}_3\text{-DMA}$, “4×4” clusters were also set to be boundary clusters. As shown in Figure 2 (Figure S2 of the Supporting Information), the small size of boundary clusters may result in an overestimation of the cluster formation rates by 1-2 orders of magnitude. The larger simulated systems and boundary clusters can address this issue, providing simulation results that align more closely with CLOUD experiment results (Figure 1). We have added the new settings of boundary clusters in Section S3 of the revised Supporting Information.

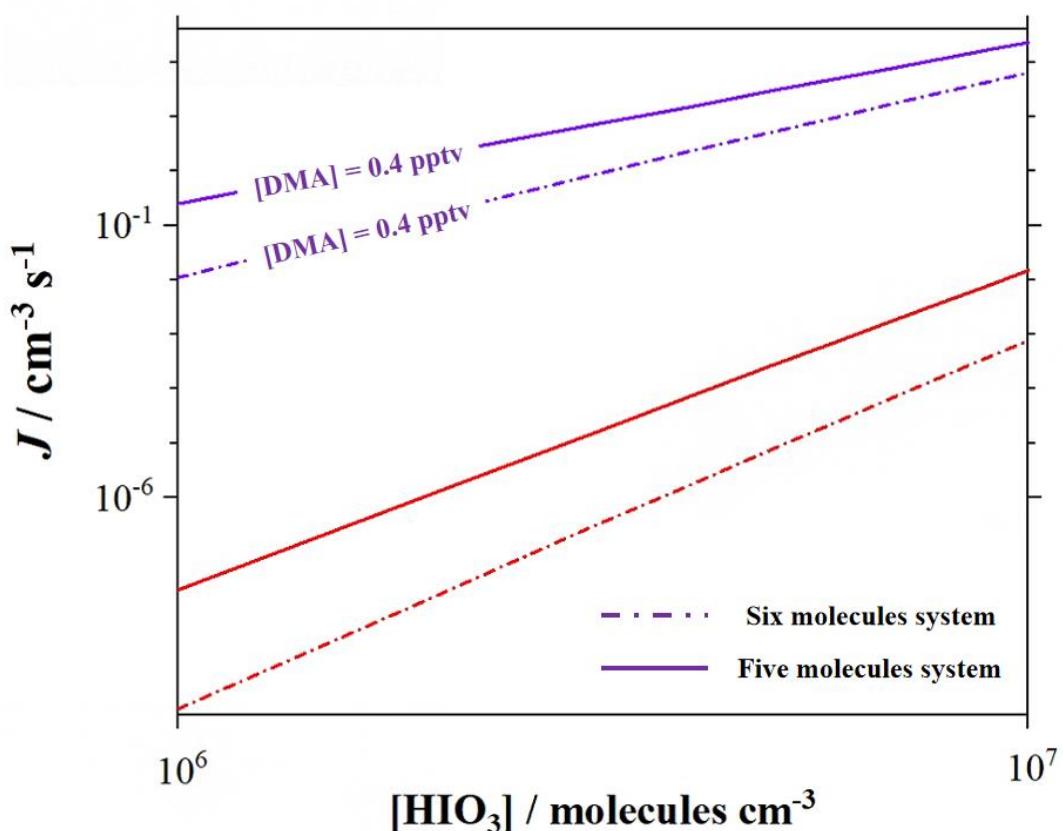


Figure 2. The simulated cluster formation rates (J , $\text{cm}^{-3} \text{ s}^{-1}$) of $\text{HIO}_3\text{-HIO}_2$ (red) and $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ (purple) systems under the simulated conditions of $[\text{HIO}_3] = 10^6 - 10^7$, $[\text{HIO}_2] = 2 \times 10^4 - 2 \times 10^5$, $[\text{DMA}] = 0.4 \text{ pptv}$, $T = 293 \text{ K}$, and $\text{CS} = 10^{-2} \text{ s}^{-1}$. The solid curves represent the simulated J for the five-molecule system, while the dashed curves represent the simulated J for the six-molecule system.

Major Comment 6. Line 118-132: I do not see what Figure 1 is contributing with to the present study. It is simple chemistry to identify the donor/acceptor groups in molecules. No need for electrostatic potential maps for doing this. Please remove this part.

Response: Thanks for the reviewer's valuable comments. According to the reviewer's suggestion that ESP analysis and original Figure 1 contributes quite less to the present study, we have removed the discussion of electrostatic potential prediction and Figure 1 in Section 3.1 to Section S4 of the revised Supporting Information.

Major Comment 7. Line 137: “... , which proves the prediction of electrostatic potential analysis” Please remove.

Response: We have removed the statement that “... , which proves the prediction of electrostatic potential analysis” in Section 3.1.

Major Comment 8. Line 143: “... and HIO_2 can also act as a stabilizing base in the neutral nucleation process of $\text{HIO}_3\text{-HIO}_2$ ” and “Hence, the participation of DMA may potentially lead to a competition between two basic molecules for proton transfer reaction.” I am not completely comfortable calling iodous acid a base (in the Brønsted-Lowry acid-base formalism). I agree that the HIO_2 show peculiar proton transfer dynamics, but I would refrain from calling it a base. I guess it is technically amphoteric.

Response: Thanks for the reviewer’s professional comments. Calling HIO_2 as “basic molecule” or “base” may lead readers to misinterpret the property of HIO_2 . Considering the fact that HIO_2 can accept the proton from iodic acid (HIO_3), we have adjusted the description of HIO_2 from “basic molecule” to “amphoteric molecule exhibiting base-like behavior in the system”. Additionally, we have removed the related statements of “multiple bases” and “competition of bases” in Sections 3.2 and 3.3.

Major Comment 9. Line 153-154: “... which possesses relatively stronger basicity than HIO_2 in the process of proton transfer.” What is the gas-phase basicity and pK_a values of DMA and HIO_2 respectively?

