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Abstract. Tipping points characterize the situation when a system experiences abrupt, rapid and sometimes 
irreversible changes in response to an only gradual change in environmental conditions. Given that such events are in 
most cases undesirable, numerous approaches have been proposed to identify if a system is approaching a tipping 
point. Such approaches have been termed early-warning signals and represent a set of methods for identifying 
statistical changes in the underlying behavior of a system across time or space that would be indicative of an 30 
approaching tipping point. Although the idea of early warnings for a class of tipping points is not new, in the last two 
decades, the topic generated an enormous amount of interest, mainly theoretical. At the same time, the unprecedented 
amount of data originating from remote sensing systems, field measurements, surveys and simulated data, coupled 
with innovative models and cutting-edge computing, has made possible the development of a multitude of tools and 
approaches for detecting tipping points in a variety of scientific fields. Yet, we miss a complete picture of where, how, 35 
and which early-warnings have been used so far in real-world case studies. Here we review the literature of the last 
20 years to show how the use of these indicators has spread from ecology and climate to many other disciplines. We 
document what metrics have been used, their success as well as the field, system and tipping point involved. We find 
that, despite acknowledged limitations and challenges, in the majority of the case-studies we reviewed, the 
performance of most early-warnings was positive in detecting tipping points. Overall, the generality of the approaches 40 
employed - the fact that most early warnings can in theory be observed in many dynamical systems - explains the 
continuous multitude and diversification in their application across scientific domains.  
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1 Introduction 

Tipping points characterize situation when a system experiences abrupt, rapid and sometimes 45 

irreversible changes. Such shifts occur when a threshold is crossed and the system transitions from 

its current state to a contrasting one (van Nes et al., 2016). Given that tipping points are associated 

with abrupt, rapid and sometimes irreversible changes, numerous approaches have been proposed 

to identify if a system is getting closer to such a point. These approaches are often referred to as 

Early-Warning Signals (EWS) and they represent a powerful generic tool for anticipating tipping 50 

points in a variety of systems (Scheffer et al., 2009). The general mechanism behind EWS is that, as 

a dynamical system approaches a tipping point, it becomes slower at recovering from small 

perturbations (Wissel, 1984), and this critical slowing down of the system (CSD) leaves signatures 

in the temporal and spatial dynamics of the system (Drake et al., 2020). EWS rely on identifying 

exactly such changes in the underlying behavior of a system across time or space prior to a tipping 55 

point.  

 

Early, after their introduction in the literature, it became clear that EWS did not allow anticipation 

of all types of tipping points in advance (Hastings and Wysham, 2010), and that they are not unique to 

tipping point responses but also occur when systems are undergoing smoother transitions (Kéfi et 60 

al., 2013). These realisations imply that some shifts (typically referred to as abrupt shifts or regime 

shifts) may require alternative or additional signals (Boettiger et al., 2013; Dakos et al., 2015). Thus, a 

rich research program has been triggered in the theory behind tipping point anticipation and the 

development of tools (Table 1) for quantifying changes in dynamical patterns of system behaviors 

that could be used as early-warnings preceding tipping points and abrupt shifts in general. Different 65 

terms have been used to describe the great variety of metrics proposed in the literature, like ‘early-

warning systems’ (Lenton, 2013b), ‘observation-based early-warning signals’ (Boers, 2021), used 

‘statistical stability indicators’ (Bathiany et al., 2016), ‘critical slowing down (CSD) indicators’ 

(Tang et al., 2022), ‘leading indicators’ (Carpenter et al., 2008), ‘resilience indicators’ (Dakos et al., 

2015), ‘generic indicators’ (Scheffer et al., 2015), ‘dynamical indicators of resilience’ (DiOR) (Scheffer 70 

et al., 2018), ‘indicators of transitions’ (Clements and Ozgul, 2018), ‘universal early warning signals’ 

(Dylewsky et al., 2023). In the rest of the paper, we will use the term ‘early-warnings’ to refer to this 

whole family of indicators.  
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Whatever the term used, while early-warnings are well grounded in theory, the challenge remains 75 

to apply them to real-world systems. A number of review and synthesis papers have summarized 

the theoretical aspects of early-warnings and provided partial accounts of their empirical 

applications (Scheffer et al., 2012a, 2015; Dakos and Kefi, 2022; Nijp et al., 2019; Litzow and Hunsicker, 2016; 

Alberto et al., 2021; Bestelmeyer et al., 2011; Lenton, 2013b, 2011). Yet, although the utility of early-

warnings has led to early-warnings proliferating beyond ecology and climate and being applied 80 

across a variety of scientific domains, we miss a complete picture of where, how, and which early-

warnings have been used so far in real-world case studies. 

       

Here, after summarizing the basics of the theory underlying early-warnings and giving an overview 

of their taxonomy, we review the literature for the use of early-warnings in empirical studies across 85 

all scientific fields. We document what metrics have been used, their success as well as the field, 

system and tipping point involved. We then classify this information in order to provide an 

overview of the progress, the limitations and opportunities in the empirical application of early-

warnings after 15 years of research on the topic. 

 90 

 
Table 1. Available software tools for the estimation of early-warnings with temporal and spatial datasets. 

 

Name Software Description Reference 

earlywarnings R 
package 

One of the earliest R packages to calculate 
model and metric based early-warnings 

(Dakos et al., 2012) 
github.com/earlywarningtoolbox  

earlywarning R 
package 
format 

Fits a normal form model with and without a 
saddle-node bifurcation based on a likelihood 
approach 

(Boettiger and Hastings, 2012b) 
github.com/cboettig/earlywarning 
 

Generic_ews Matlab Matlab translation from the early-warning 
signals toolbox in R 

git.wur.nl/sparcs/generic_ews-
for-matlab/-/tree/master 

spatialwarnings R 
package 

Estimates spatial warning signals based on  
spatial statistics and spatial pattern formation 

(Génin et al., 2018) 

ewstools Python 
package 

Python translation of the earlywarnings toolbox, 
with the addition of deep learning classifiers 

(Bury, 2023) 

EWSmethods R 
package 

toolbox inspired by earlywarnings, that omits 
model-based EWS, but includes multivariate 
indicators 

