
We thank the reviewers for the constructive comments. Below, the comments are given in normal fond, 

while our replies are in italics. 

 

Review #1 Sarah Schanz 

 

Review of Turowski et al. (2023) A process-based model for fluvial valley width 

The authors seek to understand how valley width develops under different climate, tectonic, and 

lithologic conditions by formulating a deterministic equation for valley width. By developing an equation, 

the authors allow individual components of the system to be analyzed. As an example, the authors show 

how analysis of their valley width equation reconciles research showing that lithology controls valley 

width and research demonstrating a lack of lithologic control. 

This manuscript is well reasoned and is in a near publishable state. The work is a significant contribution 

to geomorphology and, as the authors point out, could have implications for ecology, archaeology, and 

fish biology. I have a few comments that represent minor edits. 

Thank you for the constructive comments. 

 

In line 145, the authors state that channels change direction when there is too much sediment from the 

opposite bank to transport. Please provide observations or citations to support this. While it makes 

intuitive sense, this assumption underlies the derivation for 𝜆, and so I’d like to see more formal support 

for it. 

To our knowledge, there is no prior work on this issue and the argument is original to our work. As such, it 

provides a testable prediction within our model framework. We are not aware of work directly pertaining 

to this point (hence, our label as ‘postulate’). However, it is a common observation that lateral sediment 

input (e.g., by landslides or tributaries) pushes rivers to the side, and we have added a statement on this 

and some references. 

The text now reads: “We did not find documented observations of this notion, and a thorough 

investigation will need to be done in the future. Yet, it is commonly observed that lateral sediment input 

pushes rivers towards the opposite bank (e.g., Cruden et al., 1997; McClain et al., 2020; Savi et al., 

2020).” 

 

The confined and unconfined valley width formulations assume that valley widening occurs separately 

from incision; the authors further suggest in line 465 that “valley widening occurs during times  when 

there is no active bedrock incision, and the bedrock floor of the valley is covered by sediment” (also 

stated in line 63). However, actively meandering bedrock channels show evidence for both lateral 

widening and vertical incision during the same period (e.g., Limaye and Lamb, 2016; Merritts et al., 

1994). In this case, lithology affects vertical incision rates, and is not just a factor in the erodibility of 

valley walls. I think (if I am reasoning this correctly) that this does not affect your ultimate statement in 

line 470 that lithology affects the speed of widening but not the steady state width. However, I suggest 

revising the statements in line 465 and line 63 to acknowledge that bedrock rivers can simultaneously 

incise and migrate laterally. 

We agree that bedrock rivers can simultaneously incise vertically and erode bedrock walls laterally, 

especially when the river is meandering actively. However, would this lead to valley widening? In this 

particular case, the valley floor would be sloped (the so-called slip-off slope), and the lateral river 

migration would not result in a flat valley floor. This seems a little bit a matter of definition, potentially 



invoking a threshold of the lateral slope of the bedrock valley floor. In any case, we believe that the 

mechanics in this case work slightly differently than outlined in our current model. 

We note that we did not state that vertical incision and lateral erosion never occur simultaneously, but 

that “valley widening occurs during times when there is no active bedrock incision, and the bedrock floor 

of the valley is covered by sediment”. We have now added the word ‘dominantly’, and added a few 

references. In particular, the in press paper by Langston & Robertson, ESPL 2023, is in line with our 

expectation, as they showed in experiments that high sediment supply and laterally mobile channels are 

necessary to create wide bedrock valleys.  

The passage now reads: “We suggest that in bedrock rivers, valley widening occurs dominantly during 

times when there is no active bedrock incision, and the bedrock floor of the valley is covered by 

sediment, such that the river behaves like an alluvial river (cf. Shepherd, 1972; Turowski et al., 2013). 

This notion is in line with recent experiments of Langston & Robertson (2023), who found that high 

sediment supply, sediment cover on the bed, and laterally mobile channels in the alluvium are needed 

for the formation of wide bedrock valleys.” 