Response: According to previous research, the gas-phase basicity of DMA is $896.5 \text{ kJ mol}^{-1}$ (Yang et al. *J. Phys. Chem. Lett.* 2018, 9, 18, 5647–5652) and the acid dissociation constant (pK_a) of HIO_2 is 6.0 (Schmitz, G. *Int. J. Chem. Kinet.* 2008, 40, 647–652.). We have added this information in lines 167-169 of the revised manuscript.

Major Comment 10. Line 180: What is the absolute cluster formation rate for the conditions given in Figure 3? How does this compare to the conventional SA-DMA system?

Response: Thanks for the professional suggestions. We have added the absolute cluster formation rate ($J, \text{cm}^{-3} \text{ s}^{-1}$) of $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system in Table 1 under the conditions of the original Figure 3. However, considering that the original Figure 3 was not representative enough to highlight the environmental significance of the $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system, we adjusted the simulation conditions in Figure 3 to Zhejiang, the eastern coast of China, which serves as an intersection of high [DMA] pollution air masses and marine iodine air masses (Zhang et al., 2023; Zhu et al., 2019).

Former research (Zhang et al. 2022) has made some discussion about the nucleation abilities of $\text{HIO}_3\text{-HIO}_2$, $\text{H}_2\text{SO}_4\text{-A}$, and $\text{H}_2\text{SO}_4\text{-DMA}$ system. The results show that the J of $\text{HIO}_3\text{-HIO}_2$ system is at least an order of magnitude higher than that of the $\text{H}_2\text{SO}_4\text{-DMA}$ system, and significantly higher than that of the $\text{H}_2\text{SO}_4\text{-A}$ system. Although the concentration distribution of HIO_3 and particularly HIO_2 , is not as widespread as the concentration distribution of H_2SO_4 and DMA molecules, especially in urban areas, this is still sufficient to demonstrate the strong nucleation capability of the $\text{HIO}_3\text{-HIO}_2$ system. Moreover, our study revealed that in a polluted environment, the cluster formation rate of $\text{HIO}_3\text{-HIO}_2$ system can be further enhanced by air pollutant DMA, especially at high [DMA] derived from urban pollution. Therefore, through indirect comparison with $\text{H}_2\text{SO}_4\text{-A}$ and $\text{H}_2\text{SO}_4\text{-DMA}$ systems, we think the J of the $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system might be higher than conventional $\text{H}_2\text{SO}_4\text{-DMA}$ system in coastal areas with high [DMA] pollution. We have added the discussion in the revised Supporting Information.

Table 1. The absolute cluster formation rate (J , $\text{cm}^{-3} \text{ s}^{-1}$) of $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system under the conditions corresponding to Figure 3.

Conditions	$J(\text{HIO}_3\text{-HIO}_2\text{-DMA})$
$[\text{HIO}_3] = 10^8 \text{ molecules cm}^{-3}$	
$[\text{HIO}_2] = 2 \times 10^6 \text{ molecules cm}^{-3}$	
$[\text{DMA}] = 0.02 \text{ pptv}$	$2.1 \times 10^4 \text{ cm}^{-3} \text{ s}^{-1}$
$T = 287 \text{ K, CS} = 2 \times 10^{-3} \text{ s}^{-1}$	

Major Comment 11. Line 201-202: “... and the $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ ternary nucleation is critical in explaining the missing sources of new particles especially in the place where the concentrations of HIO_2 and DMA are similar.” I would be careful stating that the $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ mechanism is the “critical” missing link. It might contribute, but other mechanisms might also be important. Some discussion on the potential other species (SA, MSA, multibases, water, etc.) that might contribute to cluster formation in marine environments would be a welcome addition to the manuscript.

Response: Thanks for the professional suggestions. According to the reviewer’s suggestion, we have added a comparison with other potential nucleation mechanism ($\text{HIO}_3\text{-HIO}_2\text{-H}_2\text{SO}_4$, $\text{HIO}_3\text{-HIO}_2\text{-MSA}$, and $\text{H}_2\text{SO}_4\text{-DMA}$) in Section 3.3 of the revised Manuscript as follows:

“To evaluate the influence of DMA on $\text{HIO}_3\text{-HIO}_2$ system and the environmental significance of $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system, we compared the J of $\text{HIO}_3\text{-HIO}_2$ (red), $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ (purple), $\text{HIO}_3\text{-HIO}_2\text{-H}_2\text{SO}_4$ (yellow), $\text{HIO}_3\text{-HIO}_2\text{-MSA}$ (pink), and $\text{H}_2\text{SO}_4\text{-DMA}$ (blue) systems under the simulated conditions of typical marine and polar regions. The results of $\text{HIO}_3\text{-HIO}_2\text{-H}_2\text{SO}_4$ (Zu et al. 2024) and $\text{HIO}_3\text{-HIO}_2\text{-MSA}$ systems (<https://doi.org/10.5194/egusphere-2023-2084>) were obtained from former studies at the same level of theory with $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system. The configurations of $\text{H}_2\text{SO}_4\text{-DMA}$ clusters were obtained from the Atmospheric Cluster Database (ACDB) (Elm 2019). Subsequently, geometric optimizations and frequency calculations were performed at the same ($\omega\text{B97X-D/6-311++G(3df,3pd)}$) level of theory with $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system. Notably, we believe that the influence of other mechanisms ($\text{HIO}_3\text{-HIO}_2\text{-A}$, etc.) is widespread and significant. However, due to the lack of available data, other mechanisms are not discussed in this study and will be considered in further studies.”

