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Abstract 12 

Aerosols have great uncertainty owing to the complex changes in their composition in 13 

different regions. The radiation properties of different aerosol types differ 14 

considerably and are vital in studying aerosol regional and/or global climate effects. 15 

Traditional aerosol-type identification algorithms, generally based on cluster or 16 

empirical analysis methods, are often inaccurate and time-consuming. In response, 17 

our study Hence, we aimed to develop a new aerosol-type classification model using 18 

an innovative hybrid algorithm to improve the precision and efficiency of aerosol-19 

type identification. This novel algorithm incorporates an optical database, constructed 20 

using the Mie scattering model, and employs a random forest algorithm to classify 21 

different aerosol types based on the optical data from the database. The complex 22 

refractive index was used as a baseline to assess the performance of our hybrid 23 

algorithm against the traditional Gaussian kernel density clustering method for aerosol 24 

type identification. An optical database was built using Mie scattering and a complex 25 

refractive index was used as a baseline to identify different aerosol types by applying 26 

a random forest algorithm to train the aerosol optical parameters obtained from the 27 

Aerosol Robotic Network sites. The hybrid algorithm demonstrated impressive 28 

consistency rates of The consistency rates of the new model with the traditional 29 

Gaussian  were 90%, 85%, 84%, 84%, and 100% for dust, mixed-coarse, mixed-fine, 30 
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urban/industrial, and biomass burning aerosols, respectively. Moreover, it achieved 31 

remarkable precision, with F-score and accuracy scores of The corresponding 32 

precision of the new hybrid algorithm (F-score and accuracy scores) was 95%, 89%, 33 

91%, and 89%. Lastly, a global map of aerosol types was generated using the new 34 

model to characterize aerosol types across the five continents. This study utilizing a 35 

novel approach for the classification of aerosol will help improve the accuracy of 36 

aerosol inversion and determine the sources of aerosol pollution. 37 

Keywords: Aerosol typing classification, Hybrid algorithm, Complex refractive index, 38 

AERONET 39 

1. Introduction 40 

Atmospheric aerosols are tiny solid or liquid particles suspended in the 41 

atmosphere. Aerosols indirectly affect the energy budget and water cycle of the earth's 42 

gas system by absorbing and scattering solar radiation or by changing the optical 43 

properties and life cycle of the cloud as condensation nuclei of cloud droplets 44 

(Redemann et al. 2000; Ramanathan et al. 2001). Additionally, desert dust, biomass 45 

smog, and anthropogenic emissions of air pollutants can affect visibility, air quality, 46 

and human health (Hess et al., 1998;Tong et al., 2017; Siomos et al., 2020). 47 

Evaluating the impact of aerosols on radiative transfer is complex, primarily because 48 

of the uncertainty of radiative forcing caused by the high spatiotemporal dynamic 49 

variation of aerosol optical and physical characteristics in different regions 50 

(Kaskaoutis et al., 2011;Che et al., 2018; Elham et al.,2023).The aerosol type 51 

embodies the long-term average physicochemical properties of aerosols in a certain 52 

area (Kiehl & Briegleb, 1993;Lu et al., 2023). Therefore, accurate identification of 53 

aerosol types can drive the study of the climatic effects of aerosols, tracking and 54 

control of environmental pollution sources, and precision of radiation transmission 55 

models.  56 

Aerosol types are defined based on the radiation properties of different types of 57 

aerosol particles owing to the large variation in their optical, physical, and chemical 58 
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properties. Currently, aerosol types are classified by two ways using two different 59 

clustering techniques (Kumar et al., 2018). First, based on different sources and 60 

properties at different observation points worldwide, aerosols are classified as follows: 61 

dust aerosols from deserts, biomass combustion aerosols from forests or grasslands, 62 

and urban/industrial (U/I) aerosols from fuel combustion in densely populated urban 63 

areas (Dubovik et al., 2002;Pawar et al., 2015;Yousefi et al., 2020). Second, based on 64 

the size of the radiation absorption rate, aerosols into four categories: carbonaceous 65 

(fine-absorbing mode), soil dust (coarse absorption mode), sulfates (nonabsorbing 66 

fine-grained mode), and sea salt aerosols (nonabsorbing coarse-grained mode) (Kim 67 

et al., 2007;Levy et al., 2007). The second one is a type of subcategorize 68 

anthropogenic aerosol. The first one is commonly used for aerosol retrieval. Therefore, 69 

the first aerosol type classification is more common in research. The optical properties 70 

of aerosols observed at ground stations are commonly used to construct a two-71 

dimensional identification space to obtain the aerosol types by clustering techniques. 72 

Many combinations of optical properties and parameters are available; They include 73 

EAE440-870nm (extinction angstrom exponent) vs. SSA440nm (single-scattering albedo), 74 