 

In unconfined valley settings and wide confined valleys, meander migration and cutoffs result in rapid 

switches in channel position as well as upstream migrating knickpoints (e.g., Finnegan and Dietrich, 

2011). Those stochastic knickpoints may affect valley width by first causing an increase in transport 

capacity, followed by an increase in bank height and increased lateral sediment supply once the 

knickpoint has passed. Could this process have a significant effect on the analytic valley width solution? 

Very interesting question! We would say: it depends on the averaging timescale. For very long time 

scales, it should average out. For intermediate time scales, it will have a local effect. Given that we base 

our model on the consideration of a cross-section and a steady state achieved over long time scales, we 

have not added a discussion to the manuscript. 

 

Line 331: Citation needed to say that erosion rates are a good proxy for uplift in the Himalayas 

We added three references for this statement, Scherler et al., 2014, Hodges et al., 2004, and Lenard et al., 

2020. 

 

Last, the authors describe the model as process-based (title, line 226), deterministic (line 441), and 

physics-based (line 613), and should choose a consistent terminology. I do not agree that this is a 

process-based model, as it does not include processes of valley widening beyond broad consideration of 

the effects of sediment supply vs transport (i.e., a process-based model might be more focused on 

meander process). Particularly since many of the variables in the three 

study sites are estimated empirically, I suggest describing this as an ‘empirical and deterministic’ model.  

We disagree somewhat with this statement. Our model is based on considerations of first principles and 

generic physics-based arguments, and the arguments we use are entirely independent of the data we test 

it against. Further, our model, as depicted in equations 15 and 16 only contains parameters that have a 

direct physical interpretation. All parameters could at least in principle be measured in the field and in 

experiments (however, we are very aware of the many practical issues in doing this, for example, the 

variability of flow depth h in natural settings). There are no lumped parameters that need empirical 

calibration, and only two dimensionless scaling parameters (c in equation 2 and k in equation 7). Both of 

these can be, in principle, measured in the lab or field. The need for the fit parameter m (eq. 17) arises 

from the incompleteness of the currently available data sets, and is not inherent in the model set up. As 

such, we do not think that the model is ‘empirical’ in any conventional sense of the word. 



One can argue about what is a process. In geomorphology, we often have a scale dependence of what is 

seen as ‘process’. Case in point, meandering, used as an example by the reviewer above, depends on the 

process of grain entrainment by turbulent flows. As such, meandering could be viewed as an emergent 

behavior, not a process. 

In response to this comment, we have changed ‘process-based’ to ‘physics-based’.  

We did not remove the use of the term ‘deterministic’ – in line 441, this term is identified as a label, and 

the thinking behind this label is explained in detail in section 5.4. 

 

 

Review #2 Sebastién Carretier 

 

This manuscript presents a new model to explain the functional relationships between the width of a 

valley W and several parameters such as drainage area and tectonic uplift. It is very well written, with 

very broad implications for understanding landscape dynamics over geological time. The widening of 

valleys is still poorly understood, and such a model provides a framework that could enable this element 

of the landscape to be interpreted quantitatively in terms of climate and tectonics. The fit between the 

data and the model is remarkable, even if some of this fit is due to the adjustment of certain parameters. 

This suggests that the scaling relationships between W and the various ingredients of the model are 

correct. The model is based on a number of simplifying assumptions, starting with the assumption that 

valley widening reaches a limit through time. This model assumes and applies to a stationary state of W. 

To derive the model, J. Turowski and colleagues follow an original approach, starting with a simple 

definition of W and gradually integrating the ingredients that lead to the final equation linking W with 

the other parameters. However, I did not always fully understand the derivation of these equations and I 

have some doubts about certain assumptions. The rest of my report is more a discussion of these 

misunderstandings than a challenge to the model. These comments can be used to improve the 

presentation of the model. 

Thanks for the supportive comments. 

  

I'm not sure I fully understand Equation (1) linking valley width W with lateral migration velocity V. If I 

understand correctly, this equation assumes that the width W is a constant width, obtained after a time 

Deltat. If I still understand correctly, this time is defined as the average reoccupation time of the same 

site by the channel, in particular the edge of the valley.  