(O’Brien et al., n.d.) 
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2 The basics of early-warnings 95 

The theory behind tipping point anticipation is mostly based on destabilising stable fixed 

equilibrium points. In such cases, there are three ways that a tipping point may theoretically occur 

(Lenton, 2013a). A system may undergo a bifurcation when a parameter (or multiple parameters) 

in the system changes beyond a critical threshold and the stability of the state the system occupies 

is lost, thus causing the system to shift to an alternative state (bifurcation-tipping or B-tipping). 100 

Noise-induced tipping can occur when a system is shifted outside its stable basin of attraction by 

some form of stochastic forcing (N-tipping). A third class, known as rate-induced tipping (R-

tipping), occurs when a parameter rapidly changes and the system is no longer able to track its 

stable state (Ashwin et al., 2011). Tipping points also occur through phase transitions a long-studied 

set of emergent phenomena in physics which resemble the characteristics of the B-tipping 105 

described above (Sole et al., 1996; Hagstrom and Levin, 2021). 

 

The majority of the early-warnings discussed below are primarily developed to detect cases where 

there is a gradual approach towards a bifurcation-tipping event causing a loss of system state 

stability. Rate-induced tipping could also show early-warning (Ritchie and Sieber, 2015). Noise-110 

induced tipping is likely to occur unpredictably, and therefore early-warnings are less expected. In 

a realistic scenario with constant stochasticity and conditions gradually changing, tipping is 

commonly a combination of a movement towards bifurcation and noise pushing the system before 

the bifurcation actually occurs. In such case, noise-induced tipping becomes more likely as it is 

easier for the system to leave its current basin of attraction when it is closer to the bifurcation and 115 

this increase in the probability of tipping can be identified through particular early-warnings 

(Section 2.3). 

 

Although most of the theory behind early-warning signals is related to saddle-node (or fold) 

bifurcations, other types of bifurcations have also been considered like transcritical, pitchfork or 120 

Hopf bifurcations (more general codimension-1 bifurcations, (Kuznetsov, 1995)). Such 

bifurcations are smooth (also called continuous) in contrast to the abrupt (i.e. discontinuous) fold 

bifurcations associated with tipping points, yet it has been shown that similar early-warning signals 

can be applied for them (Boettiger et al., 2013; Kéfi et al., 2013). A full list of bifurcation types 

(discontinuous and continuous) and their relationship to CSD can be found in (Thompson and 125 
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Sieber, 2011). In this paper, the early-warnings considered are mostly developed in the context of 

the discontinuous fold bifurcation. 

 

We hereafter present a representative (but not complete) overview of the mostly-used early-

warnings both theoretically and empirically. These signals can be classified in different ways 130 

depending, for instance, on the type of mechanism or tipping point (e.g. CSD-based, non-CSD-

based), the type of data used (e.g. temporal, spatial, trait, abundance data), the approach employed 

(e.g. analysing patterns, fitting models, network methods). In Table 2, we suggest a taxonomy of 

early-warnings based on the mechanism and the approach used. We then present their basics 

without going into the details. A full description as well as methods to estimate them can be found 135 

elsewhere (Dakos et al., 2012; Kéfi et al., 2014; Scheffer et al., 2015; Clements and Ozgul, 2018; Lenton, 2011; 

Génin et al., 2018) and in dedicated software packages (Table 1).  

 

 
Table 2. A taxonomy of early-warnings depending on whether the warning is based or not on Critical Slowing Down (CSD). 140 
CSD-based early-warnings are mostly associated with bifurcation tipping (B-tipping), while non-CSD-based ones both with 
B-tipping and noise-induced tipping (N-tipping, see also Sect. 2.1). A second dichotomy is based on the approach: whether 
the warning is a statistical metric based on the dynamical patterns of the system, or whether it is based on a (as simple as 
possible) process-model. In parenthesis the type of data (temporal and/or spatial) used to estimate the early-warning.  
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2.1 Early-warnings based on Critical Slowing-Down (CSD-based) 145 

Most-used early-warnings are based on searching for evidence of ‘Critical Slowing Down’ (CSD) 

in the system. Essentially, as the system is forced towards a tipping point, the state it currently 

occupies starts to lose its stability, and the restoring feedbacks that ‘pull’ the system back to that 

state after it is perturbed, start to degrade. This causes the system to respond more sluggishly to 

these perturbations, and thus slow down (Wissel, 1984). Figure 1 shows this concept visually using 150 

the ‘ball in the well’ analogy. When the system is more stable, represented by the well with steeper 

sides, the recovery is faster as the ball (representing the state of the system) returns faster. A system 

close to tipping, represented by a shallower well, has a slower recovery as the ball takes longer to 

return. Eventually, the restoring feedbacks of the system may become so weak that the stability of 

the current state may be lost, and the system may transition to a new stable state. Mathematically, 155 

CSD occurs as the leading eigenvalue of the system approaches 0 from below. However, in reality 

we do not have the equations that govern the system’s dynamics and as such we have to estimate 

the occurrence of CSD with methods that aim to infer CSD mostly from the patterns of the systems 

dynamics or by fitting very simple and generic process-based models (Table 2). 

 160 

 

 
Figure 1: Using the ‘ball in the well’ analogy to compare a system that is (left) far from tipping, and (right) close to tipping. 
The system that is further away from tipping recovers faster from perturbations, the steeper sides of the well describing 
the stronger restoring feedbacks of the system. Closer to tipping, the sides of the well are shallower, such that the system 165 
will take longer to return from the same perturbation because the restoring feedbacks are weaker. 
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2.1.1 Return rate, autocorrelation and variance 

Using statistical techniques makes it possible to detect CSD based on the dynamical patterns a 

system is generating. The most direct way to detect CSD is to consider the rate at which a system 170 

returns to its initial state following a perturbation (return rate or return time). A resilient system 

with strong restoring feedbacks will return to its initial state faster than one which is near to a 

tipping point (Wissel, 1984). However, this method requires the occurrence of a well-defined 

perturbation, as well as clear knowledge of when the equilibrium state of the system has been 

reached, neither of which are always clearly defined in the real world.  175 

 