AAE440-870nm (absorption angstrom exponent) vs. EAE440-870nm, AAE440-870nm vs. 75 

FMF550nm (fine mode fraction), and SSA440nm vs. EAE440-870nm (Lee et al., 2010;Shin et 76 

al., 2019;Choi, et al., 2021). Studies have highlighted the importance of selecting 77 

appropriate aerosol properties for accurate aerosol type identification (Giles et al., 78 

2012; Che et al., 2018). 79 

Among the aerosol-type classification methodologies developed, those using 80 

threshold and empirical analyses have the greatest potential for large-area and fixed-81 

period applications (Eck et al., 1999; Omar et al., 2005; Yang et al., 2009). 82 

Traditionally, the aerosol-type classification algorithm mainly distinguishes different 83 

aerosol types based on their optical properties and determines the threshold of their 84 

optical properties based on clustering. However, the composition of aerosols changes 85 

rapidly with time and location, owing to the combined influence of natural conditions 86 

and human activities (for example, tornadoes and various anthropogenic activities) 87 

(Sheridan et al., 2001). Unfortunately, determining aerosol types accurately and 88 
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rapidly is a challenge when using traditional methods (Bahadur et al., 2012;Shin et al., 89 

2019;Lin et al., 2021). Nevertheless, with advancements in data science, artificial 90 

intelligence techniques have aided the accurate and rapid recognition of different 91 

aerosol types. 92 

Artificial intelligence algorithms can receive multiple aerosol characteristic 93 

parameters as input, thus preventing the sole reliance of aerosol classification on a 94 

limited number of features (Li et al., 2022; Wang et al., 2023). For example, Boselli 95 

(2012) performed a k-means clustering analysis of single scattering albedo (SSA), 96 

aerosol optical depth (AOD), electrical asymmetry effect (EAE), and asymmetry 97 

parameter (g) datasets for the central Mediterranean Sea for the classification of 98 

aerosol into four: dusty, continental, oceanic, or mixed aerosols. Nicolae (2018) 99 

developed a neural network algorithm to estimate the aerosol typing of Lidar data and 100 

Hamill (2016) introduced the Mahalanobis Distance for aerosol classification to 101 

determine a specific aerosol type for each reference cluster. Li (2022) generated 102 

spatial contiguous aerosol type map in China with an empirical aerosol type retrieval 103 

algorithm. Overall, limited information on the optical properties of aerosols can 104 

reasonably determine the type of aerosol (Hamill et al., 2016). However, some 105 

challenges remain in identifying aerosol types through machine learning. First, the 106 

amount of valid ground aerosol property data that can be used for training is less due 107 

to cloud removal and quality control. Second, the accuracy of machine learning 108 

depends on the labeled aerosol typing dataset, and finding a suitable classification 109 

method to classify the dataset is challenging. Third, evaluating the accuracy of the 110 

final trained model is also tedious (Zhang & Li, 2019;Siomos et al., 2020; Choi, et al., 111 

2021a,b) 112 

The traditional aerosol type identification methods are easily limited by time and 113 

space, and most of them only classify aerosol types using two optical property 114 

parameters, limiting the complete characterization of aerosols. Considering these 115 

limitations, we aimed to (1) develop a new algorithm that can accurately and quickly 116 

identify aerosol types to overcome existing problems such as low accuracy, 117 

insufficient data, and difficulty in setting labels; (2) investigate the characteristics of 118 
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the regional spatial distribution of global aerosol types obtained using the new 119 

machine learning algorithms, considering the large regional differences in aerosol 120 

types. To achieve this, we propose a new aerosol-type classification algorithm based 121 

on a Gaussian cluster and random forest algorithm to generate an aerosol-typing map 122 

over several representative regions of the world.  123 

2. Study area and data 124 

Figure 1 illustrates the research area and the distribution of the Aerosol Robotic 125 

Network (AERONET) sites, strategically encompassing major global regions to 126 

validate the universality of the research algorithm. The study utilized 47 marked 127 

aerosol sites across five continents, leveraging them to train and validate the machine 128 

learning approach based on a comprehensive literature review. Figure 1 shows the 129 

study area and the Aerosol Robotic Network (AERONET) site distribution, which 130 

covers major regions of the world, to ensure the generalizability of the research 131 

algorithm. We used 47 aerosol sites as marked on the map that were distributed over 132 

five continents to train and verify machine learning by literature review. The 47 sites 133 

represent different aerosol-type properties of different aerosol source regions, 134 

including dust, mixed (mixed coarse and mixed fine aerosols), U/I, and biomass 135 

burning (BB) aerosols (Table 1 and Figure 1). Marine aerosols were not considered 136 