Equation 1 is a general formulation that does not necessitate a steady state valley width. It states that 

valleys result from lateral motion of a river channel, i.e., valley is wherever the river has been at some 

point. This is in line with many prior formulations. Speed could be variable in time. The timescale could be 

infinite, if there is no change in direction. Equation 1 would still be the same. The steady state width then 

comes with the assumption that the rivers switch directions at regular intervals Deltat (see answer to 

next comment). 

We added: “Equation (1) is a general formulation for valley formation by fluvial bevelling, which allows, 

for example, for variable V.” 

 

However, a little above, it is stated that the width is set by the average time during which the channel 

migrates in the same direction. How are these two times related? What is the underlying vision: a 

channel that migrates for a certain time in one direction and then abruptly changes position (through 



avulsion or some other process)? In other words, why is the maximum bound in the integral of Equation 

(3) a mean time and not an infinite time, since we are looking for a stationary solution?  

Delta_t is the average time that the channel migrates in one direction. Essentially in the steady state 

model, we make the ‘effective’ assumption that the river moves for a constant time in one and then for 

the same time in the other direction. And so on. As such, once the channel has traversed the entire valley 

once, there is no further widening, because it changes direction exactly at the time when it touches one of 

the channel walls. We then identify the relevant timescale with the average switching time of the 

stochastic process (equation 2), acknowledging that they scale and may not be exactly the same (hence 

the dimensionless scaling factor c). 

The upper bound is not infinite because the channel switches direction. And during the times it moves 

within the valley, it does not widen the valley. An infinite upper bound would imply that the channel never 

switches direction. Note that in a fully stochastic treatment of channel switching, there is probably some 

drift in that actively-reworked steady-state width. Such a drift is observed in experiments (e.g. Fig. S4 in 

Bufe et al., 2019), and we are working on how to include it in the modelling of channel switching. This 

drift is briefly mentioned in the discussion of the fully stochastic model in section 5.4. 

We revised the statement after introducing eq. 2 to: “We proceed by considering the average behaviour 

of the channel belt, essentially making the assumption that the channel switches direction of migration 

at regular intervals Δt.” 

 

Why is an integral needed here rather than writing directly that the width is determined by the product 

of the speed of migration in one direction and the average time Deltat during which the channel is in 

contact with the edge of the valley (=V.Deltat) ? 

Yes, in the simple case that V is independent of time (i.e., a constant), the width is given by V*Delta_t. 

This, essentially, is the result for the unconfined case given in eq. 4. Yet, the integral formulation is more 

general than stating V*Delta_t. We use it directly when incorporating uplift in equation 10. Further, the 

integral in eq. 1 opens the possibility for future extensions of the model, for example, for integrating over 

variable discharge. 

We added: “Equation (1) is a general formulation for valley formation by fluvial bevelling, which allows, 

for example, for variable V. For constant V, W = VΔt + WC.” 

 

Does it make a difference if the total water discharge splits between multiple channels? Croissant et al 

(2018 JGRES) show that continuity of transport capacity as the valley widens requires a change from a 

single channel to multiple channels. Does the number of channels in the valley influence the likelihood of 

widening the valley? 

This is a very interesting question! We cannot fully answer this at the moment, but we can make a few 

generic and observational statements.  

First, we do not fully understand the controls on q_L, what we call the lateral transport capacity. We do 

know that it depends on, for example, water discharge, sediment supply and grain size, but the functional 

relationships are debated and have not been finalized (see Bufe et al., ESPL 2019 for an investigation of 

experimental data, and a wider discussion). Because we do not fully understand q_L, we cannot make any 

reliable statements on how it changes when the same amount of water and sediment is split up into 

different channels. 

Second, multiple channels add a considerable complexity. For example, there is no requirement that all 

channels at all times migrate into the same direction, implying that the channels interact and their 

number, size, etc. evolves over time. Incorporating this into the model would require a number of 



additional assumption (on channel merging, splitting, migration…), and a scheme of keeping track of 

their motion within the cross section to map their individual contributions to valley widening. This is 

beyond our first simplified attempt to address the problem, but yields interesting questions for future 

research. 

