

1 Climatology of Large Hail in Europe: Characteristics of

2 the European Severe Weather Database

⁴ Faye Hulton^{1,a}, David M. Schultz^{1,2}

⁵ Centre for Atmospheric Science, Department of Earth and Environmental Sciences, University of Manchester,
⁶ Manchester, M13 9PL, United Kingdom

² Centre for Crisis Studies and Mitigation, University of Manchester, Manchester, M13 9PL, United Kingdom.
³ Newcastle Methodist Adelphian, HP22 0NH, United Kingdom.

^a Now at: MetDesk, Aylesbury, HP22 6NJ, United Kingdom

¹⁰ Correspondence to: Faye Hulton, faye.hulton@gmail.com

Submitted as an Article to *Natural Hazards and Earth System Science*, 4 February 2023, Revised 29 September 2023

Deleted: For s

Deleted: ssion

Deleted: 4

Deleted: s

Deleted: no

30 1 Introduction

Hail with a diameter of at least 2 cm in the longest direction is called *large hail*, and it can cause damage to crops, property, or even loss of life. Several recent studies have documented the occurrence and variability of large hail, with special emphasis on the United States and Europe where large hail is common (e.g., Allen and Tippett 2015; Punge and Kunz 2016; Brooks et al. 2019; Púcik et al. 2019; Tang et al. 2019; Taszarek et al. 2020; Raupach et al. 2021). The strongest severe convective storms in Europe are often perceived to be less intense than the strongest storms in the United States, although they can be just as damaging. For example, one of the most devastating large-hail events took place over Germany on 28 July 2013 when two supercells formed almost simultaneously, producing hailstones of up to 10 cm in diameter and more than EUR 1 billion in insurance payouts (Kunz et al. 2018). Other similar events occurred over southern Germany on 10–12 June 2019, with one storm producing 6-cm hailstones and causing EUR 1 billion in damages (Wilhelm et al. 2021). More recently, several large-hail events were reported during summer 2021 in Poland, the Czech Republic, Germany, and Italy, with reported maximum hail sizes in excess of 7 cm (Associated Press 2021; Space 2021a,b,c). Although these extreme events are widely reported by the media, meteorological research on these storms may be hindered by the lack of ground-truth hail data, such as onset and ending times, duration, and hailstone size.

Deleted: in Europe

Deleted: Another

Deleted: intensity

53 Such hail data in Europe is generally collected on a national scale, and hence most climatologies are produced
54 on a country-by-country basis (e.g., Brooks et al. 2009). Given the relatively small sizes of many European
55 countries, each country has a low probability of large hail occurring at any given time (e.g., Brooks et al. 2019).
56 A summary table of past European hail climatologies can be found in Tuovinen et al. (2009), and an updated
57 review was published by Punge and Kunz (2016). Because countries that have a similar spatial extent as Europe
58 have produced their own climatologies—such as the United States (Tang et al. 2019), Canada (Etkin and Brun
59 2001), and China (Zhang et al. 2008)—a pan-European large-hail climatology would be highly desired.

60 Climatologies of European convective storms and their impacts have been constructed using a number of
61 datasets. For example, some studies have examined the climatology of convective storms using remote-sensed
62 data such as lightning, radar, and satellite (e.g., Punge et al. 2017). Others have examined the environments that
63 favor such storms, such as through reanalyses or soundings (Rädler et al. 2018; Taszarek et al. 2017, 2018, 2019)
64 or reanalyses coupled with hailpad data (Sanchez et al. 2017).

65 To create a pan-European dataset of in situ surface reports from severe convective storms (including large
66 hail, tornadoes, and severe wind gusts), the European Severe Storms Laboratory formed the European Severe
67 Weather Database (ESWD) in 2006 (Dotzek et al. 2009; Groenemeijer et al. 2017). In addition to collecting
68 contemporary data, the ESWD has an ongoing objective of synthesizing historical large-hail data which helps
69 produce a longer and more complete climatology. Despite the tremendous potential value of the ESWD being the
70 only pan-European large-hail dataset, its characteristics need to be examined to understand its suitability for
71 answering certain scientific questions about large hail. For example, Taszarek et al. (2019) found substantial
72 variability across Europe in the frequency of ESWD reports and the frequency of favorable environments for
73 convective storms.

74 To this effect, Púčik et al. (2019) constructed a climatology of large hail from the ESWD. They examined
75 hail size, occurrence, annual cycle, diurnal cycle, and societal impacts (e.g., damages, injuries) for 39,537 reports
76 during the 13-yr period 2006–2018. Although their work shed the first light on the pan-European distribution and
77 characteristics of large hail and large-hail days from surface reports, they concluded by foreseeing “an update to
78 this study as the reporting homogeneity improves in future.” In the present article, we explore whether increasing
79 the size of the dataset through lowering the quality-control levels of the reports and extending the period of
80 analysis yields comparable results, increasing the generality of Púčik et al.’s (2019) results. In doing so, we also
81 document the reporting characteristics of the database as a function of time both throughout the 20th century and
82 within the last 20 years. In particular, we seek the possible existence of a relatively homogeneous period of time
83 in the database that could be used as a baseline for climatologies and climate-change studies.

84 This article consists of nine sections. Section 2 describes the data from the ESWD used in the present study.
85 Section 3 discusses the frequency of large-hail reports and days on decadal, annual, and diurnal time scales.
86 Section 4 investigates the intensity distribution of large hail, as segregated into 1-cm diameter bins, and discusses
87 how the frequency of large-hail size has changed over the past 20 years. Section 5 looks at the time accuracy of
88 these reports, how it has changed over the past 20 years, and how it varies by individual countries. Section 6
89 investigates the spatial distribution of reports by country. Because of the large number of reports from Poland
90 during the 1930s to 1950s, section 7 focuses on the data from Poland, comparing the historical frequency of reports
91 during this period to that from the period 2000–2020. Section 8 offers a discussion comparing our work to previous

Deleted:

Formatted: Font color: Text 1

Formatted: Font: Times New Roman, 10 pt, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font: Times New Roman, 10 pt, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font: Times New Roman, 10 pt, Font color: Text 1

Deleted: ¶

Deleted: will

Deleted: ¶

Deleted: , alongside extending the dataset by an extra 2 years

98 hail climatologies and reflects on the prospects of using the ESWD as a baseline for climate-change research.
99 Section 9 summarizes the findings of this paper.

100

101 2 Data and methods

102 The climatology of European large hail in this present article is produced from the ESWD (Dotzek et al. 2009;
103 Groenemeijer et al. 2017). Large hail in the ESWD is defined as hail with a diameter of at least 2 cm in the longest
104 direction (Groenemeijer and Liang 2020), comparable to the severe-hail criterion of 0.75 inch (1.9 cm) in the
105 United States. The current ESWD data on hail is a mixture of historical entries, insurance data information, reports
106 provided by storm-spotters, national European meteorological organizations, and public entries via the ESWD
107 website at www.eswd.eu (Dotzek et al. 2009). Since December 2015, reports have also been collected via ESSL's
108 European Weather Observer app (Groenemeijer et al. 2017).

Deleted: organization

109 At the time this study commenced, the ESWD consisted of 62,053 large-hail reports from 59 countries dating
110 from 40 C.E. to 26 September 2020. All reports with hail sizes less than 2 cm were removed. Of the 59 countries
111 included with the initial dataset received from the European Severe Storms Laboratory, only 41 were in Europe.
112 Of those removed, the highest reporting countries were Turkey, Armenia, and Azerbaijan. Reports from other
113 countries that were removed included Morocco, Turkmenistan, Egypt, and Jordan. The Russian Federation was
114 included in the present study, even though a small number of reports were from the Asian part of the country. A
115 small part of Turkey is geographically in Europe, but their data was not included in this study.

Deleted: T

116 We also examined two periods of time from the ESWD. The first period is the nearly 121-yr period from 1
117 January 1900 to 26 September 2020 (when work on this research commenced). We hereafter refer to this period
118 as 1900–2020, recognizing the omission of data from the last three months and four days of 2020. The second
119 period is more focused on the most recent large-hail data for the nearly 21-yr period 1 January 2000 to 26
120 September 2020, hereafter referred to as 2000–2020.

121 All data is imputed in a standard format and is given a single quality-control level by the maintenance team
122 (Dotzek et al. 2009). There are four quality-control levels given to these entries (Groenemeijer and Kühne 2014):

- 123 • Q0: “as received”, any report straight from the public,
- 124 • QC0+: “plausibility checked”, any report checked by staff at the European Severe Storms Laboratory or a
125 partner organization,
- 126 • QC1: “report confirmed”, any report confirmed by a reliable source such as a national meteorological
127 organization or storm-spotters network, and
- 128 • QC2: “event fully verified”, any report from an event that has been subject of a scientific case study.

129 As mentioned in section 1, Púčik et al. (2019) used only QC1 and QC2 events. However, to see if the quality-
130 control level affects the interpretation of the results, this present study uses QC0+, QC1, and QC2. For the period
131 1900–2020, there were 9173 QC0+, 45,805 QC1, and 2391 QC2 reports, producing a total of 57,369 large-hail
132 reports. For the period 2000–2020, there were 6330 QC0+, 20,585 QC1, and 1310 QC2 reports, producing a total
133 of 28,225 large-hail reports. Thus, the addition of the QC0+ reports increased the size of the 1900–2020 dataset
134 by 19% and the 2000–2020 dataset by 29%.

Deleted: plausibly checked

135 With these two datasets constructed, we can then look at their characteristics. In particular, we are
136 interested in the number of large-hail days, size of the large-hail reports, and time accuracy of the reports. The
137 annual number of large-hail days was derived from the annual number of large-hail reports by removing duplicate

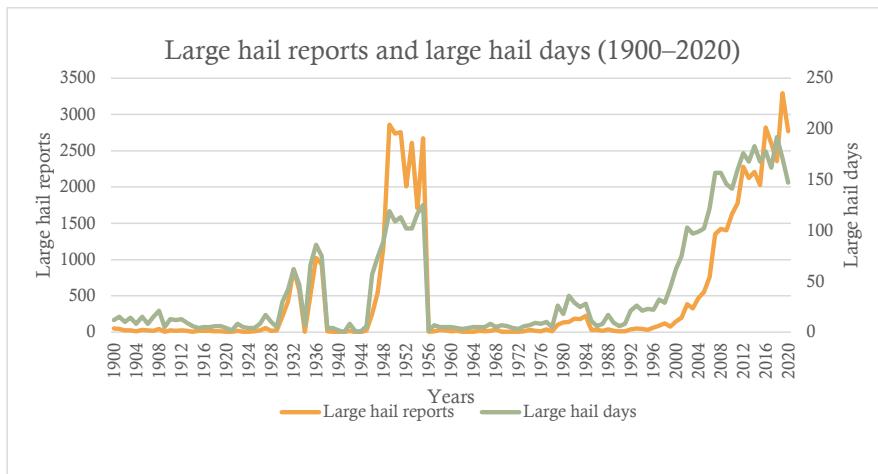
Formatted: Justified, Indent: Left: 0", Line spacing: 1.5 lines

141 dates. We analyzed not only the number of hail reports, but the number of hail days, as well. Hail days are a more
142 robust measure of hail occurrence and helps minimize variability due to variability in hail reporting across
143 different countries. Hail days are also useful for certain purposes. For example, Punge and Kunz (2016) wrote that
144 hail days are also aligned with information that the insurance industry uses, as their portfolios cover regions larger
145 than countries and hailstorm outbreaks may cover more than one country.

146 The size of the hail in each hail report was defined as the maximum hail diameter recorded in cm. Although
147 the ESWD contains fields for the fall speed and density of the hailstones, these were infrequently reported and
148 were not considered as part of the present article. To represent the size distribution of the reports, the reports were
149 classified into 1-cm bins based on their maximum hail diameter, starting at the minimum threshold of large hail
150 of 2 cm. The *time accuracy* of reports is a field in the ESWD that allows the user to know how reliable the
151 reporting time of the large-hail report is. The time accuracy represents the total time window that a given report
152 was recorded in. For example, a 30-min time accuracy would indicate that the hail fell in the window of 15 min
153 before the recorded time to a maximum of 15 min after the recorded time. The existing ESWD dataset is a result
154 of both meteorological variations in hail and reporting issues, much as other severe-weather datasets have (e.g.,
155 Groenemeijer and Kühne 2014; Punge and Kunz 2016; Antonescu et al. 2017; Púčik et al. 2019). Indeed,
156 underreporting from rural areas and nighttime storms may influence this dataset. These and other characteristics
157 of the large-hail dataset will be explored in subsequent sections.

