
On the transition from strong to weak constraint 4DVar using a
simple one-dimensional advection equation for a passive tracer
Noureddine Semane1

1European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, United Kingdom

Correspondence: Noureddine Semane (noureddine.semane@ecmwf.int)

Abstract. In contrast to strong constraint 4DVar, the weak constraint takes into account the model imperfection in the minimi-

sation process. Relaying on a simple one-dimensional advection equation for a passive tracer, this short note shows that the

transition from strong to weak constraint, accounting for both observations and model biases, reduces the analysis bias.

1 Introduction

The perfect model assumption in 4DVar data assimilation, known as strong constraint 4D-Var, is relaxed in weak constraint5

4D-Var by adding a forcing term in the model integration to account for model imperfection and to estimate model error. The

4DVar control variable is then augmented by this forcing term and a corresponding term is added to the cost function which

constrains model error according to its statistical characteristics. The aim of this short note is to show how the transition from

strong to weak constraint affects the quality of the analysis. The demonstration relays on the following 1D advection equation

for a passive tracer describing the evolution of the tracer concentration q on a fixed latitude φ0:10

∂q

∂t
+ u

∂q

∂λ
= 0, (λ,t) ∈ [0,2π[×]0,T ]

∂u

∂t
=

∂u

∂λ
= 0

q(2π,t) = q(0, t), t ∈]0,T ]

q(λ,0) = q0, λ ∈ [0,2π]

(1)

where (q(λ,t),u)T is the state vector representing the tracer concentration q(λ,t) at time t and longitude λ and the invariant

wind u.

2 Direct, Tangent Linear and Adjoint models

Eq. 1 is discretized using the finite difference formulation with first-order Euler forward time stepping and second order central15

differencing for the spatial derivatives following Allen et al. (2013). For the sake of simplicity, the time step ∆t is set equal to

the grid spacing ∆λ. The model grid is constructed using three longitudes (λj , j = 1,2,3), in which case the discretized tracer

concentration is defined as qn
j = q(λj , tn) at time tn, where n = 0, ...,N − 1 are the time steps of the discretized model with

tn+1 = tn + ∆t.
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Eq.1 is discretized as follows:20

qn+1
j − qn

j

∆t
+ u

qn
j+1− qn

j−1

2∆λ
= 0 (with ∆t = ∆λ) (2)

Given a discretized state vector (qn
j−1, q

n
j , qn

j+1)
T , Eq.2 can then be rewritten as

qn+1
j−1 = qn

j−1−
u

2
qn
j +

u

2
qn
j+1

qn+1
j =

u

2
qn
j−1 + qn

j −
u

2
qn
j+1

qn+1
j+1 =−u

2
qn
j−1 +

u

2
qn
j + qn

j+1

(3)

The discretized model in matrix form M describing the dynamic evolution from q0 to q(∆t) is then given by

M0→∆t =




1 −u
2

u
2

u
2 1 −u

2

−u
2

u
2 1


 (4)25

The equation of the tangent linear model is given by

∂q̂

∂t
+ u

∂q̂

∂λ
= 0 (5)

The discretized equation of the tangent linear model is given by

q̂n+1
j − q̂n

j

∆t
+ u

q̂n
j+1− q̂n

j−1

2∆λ
= 0 (6)

The discretized tangent linear model in matrix form M describing the dynamic evolution of the initial perturbation q̂(0) leading30

to the perturbation q̂(∆t) is given by

M0→∆t =




1 −u
2

u
2

u
2 1 −u

2

−u
2

u
2 1


 (7)

The adjoint model in matrix form is :

MT
∆t→0 =




1 u
2 −u

2

−u
2 1 u

2

u
2 −u

2 1


 (8)