Third, Bufe et al.’s (2016) experiments, which we compared to the model (section 3.1), frequently did 

feature multiple channels. Still, the model provides a reasonable explanation of the data, potentially 

indicating that incorporating multiple channels would yield similar scaling relationships to our simple 

model. 

We have added a paragraph to section 5.1. 

 

Are there arguments to justify a Poissonian distribution of waiting times? Would another type of 

distribution (from one valley to another) dramatically change the model's predictions? 

Note that the waiting times in a Poisson process are exponentially distributed. The number of events per 

time is Poisson distributed. This corresponds to a uniform distribution of events within time. 

A Poisson process arises if: 1) events are independent and identically distributed (this implies that there is 

no history dependence for the particular events, i.e., the channel switches direction independently of 

when it switched last time or how often it has switches before), 2) two events cannot occur at the same 

time (i.e., there is always a finite but arbitrarily small waiting time between two events), and 3) the 

average rate of events is a constant. These are the formal assumptions that we make and state.  

For the steady state model, the underlying distribution is not relevant, as long as it has a well-defined 

mean over the time scales that are relevant for valley formation. It does make a difference for the 

transient development of the valley towards the steady state, and for the valley drift in a full stochastic 

treatment. We are currently preparing a follow-up paper focusing on transient evolution. 

We added: “As such, the likelihood of the switches in direction have no history dependence. The stated 

conditions mean that the switching of directions is described by a Poisson process with rate parameter λ 

[T-1] that quantifies the mean number of switch events per unit time.” 

 Please also refer to the replies above. 

 

In Equation (5) the characteristic shift time is proportional to the ratio between the lateral transport 

capacity and the cross-sectional volume of a channel. I would have rather written that it is proportional 

to the ratio between the longitudinal flux Qs of  sediment passing through the channel and the volume 

of the channel (e.g. Sun et al., 2002, WRR). This flux can be related to the upstream uplift rate but also 

the drainage area and could therefore change the scaling relationship between width W, the steepness 

index  and the drainage area. Similarly, avulsion frequency increases with sediment flux Qs (e.g. Bryant et 

al., 1995, Geology). If Lambda depended on Qs, would this dramatically change the model's predictions? 

q_L depends on upstream sediment supply (see Bufe et al., 2019). So, the dependence on Qs is implicit in 

this equation, and it does not change the central results. Note that the implicit dependence may be weak 

(see Bufe et al., 2019). 

We note here that the controls on q_L are not fully resolved (see Bufe et al., 2019 for a wider discussion). 

  

In equation (15), two different definitions of the probability of a channel "touching" the edge of the 

valley seem to be combined. The first corresponds to a Poissonian process (Equations (2)-(11)) and the 

second to a homogeneous probability which only depends on the ratio between the width of the channel 

and the width of the valley. Is there not a conflict between these two visions and a contradiction in 

combining them in equation (15)? 



The Poisson process gives a rate for the number of switches. In contrast, P is the fraction of the time that 

river spends at a valley wall while moving in the direction of this wall. This would be the probability of 

observing valley widening when looking at the river at a random time, while the river is not yet at a 

steady state. The two notions do not describe the same thing. Note that we did not use the term 

‘probability’ when defining P. 

In fact, P is necessarily zero in steady state in the ‘deterministic’ model approach (the river does not 

spend any time widening the valley anymore). The function for P would look different in a fully stochastic 

treatment. 

In equations 12 to 15, we use P to incorporate lateral sediment supply. The interpretation of the term is 

the similar as before, and we have slightly redefined it after eq. 12, now stating: “P [-] is the fraction of 

time that the river spends at the valley walls with a direction of motion towards them”. 

 

Would it be possible to test the validity of the model by analysing the sudden changes in valley width 

when a river moves from a confined to an unconfined situation as it leaves a mountain range? 