158
159

160 3 Frequency of large hail across Europe: 1900–2020


161 To understand the number of large-hail reports as a function of time, the annual number of large-hail reports
162 and annual number of large-hail days were plotted versus year from 1900 to 2020 (Fig. 1). Throughout much of
163 this period, the annual number of reports was quite small, with peaks during the 1930s, 1940s–1950s, and early
164 1980s before a steady increase starting around 2000. These two peaks in the 1930s and 1940s–1950s were
165 associated with a large number of reports from Poland and are investigated further in section 8. The lesser peak
166 during the 1980s was associated with a number of reports from Italy, but is not considered further.

167 Figure 1 also shows the annual number of hail days from 1900 to 2020. The peaks in large-hail days during
168 the 1930s and 1940s–1950s suggest that there were many large-hail events, not just many reports. Moreover, these
169 periods illustrate that, while some periods and some locations may be well represented in the database, reporting
170 of large hail throughout much of the 20th century in the ESWD is far from complete.

171 Focusing on the last 30 years, the number of reports increased starting around 2000 and continued to rise until
172 2020. (Recall that the 2020 data was only available until 26 September, which may explain the fewer number
173 reports, although most large-hailfall in Europe is reported between April and September.) In contrast, the number
174 of large-hail days began rising a few years earlier in the late 1990s before reaching a plateau during the 2010s
175 with around 175 annual large-hail days per year, similar to Taszarek et al. (2020, their Fig. 2a). This result suggests
176 that the database grew around this time by first obtaining data from a larger number of days on which hail fell,
177 followed by the database growing with a larger number of reports within the same day. The inconsistency in
178 reports over time is also seen in other convective-storm research, such as for tornadoes as described by Antonescu
179 et al. (2017), and may be a reflection in scientific interest in severe convective storms, or due to economic or
180 political changes.

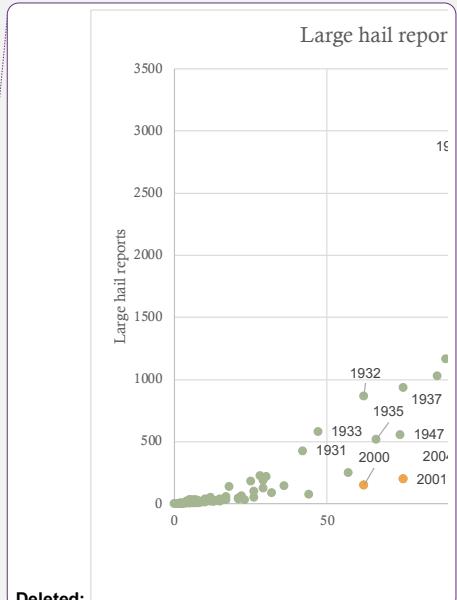
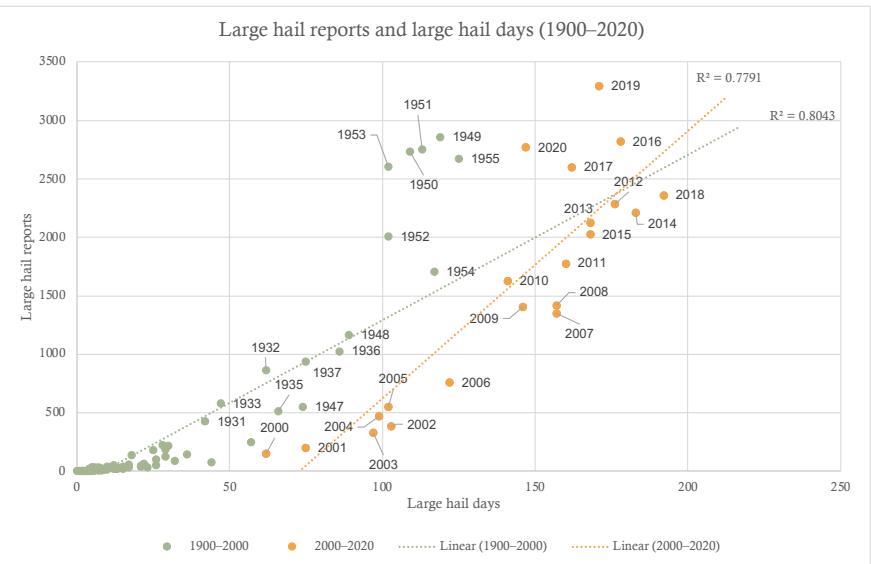
197 Formatted: Font color: Text 1
198 Deleted: s
199 Formatted: Font color: Text 1, Not Highlight
200 Formatted: Font color: Text 1
201 Formatted: Font color: Text 1, Not Highlight
202 Formatted: Font color: Text 1
203 Formatted: Font color: Text 1, Not Highlight
204 Formatted: Font color: Text 1
205 Formatted: Font color: Text 1
206 Formatted: Font color: Text 1
207 Formatted: Font color: Text 1, Not Highlight
208 Deleted: as hail reports as some countries are much more active in reporting hail events than others, and hence this
209 helps understand the spread of hail events over the years regardless of the number of reports associated with each day
210 Formatted: Font color: Text 1
211 Formatted: Font: Times New Roman, 10 pt, Font color: Text 1
212 Formatted: Font color: Text 1
213 Formatted: Font: Times New Roman, 10 pt, Font color: Text 1
214 Formatted: Font: Times New Roman, 10 pt
215 Formatted: Not Highlight
216 Formatted: Indent: Left: 0"
217 Deleted: This is later reproduced on a country by country basis (figures 7, 7) with the number of hail days a year by country, and the annual spread of these reports for each of these being analysed. As much as this helps understand which countries have more reported hail days, we do acknowledge that the number of reports is limited to entry into this database, and that within any individual country, there will be climatic variabilities influencing the prevailing locations of hail events within each country.
218 Formatted: Highlight
219 Formatted: Highlight
220 Formatted: Highlight
221 Formatted: Highlight
222 Formatted: Highlight
223 Formatted: Highlight
224 Formatted: Highlight
225 Formatted: Highlight
226 Deleted: T
227 Moved down [1]: These and other characteristics of the large-hail dataset will be explored in subsequent sections.
228 Moved (insertion) [1]
229 Formatted: Highlight
230 Formatted: Not Strikethrough
231 Deleted:

199

200

201 **Figure 1.** Time series of annual numbers of large-hail reports (orange line) and large-hail days (green line) across Europe 1900–2020.

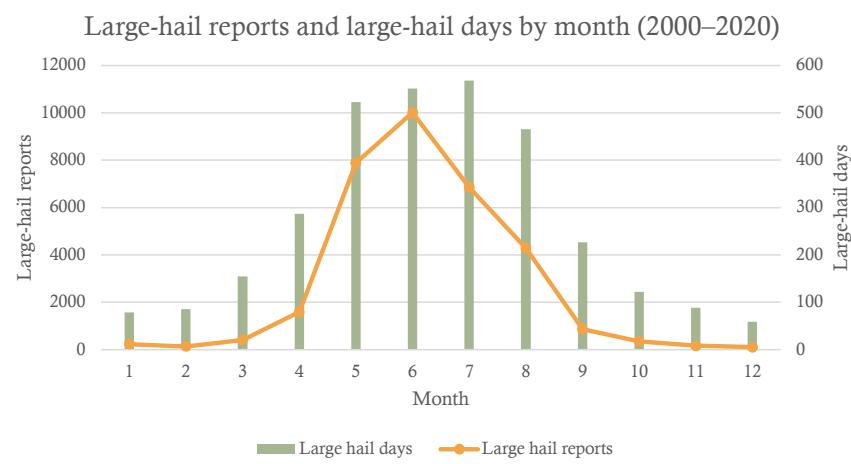
202



203 To show these data in a slightly different way, a scatterplot is created of the number of hail days versus
 204 number of hail reports for each year in the dataset, with different colors for the period before and after 2000 (Fig.
 205 2). The dataset from 1900 onwards suggests a positive linear relationship between large-hail reports and large-
 206 hail days; however, the spread is sometimes large. The high number of large-hail reports during 1949–1955
 207 (mostly from Poland, section 8) and early 1950s all congregate in one region of the graph and 2010–2020 also
 208 congregate in one region. As fewer reports are needed for a greater quantity of large-hail days, either areal extent
 209 of spotters has improved, the number of reporters has decreased in hail-prone regions, or the ESWD maintenance
 210 team have improved their ability to detect reports linked to the same event. Thus, the 1950s are a time when
 211 reports mostly came from Poland (section 8) and captured a large number of large-hail days, indicating that certain
 212 periods of time can be fruitful for hail research using the ESWD. The spatial distribution of these reports is
 213 discussed in section 7.

214

215

Deleted:, and hence have removed duplicate events from
 the dataset


Deleted:

217 **Figure 2.** Scatterplot of the annual number of large-hail days versus annual number of large-hail reports
 218 across Europe: 1900–2000 (green dots) and 2000–2020 (orange dots), with corresponding linear regression
 219 lines. These quantities are not divided by the number of years because of the incomplete data for the year
 220 2020.

225 The average monthly distribution of the number of large-hail reports and large-hail days from 2000 to 2020
 226 is plotted in Fig. 3. The warm-season months of May, June, and July have the highest number of large-hail reports,
 227 and the cool-season months from October to March have the lowest. Whereas the month with the highest number
 228 of large-hail reports is June, the month with the highest number of large-hail days is July. Figure 3 can be compared
 229 to Púčik et al. (2019, their Fig. 4) who break down the annual cycle into the frequency of reports for the continental
 230 regions of Europe north of 46°N and the more Mediterranean-influenced regions south of 46°N. Despite these
 231 differences, these two distributions look similar, with the added information coming from the distribution of large-
 232 hail days in the present study. The distribution of large-hail days in Fig. 3 is more similar to the shape of the
 233 distribution of north of 46°N in Púčik et al. (2019, their Fig. 4), meaning that fewer reports occur later in the
 234 season although the number of large-hail days remains relatively high. These distributions are also similar to
 235 those from Kunz et al. (2020, their Fig. 2a) for hailstorms in central Europe using [radar-derived hail streaks](#)
 236 [combined with](#) all quality levels from the ESWD, indicating that this [larger dataset including QC0+ events derived](#)
 237 [using different methods](#) is a reliable source of large-hail data.

Deleted:

240
 241 **Figure 3.** [Combined line graph and bar chart](#) of the total monthly numbers of large-hail reports (orange
 242 line) and large-hail days (green bars) across Europe: 2000–2020. These quantities are not divided by the
 243 number of years because of the incomplete data for the year 2020.

Deleted: larger

Deleted: Furthermore, this suggests that hail may be seen more widely across Europe earlier in the summer season, while spread declines during the latter part of summer, or this could suggest that there is an underlying factor which affects the number of large hail reports, that may not be meteorological.

Formatted: Highlight

Formatted: Highlight

Deleted: Histogram

253 The percentage of hail days by month per country (for countries with 100 or more reports) for the period
254 2000–2020 is shown in Fig. 4. Greece is the only country to not have over 50% of its reports being within the
255 months of May, June, and July, having a more consistent number of hail days throughout the year. Many countries
256 do not have any reports before April or after September. Spain, Italy, France, and Croatia have similar distributions
257 of hail days throughout the year, which may be linked to their Mediterranean setting, although Slovenia, Bosnia
258 and Herzegovina, and Bulgaria do not share the same characteristics, despite also being situated along the
259 Mediterranean. Previous studies such as Tazarek et al. (2020) have investigated hail distribution in Europe by
260 linking events to meteorological and climatological factors, which may help explain some of the differences seen
261 in Fig. 4. Furthermore, Sanchez et al. (2017) investigated hail events in southern Europe, concluding that even
262 small geographical and climatological differences can have a large impact on the number of hail days reported,
263 which may also explain some of the differences in Fig. 4.