The detailed comparison with other potential mechanisms is presented in lines 268-325 of the Manuscript as follows:

“The Zhejiang region experiences the frequent NPF events, closely associated with a high-intensity iodine-driven nucleation process (Yu et al. 2019). However, our simulation results under the conditions of Zhejiang (Xia et al., 2020; Yu et al., 2019) indicate that relying solely on $\text{HIO}_3\text{-HIO}_2$ nucleation (red curve in Figure 4(a)) appears insufficient to explain the rapid formation rates of ambient environment (gray shaded area). It is noteworthy that the NPF events in the local area is found to be influenced not only by marine components but also by urban pollutants (Zhu et al. 2019; Liu et al. 2022). During polluted periods, the emission capacity of gas-phase DMA is exceptionally strong, and high concentrations of DMA can further enhance the J of $\text{HIO}_3\text{-HIO}_2$, resulting in a significant enhancement of up to 10^8 times at $[\text{DMA}] = 4 \text{ pptv}$. Notably, the increase of the concentrations of HIO_2 and DMA can both enhance the J to match the field observations, indicating that HIO_2 and DMA molecules exhibit a

synergistic effect on HIO_3 nucleation, which may have significant contributions to NPF events in the polluted coastal areas where marine iodine species intersect with high concentrations of DMA. Moreover, the urban pollution also leads to an abundant concentration of gas-phase H_2SO_4 . This renders the impact of the $\text{HIO}_3\text{-HIO}_2\text{-H}_2\text{SO}_4$ and $\text{H}_2\text{SO}_4\text{-DMA}$ mechanisms non-negligible. As shown in Figure 3(a), the simulated J of $\text{H}_2\text{SO}_4\text{-DMA}$ and $\text{HIO}_3\text{-HIO}_2\text{-H}_2\text{SO}_4$ systems (blue dashed line) is about one or four orders of magnitude lower than that of $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system, respectively. This indirectly indicates that the $\text{HIO}_3\text{-HIO}_2$ system promoted by DMA possesses remarkable nucleation ability and might make unexpected contributions in specific regions, thereby providing an explanation for some missing fluxes of particles in the atmosphere.

In contrast, the results from the Mace Head region present a different situation. Previous studies have demonstrated that local nucleation is primarily driven by high concentrations of HIO_3 (Sipilä et al. 2016). The simulated results showed that the J of $\text{HIO}_3\text{-HIO}_2$ system can reach up to levels of $10^4 \text{ cm}^{-3} \text{ s}^{-1}$, which is consistent with the upper limit of formation rates reported in the field observation (Sipilä et al. 2016). Furthermore, we evaluated the potential impact of DMA and other precursors on the J of $\text{HIO}_3\text{-HIO}_2$ system based on the concentrations from model simulations or gas-phase measurements reported at Mace Head (Yu and Luo 2014; Sipilä et al. 2016). The results indicate that DMA can promote the J significantly only at lower iodine concentrations. As the increases of iodine oxoacids, the J of $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system gradually approaches that of $\text{HIO}_3\text{-HIO}_2$ system, indicating a less significant enhancement by DMA. Similar patterns about the enhancement by H_2SO_4 and MSA can also be shown. This indicates that in primitive regions with abundant iodine sources, even if the precursors (DMA, H_2SO_4 , and MSA) can reach the high concentrations used in the simulation in this study, their corresponding enhancement is limited. The primary nucleation mechanism is likely to be the $\text{HIO}_3\text{-HIO}_2$ mechanism, which is supported by the on-site measurements of the components of nanoparticles (Sipilä et al. 2016).

Recent research has shown that the ice-influenced ocean may also be important sources of DMA (Dall'Osto et al. 2017; Dall'Osto et al. 2019). Hence, we also evaluate the environmental significance of $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system in the ice-covered polar regions. As shown in Figure 3(c), we performed a simulation under the conditions of Aboa station. The simulation results indicate that $\text{HIO}_3\text{-HIO}_2\text{-H}_2\text{SO}_4$ and $\text{H}_2\text{SO}_4\text{-DMA}$ are more efficient nucleation mechanisms than $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system in the local area. Moreover, the simulated J of $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system is also slightly lower than the formation rates ($0.05 - 0.12 \text{ cm}^{-3} \text{ s}^{-1}$) of ion-induced $\text{H}_2\text{SO}_4\text{-A}$ system reported by field observations (Jokinen et al. 2018). Hence, due to the overall lower concentrations of iodine and amine components, the nucleation process is predominantly driven by H_2SO_4 molecules. This suggests that in regions with scarce iodine and amine sources, the contribution of the DMA-enhanced $\text{HIO}_3\text{-HIO}_2$ mechanism to the particle formation is limited. In contrast, in the Marambio region with relatively abundant DMA and scarce iodine oxoacids, $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system may also have significant contributions [Figure 3(d)]. The $[\text{HIO}_3]$ used in the simulation is still about an order of magnitude lower than $[\text{H}_2\text{SO}_4]$ and $[\text{MSA}]$. However, $[\text{DMA}]$ is about an order of magnitude higher than that in the Aboa region. In this case, the J of $\text{HIO}_3\text{-HIO}_2$ system is significantly enhanced by the relatively abundant DMA. Compared to the acidic components such as H_2SO_4 and MSA, DMA elevates the J of the $\text{HIO}_3\text{-HIO}_2$ system to the range of 10^{-1} to $10^1 \text{ cm}^{-3} \text{ s}^{-1}$, matching the field observation results, while $[\text{DMA}]$ is only one-tenth of $[\text{H}_2\text{SO}_4]$ and $[\text{MSA}]$. This indicates that, considering nucleation ability, the enhancement effect of DMA on the $\text{HIO}_3\text{-HIO}_2$ system may be superior to H_2SO_4 and MSA, which we speculate that is likely related to the base stabilization effect of DMA within acidic clusters. Additionally, our results demonstrate that the

nucleation ability of $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ is stronger than that of $\text{H}_2\text{SO}_4\text{-DMA}$. This means that the $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ ternary mechanism may be an important contributor to iodine-containing particles, especially in regions where there are sufficient iodine and amine sources.

In summary, the results show that $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ ternary nucleation mechanism may have significant contributions to the formation of nanoparticles, especially in those regions with abundant iodine and amine sources. This previously overlooked mechanism may provide an explanation for some missing fluxes of atmospheric iodine particles. Moreover, the observed formation rates in the field can result from multiple rapid nucleation systems or may be solely attributed to a specific system, depending significantly on the variations of precursor concentrations in different regions. Hence, the simulation of scenarios where various components synergistically participate is needed in the future study to accurately assess the roles of different components such as HIO_3 , HIO_2 , H_2SO_4 , MSA , A , and DMA . This may contribute to a fundamental understanding of atmospheric particle formation, providing a comprehensive insight into the entire evolution process of atmospheric aerosols.”