Yes, this may provide suitable natural experiments. One needs to be a bit careful when considering 

depositional systems, especially where avulsion is an important process (e.g., at the mountain fronts, 

rivers often construct alluvial fans). Net depositional systems have not yet been incorporated into our 

model framework, and while it should be possible to describe valley formation due to avulsing rivers by a 

similar framework as used here, the meaning of q_L would be different (compare to the discussion of 

Bufe et al., 2019). 

We have added in section 2.1: "We assume that depositional systems do not naturally lead to incised 

valleys. We will thus consider graded or incising channels, and assume that they move laterally by bank 

erosion, rather than avulsion.”  

  

The model predicts functional relationships between valley width and several geomorphological 

parameters, but not lateral erosion rates.  

We have not delved into this particular issue in the present paper, because we are concerned with the 

steady state solution, in which lateral erosion rates are necessarily zero. It is pretty straight forward to 

derive some results for the case with non-zero lateral erosion rates, and we have provided some 

discussion of this for the model predecessor (see Tofelde et al., AGU Advances, 2022).  We are currently 

preparing a follow-up paper focusing on transient and non-steady evolution of valleys within our model 

framework.  

 

Some data from Zavala et al (GRL 2021) seem consistent with this model. For example, Zavala et al. 

found a very low valley-side erosion rate for the valley located upstream of a knick-zone in the Tana 

valley in Chile. The valley is not very wide and is not deeply incised into the pampas (this point is an 

outlier in the erosion rate versus W graphs). This seems consistent with the fact that the valley has 

reached a state of equilibrium between qL and qH which determines Wc, and for which lateral erosion is 

necessarily low. 

Thanks for pointing this out. We are aware of the Zavala et al. paper. In fact, in our previous paper 

(Tofelde et al., AGU Advances, 2022), where we first suggested the balance between qL and qH, we 

provided a discussion of and a comparison with the Zavala data. The bulk of that comparison can be 

found in the supplement S1 of that paper. For your reference, we include here the relevant figure and 

caption (see Tofelde et al., 2022, supplementary material S1 for more details).  



 

Figure S2. Testing our model against data from the Chiza Canyon in the Atacama Desert. (a) Valley 
width, valley-flank height, total erosion rates of valley flanks based on 10Be (numbers in m/My), and 
valley-flank gradient have been measured at six locations within the Chiza Canyon, Chile (Zavala et al., 
2021). In response to Miocene surface uplift on the forearc a knickzone has been migrating upstream 
and is currently located close to sample site 6. Zavala et al. (2021) connect the higher valley-flank 
erosion rates at location 5 and 6 to the ongoing response of the river to knickzone migration. (b) 
Conceptual relationship of how the two components of vertical river incision, EV, and horizontal hillslope 
erosion, EH, contribute to the total hillslope-erosion rate measured by 10Be, ET (after Zavala et al., 2021). 
From ET and SH, the parameter EH  can be calculated as long as EV is small or can be independently 
estimated. (c) Comparison between measured valley width by Zavala et al. (2021) and predicted valley 
width based on our model. Note that we estimated several required parameters based on proxy data 
(see text for details). Hence, predicted valley widths have no uncertainties, have no metric unit and do 
not necessarily scale 1:1 with measured valley width. 

(Figure and caption from Tofelde et al., AGU Advances, 2022, https://doi.org/10.1029/2021AV000641, 

supplementary material S1) 

  

 



Specific comments 

 

Line 59, "rock type" and weathering. 

Added. 

  

Lines 71-72 These two sentences about the climate seem to me to contradict each other. 

Changed to: “which have frequently been suggested to form in response to cyclic climate change” 

  

Line 215. What is Wu (not used afterwards)? Is it Wc? 

This was a left-over from a previous version with slightly different notation. Changed to: “can be 

identified with the width of an uplifting valley”. 

  

Equations (19) and (20). Is the dependence of Wc on A taken into account in the model? And if not, 

wouldn't this change the model's predictions about the scaling relationship between W and A? 