Moved (insertion) [2]

Deleted: reported

Formatted: Justified, Indent: First line: 0.25", Line spacing: 1.5 lines

Deleted: was also investigated

Deleted: f

Deleted: ure

Deleted: (???)

Deleted: ,

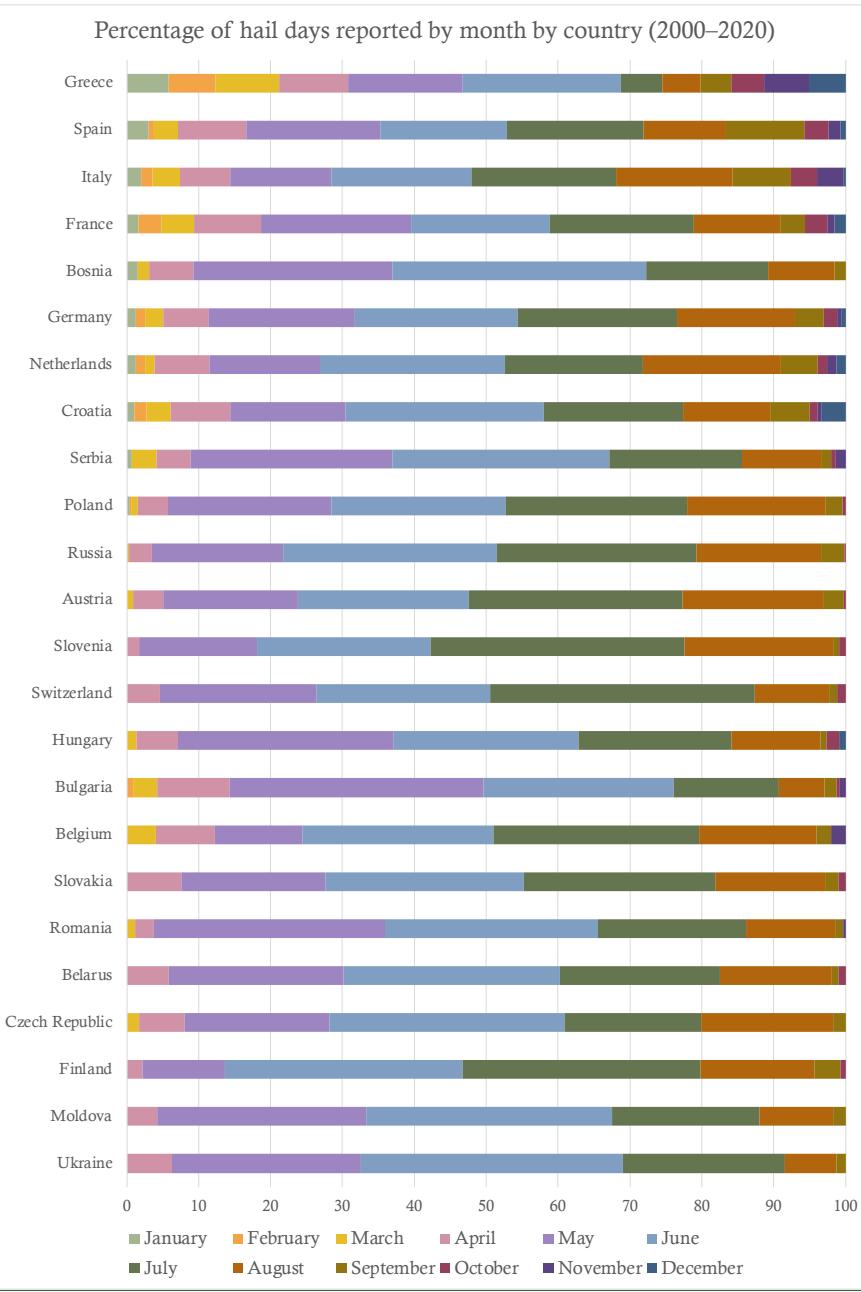
Deleted: appear to

Deleted: f

Deleted: ure

Deleted: (?)

Deleted: but also with the peak month of hailfall,

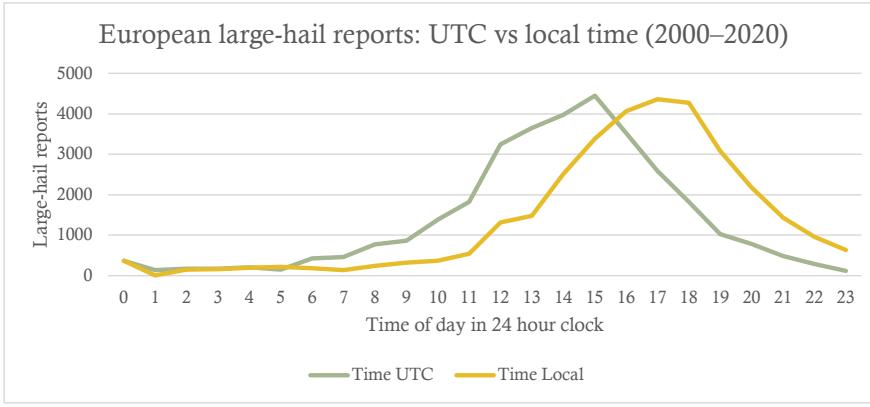

Deleted: seen here

Deleted: f

Deleted: ure

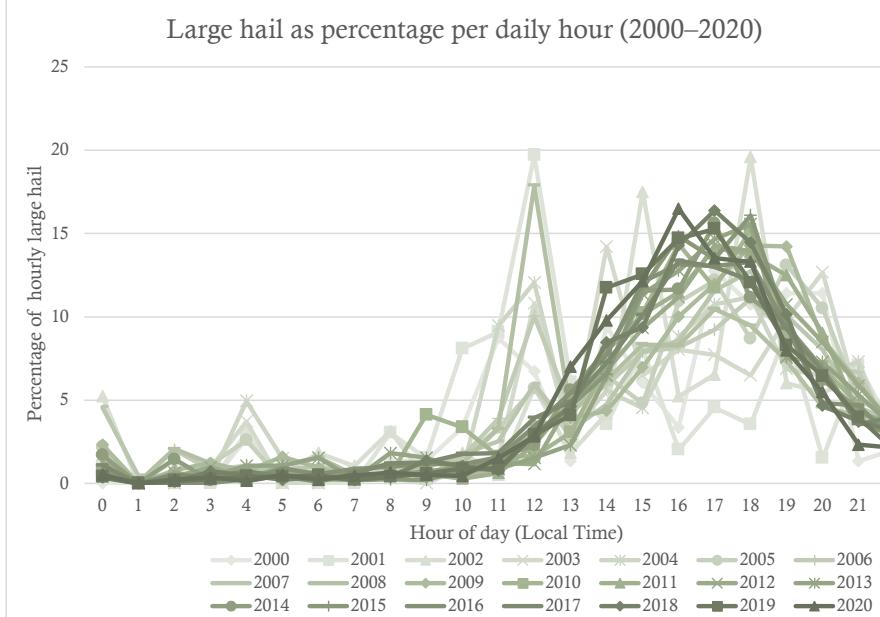
Deleted: (?)

Deleted: ¶



Formatted: Justified, Space Before: 0 pt, Tab stops: 0.25", Left

283 The average diurnal cycle for the number of large-hail reports between 2000 and 2020 is shown in Fig. 5. 5 Deleted: 4


284 The hour 1500–1559 UTC (labelled 1500 UTC) was the most common time for large hail to be reported with a
285 gentle rise and a slightly more rapid decline. When corrected for local legal time (LT) based on each country's
286 official time zone, this peak shifts to 1700–1759 LT because most of Europe is east of the Prime Meridian. Figure
287 5 can be compared to Púčik et al. (2019, their Fig. 5), who also found a peak during the 1500-UTC hour. These
288 distributions are also similar to those from Kunz et al. (2020, their Fig. 2b) who found a peak during 1500–1800
289 LT for hailstorms in central Europe using all quality levels from the ESWD, although small differences (e.g.,
290 relatively more hail during 1200–1500 LT in Kunz et al. (2020) compared to Fig. 5) may be due to the different
291 study areas between these two studies. Thus, the QC0+ data over a longer period of time used in this study
292 produces a similar climatology and is consistent with previously published research using a shorter period and
293 more selective quality-control levels, indicating that this larger dataset is a reliable source of large-hail data.

294
295

296
297 **Figure 5. Distribution of the hourly time of large-hail reports across Europe in UTC (green line) and local**
298 **time (orange line): 2000–2020. Reports are associated with the starting hour (i.e., a report at 1515 UTC**
299 **would be placed in the 1500-UTC bin).**

303 To examine the year-by-year consistency of the diurnal cycle, the distribution of large-hail reports as a
304 function of local time for each year during the period 2000–2020 is plotted in Fig. 6. Each year mostly reproduces
305 the diurnal cycle seen in Fig. 5. The exception is some years, particularly early during this period, that have
306 unusual peaks at 1000–1200 UTC. These reports are associated with hail events in the early part of the database
307 that occurred at an unknown time during the night or day and were placed in 0000 UTC or 1200 UTC, respectively
308 (Púćik et al. 2019, p. 3906). However, by 2010, the diurnal distributions seemed to have settled down to look like
309 that in Fig. 5. The consistency after 2010 suggests the possibility that the dataset becomes more consistent in
310 reporting events and could represent a stable period for documenting the present large-hail climate of Europe.
311
312

313
314 **Figure 6. Hourly percentage of large hail in local time across Europe in local time for each year 2000 to
315 2020.**

316
317 The diurnal distribution by country was also investigated for countries with 100 or more reports (Fig. 7). For
318 most countries, the time period with the most hail reports is between 1400 and 1800 LT, with little variation
319 between east and west, and north and south Europe. Belgium seems to be the exception with a larger spread of
320 times, but has the lowest number of reports out of these countries, with only 121 reports for 49 hail days (Table
321 1), which is likely not representative of the meteorological conditions that would favor large-hail production.

Deleted: 5

Deleted: 4

Deleted: 4

Deleted: 5

Formatted: Justified

Deleted: as shown in Figure (?)

Formatted: Not Highlight

Deleted: +

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Not Highlight

Formatted: Font: 10 pt

Deleted: We can see that f

Formatted: Normal, Justified, Indent: First line: 0.25"