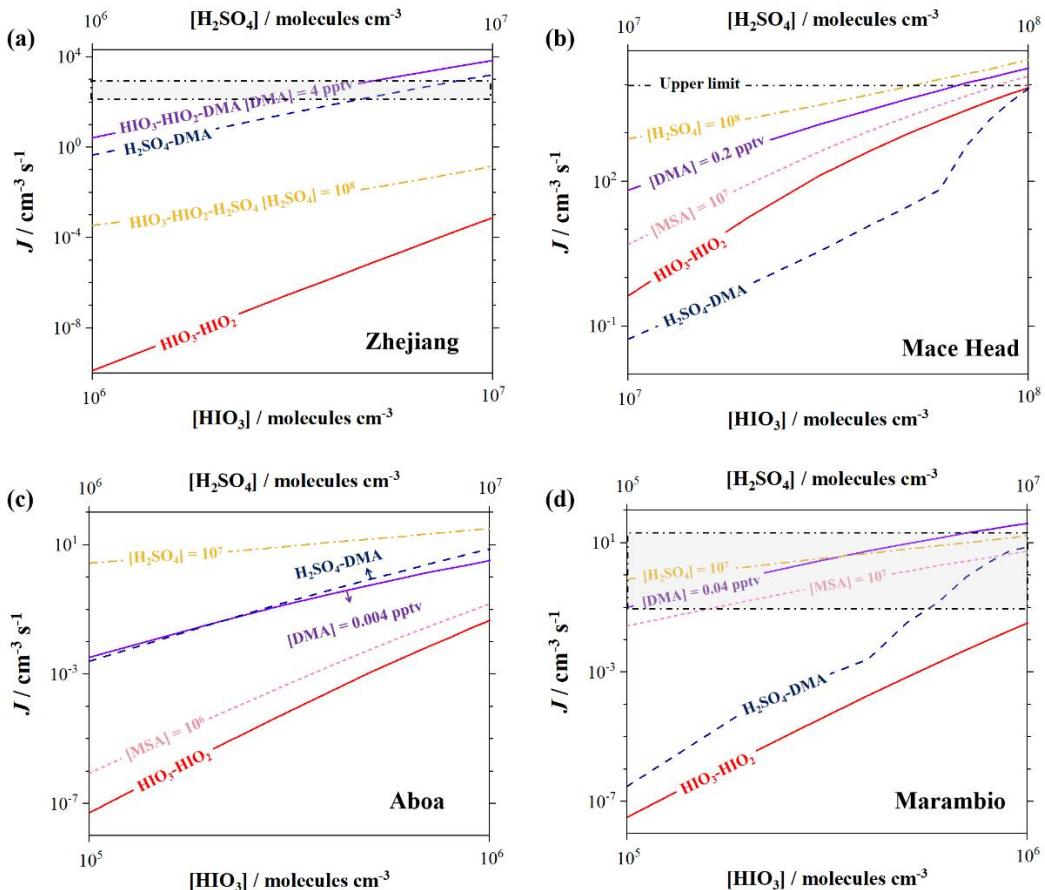


Figure 3. The cluster formation rates (J , $\text{cm}^{-3} \text{s}^{-1}$) of $\text{HIO}_3\text{-HIO}_2$ (red), $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ (purple), $\text{HIO}_3\text{-HIO}_2\text{-H}_2\text{SO}_4$ (yellow), $\text{HIO}_3\text{-HIO}_2\text{-MSA}$ (pink), and $\text{H}_2\text{SO}_4\text{-DMA}$ (blue) systems under the simulated conditions of (a) Zhejiang: $[\text{HIO}_3] = 10^6 - 10^7$, $[\text{HIO}_2] = 2 \times 10^4 - 2 \times 10^5$, $[\text{H}_2\text{SO}_4] = 10^6 - 10^8$ molecules cm^{-3} , and $[\text{DMA}] = 4$ pptv, (b) Mace Head: $[\text{HIO}_3] = 10^7 - 10^8$, $[\text{HIO}_2] = 2 \times 10^5 - 2 \times 10^6$, $[\text{H}_2\text{SO}_4] = 10^7 - 10^8$, $[\text{MSA}] = 10^7$ molecules cm^{-3} , and $[\text{DMA}] = 0.2$ pptv, (c) Aboa: $[\text{HIO}_3] = 10^5 - 10^6$, $[\text{HIO}_2] = 2 \times 10^3 - 2 \times 10^4$, $[\text{H}_2\text{SO}_4] = 10^6 - 10^7$, $[\text{MSA}] = 10^6$ molecules cm^{-3} , and $[\text{DMA}] = 0.004$ pptv, and (d) Marambio: $[\text{HIO}_3] = 10^5 - 10^6$, $[\text{HIO}_2] = 2 \times 10^3 - 2 \times 10^4$, $[\text{H}_2\text{SO}_4] = 10^5 - 10^7$, $[\text{MSA}] = 10^7$ molecules cm^{-3} , and $[\text{DMA}] = 0.04$ pptv. The shaded area (grey) represents the actual nucleation rates observed locally.

Major Comment 12. Line 204-205: “This is the first time that a combined influence of multiple bases has been discovered in the nucleation process driven by HIO_3 , ...” Again, I am not comfortable calling $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ a “two”-base systems. Please remove this sentence.

Response: According to the reviewer's valuable suggestion, we have removed the related statements of “multiple bases” and “competition of bases” in Section 3.2.

Major Comment 13. Line 231: “The J of $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ and $\text{HIO}_3\text{-HIO}_2$ in Mace Head are shown ...” To avoid misinterpreting this as actual measurements at Mace Head, please specify that these are simulations of conditions corresponding to Mace Head.

Response: Thanks for the reviewer's suggestions. We have revised the corresponding statement to “The simulated J of $\text{HIO}_3\text{-HIO}_2\text{-DMA}$...” in Section 3.3 of the revised manuscript.