As the system approaches a tipping point and its recovery slows down, each time step X(t) is more 

correlated to the previous timestep X(t-1) (as shown in Fig. 2). This can be measured with lag-1 

autocorrelation, or AR(1), which tends towards 1 as a system experiences CSD prior to tipping to 

an alternate state. Visually this can be viewed by observing a scatterplot of a timeseries of the 180 

system against the timeseries lagged one time point (Fig. 2). When the system is far from tipping 

(top row Fig. 2), there is no relationship between the current state and the state at the previous 

point in time (low AR(1)). As the system approaches the tipping point, CSD means that there is a 

strong correlation between the system state now and at the previous point in time (and thus a higher 

AR(1)). Larger deviations in the red section of the timeseries can be seen, further showing this 185 

slowing down and increase in AR(1). 
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Figure 2: A comparison of the lag-1 autocorrelation (AR(1)) for a system that is far from tipping (blue), getting close to 
tipping (purple), and close to tipping (red). As the timeseries approaches tipping (top row), there is no correlation between 190 
the timeseries and itself at the previous time point in the blue part of the timeseries, far from tipping. However, closer to 
tipping, in the purple and then red regions of the timeseries, there are correlations and thus higher AR(1) values. In the 
timeseries itself there are clear deviations towards the end compared to the beginning, suggesting CSD is occurring as the 
tipping point approaches. The early-warning are calculated on a moving window (coloured regions in bottom plot). Here, 
AR(1) is shown at the end of the window used to calculate it, with examples shown as coloured points to match those windows 195 
on the detrended timeseries. 

 

Similarly, as the system struggles to return to its initial state as resilience is lost, the variance of 

the system is also expected to increase, as the system can sample more of the ‘state space’ (all the 

possible states the system can be in) due to the shallower well. However, this is often recorded 200 
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alongside an increase in AR(1), because other factors can lead to a change in variance, such as 

how the system is forced externally. 

Spatial analogues of the temporal variance and temporal AR(1) exist too with a similar underlying 

theory to the one for the temporal ones: as a system approaches a tipping point, and responds more 

sluggishly to external perturbations and samples more of the state space, it is expected that there 205 

will be a higher spatial autocorrelation (Dakos et al., 2010) and spatial variance (Guttal and Jayaprakash, 

2009).  

Just like AR(1) and variance, all other CSD-based early-warnings aim at detecting characteristic 

changes in the dynamical patterns of the system either by estimating directly a statistical property 

(e.g. spectral reddening) or by fitting a statistical model (e.g. detrended fluctuation analysis) (Table 210 

2). A parallel approach involves more complex methods to predict the movement towards tipping 

points that involve the use of simple process-based models. One such example is that of using a  

generalised model that integrates knowledge about the system into a model, which may allow us 

to estimate changes in the leading eigenvalue of the system, once minimal model assumptions have 

been made (Lade and Gross, 2012).  215 

 

2.2 Early-warnings not based on Critical Slowing-Down (non-CSD-based) 

CSD-based early-warnings rely on the assumption that the system state shows only small 

deviations around the equilibrium state of the system. However, this assumption doesn’t hold in 

the presence of strong stochasticity. In other cases, either CSD is hard to measure or more 220 

idiosyncratic metrics have been suggested to act as alternatives to CSD-based warnings. Below, 

we outline a few of the most representative non-CSD-based early-warnings (Table 2). 

 

2.2.1 Skewness  

As the current equilibrium state of the system is losing resilience and the probability to shift to an 225 

alternative equilibrium increases, the temporal distribution of states of the system is expected to 

become increasingly skewed toward the alternative state. This can be quantified by the skewness 

of the system. The skewness may increase or decrease, depending on whether the alternative 



10 
 

equilibrium is larger or smaller than the current equilibrium (Guttal and Jayaprakash, 2008). Similarly 

to the change in skewness observed between the two states with temporal data, it is also possible 230 

to observe this change in  skewness in the spatial domain (Guttal and Jayaprakash, 2009). 

 

2.2.2 Flickering  

‘Flickering’ is the situation where strong stochasticity can “push” a system temporarily into the 

basin of attraction of the alternative state before returning to the current state with increasing 235 

likelihood as the system is approaching tipping (Wang et al., 2012; Dakos et al., 2013). Flickering can 

be measured either by a simple increase in variance (Dakos et al., 2013), or more complex statistical 

approaches (e.g. quickest detection method (Carpenter et al., 2014), heteroscedasticity (Seekell et al., 

2012; Seekell and Dakos, 2015)). 
 240 

2.2.3 Potential analysis 

Information about a system at multiple sampling points through time or multiple locations across 

space can allow reconstructing a ‘stability landscape’ of the system - or potential, which gives an 

idea of the most frequent states of the systems observed in systems experiencing different 

environmental conditions and history (Livina et al., 2010). Multimodality in such a landscape for a 245 

given set of environmental conditions suggests that the system could exhibit alternative stable 

states for that range of conditions (Hirota et al., 2011; Staver et al., 2011; Abis and Brovkin, 2019; Scheffer et 

al., 2012b), although seasonality patterns should be accounted for to reduce misinterpretation of 

externally forced “states”. 
 250 

2.2.4 Spatial patterns 

A number of ecosystems have a clear spatial structure, which is self-organised (e.g. drylands, 

peatlands, salt marshes, mussel beds; (Rietkerk et al., 2008)). Theoretical models have shown that the 

size and shape of the spatial patterns change in a consistent way along stress gradients, and as such 

they are good indicators of ecosystem degradation (von Hardenberg et al., 2001; Rietkerk et al., 2004; Kéfi 255 

et al., 2007). Probably one of the most studied examples is the case of dryland ecosystems, where 
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changes in the shape of regular patterns (Rietkerk et al., 2004) and in the patch size distribution (Kéfi 

et al., 2007) could inform about the stress experienced by the ecosystem (Dakos et al., 2011). 
 