Formatted: Not Highlight

Formatted: Font: 10 pt

Formatted: Not Highlight

Formatted: Font: 10 pt

Deleted: local time

Formatted: Not Highlight

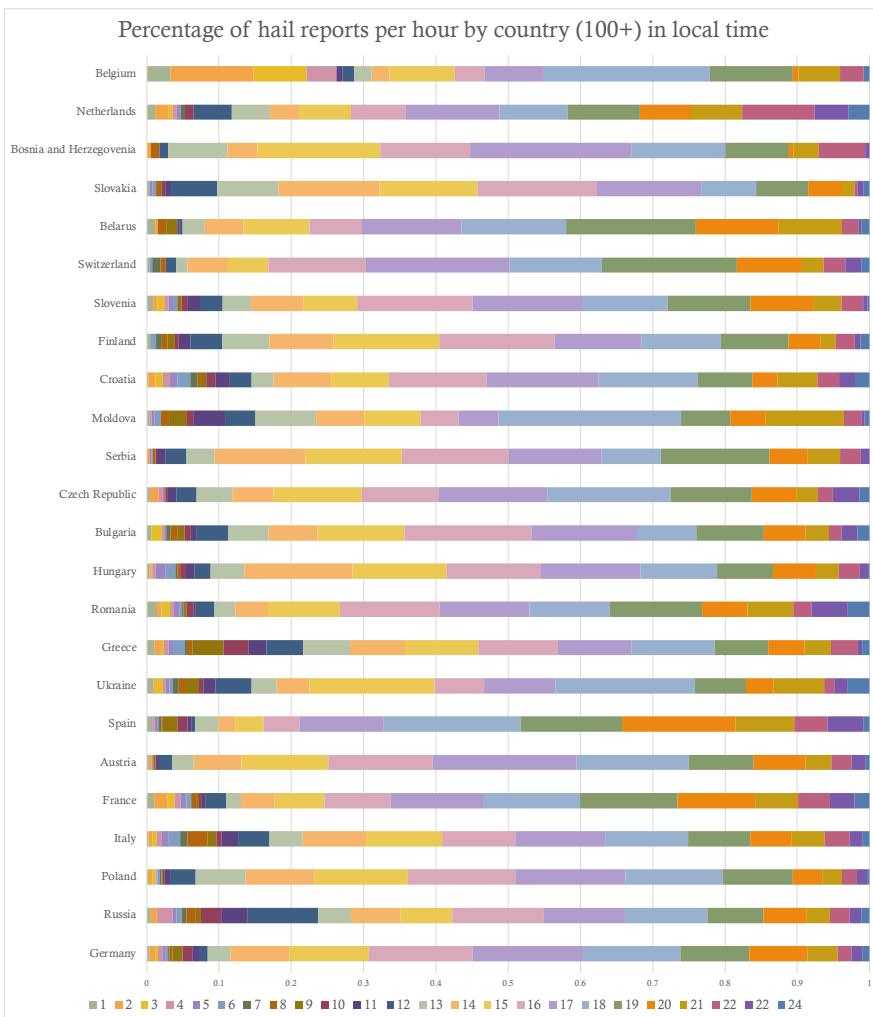
Formatted: Font: 10 pt, Not Highlight

Formatted: Font: 10 pt

Formatted: Not Highlight

Formatted: Font: 10 pt

Deleted: see


Deleted: u

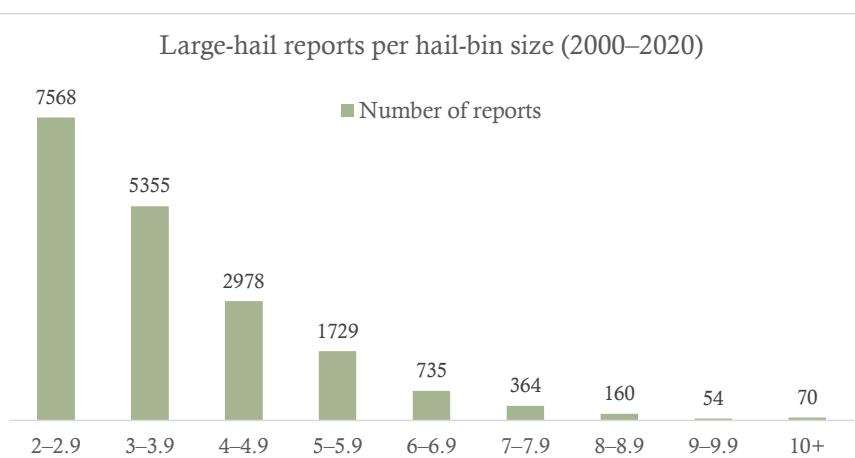
Formatted: Not Highlight

Deleted:

Formatted: Font: 10 pt

Formatted: Font: Not Bold

Deleted: Figure (?)


Formatted

337 **4 Intensity of large hail: 2000–2020**

338 It is not just the frequency of events that determines their impact on society, but also the intensity of the
339 events, here represented by the maximum diameter of the hail associated with each report. Maximum hail size
340 can be difficult to measure for several reasons as highlighted by Pilorz (2015). For example, as hail is often
341 irregular in shape, the maximum diameter is actually the longest axis of the stone. Therefore, if a stone were more
342 spherical, then its maximum diameter would be smaller than an oblate stone, even though it would have a larger
343 volume. Furthermore, there is always the possibility that the largest hailstone from any given event has not been
344 found or that it has partially melted before discovery.

345 For the 28,225 large-hail reports in the present study between 2000 and 2020, 18,132 (64%) had data for the
346 maximum diameter. These reports were organized into 1-cm bins, ranging from 2.0–2.9 cm to 10+ cm. Frequency
347 of hail reports decreased with increasing hail size (Fig. 8). The maximum hail size in the database from 2000 to
348 2020 was 15 cm and was reported in Romania on 26 May 2016. This report was rated QC1, so has been confirmed.
349 The second largest hail size was 14.1 cm and was reported in Germany on 6 August 2013. This particular hailstone
350 set the record for the largest hailstone in Germany (ESKP 2013). This report is recorded as QC2 and includes
351 additional information in the ESWD database, such as the average hailstone size being 8 cm.

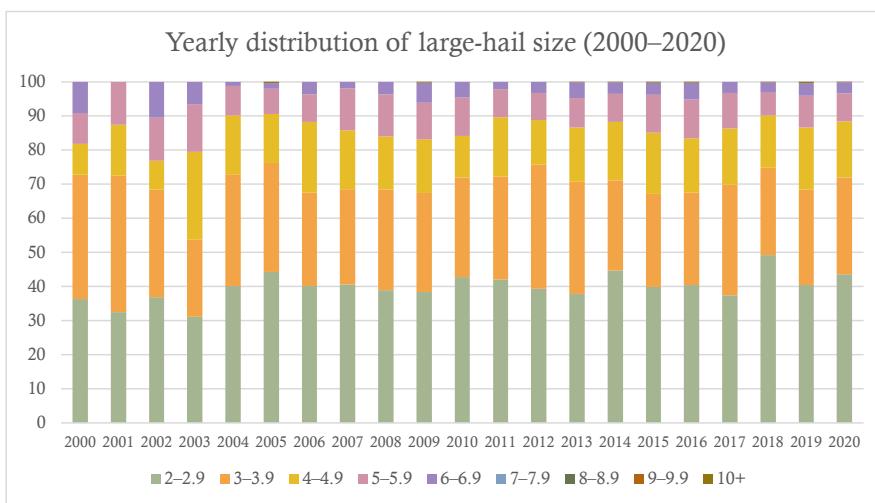
352

353
354 **Figure 8. Bar chart of the number of large-hail reports across Europe by maximum diameter in 1-cm bins:**
355 **2000–2020.**

Deleted: an

Deleted: its

Deleted: 6

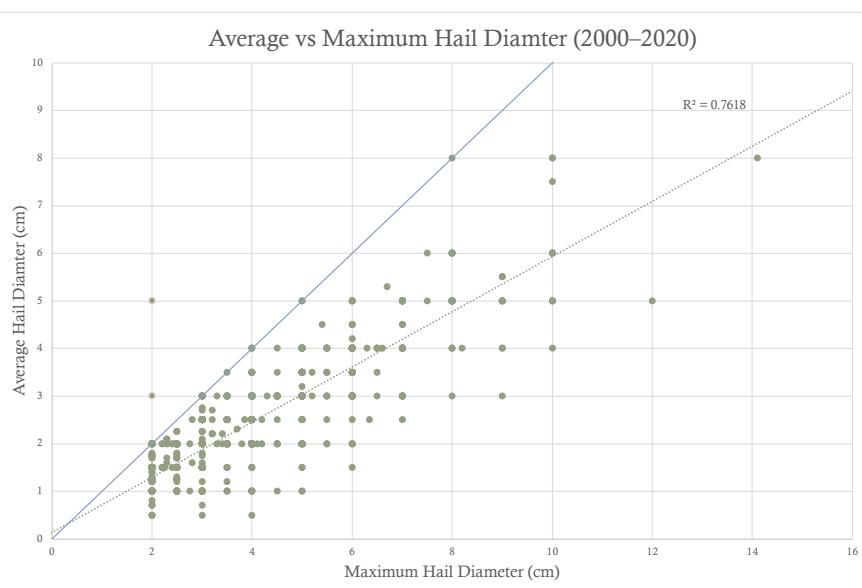

Deleted: plausibly check

Deleted: 6

Deleted: Histogram

362 To investigate the distribution of large-hail size over time, Fig. 9 presents the percentage of each hail-size bin
 363 per year from 2000 to 2020. During this 21-yr period, the percentage of each bin size does not change dramatically.
 364 This distribution is similar to the 1989–2018 average from Púčik et al. (2019, their Fig. 7), with about 40% of
 365 large-hail reports being smaller than 3 cm, about 70% being smaller than 4 cm, and about 84% being smaller than
 366 5 cm. Therefore, the large-hail size distribution during 2000–2020 may represent a period of stability in reporting
 367 with little detectable change in large-hail size distributions in the ESWD dataset. For determining the present
 368 large-hail climate, the stability in the large-hail size distribution after 2000 represents a slightly longer period of
 369 record compared to that of the diurnal cycle, which stabilized after 2010 (Fig. 9).
 370

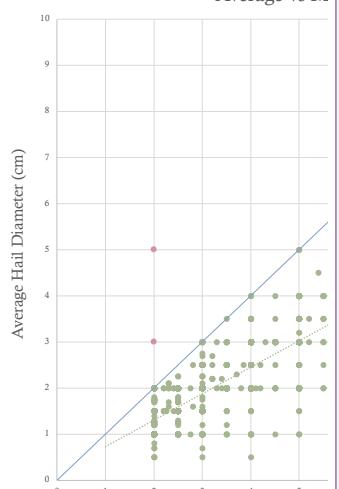
Deleted: 7



Deleted: 7

377 The ESWD has information on average hail size, although only 12% (2237 out of 18,132) of reports contain
 378 this information for 2000–2020. There is, however, a strong positive linear relationship between the average and
 379 maximum hail size recorded (Fig. 10). There were two outliers that are most likely data-entry errors, such as
 380 events with a 2-cm maximum size and 5-cm or 3-cm average size. Both were QC1. The linear relationship ($R^2 =$
 381 0.76) between maximum and average hail size suggests that the average hail size is about 60% of the maximum
 382 hail size, although there is considerable spread around this line.

Deleted: 8


Deleted: that the entries

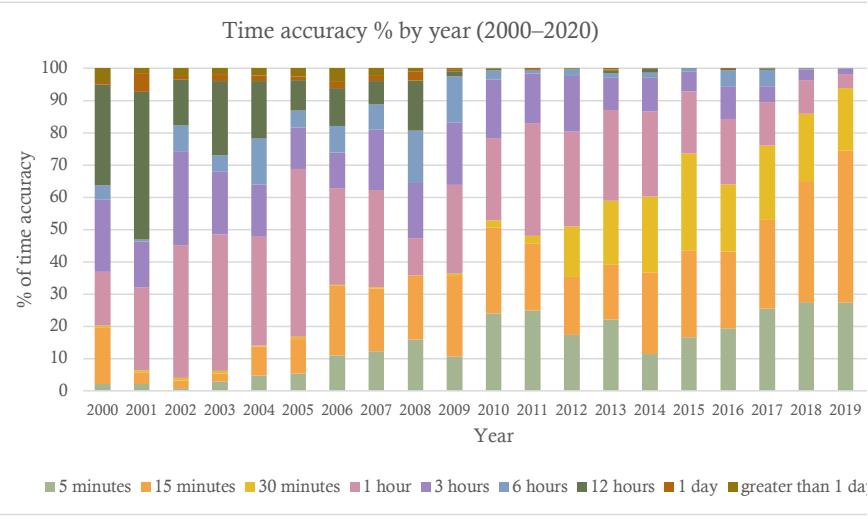
383

384

385 **Figure 10.** Scatterplot representing 2237 hail reports of the maximum large-hail size versus average large-
 386 hail size across Europe during 2000–2020, with corresponding linear regression line (green dotted line).
 387 The 1:1 line is plotted as a blue line. Two pink dots represent likely data-entry errors where the average
 388 diameter is greater than the maximum diameter.