Major Comment 14. Section 3.3 – cluster formation rates: I understand the rationale behind Figure 5. However, I believe it would be worth to more clearly state in the text that this is just *a mechanism*, potentially one out of many, that increases the rates such that they match the observations. The measurements are essentially the sum of all possible nucleation pathways. This means that all possible nucleating precursor vapours contribute to the measured J -value. For instance, how would the results be influenced if your simulations included water, sulfuric acid or base synergy such as having both ammonia and DMA present? All these factors would yield clusters lower in free energy, increasing the cluster formation rates, and hence push the agreement further away from the observations.

Response: Thanks for the professional suggestions. Considering that other mechanisms might also be important, we realize that labeling the ternary mechanism of $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system as "critical" may overestimate its environmental significance. As suggested by the reviewer, we have introduced other potential nucleation mechanisms ($\text{HIO}_3\text{-HIO}_2\text{-H}_2\text{SO}_4$, $\text{HIO}_3\text{-HIO}_2\text{-MSA}$, and $\text{H}_2\text{SO}_4\text{-DMA}$) for comparison to comprehensively evaluate the environmental significance of the $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system in Section 3.3 of the revised Manuscript. The results showed that the observed formation rates in the field can result from multiple rapid nucleation systems or may be solely attributed to a specific system, depending significantly on the variations of precursor concentrations in different regions. We have added this statement in lines 317-319 of the revised Manuscript.

Previous studies have indicated that H_2O contributes less significantly to strong acid-base systems dominated by proton transfer, such as the $\text{H}_2\text{SO}_4\text{-DMA}$ system. The $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system exhibits nucleation ability comparable to the $\text{H}_2\text{SO}_4\text{-DMA}$ system, with proton transfer processes in almost all ternary clusters. Hence, we speculate that the contribution of H_2O to the $\text{HIO}_3\text{-HIO}_2\text{-DMA}$ system is relatively weak similar with the contribution of H_2O to the $\text{H}_2\text{SO}_4\text{-DMA}$ system. We have added the discussion in lines 184-191 of the revised Manuscript.

As for the influence of H_2SO_4 and multibases, these components could exhibit synergistic or competitive effects on atmospheric nucleation. The nucleation process in real atmosphere is complex. Hence, the simulation of scenarios where various components participate simultaneously is needed in the future study to accurately assess the roles of different components such as H_2SO_4 , MSA, A, and DMA in the iodine oxoacids nucleation. We have added these statements in lines 319-322 of the revised Manuscript.

Major Comment 15. Line 293-295: “However, considering the conditions of humidity in oceanic atmosphere and the complexity of marine NPF events, future research should investigate the role of water molecules and other crucial precursors to establish a comprehensive multi-component nucleation mechanism in the marine atmosphere.” I believe this is a very important point, that should be mentioned and discussed much earlier and not just as an outline.

Response: Thanks for the professional suggestions. Based on the existing data, we have considered the impacts of other potential components (H_2SO_4 , MSA) on the HIO_3 - HIO_2 system in the revised Section 3.3, along with a comparison between the HIO_3 - HIO_2 -DMA and classical H_2SO_4 -DMA nucleation mechanisms. Moreover, we have discussed the potential impact of H_2O molecules on HIO_3 - HIO_2 -DMA system in the revised Section 3.1. Through the discussion in Sections 3.1 and 3.3, we emphasize the urgent need for an atmospheric model that can simultaneously consider various rapid nucleation mechanisms and we intend to address this issue in our future research.

Minor Comments. Line 12: derive -> drive

Line 13: broad marine regions -> various? marine regions

Line 51: Quelever -> Quéléver

Line 86: Kuerten should be Kürten.

Line 176: Kurten -> Kurtén. Please check the spelling of all Finnish authors in the references as many umlauts are missing.

Response: Thanks for the reviewer’s careful check. We have revised the corresponding mistakes and apologized for not spelling the name of the Finnish authors in the correct ways.

We have tried our best to improve the manuscript and the main changes have been highlighted in yellow in the revised manuscript.

Sincerely,
XiuHui Zhang
Key Laboratory of Cluster Science Ministry of Education of China
School of Chemistry and Chemical Engineering
Beijing Institute of Technology
Beijing 100081, P.R. China
Email: zhangxiuhui@bit.edu.cn

Reference:

Almeida, J., S. Schobesberger, A. Kurten, I. K. Ortega, O. Kupiainen-Maatta, A. P. Praplan, A. Adamov, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, J. Dommen, N. M. Donahue, A. Downard,

E. Dunne, J. Duplissy, S. Ehrhart, R. C. Flagan, A. Franchin, R. Guida, J. Hakala, A. Hansel, M. Heinritzi, H. Henschel, T. Jokinen, H. Junninen, M. Kajos, J. Kangasluoma, H. Keskinen, A. Kupc, T. Kurten, A. N. Kvashin, A. Laaksonen, K. Lehtipalo, M. Leiminger, J. Leppa, V. Loukonen, V. Makhmutov, S. Mathot, M. J. McGrath, T. Nieminen, T. Olenius, A. Onnela, T. Petaja, F. Riccobono, I. Riipinen, M. Rissanen, L. Rondo, T. Ruuskanen, F. D. Santos, N. Sarnela, S. Schallhart, R. Schnitzhofer, J. H. Seinfeld, M. Simon, M. Sipila, Y. Stozhkov, F. Stratmann, A. Tome, J. Trostl, G. Tsagkogeorgas, P. Vaattovaara, Y. Viisanen, A. Virtanen, A. Vrtala, P. E. Wagner, E. Weingartner, H. Wex, C. Williamson, D. Wimmer, P. L. Ye, T. Yli-Juuti, K. S. Carslaw, M. Kulmala, J. Curtius, U. Baltensperger, D. R. Worsnop, H. Vehkamaki, and J. Kirkby. 2013. 'Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere', *Nature*, 502: 359-+.

Chen, D. P., D. F. Li, C. W. Wang, F. Y. Liu, and W. L. Wang. 2020. 'Formation mechanism of methanesulfonic acid and ammonia clusters: A kinetics simulation study', *Atmospheric Environment*, 222.