2.2.5 Fitting a threshold model 260 

An alternative approach to pattern-based early-warnings is based on fitting process-based models 

on the timeseries of a system prior to a tipping point. This approach mainly consists of fitting the 

simplest dynamical model with a tipping point (i.e. a saddle node normal form) (Ditlevsen and 

Ditlevsen, 2023) and testing its likelihood compared to a model without a tipping point (Boettiger and 

Hastings, 2012b). Or fitting threshold models assuming simple autoregressive state-space models 265 

(Ives and Dakos, 2012; Laitinen et al., 2021). 

 

2.2.6 Structural changes 

A novel way to detect tipping points involves monitoring structural changes properties (e.g. 

connectivity, node centrality) in network systems (i.e. a network of interacting components) like 270 

spatially-connected sites, interacting actors or species in a community (Mayfield et al., 2020; Cavaliere 

et al., 2016; Yin et al., 2016). Alternatively, temporal correlation between components in multivariate 

systems has been used to construct an interaction network and analyse its structural properties 

(Tirabassi et al., 2014). 

 275 

2.2.7 Trait changes 

Another idiosyncratic approach involves monitoring changes in the statistical moments of fitness-

related traits (e.g. body size) (Clements and Ozgul, 2018). Such trait changes have been found in 

populations under stress where changes in the traits of individuals (i.e. decreasing mean and 

increasing variance in body size) (Spanbauer et al., 2016; Clements and Ozgul, 2016). These trait-based as 280 

well as the above-mentioned structural-based signals are case-specific and idiosyncratic to the 

details of the system as there is no universal mechanism that would generate an expected pattern 

related to the approach of tipping points. 
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3 Overview of early-warnings empirical research in the last 20 years 

We performed a (not exhaustive) literature review on the empirical (not theoretical) use of warning 285 

signals. We first did a topic search (TS) that includes title, abstract and keywords in the Web of 

Science for the period from 01.01.2004 to 01.04.2023 with the following terms TS=(("tipping 

point*" OR "tipping" OR "catastrophic bifurcation*" OR "catastrophic shift*" OR "regime shift*" 

OR "abrupt shift*" OR "critical transition*") AND ("early-warning*" OR "early-warning*" OR 

"warning sign*" OR "resilience indicator*" OR "leading indicator*" OR "precursor*")). We 290 

selected as the starting date of our search the year of 2004, despite the fact that CSD was much 

earlier known in ecology (Wissel, 1984) and signatures of catastrophic bifurcations were 

theoretically described for dynamical systems (Gilmore, 1981). Our choice was driven by the fact 

that 2004 is around the year of the first studies in climate (Kleinen et al., 2003; Held and Kleinen, 2004) 

and ecology (Carpenter and Brock, 2006) where the theoretical idea of using CSD as warning signals 295 

emerged, while few years later the first review on early-warnings on critical transitions was 

published (Scheffer et al., 2009). Within this time period, our topic search returned 887 unique 

publications. For completeness, we also ran the same topic search before 2004 going back to 1960, 

and we retrieved 11 publications of which only 1 was related to bifurcations. Clearly, we might 

have missed relevant records with the TS we selected. For example, had we also included the term 300 

"phase transition*", we would have retrieved 3,916 records. We decided not to include this term 

as it pertains to a specific and rich field of physics, but with our TS we are confident to have a 

rather complete overview of the tipping point (and related terms) literature.  

 

We screened all 887 publications to select only the ones where there was an empirical application 305 

of early-warnings (i.e. an indicator was measured on real data to signal the occurrence of a tipping 

point). This screening led to 229 papers that we classified as ones that have included at least one 

empirical application of early-warnings. For each paper, we collected the following information: 

“domain” (e.g. climate, ecology), “system” (e.g. Arctic Sea Ice, fisheries, mental depression), the 

“tipping point” described, data source (e.g. lab experiment, field survey, remote-sensed datasets, 310 

social data), “data type” (i.e. temporal, spatial, spatio-temporal), “indicator” (i.e. the specific 

warning signal(s) used), “performance” (whether the performance of the early-warning was 

reported in the paper as positive, negative, mixed (in the case of multiple signals used or multiple 

datasets analysed), or inconclusive). To facilitate the analysis, we regrouped “data-source” and 
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“indicator” categories in broader groups (see appendix X). We also created two extra categories: 315 

we classified systems under a specific “field”, and we introduced an “indicator type” based on 

whether the early-warning was CSD-based or non-CSD based. We then excluded the running year 

2023 and summarised results in terms of unique publications using simple statistics and alluvial 

plots in R (4.3.1). 

 320 

3.1 Overall use of early-warnings across disciplines 

We were able to classify the total 229 papers published from 2004 to 2023 in 5 main domains: 

ecology, climate, health, social and physical sciences. We found that empirical papers first 

appeared in 2007 in the domains of ecology and climate but only after 2010 and 2011 were the 

first papers in health, social and physical sciences published (Fig. 3). This change may be 325 

associated with the highly cited review by Scheffer et al in 2009 (Scheffer et al., 2009) that 

introduced (and popularised) the term early-warning signals and critical transitions. Since then the 

number of empirical studies has quickly increased, but remained dominated by ecology (43.6% of 

the papers overall), followed by health (22.6%), climate (14.6%), social (12%) and physical 

sciences (7.6%) - showing the diversification of the uses of early-warning (Fig. 3).  330 

 

The higher number of publications in the health domain compared to the climate domain is 

unexpected. We found a big number of studies in the medical field (Fig. S1b) that form a distinct 

group on the emergence of human diseases, such as cancer (Liu et al., 2020), which uses a Non-CSD 

context-specific early-warning (“dynamic_network_biomarkers”, see also Sect. 3.3). Zooming 335 

within each domain, we observed that the most ecological studies are on terrestrial and freshwater 

fields (Fig. 1Ba) namely on drylands and forests and lake ecosystems (Table S1). The majority of 

climate studies are on past climate transitions and modern records (Fig. S1c, Table S2), while the 

social studies are split between societal shifts (like in politics, social behavior, transport) and 

finance transitions (Fig. S1d, Table S4). Lastly, studies on physical sciences appear more 340 

heterogeneous including tipping points in materials, power systems, or even astronomy (Fig. S1e, 

Table S5). 
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Figure 3: Evolution of studies applying early-warnings in empirical datasets. The total 229 papers we identified through 345 
our literature review between 2004 and 2022 were classified within five main scientific domains (ecology, health, climate, 
social sciences, physical sciences). White dotted line shows the cumulative number of papers. 