It depends on what one is interested in. For the scaling of valley width with drainage area along an 

individual stream, the dependence of W on A would definitely have to be taken into account. We do 

provide a brief discussion of this point in section 4.3. When dealing with a regional picture, not 

considering upstream-downstream connectivity of valleys, using channel width provides a simpler 

approach, mainly because channel width depends on drainage area (and other parameters) in a 

complicated way that is not fully understood. A beautiful feature of the model equation (eq. 15 and 16) is 

that the in the two limits, there is only a dependence on channel and unconfined valley width. This means 

that fits to data converge to the true mean of the data set in these limits.  

  

Line 557. I'm not sure I understand. Do you mean that the width increases so slowly in the EW model 

that this amounts to fixing the width of the valley? 

The point here is that in a fully stochastic treatment, for a case without uplift, the valley keeps widening 

infinitely, as has been suggested in the EW model. The reason for eternal widening, however, differs 

between the two models.  

Within the EW model, the widening rate depends on the formulation of the fraction of time that the 

channel spends incising the valley walls. In previous work, this was given as the ratio of channel to valley 

width, implying that the width increases with the squareroot of time. Using our formulation of the 

probability (eq. 13), the EW model predicts a logarithmic increase of valley width in time. The 

stochastically driven increase in valley width in our model also increases with the squareroot of time, as 

for random walks (derivations will be published in an upcoming paper). 

In any of these formulations, it depends on the observation time and the time since the start of the 

development of the valley, whether a valley is increases its width so slowly that it is perceived to not 

increase at all. 

We slightly revised the sentences to read: ”In an uplifting area, the valley floor would thus shift laterally 

over time, without changing its width. Valleys in an area without uplift will widen indefinitely at an ever-

slowing pace. This is analogous to the prediction of the eternal widening model, yielding a similar 

outcome with a different mechanism.” 

 

Line 591: "thereby slowing the lateral back-and-forth movement of the river and narrowing the valley ": 

On the contrary, it could be argued that increasing Qs favours lateral mobility (Bryant et al., 1995) and 

widening (Baynes et al., 2020, ESPL). 



Here we comment on a slightly different issue. The sentence refers to the local effect of uplift in raising 

the material that the river has to erode through to move. Therefore, for a constant lateral transport 

capacity, increasing channel-bank heights will slow down the lateral velocity. It is possible that regional 

uplift impacts the downstream sediment discharge and modulates mobility – that could be modelled by 

modulating the value of q_L. See also previous comments on the controls on q_L (Bufe et al., 2019). 

We added: “This uplift effect does not consider changes in downstream sediment discharge that could be 

driven by increased landscape-scale erosion rates. Such an effect can be modelled in the form of 

modulating lateral transport capacity qL.” 

 

Line 592: "absence of lithological control on the steady state valley width in a regional perspective". I am 

not sure that the model calibration exercise in figure 5C really demonstrates this. Insofar as the fitted 

data is an average per mobility number value class, there can only be one value of Wc for the whole data 

set. Shouldn't you separate the data into different datasets by lithology category to check that W does 

not depend on the lithology globally? 

This statement references the discussion in Section 5.3. (“As argued in Section 5.3, our model is 

consistent both with an absence of lithological control […]”). In that section, we argued that lithology 

likely controls width of individual valleys through its control on Wc. However, when fitting a large 

regional dataset, such as the fit to the data by Clubb et al. (2023), we fit an effective average of all 

channel widths that, therefore, averages across all lithologic differences. It is of course possible to look 

into the lithologic control in the data by Clubb et al. (2023), for example by separating the data by 

lithologic category as you suggest. Such analysis is beyond the scope of the paper.  

We modified the sentence to read: “As argued in Section 5.3, our model is consistent both with an 

absence of lithological control on the regionally averaged steady state valley width (Clubb et al., 2023a), 

and with emerging lithological controls in the scaling relationships of individual valleys (Brocard & van 

der Beek, 2006; Langston & Tucker, 2019).“ 

  

 

I wish you good luck for the revision. 

Thank you for the constructive comments 

 

Sébastien Carretier 