Chen, D. P., D. F. Li, C. W. Wang, Y. Luo, F. Y. Liu, and W. L. Wang. 2020. 'Atmospheric implications of hydration on the formation of methanesulfonic acid and methylamine clusters: A theoretical study', *Chemosphere*, 244.

Dall'Osto, M., R. L. Airs, R. Beale, C. Cree, M. F. Fitzsimons, D. Beddows, R. M. Harrison, D. Ceburnis, C. O'Dowd, M. Rinaldi, M. Paglione, A. Nenes, S. Decesari, and R. Simó. 2019. 'Simultaneous Detection of Alkylamines in the Surface Ocean and Atmosphere of the Antarctic Sympagic Environment', *Acs Earth and Space Chemistry*, 3: 854-+.

Dall'Osto, M., D. C. S. Beddows, P. Tunved, R. Krejci, J. Ström, H. C. Hansson, Y. J. Yoon, K. T. Park, S. Becagli, R. Udisti, T. Onasch, C. D. O'Dowd, R. Simo, and R. M. Harrison. 2017. 'Arctic sea ice melt leads to atmospheric new particle formation', *Scientific Reports*, 7.

Elm, J. 2019. 'An Atmospheric Cluster Database Consisting of Sulfuric Acid, Bases, Organics, and Water', *Acs Omega*, 4: 10965-74.

———. 2021a. 'Clusteromics I: Principles, Protocols, and Applications to Sulfuric Acid-Base Cluster Formation', *Acs Omega*, 6: 7804-14.

———. 2021b. 'Clusteromics II: Methanesulfonic Acid-Base Cluster Formation', *Acs Omega*, 6: 17035-44.

Gong, J., T. Zhu, H. Kipen, G. Wang, M. Hu, Q. Guo, P. Ohman-Strickland, S. E. Lu, Y. Wang, P. Zhu, D. Q. Rich, W. Huang, and J. Zhang. 2014. 'Comparisons of ultrafine and fine particles in their associations with biomarkers reflecting physiological pathways', *Environmental Science and Technology*, 48: 5264-73.

Haywood, J., and O. Boucher. 2000. 'Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review', *Reviews of Geophysics*, 38: 513-43.

He, X. C., Y. J. Tham, L. Dada, M. Y. Wang, H. Finkenzeller, D. Stolzenburg, S. Iyer, M. Simon, A. Kurten, J. L. Shen, B. Rorup, M. Rissanen, S. Schobesberger, R. Baalbaki, D. S. Wang, T. K. Koenig, T. Jokinen, N. Sarnela, L. J. Beck, J. Almeida, S. Amanatidis, A. Amorim, F. Ataei, A. Baccarini, B. Bertozi, F. Bianchi, S. Brilke, L. Caudillo, D. X. Chen, R. Chiu, B. W. Chu, A. Dias, A. J. Ding, J. Dommen, J. Duplissy, I. El Haddad, L. G. Carracedo, M. Granzin, A. Hansel, M. Heinritzi, V. Hofbauer, H. Junninen, J. Kangasluoma, D. Kemppainen, C. Kim, W. M. Kong, J. E. Krechmer, A. Kvashin, T. Laitinen, H. Lamkaddam, C. P. Lee, K. Lehtipalo, M. Leiminger, Z. J. Li, V. Makhmutov, H. E. Manninen, G. Marie, R. Marten, S. Mathot, R. L. Mauldin, B.

Mentler, O. Mohler, T. Muller, W. Nie, A. Onnela, T. Petaja, J. Pfeifer, M. Philippov, A. Ranjithkumar, A. Saiz-Lopez, I. Salma, W. Scholz, S. Schuchmann, B. Schulze, G. Steiner, Y. Stozhkov, C. Tauber, A. Tome, R. C. Thakur, O. Vaisanen, M. Vazquez-Pufleau, A. C. Wagner, Y. H. Wang, S. K. Weber, P. M. Winkler, Y. S. Wu, M. Xiao, C. Yan, Q. Ye, A. Ylisirnio, M. Zauner-Wieczorek, Q. Z. Zha, P. T. Zhou, R. C. Flagan, J. Curtius, U. Baltensperger, M. Kulmala, V. M. Kerminen, T. Kurten, N. M. Donahue, R. Volkamer, J. Kirkby, D. R. Worsnop, and M. Sipila. 2021. 'Role of iodine oxoacids in atmospheric aerosol nucleation', *Science*, 371: 589-+.

He, Xu-Cheng, Mario Simon, Siddharth Iyer, Hong-Bin Xie, Birte Rörup, Jiali Shen, Henning Finkenzeller, Dominik Stolzenburg, Rongjie Zhang, Andrea Baccarini, Yee Jun Tham, Mingyi Wang, Stavros Amanatidis, Ana A. Piedehierro, Antonio Amorim, Rima Baalbaki, Zoé Brasseur, Lucía Caudillo, Biwu Chu, Lubna Dada, Jonathan Duplissy, Imad El Haddad, Richard C. Flagan, Manuel Granzin, Armin Hansel, Martin Heinritzi, Victoria Hofbauer, Tuija Jokinen, Deniz Kemppainen, Weimeng Kong, Jordan Krechmer, Andreas Kürten, Houssni Lamkaddam, Brandon Lopez, Fangfang Ma, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Dario Massabò, Roy L. Mauldin, Bernhard Mentler, Antti Onnela, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Ananth Ranjithkumar, Matti P. Rissanen, Siegfried Schobesberger, Wiebke Scholz, Benjamin Schulze, Mihnea Surdu, Roseline C. Thakur, António Tomé, Andrea C. Wagner, Dongyu Wang, Yonghong Wang, Stefan K. Weber, André Welti, Paul M. Winkler, Marcel Zauner-Wieczorek, Urs Baltensperger, Joachim Curtius, Theo Kurtén, Douglas R. Worsnop, Rainer Volkamer, Katrianne Lehtipalo, Jasper Kirkby, Neil M. Donahue, Mikko Sipilä, and Markku Kulmala. 2023. 'Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere', 382: 1308-14.