 

3.2 Multiple sources of data used 

Across scientific domains, the vast majority of early-warnings were analysed on temporal data 350 

(77.7%), while the spatial data were used in only 8% of all studies (Fig. 4) only pertaining to 

ecology (Fig. S2). Survey data made the majority of the data sources (43.8%; including field 

surveys, social survey data, data from weather stations or other monitoring devices, medical data 

from hospitalisation records to electroencephalograms (EEG)), followed by data from lab 

experiments (20.7%), remote sensing (12%), paleo-reconstructions (10%), and field experiments 355 

(7%). This partitioning can be mostly explained by our classification, meaning that we have 

grouped together a heterogeneity of data sources (e.g. field surveys, historical climate data, social 



15 
 

study surveys, hospitalisation records, Supplement A). However, it also reflects the availability of 

each data source (e.g. most survey and paleo data were readily available and reanalysed in the 

context of tipping points), or the difficulty in their acquisition (e.g. field experiments are harder to 360 

execute compared to lab experiments). Looking at how data sources are used across domains, 

ecology is the only domain where all kinds of data sources have been used. What is also interesting 

to note is that two sources of data are increasingly used: survey data and remote-sensed (Fig. S3). 

Specifically, the latter were the latest to be used (2011), but show a consistent rising pattern over 

the last years mainly due to the fact that satellite products span by now a long enough time period 365 

(~20 years) to allow the estimation of early-warnings. 

 

A closer look at studies using remote-sensed products reveals a focus on the analysis of temporal 

early-warning on land environments, mainly forests (e.g Boulton et al., 2022a; Majumder et al., 

2019; Saatchi et al., 2021) and drylands (e.g Veldhuis et al., 2022; Uden et al., 2019; Wu et al., 370 

2023), but also extended to the cryosphere, focusing on the analysis of the Arctic and the Antarctic 

ice sheets (Carstensen and Weydmann, 2012; AlMomani and Bollt, 2021). The spatial resolution of remote-

sensed data has been also exploited for the identification of spatial early-warning, especially 

regarding desertification (Berdugo et al., 2017) and vegetation analyses (Majumder et al., 2019). Overall, 

we found that the use of remote sensing products offers two distinct yet complementary approaches 375 

to detect early-warning; high-level products, which correspond to physical variables, for instance 

sea surface temperature (SST) (Wu et al., 2015) or different types of indices like the normalized 

difference vegetation index (NDVI) (Liu et al., 2019) and low-level products, or direct sensor 

observables. 

 380 
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Figure 4: Alluvial plot connecting scientific domains, data sources and data types. Colors indicate the data source used for 
the estimation of early-warnings. The size of the boxes in each column represents the proportion of each category. The 
figure is “read” from the middle column (‘data source’) to either the right (‘data type’) or the left (‘scientific domain’). The 
thickness of the lines are proportional to the studies of a given data source that belong to a certain domain (from the ‘data 385 
source’ column to the ‘domain’ column) or are proportional to specific data type used (from the ‘data source’ column to 
the ‘data type’ column). For example, for the ‘data source’ field experiment (light green), all studies using field experiments 
belong to the ‘ecology’ domain, while field experiments are split into 3 types of data (spatial, spatio-temporal and temporal). 
[field_exp: field experiment, lab_exp: lab experiment, paleo: paleo-reconstructed data, remote-sensed: data through 
remote-sensing, social_data: financial data and from social media, survey: data from surveys (field, lab, social)] 390 

 

 

3.3 A growing list of of early-warnings 

We recorded 65 different early-warnings after reclassifying some into the same group (for example 

variance, coefficient of variation and standard deviation were reclassified as “variance”, 395 

Supplement A). As expected, the majority were CSD-based warnings (74.9%), while 25.1% were 

non-CSD based ones. Out of the 65 reclassified early-warnings only 21 were used more than once 



17 
 

(the rest 44 early-warnings were used only once, Fig. 5, Supplement A). Variance and 

autocorrelation were the dominantly used early-warnings across all domains, followed by 

skewness (Fig. 5). Besides these three early-warnings, the remaining 18 were used selectively 400 

within particular domains. The most striking are “spatial variance” (only used in ecological 

studies) and “dynamic network biomarkers” (only used in health studies, see also Sect. 3.1). Within 

domains (Fig. S4), ecology is the domain with the highest heterogeneity in the early-warnings (18 

out of the 21 used more than once), followed by health (10), and climate (7).   

 405 

 

 
Figure 5: Number of papers of the 21 early-warnings used more than once in our literature review. Each bar is partitioned 
into the 5 scientific domains.  

 410 
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3.4 A positively skewed performance of early-warnings 

67.8% of all studies reported a positive performance of all 65 reclassified early-warnings across 

all domains (Fig. 6). Only 3.4% of the studies reported negative performances (i.e. no or opposite 

to expected warning). Studies in ecology reported the most negative results, followed by climate 415 

and health, with none reported for physical or social sciences. The performance in the rest of the 

studies were either mixed (i.e. positive or negative in studies which analysed multiple early-

warnings or datasets, 24.7%) or inconclusive (i.e. a statistically weak result, 4.8%). This is an 

impressively positively skewed result potentially reflecting the known bias in publishing 

significant results (Fanelli, 2012) or in post hoc analysis where a tipping point has been already 420 

documented and early-warnings have been applied in hindsight (Boettiger and Hastings, 2012a). 