Deleted:

Deleted: 8

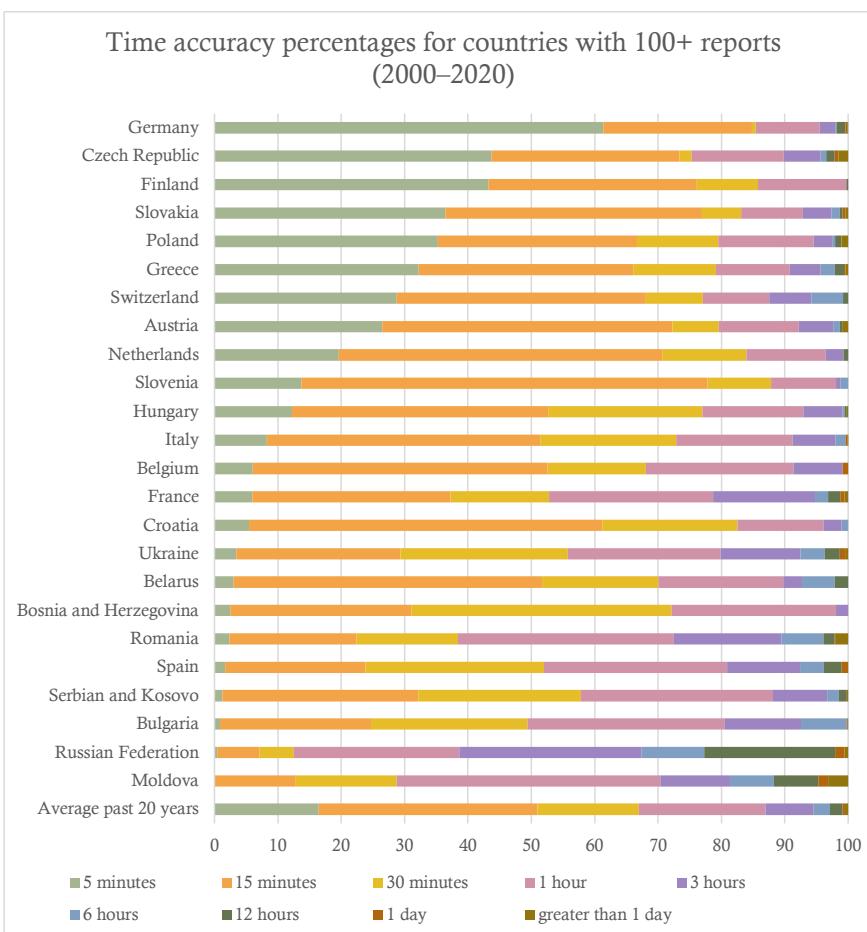

Deleted: red

394 **5 Time accuracy of reports: 2000–2020**

395 The ESWD includes a quantity called time accuracy, defined as the time interval over which the report could
396 have occurred. For example, a time accuracy of 5 min would mean that the large hail fell within 2.5 min on either
397 side of the time recorded in the ESWD. Groenemeijer and Liang (2020) specify ten categories of time accuracy:
398 1 min, 5 min, 15 min, 30 min, 1 h, 3 h, 6 h, 12 h, 1 day, and greater than 1 day. The time accuracy of large hail
399 in the ESWD has improved over time, with over 50% of reports having a time accuracy of 30 min by 2012,
400 followed by 50% having a time accuracy of 15 min by 2017 (Fig. 11). Moreover, between 2009 and 2010, reports
401 with a time accuracy of 30 min became more common, replacing some of the reports with time accuracy of 1 h,
402 and time accuracy of 12 h and greater become negligible. Viewing the ESWD from 2000–2020 as a whole, these
403 improvements in time accuracy means that the ESWD is becoming a more reliable source of data, with more
404 highly temporally resolved data on hail occurrence.

405

Deleted: 9



406

407 **Figure 11 Time series of bar charts of the annual distributions of time accuracy of reports across Europe**
408 **(%): 2000–2020.**

Deleted: 9

411 On the scale of individual countries, however, work remains to improve the quality of the ESWD. The
 412 average time accuracy for each country with 100 or more reports during 2000–2020 is shown in Fig. 12. The
 413 distribution of time accuracy varies considerably among these 24 countries. Germany, Finland, and the Czech
 414 Republic have more than 40% of their reports with time accuracy of 5 min, whereas Bulgaria, Russian Federation,
 415 and Moldova have the lowest (1% or less). Figure 12 also indicates the countries for which there is opportunity
 416 to improve engagement in severe-weather reporting.

417
 418 **Figure 12. Horizontal bar charts of the time accuracy for countries with 100 or more reports (%): 2000–
 419 2020.**

Deleted: 0

Deleted: from

Deleted: 0

Deleted: perhaps requiring greater support and mentorship from ESSL and other organizations

Deleted:

Deleted: 0

427 **6 Spatial distribution by country: 2000–2020**

428 Hail reports across Europe are heterogenous, not just in time, but also in space. Countries such as Germany,
429 Russian Federation, and Italy reported 4956, 4182, and 2447 large-hail events between 2000 and 2020, compared
430 to others such as Switzerland, the UK, and Denmark only reporting 266, 85 and 31 cases, respectively (Table 1).
431 Central and western European countries reported more large hail with 5 out of the top 10 countries located there
432 (Table 1). Germany has more large-hail reports than the Russian Federation for fewer large-hail days, similarly to
433 Poland having more reports than Italy, and Austria more reports than Greece. The ESWD grew out of other data-
434 collecting efforts such as TorDACH (i.e., a tornado dataset collection effort from Germany, Austria, and
435 Switzerland), which may partially explain why there are more reports for a similar amount of days in Germany,
436 and Poland has a long history of hail reports (section 7).

437 Besides meteorological reasons for the variability, other reasons that may explain these reporting differences
438 include the existence, size, and enthusiasm of spotter networks within each country; variations in the ability or
439 enthusiasm of citizens to input into the ESWD; and the availability of information to quality-control reports. In
440 fact, many central European countries have larger and more enthusiastic spotter networks [e.g., Poland, as
441 discussed in Pacey et al. (2021) and section 7 of the present article] and are more likely to enter their reports into
442 the ESWD. KERAUNOS, based in France, or the MeteoSwiss app based in Switzerland, for example, also
443 encourage citizen involvement in reporting of extreme events, which are imputed into the ESWD database.
444 Population density and area of the country were considered as possible explanations for the number of hail reports
445 varying by country, although neither had a statistically significant relationship with the number of hail reports
446 (not shown). As with the time-accuracy data (section 5), greater engagement with some countries to encourage
447 entering their reports into the ESWD would lead to a larger and more complete dataset.

Formatted: Font color: Text 1

Formatted: Not Highlight

Formatted: Font color: Text 1

Formatted: Not Highlight

Formatted: Font color: Text 1

Deleted: higher number of

Formatted: Font color: Text 1

Deleted: here

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Font color: Text 1

Deleted: , which some time frames having already been
inputted into the database, see

Formatted: Not Highlight

Formatted: Font color: Text 1

Formatted: Not Highlight

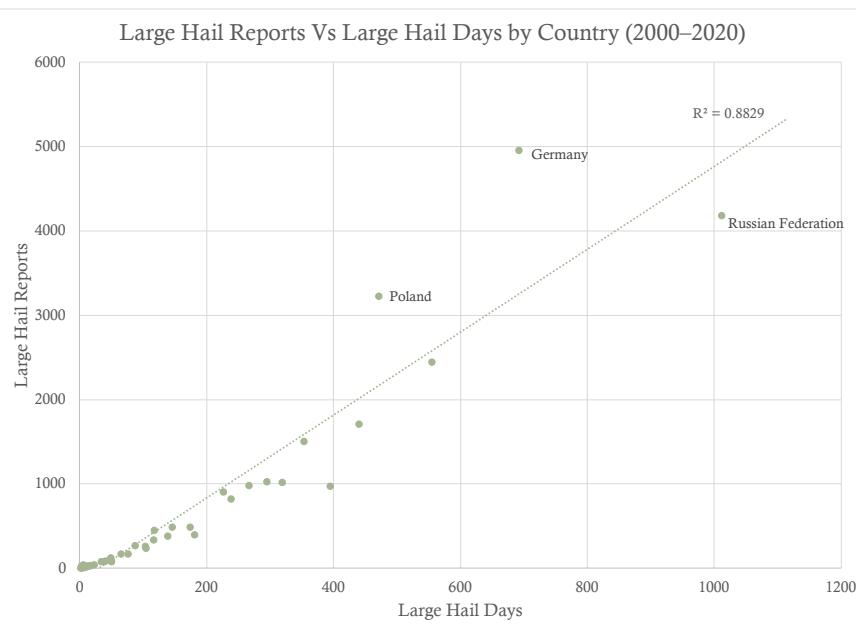
Formatted: Font color: Text 1

Formatted: Font color: Accent 6

Formatted: Not Highlight

Table 1. Number of large-hail days and large-hail reports by country: 2000–2020.

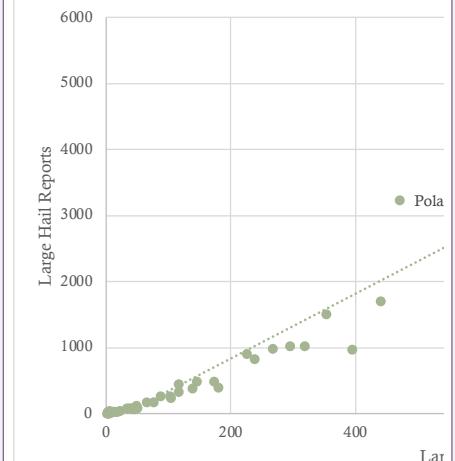
Country	Number of large-hail reports	Number of large-hail days
Germany	4956	692
Russian Federation	4182	1012
Poland	3226	471
Italy	2447	555
France	1707	440
Austria	1502	353
Spain	1027	295
Ukraine	1021	319
Romania	983	267
Greece	975	395
Hungary	903	226
Bulgaria	820	238
Serbia and Kosovo	490	146
Czech Republic	490	174
Moldova	451	117
Croatia	399	181
Finland	382	139
Slovenia	332	116
Switzerland	266	87
Belarus	261	103
Slovakia	234	104
Bosnia and Herzegovina	169	65
Netherlands	165	76
Belgium	121	49
Latvia	86	50
United Kingdom	85	41
Estonia	79	38
Portugal	77	34
Sweden	74	50
Cyprus	68	45
Lithuania	42	23
Luxembourg	39	6
Denmark	31	18
Albania	22	12
Montenegro	21	3
North Macedonia	21	13
Norway	21	15
Malta	11	9
Andorra	6	4
Iceland	4	4
Ireland	2	2


454 Similar to Fig. 2 where the number of large-hail reports was plotted versus the number of large-hail days by
 455 year, Fig. 13 shows a scatterplot between the number of large-hail reports versus the number of large-hail days by
 456 country from Table 1. There is a positive linear relationship ($R^2 = 0.88$) between large-hail reports and large-hail
 457 days by country (Fig. 13), suggesting that large-hail reports are proportional to large-hail days. This relationship
 458 would therefore imply that reporting frequency is similar across all hail frequencies and countries, except for
 459 Germany and Poland which have a much greater number of reports proportional to the number of days.

Deleted: 1

Deleted: 1

Deleted: implies


Deleted: s

460
 461 **Figure 13.** Scatterplot of the total number of large-hail reports versus large-hail days by country: 2000–
 462 2020.

Deleted: ¶

Large Hail Reports Vs Large Hail Days by Country (2000–2020)

463 We further investigated the hail-size distributions by country for the period 2000–2020 (Fig. 14). Only one
 464 report of each size diameter was taken per country per day to minimize some of the reporting biases. Finland has
 465 the greatest proportion of the lowest hail bin size, whereas Slovenia has the lowest. For sizes 5 cm in diameter
 466 and greater, the proportion of hail sizes recorded starts to diminish drastically, which would be expected as larger
 467 hailstones are rarer. Although Slovenia has the greatest proportion of hail sizes above 5 cm, these reports came
 468 from a sample of 116 hail reports, one of the smallest of the countries analyzed. For hail days with a report above
 469 10 cm, Russia has the greatest quantity with 10 reports over this period, whereas Italy came second with 9 reports
 470 and France with 8. Slovenia, although having a greater proportion, had 5 days with a hail report above 10 cm for
 471 this period.

Deleted: 1

Deleted:

Deleted: ure

Deleted: ?