Jokinen, T., M. Sipilä, J. Kontkanen, V. Vakkari, P. Tisler, E. M. Duplissy, H. Junninen, J. Kangasluoma, H. E. Manninen, T. Petäjä, M. Kulmala, D. R. Worsnop, J. Kirkby, A. Virkkula, and V. M. Kerminen. 2018. 'Ion-induced sulfuric acid-ammonia nucleation drives particle formation in coastal Antarctica', *Science Advances*, 4.

Kalivitis, N., V. M. Kerminen, G. Kouvarakis, I. Stavroulas, A. Bougiatioti, A. Nenes, H. E. Manninen, T. Petäjä, M. Kulmala, and N. Mihalopoulos. 2015. 'Atmospheric new particle formation as a source of CCN in the eastern Mediterranean marine boundary layer', *Atmospheric Chemistry and Physics*, 15: 9203-15.

Kurtén, T., V. Loukonen, H. Vehkamäki, and M. Kulmala. 2008. 'Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia', *Atmospheric Chemistry and Physics*, 8: 4095-103.

Lee, Shan-Hu, Hamish Gordon, Huan Yu, Katrianne Lehtipalo, Ryan Haley, Yixin Li, and Renyi Zhang. 2019. 'New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate', *Journal of Geophysical Research: Atmospheres*, 124: 7098-146.

Liu, L., H. Li, H. J. Zhang, J. Zhong, Y. Bai, M. F. Ge, Z. S. Li, Y. Chen, and X. H. Zhang. 2018. 'The role of nitric acid in atmospheric new particle formation', *Physical Chemistry Chemical Physics*, 20: 17406-14.

Liu, L., F. Q. Yu, L. Du, Z. Yang, J. S. Francisco, and X. H. Zhang. 2021. 'Rapid sulfuric acid-dimethylamine nucleation enhanced by nitric acid in polluted regions', *Proceedings of the National Academy of Sciences of the United States of America*, 118.

Liu, Z. Y., M. Li, X. F. Wang, Y. H. Liang, Y. R. Jiang, J. Chen, J. S. Mu, Y. J. Zhu, H. Meng, L. X. Yang, K. Y. Hou, Y. F. Wang, and L. K. Xue. 2022. 'Large contributions of anthropogenic sources to

amines in fine particles at a coastal area in northern China in winter', *Science of The Total Environment*, 839.

Ma, F. F., H. B. Xie, R. J. Zhang, L. H. Su, Q. Jiang, W. H. Tang, J. W. Chen, M. Engsvang, J. Elm, and X. C. He. 2023. 'Enhancement of Atmospheric Nucleation Precursors on Iodic Acid- Induced Nucleation: Predictive Model and Mechanism', *Environmental Science & Technology*, 57: 6944-54.

Murphy, D. M., and A. R. Ravishankara. 2018. 'Trends and patterns in the contributions to cumulative radiative forcing from different regions of the world', *Proceedings of the National Academy of Sciences of the United States of America*, 115: 13192-97.

Nault, B. A., P. Campuzano-Jost, D. A. Day, D. S. Jo, J. C. Schroder, H. M. Allen, R. Bahreini, H. S. Bian, D. R. Blake, M. Chin, S. L. Clegg, P. R. Colarco, J. D. Crounse, M. J. Cubison, P. F. DeCarlo, J. E. Dibb, G. S. Diskin, A. Hodzic, W. W. Hu, J. M. Katich, M. J. Kim, J. K. Kodros, A. Kupc, F. D. Lopez-Hilfiker, E. A. Marais, A. M. Middlebrook, J. A. Neuman, J. B. Nowak, B. B. Palm, F. Paulot, J. R. Pierce, G. P. Schill, E. Scheuer, J. A. Thornton, K. Tsigaridis, P. O. Wennberg, C. J. Williamson, and J. L. Jimenez. 2021. 'Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere', *Communications Earth & Environment*, 2.

O'Dowd, C. D., and G. de Leeuw. 2007. 'Marine aerosol production: a review of the current knowledge', *Philos Trans A Math Phys Eng Sci*, 365: 1753-74.

O'Dowd, C. D., K. Hameri, J. Makela, M. Vakeva, P. Aalto, G. de Leeuw, G. J. Kunz, E. Becker, H. C. Hansson, A. G. Allen, R. M. Harrison, H. Berresheim, M. Geever, S. G. Jennings, and M. Kulmala. 2002. 'Coastal new particle formation: Environmental conditions and aerosol physicochemical characteristics during nucleation bursts', *Journal of Geophysical Research-Atmospheres*, 107.

Pope, C. Arden, III, and Douglas W. Dockery. 2006. 'Health effects of fine particulate air pollution: lines that connect', *Journal of the Air & Waste Management Association*, 56: 709-42.

Schmitz, G., and J. Elm. 2020. 'Assessment of the DLPNO Binding Energies of Strongly Noncovalent Bonded Atmospheric Molecular Clusters', *Acs Omega*, 5: 7601-12.

Shen, J. W., J. Elm, H. B. Xie, J. W. Chen, J. F. Niu, and H. Vehkamäki. 2020. 'Structural Effects of Amines in Enhancing Methanesulfonic Acid-Driven New Particle Formation', *Environmental Science & Technology*, 54: 13498-508.

Sipila, M., N. Sarnela, T. Jokinen, H. Henschel, H. Junninen, J. Kontkanen, S. Richters, J. Kangasluoma, A. Franchin, O. Perakyla, M. P. Rissanen, M. Ehn, H. Vehkamaki, T. Kurten, T. Berndt, T. Petaja, D. Worsnop, D. Ceburnis, V. M. Kerminen, M. Kulmala, and C. O'Dowd. 2016. 'Molecular-scale evidence of aerosol particle formation via sequential addition of HIO_3 ', *Nature*, 537: 532-34.

Sipilä, M., N. Sarnela, T. Jokinen, H. Henschel, H. Junninen, J. Kontkanen, S. Richters, J. Kangasluoma, A. Franchin, O. Peräkylä, M. P. Rissanen, M. Ehn, H. Vehkamäki, T. Kurten, T. Berndt, T. Petäjä, D. Worsnop, D. Ceburnis, V. M. Kerminen, M. Kulmala, and C. O'Dowd. 2016. 'Molecular-scale evidence of aerosol particle formation via sequential addition of HIO_3 ', *Nature*, 537: 532-34.