Interestingly, all the negative results included CSD-based warnings, while for non-CSD warnings 

only a small fraction reported inconclusive or mixed results (Fig. 6). This difference could be 

attributed to the fact that non-CSD warnings are at times idiosyncratic developed for the specific 

system under study compared to the more generic CSD-based. Indeed, focusing on the 21 early-425 

warnings that were used more than once (Sect. 3.3), such system-specific indicators (such as the 

“dynamical_network_biomarkers”) always had a positive result (Fig. 7). Overall, the least-used 

warnings were associated with a positive performance, whereas the most-used ones (like variance, 

autocorrelation, skewness, power spectrum) showed all types of performance. There was no early-

warning that had predominantly negative or mixed results except for kurtosis (Fig. 7). There was 430 

no particular difference in the performance of the more-than-once-used early-warnings across 

domains (Fig. S5). 
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 435 
Figure 6 Alluvial plot connecting scientific domains, the performance of the early-warnings and the type of early-warning 
(CSD-based vs non-CSD-based). Colors indicate the performance. The size of the boxes in each column represents the 
proportion of each category. The figure is “read” from the middle column (‘performance’) to either the right (‘early-
warning type’) or the left (‘scientific domain’). The thickness of the lines are proportional to the performance that belongs 
to a certain domain (from the ‘performance’ column to the ‘domain’ column) or are proportional to the type of early-440 
warning (from the ‘performance’ column to the ‘early-warning type’ column). For example, for the ‘performance’ mixed 
(blue), studies with mixed performance where done with both CSD-based and non-CSD-based warnings (‘early-warning 
type’ column), while the CSD-based mixed were found in all domains and the non-CSD-based were split among climate, 
ecology and social sciences (‘scientific domain’ column). [‘Positive’ performance indicates there was a warning identified; 
‘negative’ no warning was identified; ‘mixed’ indicates positive and negative performances when tested in multiple datasets 445 
or when testing more than one early-warning in the same dataset; ‘inconclusive’ the results could not indicate neither a 
positive nor a negative warning.] 
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450 
Figure 7 Early-warnings (used > 1) and their performance. ‘Positive’ performance indicates there was a warning identified; 
‘negative’ no warning was identified; ‘mixed’ indicates positive and negative performances when tested in multiple datasets 
or when testing more than one early-warning in the same dataset; ‘inconclusive’ the results could not indicate neither a 
positive nor a negative warning. 

 455 

 

4. Discussion 

The idea of early-warnings based on CSD is relatively old. In a textbook on “Catastrophe Theory 

for Scientists and Engineers” from 1981, Gilmore already talked about “catastrophe flags” for 

indicators of CSD (Gilmore, 1981). After an early ecological paper (Wissel, 1984), 20 years later the 460 

topic generated an enormous amount of interest, mainly theoretical, with the first empirical tests 

being on past climate tipping points (Livina and Lenton, 2007; Dakos et al., 2008). Our review of the 

literature of the last two decades shows how the use of these indicators has since spread to many 

other disciplines. Indeed, the generality of the approach - the fact that CSD can be observed in 
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many dynamical systems, independent of the details of the underlying dynamical equations- 465 

created an opportunity for testing their validity on many systems and explains the enthusiasm they 

generated and the diversification of applications which followed.  

 

4.1 Early-warning applications: a success story? 

Our literature overview suggests that the 65 early-warning signals identified successfully detected 470 

a tipping point in almost 70% of the times they were used. This is an impressively positive result, 

which should nonetheless be treated with caution. First, in many cases, the empirical studies were 

conducted on systems that are either relatively simple or under controlled lab conditions, making 

them mostly proof-of-principle demonstrations (Dai et al., 2012; Veraart et al., 2012). Second, most 

empirical studies were restricted to hindsight application, meaning that an a priori knowledge of a 475 

tipping point may introduce bias towards detecting CSD indicators (Boettiger and Hastings, 2012a; 

Spears et al., 2017). Third, the documented publication bias against negative or insignificant results 

(Fanelli, 2012; Franco et al., 2014) probably applies in the case of the early-warning research given the 

attention the specific topic has attracted in recent years. One important aspect that we have not 

considered in the comparative analysis of the reviewed literature is the fact that each paper uses 480 

different statistical methods, different hypothesis testing approaches (like surrogate data, Bayesian 

and frequentist p-values) and different significance levels to conclude on the identification of an 

early-warning or not. To what extend such differences may even induce p-hacking is unclear, but 

needs to be acknowledged in future work. 

 485 

Yet, these considerations do not reduce the value and prospect of early-warning research. For 

instance, one of their biggest values lies in the possible detection of an approaching tipping point. 

A number of studies has demonstrated the potential proximity of tipping points in modern climate 

data using early-warnings (Boers, 2021; Boulton and Lenton, 2015; Ditlevsen and Ditlevsen, 2023). It has also 

become increasingly clear that early-warnings can be very useful for comparing the resilience of 490 

similar ecosystems across space (e.g. (Verbesselt et al., 2016; Forzieri et al., 2022; Lenton et al., 2022) to 

provide an approximate estimate of resilience that can help prioritise management. In this way, 

with ‘resilience maps’, rather than speculating about the proximity to a potential threshold, we can 

rank situations at a given moment and place.  
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 495 

4.2 Challenges 

There are a number of conceptual, operational and methodological challenges that can blur the 

detection of early-warnings on real data (Dakos et al., 2015). For these reasons, some studies have 

highlighted their failure at detecting early-warnings on data (Burthe et al., 2016), while others have 

raised caution about their uninformed use without knowing more about the system’s drivers and 500 

underlying mechanisms (Boettiger et al., 2013). Our review can be used as starting point in trying to 

understand when and why early-warnings can fail or not by looking at how they have been applied 

within the domains we have identified as their performance seems to be idiosyncratic to the data 

type and case study used. In what follows, we discuss more generally some of the most important 

challenges related to the use of early-warnings.  505 

 

4.2.1 Fast changes, slow responses, stochasticity, multiple drivers, limited data challenge early-warning 
performance 

The detection of early-warnings relies on the assumption that the system is approaching a transition 

gradually. A system should be externally forced on a slow timescale towards the tipping point, 510 

while experiencing perturbations on a shorter timescale such that CSD-based early-warnings 

signals can be estimated. In theory, it is generally assumed that the short-term noise is independent 

and identically distributed with a mean of zero. This is unlikely to be the case, with climate systems 

experiencing extreme weather events, for example, which are likely becoming more prevalent with 

the changing climate. There have been 3 ‘1-in-100 year’ droughts in the Amazon rainforest since 515 

2005 (Erfanian et al., 2017; Lewis et al., 2011) which clearly alter the signals observed. For cases like 

these, it is worth measuring early-warnings on the drivers themselves. If these show early-

warnings, then it is likely that signals observed in the system itself are being driven by changes in 

forcing rather than a gradual movement towards tipping. Yet, early-warnings of the drivers as a 

false-positive check make sense only in the case where the drivers are independent from the system 520 

variable. For instance, in the case of the Amazon, early-warnings of rainfall can be seen as 

indicators of the Amazon tipping itself because of the strong moisture recycling feedback present, 

rather than an external factor inducing early-warnings on Amazon vegetation dynamics. 
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Things get even more complicated when more than one driver is acting on the system. In most 525 

cases, the assumption is that there is a single driver with a monotonic directional change towards 

the tipping point. Or there are multiple drivers which all have the same effect and directionality. 