3 Strong constraint 4DVar35

Assuming that Eq. 1 gives an accurate representation of the true system evolution, the aim here is to account for systematic

differences between the observations and model by considering the augmented state vector x(t) = (q(λ,t),β)T , where β
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represents an invariant observation bias. The discretized state is then defined as xn
j = (q(λj , tn),β)T at time tn. The strong-

constraint 4D-Var cost function is given by

J(x0) =
1
2
[x0−xb(0)]T B−1[x0−xb(0)] +

1
2

N−1∑

n=0

[H(qn) +β− qn
obs]

T R−1[H(qn) +β− qn
obs]

=
1
2
[x0−xb(0)]T B−1[x0−xb(0)] +

1
2

N−1∑

n=0

[H̃(xn)− qn
obs]

T R−1[H̃(xn)− qn
obs]

(9)40

• x0 = (q0,β)T is the control vector.

• qn
obs are the tracer observations where n = 0, ...,N − 1 are the time steps of the discretized model.

• H is the observation operator with respect to the state vector q and H̃ is the observation operator with respect to the aug-

mented state vector x.

• R is the observation error covariance matrix.45

• B is the background error covariance matrix.

• xn+1 = M̃tn→tn+1(x
n), where M̃ corresponds to the model operator with respect to the augmented state vector x.

The evaluation of the solution for tracer observations for all longitudes, is performed under the following idealized setup:

• The tracer observation vector qobs is constructed for all longitudes at the time t1 = ∆t as follows

qobs =H(qt(t1)) +βt

=H(M(qt(0))) +βt

(10)50

where qt and βt are the true values of the tracer and the observation bias, respectively.

• The background error covariance matrix R is assumed diagonal. The observation error standard deviations are set equal to

σobs.

• The background error covariance matrix B is assumed diagonal. The tracer background error standard deviations are set

equal to σq and the observation bias error standard deviation is set equal to σβ .55

• The background value for the bias βb is assumed equal to zero.

The observation operator with respect to the state vector q is given by

H=




1 0 0

0 1 0

0 0 1


 (11)
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The observation operator H̃ with respect to the augmented state vector x is given by

H̃= H̃ =




1 0 0 1

0 1 0 1

0 0 1 1


 (12)60

The innovation vector is given by

d = qobs−H(qb(t1)) = qobs−HM0→∆t(qb(0))

=HM0→∆t(qt(0)) +βt−HM0→∆t(qb(0))

= HM0→∆t(qt(0)− qb(0)) +βt, where H =H=




1 0 0

0 1 0

0 0 1




(13)

The strong constraint 4D-Var analysis at the initial time t0 is given by

xa(0) = xb(0) + δxa(0)

= xb(0) +
BM̃T

∆t→0H̃
T d

H̃M̃0→∆tBM̃T
∆t→0H̃T +R

where M̃0→∆t = M̃0→∆t =




1 −u
2

u
2 0

u
2 1 −u

2 0

−u
2

u
2 1 0

0 0 0 1




(14)

The observation bias β is invariant (M̃0→∆t(β) = M̃0→∆t(β) = β). Note that β is constant in space and time but its value65

can be incremented in the assimilation process.

The analysis at the time t1 is given by

xa(t1) = M̃0→∆t(xb(0)) + M̃0→∆tδxa(0)

= xb(t1) +
M̃0→∆tBM̃T

∆t→0H̃
T d

H̃M̃0→∆tBM̃T
∆t→0H̃T +R

(15)

4 Weak constraint 4DVar

In contrast to strong constraint 4DVar, weak constraint accounts for the deviation of Eq. 1 from a true representation of the70

system evolution. The tracer observation vector qobs for all longitudes at the time t1 = ∆t is, instead, constructed using the

following equation:

qobs =H(qt(t1)) +βt

=H(Mt(qt(0))) +βt

(16)

4

https://doi.org/10.5194/egusphere-2023-1765
Preprint. Discussion started: 21 September 2023
c© Author(s) 2023. CC BY 4.0 License.



where Mt is the discretized true model of the following equation:

∂q

∂t
+ u

∂q

∂λ
= k

∂2q

∂λ2
, (λ,t) ∈ [0,2π[×]0,T ]

q(2π,t) = q(0, t), t ∈]0,T ]

q0 = qt(0)

(17)75

where k is the diffusion coefficient.