Wang, M. Y., W. M. Kong, R. Marten, X. C. He, D. X. Chen, J. Pfeifer, A. Heitto, J. Kontkanen, L. Dada, A. Kurten, T. Yli-Juuti, H. E. Manninen, S. Amanatidis, A. Amorim, R. Baalbaki, A. Baccarini, D. M. Bell, B. Bertozzi, S. Bräkling, S. Brilke, L. C. Murillo, R. Chiu, B. W. Chu, L. P. De

Menezes, J. Duplissy, H. Finkenzeller, L. G. Carracedo, M. Granzin, R. Guida, A. Hansel, V. Hofbauer, J. Krechmer, K. Lehtipalo, H. Lamkaddam, M. Lampimäki, C. P. Lee, V. Makhmutov, G. Marie, S. Mathot, R. L. Mauldin, B. Mentler, T. Muller, A. Onnela, E. Partoll, T. Petäjä, M. Philippov, V. Pospisilova, A. Ranjithkumar, M. Rissanen, B. Rörup, W. Scholz, J. L. Shen, M. Simon, M. Sipilä, G. Steiner, D. Stolzenburg, Y. J. Tham, A. Tomé, A. C. Wagner, D. Y. S. Wang, Y. H. Wang, S. K. Weber, P. M. Winkler, P. J. Wlasits, Y. H. Wu, M. Xiao, Q. Ye, M. Zauner-Wieczorek, X. Q. Zhou, R. Volkamer, I. Riipinen, J. Dommen, J. Curtius, U. Baltensperger, M. Kulmala, D. R. Worsnop, J. Kirkby, J. H. Seinfeld, I. El-Haddad, R. C. Flagan, and N. M. Donahue. 2020. 'Rapid growth of new atmospheric particles by nitric acid and ammonia condensation', *Nature*, 581: 184-+.

Wang, M. Y., M. Xiao, B. Bertozi, G. Marie, B. Rörup, B. Schulze, R. Bardakov, X. C. He, J. L. Shen, W. Scholz, R. Marten, L. Dada, R. Baalbaki, B. Lopez, H. Lamkaddam, H. E. Manninen, A. Amorim, F. Ataei, P. Bogert, Z. Brasseur, L. Caudillo, L. P. De Menezes, J. Duplissy, A. M. L. Ekman, H. Finkenzeller, L. G. Carracedo, M. Granzin, R. Guida, M. Heinritzi, V. Hofbauer, K. Höhler, K. Korhonen, J. E. Krechmer, A. Kürten, K. Lehtipalo, N. G. A. Mahfouz, V. Makhmutov, D. Massabò, S. Mathot, R. L. Mauldin, B. Mentler, T. Müller, A. Onnela, T. Petäjä, M. Philippov, A. A. Piedehierro, A. Pozzer, A. Ranjithkumar, M. Schervish, S. Schobesberger, M. Simon, Y. Stozhkov, A. Tomé, N. S. Umo, F. Vogel, R. Wagner, D. S. Wang, S. K. Weber, A. Welti, Y. S. Wu, M. Zauner-Wieczorek, M. Sipilä, P. M. Winkler, A. Hansel, U. Baltensperger, M. Kulmala, R. C. Flagan, J. Curtius, I. Riipinen, H. Gordon, J. Lelieveld, I. El-Haddad, R. Volkamer, D. R. Worsnop, T. Christoudias, J. Kirkby, O. Möhler, and N. M. Donahue. 2022. 'Synergistic $\text{HNO}_3\text{-H}_2\text{SO}_4\text{-NH}_3$ upper tropospheric particle formation', *Nature*, 605: 483-+.

Xia, D., J. Chen, H. Yu, H. B. Xie, Y. Wang, Z. Wang, T. Xu, and D. T. Allen. 2020. 'Formation Mechanisms of Iodine-Ammonia Clusters in Polluted Coastal Areas Unveiled by Thermodynamic and Kinetics Simulations', *Environmental Science & Technology*, 54: 9235-42.

Yu, F., and G. Luo. 2014. 'Modeling of gaseous methylamines in the global atmosphere: impacts of oxidation and aerosol uptake', *Atmospheric Chemistry and Physics*, 14: 12455-64.

Yu, Huan, Lili Ren, Xiangpeng Huang, Mingjie Xie, Jun He, and Hang Xiao. 2019. 'Iodine speciation and size distribution in ambient aerosols at a coastal new particle formation hotspot in China', *Atmospheric Chemistry and Physics*, 19: 4025-39.

Zhang, R. J., H. B. Xie, F. F. Ma, J. W. Chen, S. Iyer, M. Simon, M. Heinritzi, J. L. Shen, Y. J. Tham, T. Kurten, D. R. Worsnop, J. Kirkby, J. Curtius, M. Sipila, M. Kulmala, and X. C. He. 2022. 'Critical Role of Iodous Acid in Neutral Iodine Oxoacid Nucleation', *Environmental Science & Technology*.

Zhang, R., A. Khalizov, L. Wang, M. Hu, and W. Xu. 2012. 'Nucleation and growth of nanoparticles in the atmosphere', *Chemical Reviews*, 112: 1957-2011.

Zhang, Renyi. 2010. 'Getting to the Critical Nucleus of Aerosol Formation', *Science*, 328: 1366-67.

Zhu, Y. J., K. Li, Y. J. Shen, Y. Gao, X. H. Liu, Y. Yu, H. W. Gao, and X. H. Yao. 2019. 'New particle formation in the marine atmosphere during seven cruise campaigns', *Atmospheric Chemistry and Physics*, 19: 89-113.

Zu, H. T., S. B. Zhang, L. Liu, and X. H. Zhang. 2024. 'The vital role of sulfuric acid in iodine oxoacids nucleation: impacts of urban pollutants on marine atmosphere', *Environmental Research Letters*, 19.