But it has been shown experimentally that in the presence of multiple drivers contradictory early-

warnings may arise even if both drivers would produce similar patterns in early-warnings acting 

in isolation (Dai et al., 2015). 530 

 

When monitoring a system, longer timeseries are desirable to detect the upcoming tipping point. 

For instance, the best-case studies found in this literature review from remote-sensed products, 

which have been available since ~1972, have approximately 50 years long timeseries. However, 

due to sensor degradation and upgrades, it can be challenging to get a long timeseries from a single 535 

sensor, and products are often created from combined data sources. This can interfere with most 

of the early-warnings, if this merging changes the signal-to-noise ratio (SNR) across time (Smith et 

al., 2023). For example, newer sensors will measure with a greater radiometric accuracy, increasing 

the SNR and in turn ‘erroneously’ increasing the AR(1) as far as an early-warning is concerned. 

This increase in SNR will also decrease variance, thus allowing the user to check for anticorrelation 540 

between AR(1) and variance to see if the early-warnings are being influenced or not. 

 

As well as questions around data availability and noise behaviour, the inherent timescale of the 

system being studied can hinder our ability to detect tipping points. While tipping is by definition 

a ‘fast’ process, for slow moving systems like the thermohaline circulation (AMOC), this tipping 545 

event occurs over decades and could therefore be difficult to detect that the tipping point has been 

passed using early-warnings. Another example of this is the Amazon rainforest, where at least in 

modelled vegetation, there is a slow response of the forest based on the climate change that it has 

been subjected to (Jones et al., 2009). It could take decades for dieback to occur even under a constant 

climate such that a tipping point could be passed long before it is actually realised (Hughes et al., 550 

2013). This ‘committed response’ has been explored in a number of GCM experiments (Jones et al., 

2009; Boulton et al., 2017), but it is unclear how early-warnings would be affected by this (van Der Bolt 

et al., 2021). 
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4.2.2 Non-specificity of early-warnings   555 

The generic and universal character of most - but in particular CSD-based - early-warnings comes 

at a price of these warnings not being specific to abrupt and irreversible tipping points. Instead 

they can be used to also detect smooth and reversible transitions (Kéfi et al., 2013). This limitation 

suggests that we need other, additional indicators, in particular system-specific indicators (Boettiger 

et al., 2013). In the case of spatially structured ecosystems such as drylands, for example, studies 560 

have shown that temporal early-warnings could fail (Dakos et al., 2011), in which case, the use of 

the changes in the patterns themselves could provide a good alternative (Rietkerk et al., 2004; Kéfi 

et al., 2007). In the same way, specific indicators have been developed in health sciences for the 

monitoring of disease emergence (Table S3). 

 565 

System-specific early-warnings may also be a better prospect, where understanding about 

processes in the system can help us to monitor its resilience in novel ways (Boulton et al., 2013). 

Yet, the original idea behind the development of early-warnings was based on the premise that this 

knowledge is missing or insufficient and thus a pattern-based approach could be more informative 

(Scheffer et al., 2009). Thus, the challenge is to strike the right level of system-specific warnings 570 

and to combine them with the generic ones. For instance, trait-based (Clements and Ozgul, 2016) 

and function-based (Hu et al., 2022) warnings have been recently suggested as complementary to 

the existing generic warning signals. A first step towards that direction could be to map the 65 

classified early-warnings we reviewed on a gradient of generic to system-specific indicators.  

 575 

4.2.3 Multivariate (high-dimensional) systems  

Most early-warnings are well-tailored for uni-dimensional systems, meaning systems described by 

a single observable (e.g. vegetation cover). However, real dynamical systems are typically high-

dimensional and the quantification of early-warnings in those multivariate systems presents 

challenges. For instance, two different variables may give conflicting information, or obscure a 580 

clear signal (Boerlijst et al., 2013; Weinans et al., 2021). In theory, one expects that the variables 

directly involved in the interactions to cause a tipping point are the best to monitor (Carpenter et 

al., 2014). However, it is challenging to know from which variable(s) to measure early-warnings 

in a multivariate system (Dakos, 2018). 
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Two main approaches in the analysis of multivariate systems have been recently developed. One 585 

relies on conceiving the system as a network, where the nodes are the variables, whose dynamics 

are followed through time, and evaluating changes in the structure of the network. For instance, as 

the system moves towards a tipping point, changes in degree distributions of such a network are 

representative for an approaching tipping point (Lu et al., 2021). Recent research explores a 

complementary approach where causal links are calculated instead of correlation links and the 590 

strength of the causal link works as the indicator of resilience (Nowack et al., 2020). 

Alternatively, dimension reduction techniques can capture overall network dynamics into a 

representative statistic. For instance, Principal Component Analysis (often referred to as Empirical 

Orthogonal Function (EOF) in climate science) can be used to get directions of change (Held and 

Kleinen, 2004; Weinans et al., 2019). Data can be projected onto the leading principal component, 595 

effectively yielding a univariate timeseries on which the univariate early-warning can be applied 

(Held and Kleinen, 2004; Boulton and Lenton, 2015; Bathiany et al., 2013). This analysis does not 

make any a priori assumptions about the interactions between the different network nodes, and is 

therefore quite flexible in its use. However, it requires large amounts of high-quality data to yield 

accurate results. The underlying assumption is that as the system approaches the tipping point, the 600 

dynamics become more correlated, leading to a high explained variance of a PCA and clear 

directionality in the dynamics (Lever et al., 2020). 
 