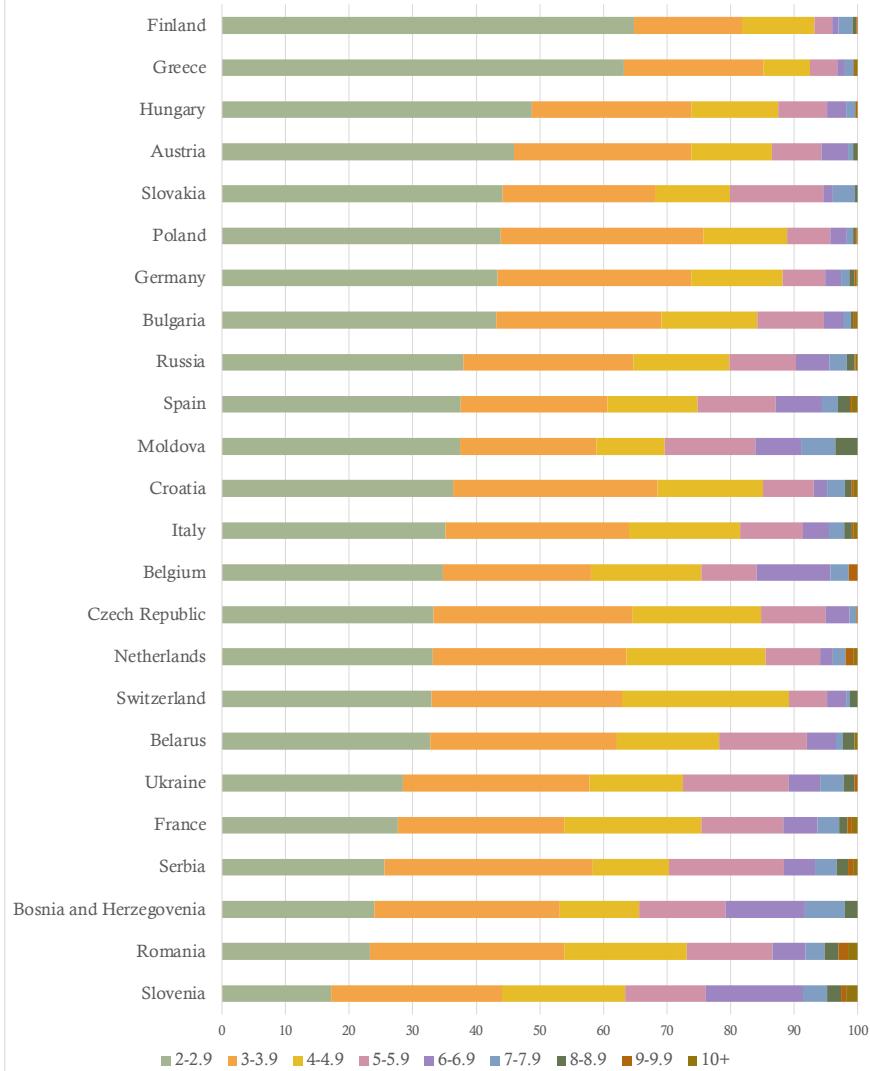
Formatted: Indent: First line: 0.25", Line spacing: 1.5 lines

Deleted: ile

Deleted: Above

Deleted: once more

Deleted: but was only taken from


Deleted: se

Deleted: In terms of

Deleted: ile

Deleted: recorded

Distribution of large-hail size by country (2000–2020)

491

492 **Figure 14. Horizontal bar charts of the size distribution of large hail for countries with 100 or more**
 493 **reports (%): 2000–2020.**

Deleted: ↪ Formatted: Caption

Deleted: ↪ Formatted: ¶

Deleted: ↪ Formatted: Font: 10 pt, Bold, Kern at 14 pt

495 **7 Poland: 1900–2020**

496 As noted in association with Fig. 1, nearly all large-hail reports and large-hail days during the 1930s and
497 1940s–1950s originated in Poland (Figs. 15a,b). Very few hail days were recorded between 1956 and 2000, before
498 the general increase along with the rest of Europe for the last 20 years (Fig. 15). There appears to be far fewer
499 large-hail days over the past 20 years in Poland (30–40 days a year) compared to the 1940s–1950s (100–120 days
500 a year). With an overall increase in reporting numbers and accuracy, it would be unlikely that the current Polish
501 reports are missing many events, and therefore the difference in annual numbers of large-hail days seems unlikely.

502 The addition of this data in the ESWD was due to Igor Laskowski who reports:

503 “those reports were based on annual records collected by a Polish National Institute of
504 Meteorology founded in 1919, now Institute of Meteorology and Hydrology - National
505 Research Institute (<https://imgw.pl/institut/historia>). The data was collected via hail
506 questionnaires, which provided information on the size of the hail (watch-sized, pea-sized, broad
507 bean-sized, hazelnut-sized, walnut-sized, pigeon egg-sized, hen egg-sized and goose egg-sized)
508 and also details about time of its occurrence, storm direction and the size of the expected yield
509 decrease (in percent). The questionnaires were filled in both by agricultural correspondents of
510 the Polish Central Statistical Office (whose number was growing larger, especially in the
511 [19]50s) and existing insurance companies which provided hail insurance at this time. Those
512 records also contain observations of hail reported by observers at meteorological stations.”

513 At the time of this study, data from yearbooks from 1930–1937 and 1946–1955 had been added.

514 Suwała (2011) investigated Polish hail based on data from 23 meteorological stations recorded in the
515 Meteorological Yearbooks published by the Institute of Meteorology and Water Management for the years 1973–
516 1980 and the Polish National Climatic Data Centre for the years 1981–2009. They found that over the 37-year
517 period, March was the month with the highest hail frequency across the country, followed by February and
518 January. For individual stations, December and January recorded the highest hailfall, with the two stations along
519 the Baltic coasts having a mean of 8 days. Although these results may indicate a cool-season preference for hail,
520 there is the possibility that ice pellets or graupel might have been classified as hail (e.g., Punge and Kunz 2018).
521 Overall, the Baltic coast showed the highest annual mean, whereas central Poland showed the lowest. This result
522 contradicts the findings of Pilorz (2015) who investigated large hail in Poland for 2007–2015, concluding that
523 southeast Poland had the greatest number of storms and associated large hail events.

524 Furthermore, the warm months of June to September had the lowest mean hail frequency for all stations. This
525 contradicts the results found in this present study and those by Púćik et al. (2019) that hail is most frequent in the
526 warm season, but also contradicts those by Taszarek and Suwała (2014) who investigated large hail in Poland in
527 2012. In addition, there appeared to be some cyclicity in frequency over the 37-yr period, although this cyclicity
528 varied greatly when investigating individual stations, and no trends were observed. These results may explain why
529 Poland possesses a different annual distribution to other locations.

530 Suwała (2011) mentioned previous hail studies in Poland, such Schmuck (1949), Koźmiński (1964), and
531 Zinkiewicz and Michna (1955), which may offer an explanation on the high number of hail reports during the
532 1930s and 1950s. Unfortunately, these are not currently available to read. Access to these historical studies may
533 help explain the quantity of Polish entries in the ESWD during the 1930s, 1940s, and 1950s. Moreover, an effort
534 to retrieve and input the data from 1973 to 2009 into the ESWD would greatly help with the homogeneity of the

Moved up [2]: The percentage of hail days reported by month per country for the period 2000–2020 was also investigated in figure (??). Greece is the only country to not have over 50% of its reports being within the months of May, June, and July, having a more consistent number of hail days throughout the year. Many countries do not have any reports before April, or after September. Spain, Italy, France, and Croatia appear to have similar distributions of hail days throughout the year, which may be linked to their Mediterranean setting, although Slovenia, Bosnia and Herzegovina, and Bulgaria do not share the same characteristics, despite also being situated along the Mediterranean. Previous studies such as Tazarek have investigated hail distribution in Europe by linking events to meteorological and climatological factors, which may help explain some of the differences seen in figure (?). Furthermore, Sanchez et al. (2017) investigated hail events in southern Europe, concluding that even small geographical and climatological differences can have a large impact on the number of hail days reported, but also with the peak month of haifall, which may also explain some of the differences seen here in figure (?).

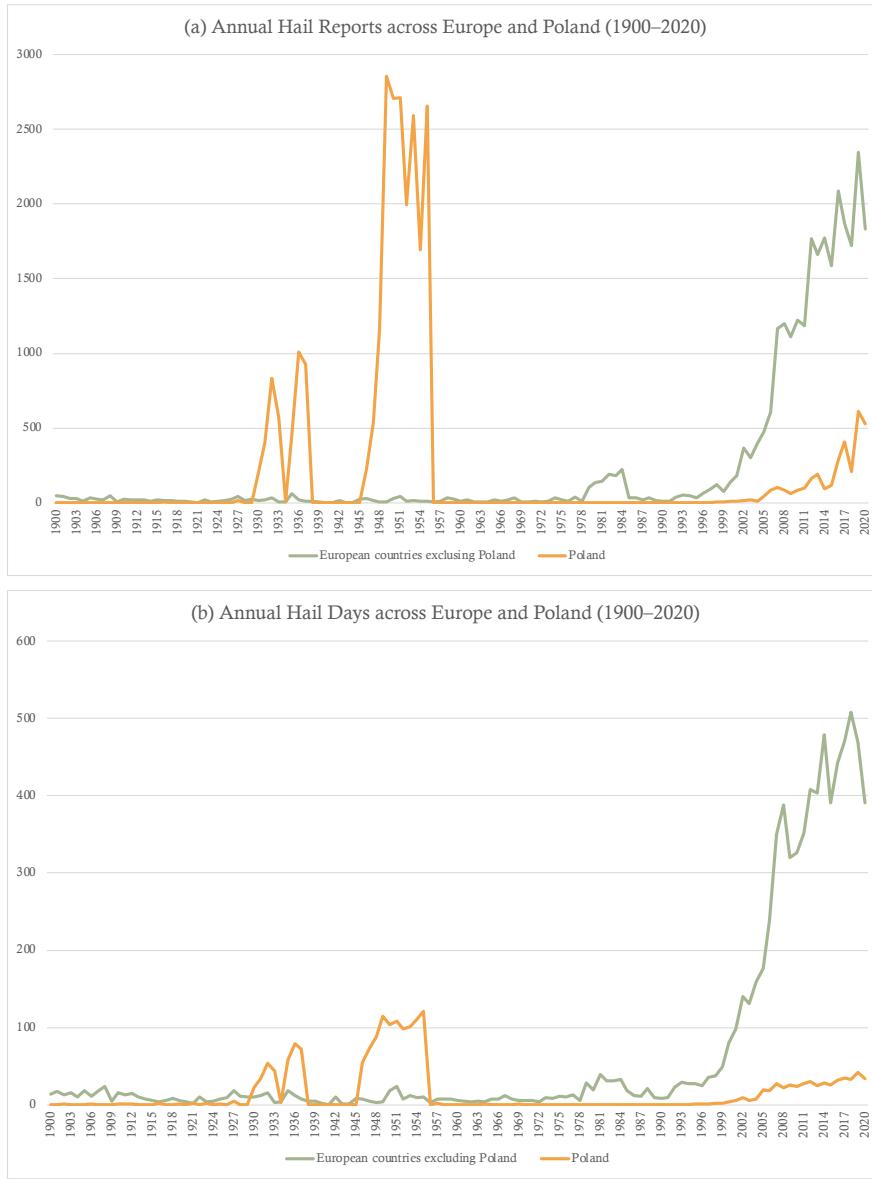
Deleted: Figure (?) shows the proportion of hail days per country from 2000–2020, which shows that there is much variation year to year. However, much of this variation is likely due to an increased involvement and establishment of the ESWD as a reporting vessel, and not a depiction of any changing trends in hail days. Belarus and Bosnia and Herzegovinian were the last to start entering data into the ESWD, with the first hail days reported being in 2006, when the database was founded. Germany appears to have the most consistent reporting over this period, closely followed by the Netherlands and Russia, with similar proportions reported each year. Furthermore, this figure helps to picture the change in report patterns on a country by country basis, from which figure 1 showed a more stable time period. [1]

Deleted: 2

Deleted: 2

Formatted: Indent: Left: 0.5", Right: 0.52"

Formatted: Font: (Default) Times New Roman, 10 pt


Deleted: amount

Deleted:,

Deleted: s

593 Polish dataset. There remains the possibility that this data does not exist as the country suffered major economic
594 difficulties during this period.