Eq. 17 is discretized using the finite difference formulation with first-order Euler forward time stepping and second order

central differencing for the spatial derivatives with ∆t = ∆λ.

The discretized true model is then given by

Mt =




1− 2κ −u
2 + κ u

2 + κ

u
2 + κ 1− 2κ −u

2 + κ

−u
2 + κ u

2 + κ 1− 2κ


 where κ =

k∆t

(∆λ)2
=

k

∆λ
(∆λ =

2π

3
) (18)80

The weak constraint 4D-Var cost function is given by

J(x0,x(t1)) =
1
2
[x0−xb(0)]T B−1[x0−xb(0)] +

1
2
[H̃(x(t1))− qobs]T R−1[H̃(x(t1))− qobs]

+
1
2
ηT Q−1η

(19)

where (x0,x(t1))T = (q0, q(t1),β)T is the control vector, η = q(t1)−M0→∆t(q0) is the tracer model error, and Q is the tracer

model error covariance matrix, which is assumed diagonal with model error standard deviations equal to σm.

For the sake of simplicity, the background value of the tracer model error ηb is assumed equal to zero (i.e., qb(t1) =85

M0→∆t(qb(0))).

The background error covariance matrix and the tracer model error covariance matrix are given by

B =




σ2
q 0 0 0

0 σ2
q 0 0

0 0 σ2
q 0

0 0 0 σ2
β




and Q =




σ2
m 0 0

0 σ2
m 0

0 0 σ2
m


 (20)

The value of the weak constraint 4D-Var analysis at t1 = ∆t is then given by

xa(t1) = xb(t1) +
(M̃0→∆tBM̃T

∆t→0 + Q̃)H̃T d

H̃(M̃0→∆tBM̃T
∆t→0 + Q̃)H̃T +R

where d =HMt(qt(0)) +βt−HM0→∆t(qb(0)) and Q̃ =


Q 0

0 0




(21)90

The computation of the analysis is performed relaying on the following setup: u = 1, k = 0.4, βt = 0.2, qb(0) = (1,2,3)T ,

qt(0) = (1.1,2.2,3.3)T , σobs = 0.01 and σm = σq = σβ = 0.1.

5

https://doi.org/10.5194/egusphere-2023-1765
Preprint. Discussion started: 21 September 2023
c© Author(s) 2023. CC BY 4.0 License.



The strong and weak constraint analyses for the tracer at t1 are (1.5,1,3.7)T and (2.2,1,3.2)T , respectively.

The analysis accuracy is measured by the normalized analysis error (NAE), which is defined as the mean absolute difference

between the analysis and the truth divided by the truth. A NAE of 0% indicates a perfect match of the analysis with the truth.95

NAE =
1
3

3∑

j=1

|qa(λj , t1)− qt(λj , t1)|
qt(λj , t1)

(22)

The weak constraint outperforms the strong constraint, with NAE of 1.7% compared with 4.4%.

5 Summary

4DVar assumes random zero-mean random errors. Therefore, to build an unbiased analysis, variational bias correction and

weak constraint are designed to conjointly remove observations and model biases as shown in Fig.1. Throughout an idealised100

experiment, this note demonstrates the added-value of weak constraint in the reduction of the analysis bias when compared to

the strong constraint.

 

 

Figure 1. Unbiased observations are referred to as anchor observations. Variational bias correction (VarBC) and weak constraint 4DVar

(WC4DVar) conjointly target an unbiased analysis. Courtesy of Patrick Laloyaux, ECMWF.

Data availability. Data sharing is not applicable to this article as no new data were created or analyzed in this study.
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