4.2.4 Tipping cascades 

A more peculiar challenge in the application of early-warnings is their ability to detect cascading 605 

tipping points: where a tipping point in one system has a knock-on effect on another system causing 

that to also tip (Klose et al., 2020; van de Leemput et al., 2018; Saade et al., 2023). Unless these 

systems are linked in such a way that early-warnings can be observed in both systems, the cascade 

is likely to present as a shock to the second system such that it would be unpredictable whilst 

monitoring it in isolation (Bathiany et al., 2013). For systems where tipping in one system causes 610 

the connected system partially towards a tipping point (known as a ‘two-phase transition’’), a 

stepwise jump in early-warnings in the second system can be detected. For coupled systems where 

the tipping in the second system happens instantaneously (a ‘joint cascade’) or soon after the 
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tipping in the first system (a ‘domino cascade’) early-warnings are unlikely to be detectable (Klose 

et al., 2021).  615 

 

4.3 Opportunities 

These challenges associated with the use of early-warnings are also accompanied by a number of 

opportunities to improve their detection in real data. Below we outline a few of the most promising 

ones. 620 

 

4.3.1 Composite metrics 

Although there exists a multitude of early-warnings (CSD-based and non-CSD-based, generic and 

system-specific, on spatial, structural and temporal data), few studies have compared in a 

systematic way how these warnings behave one against the other or across different systems (Dakos 625 

et al., 2011; Veldhuis et al., 2022). Apart from the CSD-based warnings where their relationships are 

mathematically known (Kuehn, 2012), we simply do not know how similar information early-

warnings provide. Understanding the interrelationships between all types of the most-used early-

warnings will be crucial to improve their use for detecting tipping points. Composite metrics - 

where multiple early-warnings are combined (Drake and Griffen, 2010), abundance-based with trait-630 

based warnings are compared (Clements and Ozgul, 2016), or machine-learning has been used to train 

models of multiple warnings as predictors (Brett and Rohani, 2020)- have been suggested to improve 

the significance and detectability of approaching tipping points. Given the increasing capacity to 

monitor the multivariate aspects of most systems (discussed in Sect. 4.2.3) and the increasing 

availability of such data (see Sect. 4.3.2), we are not far from estimating multiple early-warnings 635 

on multiple dimensions of a system. The next step is to develop meaningful ways to best combine 

them for detecting tipping points. 
 

4.3.2 Increasing data availability: open databases and remote-sensed data 

Over the last decade, data from long-term databases and remote-sensing has grown to become the 640 

primary sources for capturing temporal and spatial early-warnings for tipping points. Especially 

for remote-sensing data, this coincides with the expansion of freely available Earth observation 



27 
 

datasets combined with access to cloud-based systems which provide the computational power to 

process this increase in data (Gorelick et al., 2017). A primary focus has been on the temporal analysis 

of optical imagery from satellites such as the MODIS sensor (Moderate Resolution Imaging 645 

Spectroradiometer) (Liu et al., 2019; Majumder et al., 2019) or from the AVHRR sensor (Lenton et al., 

2022). Additionally, the vegetation optical depth (VOD) derived from microwave passive 

radiometers (Moesinger et al., 2020), has been employed to analyze early-warnings, with temporal 

records since the late 1970s (Smith et al., 2023; Boulton et al., 2022b). Overall, the continued growth of 

remotely-sensed datasets is likely to drive further temporal early-warning research, while the 650 

emergence of new satellite sensors with enhanced spatial resolutions (in the order of meters) will 

also enable an improved analysis of spatial early-warning at large scales. Yet, such development 

requires a profound understanding of the acquisition systems to effectively control and account for 

parameters that may impact the extraction of early-warnings.  
 655 

4.3.3 New approaches: Machine-Learning 

The success of neural networks for timeseries classification problems has inspired the development 

of Machine-Learning (ML) techniques for early-warnings detection. There is a natural synergy to 

this approach in that the same CSD phenomena manifest across a wide range of systems 

approaching tipping points, so the notoriously data-intensive task of training a neural network can 660 

be accomplished using plentiful synthetic data and still produce a result which can plausibly be 

applied to empirical data. 

 

Deep learning models which combine convolutional layers have been shown to outperform 

methods using statistical CSD-based warnings (e.g. variance, AR(1)) on a variety of both real and 665 

simulated case studies (Bury et al., 2021; Deb et al., 2022). Furthermore, these models have exhibited 

success in inferring the type of upcoming bifurcation from observed pre-transition dynamics, and 

have performed well in extensions to phase transitions on spatiotemporal lattices (Dylewsky et al., 

2023). Other ML techniques can also tell us something about how far systems are from tipping. For 

example, random forest models could be used to determine the factors that determine 670 

autocorrelation in forest areas on a global scale, and thus how close to tipping these forest areas 

could be based on driving variables (Forzieri et al., 2022) or can help us determine the factors the 

influence the occurrence of tipping points (Berdugo et al., 2022). Yet, one should always bear in mind 
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that ML will be as good as their training sets. Testing these approaches on existing datasets will 

help understand their potential as well as testing them in cases of noise- or rate-tipping. Taken into 675 

consideration their limitations (Lapeyrolerie and Boettiger, 2022), combining ML techniques with 

‘traditional’ early-warnings could become promising for monitoring systems that may be 

approaching tipping points.  

5. Conclusions 

The unprecedented amount of data originating from remote-sensing systems, field measurements, 680 

surveys and simulated data, coupled with innovative models and cutting-edge computing, has 

made possible the development of a multitude of tools and approaches for detecting tipping points 

in a variety of scientific fields. Early-warnings can tell us that ‘something’ important may be about 

to happen, but they do not tell us what precisely that ‘something’ may be and when exactly it will 

happen (Dakos et al., 2015). The next step is to test the real potential of early-warnings as 685 

preventive and management tools in anticipating natural and human-induced changes to come. 
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