595

596

597 **Figure 15.** Time series of annual numbers of (a) large-hail reports for Europe (green line) and Poland (red
598 line), and (b) large-hail days for Europe (green line) and Poland (red line): 1900–2020.

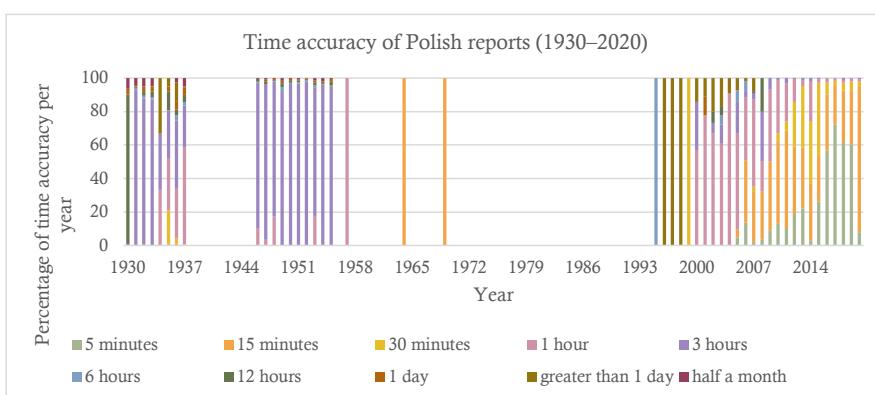
Deleted: 2

600 As in Fig. 11, the time accuracy of large-hail reports can be plotted as a function of time during 1930–2020
 601 in Fig. 16. The time accuracy of reporting in Poland has improved over the past 20 years, with over half the
 602 reports having a time accuracy of 15 min by 2015 (Fig. 16). During the 1930s and 1950s, the time accuracy was
 603 much lower, around 3 h (Fig. 16). Although this result may suggest that reports were less reliable during this
 604 period, the consistency in time accuracy (especially during the 1950s) may also suggest that the data-collection
 605 methods were more consistent. These reports were later found to be based upon the Meteorological Yearbooks
 606 from the Polish National Institute of Meteorology (I. Laskowski 2022, personal communication). The yearbooks
 607 contained information on hail size, time of occurrence and storm direction based upon questionnaires posed to
 608 insurance companies, agricultural correspondents of the Polish Central Statistical Office alongside observations
 609 from meteorological stations. Laskowski also mentioned that yearbooks from the 1960s and 1970s also existed,
 610 but was currently unable to find any existing copies. Hence, such data – when it is found – remains to be entered
 611 into the ESWD.

612 In addition, the reported location accuracy was also investigated, with the most common distances being 1
 613 and 3 km, similar to those found in the broader 2000–2020 dataset. This result reiterates the importance of these
 614 earlier reports in constructing a reliable hail climatology, and gives credit to the data-collection method.

615 The historical Polish datasets offer an insight into past hail frequency and reporting accuracies. Results by
 616 Suwala (2011) for the period 1973–2009 contradict those found for more recent time periods in terms of peak
 617 annual frequency and spatial distribution of large hail. The potential implications of these discrepancies may
 618 suggest that distributions of hail size, frequency, and location have changed over time and have not yet been
 619 established or studied due to the lack of historical pan-European data, highlighting the importance of building the
 620 ESWD further. Moreover, the existence of Meteorological Yearbooks in Poland could also suggest that other
 621 nations might hold similar records that remain to be analyzed and could contribute toward building a more
 622 complete climatology.

Deleted: 9


Deleted: 3

Deleted: 3

Deleted: 3

Deleted: hail

Deleted: trends

624
 625 **Figure 16** Time series of bar charts the annual distributions of time accuracy of reports for Poland (%):
 626 1930–2020.

Deleted: 3

634 **8 Comparison to previous hail climatologies and prospects for a baseline for climate-change research**

635 The ultimate goal of severe-storm climatologies is to create a consistent and complete database in space and
636 time. Consistent data acquisition methods throughout the study area and through time would assist in achieving
637 this goal; however, consistency is not achievable across Europe. ~~Punge and Kunz (2016) synthesized all European~~
638 hail studies in their review, not just large hail. They concluded that not all regions have the same threat of hail,
639 and ~~they found that~~ efforts to report and record these events vary by country. They further concluded that there
640 was insufficient evidence to determine any trends in hail events, both in terms of spatial and temporal extent,
641 highlighting the need for the continuation of the ESWD to form a reliable climatology. ~~Previous studies have~~
642 ~~provided pan-European climatologies of hail based using other methods such as Punge et al. (2014, 2017) who~~
643 ~~used overshooting cloud tops, Räder et al. (2018) who used reanalysis data, or Taszarek et al. (2018) who used a~~
644 ~~combination of data sources. Some studies projected increases in hailstorms with climate change in Italy (Piani et~~
645 ~~al. 2005), Netherlands (Botzen et al. 2010), and Germany (Mohr et al. 2015), as well as across much of Europe~~
646 ~~(Taszarek et al. 2021). Other studies have also concluded that there were no positive trends in the frequency of~~
647 ~~hail in hailpad data in northern Italy and France (e.g., Eccel et al. 2012; Dessens et al. 2015; Raupach et al. 2021;~~
648 ~~Manzato et al. 2023). Tazarek et al. (2019) argued that a combination of datasets is important to construct a robust~~
649 ~~climatology, particularly as the spatial and temporal resolutions would often differ between methods. Furthermore,~~
650 ~~studies such as Räder et al. (2018) compared their reanalysis results to surface observed reports from the ESWD~~
651 ~~to strengthen their arguments. Therefore, understanding the characteristics of the current surface observations via~~
652 ~~the ESWD helps not only build a climatology of large hail in Europe, but can also be used in association with~~
653 ~~other research methods to identify the underlying factors which lead to such events.~~

654 Examining the evidence presented in the present article, we seek a stable time period during 2000–2020.
655 Based on the number of large-hail reports, no stable time period exists (Fig. 1). Based on the number of large-
656 hail days, the time period starts around 2012 (Fig. 1). Based on the diurnal cycle of large-hail reports, the time
657 period starts around 2010 (Fig. 9). Based on the large-hail size distributions, the time period starts around 2004
658 (Fig. 9). Based on the time accuracy of reports, the time period possibly starts around 2018 (Fig. 11). However,
659 if one is prepared to accept an accuracy of 3 h or less, then the time period starts around 2010 (Fig. 11).

660 **9 Conclusion**

661 The ESWD provides the only pan-European dataset for large-hail reports. The frequency of reports is sporadic
662 pre-2000, and hence the focus of this study is for the period 2000 to 2020. Hail reports have continuously increased
663 since 2000. The annual number of large-hail days have remained steady after 2010 at around 175 days per year,
664 although some interannual variability is still observed. Increased large-hail reports for similar large-hail days
665 suggests that a greater spotter network is in operation, and that the engagement with the ESWD is increasing.

666 The warm season of May to August shows the highest number of large-hail reports and large-hail days, with
667 June showing the highest large-hail reports and July the highest large-hail days. The number of large-hail reports
668 decrease faster than large-hail days from June to September. The diurnal cycle shows that the peak hailfall time
669 is 1500 UTC and 1700 local time.

670 The number of large-hail reports decreases with increasing diameter, and the percentage distribution of each
671 large-hail size by year does not appear to have changed over the past 20 years. The possibility that hail-size
672 distribution is changing remains, as smaller, less damaging hail size events are being recorded more regularly.

Deleted:

Deleted: and Punge et al. 2017

Deleted: based theirs on

Deleted: are

Deleted: ing

Deleted: with climate change

Deleted: in order

Deleted: v

Deleted: Given that some studies are projecting increases in
hailstorms in Italy (Piani et al. 2005), Netherlands (Botzen et
al. 2010), and Germany (Mohr et al. 2015), as well as across
much of Europe (Taszarek et al. 2021) with climate change,
creating a robust climatology with a consistent record is
needed.

Deleted: 5

Deleted: 7

Deleted: 9

Deleted: 9

692 The diurnal cycle by year shows that for the past 10 years, a consistent pattern has emerged, with a rise in the
693 early afternoon and a decline in the evening. Furthermore, the time accuracy of reports has improved with over
694 50% of reports being reported to within a 30-minute window by 2012, followed by 50% being reported to within
695 a 15-minute window by 2017. Not all countries display improved time accuracies. Germany, Finland, and the
696 Czech Republic have the greatest proportions of 5-minute time-accuracy reports, whereas Russia, Moldova, and
697 Bulgaria have the highest proportions of 1-h or greater time-accuracy reports. Efforts to improve monitoring and
698 reporting in these regions is therefore suggested to improve the completeness of the ESWD.

699 Poland ~~possessed~~ anomalously large ~~numbers~~ of large-hail reports during the 1930s, 1940s, and 1950s. The
700 reason is linked to scientific interest in severe convective storms during these periods alongside a nationwide
701 effort by the Polish National Institute of Meteorology to record hail events via questionnaires. Yearbooks also
702 exist for the 1960s and 1970s; however, copies are yet to be retrieved and entered into the database.

703 Even though the dataset remains too ~~short~~ to extract any trends in large-hail pattern distribution, the
704 climatology presented here provides insight into which countries and geographical regions to target for
705 improvements in data acquisition. This climatology also helps advance the idea that some time series are starting
706 to show consistent behavior, suggesting their utility as climate-change baselines. Furthermore, the differences in
707 both spatial and annual frequencies of hail in Poland over different time periods may suggest that hail trends have
708 been changing, highlighting the importance of building and maintaining such climatologies. Therefore, the
709 usefulness of the ESWD will only continue to expand and offer avenues for future severe convective storm
710 research.

711 *Data availability.* The data were obtained from the European Severe Storms Laboratory European Severe Weather
712 Database, in accordance with their data policies: <http://www.eswd.eu>.

713 *Author contributions.* FH performed the analyses and wrote the paper. DMS supervised the research, and helped
714 write and edit the paper.

715 *Competing interests.* The authors declare that they have no conflicts of interest.

716 *Acknowledgments.* This article is derived from FH's BSc dissertation at the University of Manchester. We thank
717 the European Severe Storms Laboratory for their kind access to the ESWD that made this work available. We
718 thank Neil Mitchell for his comments on the dissertation. We thank Igor Laskowski for explaining the Polish hail
719 dataset. We thank the anonymous reviewers for their comments that have improved this article.

720 *Financial support.* Schultz is partially supported by the Natural Environment Research Council grant numbers
721 NE/N003918/1 and NE/W000997/1.

722 **References**

723 Allen, J. T., and M. K. Tippett: The characteristics of United States hail reports: 1955–2014. *Electron. J. Severe*
724 *Storms Meteor.*, **10** (3), <http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/149>, 2015.

Deleted: displayed

Deleted: quantities

Deleted: temporally incomplete

735 Antonescu, B., D. M. Schultz, A. Holzer, and P. Groenemeijer: Tornadoes in Europe: An underestimated
736 threat. *Bull. Amer. Meteorol. Soc.*, **98**, 713–728, 2017.

737 Associated Press, The: Storm floods German vaccine center, 5 injured by heavy hail. ABC News. Available at:
738 <https://abcnews.go.com/International/wireStory/german-vaccine-center-flooded-injured-heavy-hail-78459538> (Accessed: 16 July 2021), 2021.

740 Brooks, H. E., Doswell, C.A. III, X. Zhang, A. A. Chernokulsky, E. Tochimoto, B. Hanstrum, E. de Lima
741 Nascimento, D. M. Sills, B. Antonescu, and B. Barrett: A century of progress in severe convective storm
742 research and forecasting. *Meteorological Monographs*, **59**, 18.1–18.41, 2019.

743 Botzen, W. J. W., L. M. Bouwer, and J. C. J. M. Van den Bergh: Climate change and hailstorm damage: Empirical
744 evidence and implications for agriculture and insurance. *Resource and Energy Economics*, **32**, 341–362,
745 2010.

746 **Dessens, J., C. Berthet, and J. L. Sanchez: Change in hailstone size distributions with an increase in the melting**
747 **level height. *Atmos. Res.*, **158–159**, 245–253, 2015.**

748 Dotzek, N., P. Groenemeijer, B. Feuerstein, and A. M. Holzer: Overview of ESSL's severe convective storms
749 research using the European Severe Weather Database ESWD. *Atmos. Res.*, **93**, 575–586, doi:
750 10.1016/j.atmosres.2008.10.020, 2009.

751 **Eccel, E., P. Cau, K. Riemann-Campe, and F. Biasioli: Quantitative hail monitoring in an alpine area: 35-year**
752 **climatology and links with atmospheric variables. *Intl. J. Climatol.*, **32**, 503–517, 2012.**

753 ESKP: <https://www.eskp.de/en/natural-hazards/largest-hailstone-found-over-swabian-jura-935341/>. (Accessed
754 25 March 2022), 2013.

755 Fluck, E., M. Kunz, P. Geissbuehler, and S. P. Ritz: Radar-based assessment of hail frequency in Europe. *Natural*
756 *Hazards and Earth System Sciences*, **21**, 683–701, 2021.

757 Groenemeijer, P., M. Kuehne, Z. Liang, and N. Dotzek: New capabilities of the European Severe Weather
758 Database. *5th European Conference on Severe Storms*, Landshut, Germany, 311–312, 2009.

759 Groenemeijer, P., and T. Kühne: A climatology of tornadoes in Europe: Results from the European Severe
760 Weather Database. *Mon. Wea. Rev.*, **142**, 4775–4790, 2014.

761 Groenemeijer, P., T. Púčik, A. M. Holzer, B. Antonescu, K. Riemann-Campe, D. M. Schultz, T. Kühne, B.
762 Feuerstein, H. E. Brooks, C. A Doswell, H.-J. Koppert, and R. Sausen: Severe convective storms in Europe:
763 Ten years of research and education at the European Severe Storms Laboratory. *Bull. Amer. Meteor. Soc.*, **98**,
764 2641–2651, doi: 10.1175/BAMS-D-16-0067.1, 2017.

765 Groenemeijer, P., and Z. Liang: ESWD data format specification Version 1.60 and 1.60-csv. Revision 1. Tech.
766 Report 2020-11, European Severe Storms Laboratory, 66 pp. Available at: <https://www.essl.org/cms/wp-content/uploads/ESSL-rep-2020-11.pdf>, 2020.

767 Hand, W. H., and G. Cappelluti: A global hail climatology using the UK Met Office convection diagnosis
768 procedure (CDP) and model analyses. *Meteorol. Appl.*, **18**, 446–4589, 2011.

769 Hawkins, E., D. Frame, L. Harrington, M. Joshi, A. King, M. Rojas, and R. Sutton: Observed emergence of the
770 climate change signal: From the familiar to the unknown. *Geophys. Res. Lett.*, **47**, e2019GL086259, 2020.

771 Istrate, V., R. V. Dobri, F. Bărcăcianu, R. A. Ciobanu, and L. Apostol: A ten years hail climatology based on
772 ESWD hail reports in Romania, 2007-2016. *Geographia Technica*, **12**, 110–118, 2017.

Formatted: Font: Italic

Formatted: Font: Bold

Formatted: Font: Italic

Formatted: Font: Bold

774 Kaonga, G.: BBC Weather: Europe braces for hail storms as heavy downpours to cover continent, Express.co.uk.
775 Available at: <https://www.express.co.uk/news/weather/1454518/BBC-Weather-Europe-forecast-hail-storms-latest-June-2021-vn> (Accessed: 16 July 2021), 2021.

776 Koźmiński, C.: Geograficzne rozmieszczenie największych burz gradowych zanotowanych na obszarze Polski w latach 1946–1956. [Geographical distribution of major hailstorms recorded in Poland in 1946–1956.] *Przegl. Geogr.*, **36** (1), 87–102, 1964.

780 Kunz, M., U. Blahak, J. Handwerker, M. Schmidberger, H. J. Punge, S. Mohr, E. Fluck, and K. M. Bedka: The severe hailstorm in southwest Germany on 28 July 2013: Characteristics, impacts and meteorological conditions. *Quart. J. Roy. Meteor. Soc.*, **144**, 231–250, 2018.

783 Kunz, M., J. Sander, and C. Kottmeier: Recent trends of thunderstorm and hailstorm frequency and their relation to atmospheric characteristics in southwest Germany. *Intl. J. Climatol.*, **29**, 2283–2297, 2009.

785 Kunz, M., J. Wandel, E. Fluck, S. Baumstark, S. Mohr, and S. Schemm: Ambient conditions prevailing during hail events in central Europe. *Natural Hazards and Earth System Sciences*, **20**, 1867–1887, 2020.

787 Manzato, A., Fasano, G., Cicogna, A., Sioni, F., and Pucillo, A.: Trends of sounding-derived indices and observations in NE Italy in the last 30 years. 11th European Conference on Severe Storms, Bucharest, Romania, 8–12 May 2023, ECSS2023-3, <https://doi.org/10.5194/ecss2023-3>, 2023.

790 Mohr, S., M. Kunz, and K. Keuler: Development and application of a logistic model to estimate the past and future hail potential in Germany. *J. Geophys. Res. Atmos.*, **120**, 3939–3956, 2015.

792 Pacey, G. P., D. M. Schultz, and L. Garcia-Carreras: Severe convective windstorms in Europe: Climatology, preconvective environments, and convective mode. *Wea. Forecasting*, **36**, 237–252, doi: [10.1175/WAF-D-20-0075.1](https://doi.org/10.1175/WAF-D-20-0075.1), 2021.

795 Piani, F., A. Crisci, G. De Chiara, G. Maracchi, and F. Meneguzzo: Recent trends and climatic perspectives of hailstorms frequency and intensity in Tuscany and Central Italy. *Nat. Hazards Earth Syst. Sci.*, **5**, 217–224, 2005.

798 Pilorz, W.: Very large hail occurrence in Poland from 2007 to 2015. *Contemporary Trends in Geoscience*, **4**, 45–55, 2015.

800 Púčik, T., C. Castellano, P. Groenemeijer, T. Kühne, A. T. Rädler, B. Antonescu, and E. Faust: Large hail incidence and its economic and societal impacts across Europe. *Mon. Wea. Rev.*, **147**, 3901–3916, 2019.

802 Punge, H. J., K. M. Bedka, M. Kunz, and A. Werner: A new physically based stochastic event catalog for hail in Europe. *Natural Hazards*, **73**, 1625–1645, 2014.

804 Punge, H. J., K. M. Bedka, M. Kunz, and A. Reimbold: Hail frequency estimation across Europe based on a combination of overshooting top detections and the ERA-INTERIM reanalysis. *Atmos. Res.*, **198**, 34–43, 2017.

807 Punge, H. J., and M. Kunz: Hail observations and hailstorm characteristics in Europe: A review. *Atmos. Res.*, **176**, 159–184, 2016.

809 Rädler, A. T., P. Groenemeijer, E. Faust, and R. Sausen: Detecting severe weather trends using an additive Regressive Convective Hazard Model (AR-CHAMo). *J. Appl. Meteor. Climatol.*, **57**, 569–587, 2018.

811 Raupach, T. H., O. Martius, J. T. Allen, M. Kunz, S. Lasher-Trapp, S. Mohr, K. L. Rasmussen, R. J. Trapp, and Q. Zhang: The effects of climate change on hailstorms. *Nature Reviews Earth & Environment*, **2**, 213–226, 2021.

Formatted: Font: 10 pt

Formatted: Normal

Formatted: Font: 10 pt

Formatted: Justified, Indent: Left: 0", Hanging: 0.25", Line spacing: 1.5 lines

Formatted: Default Paragraph Font, Font: 10 pt

Formatted: Font: 10 pt

814 [Sanchez, J. L., A. Merino, P. Melcón, E., Garcia-Ortega, S. Fernández-González, C. Berthet, and H. Dessens: Are](#)
 815 [meteorological conditions favoring hail precipitation change in southern Europe? Analysis of the period](#)
 816 [1948–2015. *Atmos. Res.*, **198**, 1–10, 2017.](#)

817 Space: Weather Armageddon hits Poland: Huge hail and a powerful tornado. Earth Chronicles News. Available
 818 at: <https://earth-chronicles.com/natural-catastrophe/weather-armageddon-hits-poland-huge-hail-and-a-powerful-tornado.html> (Accessed: 16 July 2021), 2021a.

820 Space: Giant hail hits highway in Italy damaging hundreds of cars. Earth Chronicles News. Available at:
 821 <https://earth-chronicles.com/natural-catastrophe/giant-hail-hits-highway-in-italy-damaging-hundreds-of-cars.html> (Accessed: 31 July 2021), 2021b.

823 Space: Russia: Hail the size of a quail's egg fell in the Kemerovo region. Earth Chronicles News. Available at:
 824 <https://earth-chronicles.com/natural-catastrophe/russia-hail-the-size-of-a-quails-egg-fell-in-the-kemerovo-region.html> (Accessed: 31 July 2021), 2021c.

826 Schmuck, A.: Burze gradowe. *Czas. Geogr.*, **20**, 260–267, 1949.

827 Suwala, K.: Hail occurrence in Poland. *Quaestiones Geographicae*, **30**, 115–126, 2011.

828 Suwala, K., and E. Bednorz: Climatology of hail in Central Europe. *Quaestiones Geographicae*, **32**, 99–110, 2013.

829 Tang, B. H., V. A. Gensini, and C. R. Homeyer: Trends in United States large hail environments and
 830 observations. *npj Climate and Atmospheric Science*, **2**, 1–7, 2019.

831 Taszarek, M., H. E. Brooks, B. Czernecki, P. Szuster, and K. Fortuniak: Climatological aspects of convective
 832 parameters over Europe: A comparison of ERA-Interim and sounding data. *J. Climate*, **31**, 4281–4308, 2018.

833 Taszarek, M., J. Allen, T. Púčik, P. Groenemeijer, B. Czernecki, L. Kolendowicz, K. Lagouvardos, V. Kotroni,
 834 and W. Schulz: A climatology of thunderstorms across Europe from a synthesis of multiple data sources. *J. Climate*, **32**, 1813–1837, 2019.

836 Taszarek, M., J. T. Allen, P. Groenemeijer, R. Edwards, H. E. Brooks, V. Chmielewski, and S. Enno: Severe
 837 convective storms across Europe and the United States. Part I: Climatology of lightning, large hail, severe
 838 wind, and tornadoes. *J. Climate*, **33**, 10239–10261, 2020.

839 Taszarek, M., J. T. Allen, H. E. Brooks, N. Pilguy, and B. Czernecki: Differing trends in United States and
 840 European severe thunderstorm environments in a warming climate. *Bull. Amer. Meteor. Soc.*, **102**, E296–
 841 E322, 2021.

842 Tuovinen, J. P., A. J. Punkka, J. Rauhala, H. Hohti, and D. M. Schultz: Climatology of severe hail in Finland:
 843 1930–2006. *Mon. Wea. Rev.*, **137**, 2238–2249, 2009.

844 Wilhelm, J., S. Mohr, H. J. Punge, B. Mühr, M. Schmidberger, J. E. Daniell, K. M. Bedka, and M. Kunz: Severe
 845 thunderstorms with large hail across Germany in June 2019. *Weather*, **76**, 228–237, 2021.

846 Zhang, C., Q. Zhang, and Y. Wang: Climatology of hail in China: 1961–2005. *J. Appl. Meteor. Climatol.*, **43**,
 847 795–804, 2008.

848 Zinkiewicz, W., and E. Michna: Częstotliwość występowania gradów w województwie lubelskim w zależności
 849 od warunków fizjograficznych. [The frequency of hailstorms in the Lubelskie Province depending on the
 850 physiographic conditions.] *Annales UMCS B*, **10**, 223–300, 1995.

Formatted: Font: Italic

Formatted: Font: Bold

Formatted: Font: 10 pt

Formatted: Justified, Indent: Left: 0", Hanging: 0.25", Line spacing: 1.5 lines

Formatted: Font: 10 pt