because their low optical thickness values (generally <0.4) can result in a less valid 137 

data scale that would not meet the study requirements. Here, the aerosol source region 138 

refers to the area affected by one dominant emission source, where the aerosol types 139 

are fixed and not easily confused (Giles et al., 2012;Hamill et al., 2016). Table 2 140 

presents the optical properties and microphysical characteristic parameters of aerosols 141 

at four bands of AERONET (440, 675, 870, and 1020 nm). These parameters were 142 

used to construct a database of SSA, AOD, and asymmetry parameters. Further, 143 

typical sites dominated by different aerosol types worldwide were selected for 144 

compositional analysis using the new model. The selected sites are distributed across 145 

different regions of the world and represent a specific aerosol-dominated type and 146 

aerosol source region. 147 
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For dust aerosols, five AERONET sites, namely Banizoumbou, Capo_Verde, 148 

Dakar, and Ouagadougou in Africa and Solar Solar_Village in West Asia, influenced 149 

by the Saharan Desert, were considered. The Dakar and Cape Capo_Verde sites are 150 

located at the tip of the CapeCapo_Verde Peninsula—the westernmost part of Africa, 151 

bordering the Atlantic Ocean. Although these two sites are located in the ocean, they 152 

are dominated by dust aerosols influenced by aerosol plumes in the Saharan Desert. 153 

Moreover, the Banizoumbou and Ouagadougou sites are in the middle of Africa. Here, 154 

the northeasterly winds prevail in winter, and northwesterly winds prevail in summer, 155 

which can bring dust aerosols from the Saharan Desert. For mixed aerosols, the 156 

AERONET sites Ilorin, Kanpur, Sede_Boker, and XiangHe were selected. For U/I 157 

aerosols, the AERONET sites GSFC, Ispra, Mexico_City, and Moldova were selected. 158 

Four AERONET sites, namely, Alta_Floresta, Abracos_Hill, Lake_Argyle, and 159 

Mongu, were selected as BB aerosol-dominant sites. 160 

161 
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 162 

Figure 1. Study area and 47 AERONET sites selected by literature review. 163 

Table 1. 47 AERONET sites selected by literature review.  164 

Aerosol Type Sites for Training Sites for Testing  

Dust Agoufou,Capo_Verde,Dakar, Mezaira,  

Mussafa, Ouagadougou 

Banizoumbou, 

Solar_Village, 

Blida 

Mixed  Anmyon, Beijing, Chen-Kung_Univ, Ilorin, Kanpur, 

Sede_Boker, Gosan_SUN, Pune, Taipei_CWB 

Osaka, XiangHe, 

Pokhara 

Urban/Industry Brookhaven,Billerica,Belsk,GSFC,Ispra,UMBC,Lille, 

Mexcio_City,Moldova,MD_Science_Center,Wallops  

Athens_Noa,Shirahama, 

Leipzig 

Biomass 

Burning 

Abracos_Hill,Alta_Floresta,Cuiaba,Concepcion 

Los_Fieros,Mongu,Senanga, Skukuza,Zambezi 

Bonanza_Creak, 

Etosha_Pan, Lake_Argyle 

Table 2. The optical and microphysical properties for aerosol type identification. 165 

  Parameters Variables (band waves) 

 

 

Optical 

Properties 

Ångström Exponent (AE) EAE (440-870)1 

Aerosol Optical Depth (AOD)  AOD (440,675,870,1020)1 

Single Scattering Albedo (SSA)  SSA (440,675,870,1020)1 

Asymmetry Parameter  g (440,675,870,1020)1 

Imaginary Part of the Complex Refractive Index REFI (440,675,870,1020)1 

Real Part of the Complex Refractive Index REFR(440,675,870,1020)1 

Microphysical 

Properties 

Effective Radius EffRad-F2, EffRad-C2 

Standard Deviation of Effective Radius StaDev-F2, StaDev-C2 

Size Distribution Vol-Con (0.05-15μm) 

Note：1 refers to wavelength in nm; 2 refers to different modes; EAE is Extinction Ångström Exponent; REFI is Imaginary Part of the 166 

Complex Refractive Index; REFR is Real Part of the Complex Refractive Index; F refers to fine mode; C refers to coarse mode; EffRad is 167 

Effective Radius; StaDev is standard deviation; Vol-Con is Volume concentration 168 
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3. Methods  169 

A new aerosol classification typing hybrid approach that provides insight into 170 

spatiotemporal variations in aerosol pollution and climate impacts on a global scale is 171 

proposed in this study. In this approach, an aerosol optical properties database using 172 

the Mie scattering model was built for calculating rapidly unique aerosol-type features. 173 

Additionally, the approach introduced, for the first time, the median value of the 174 

complex refractive index (CRI) as the criterion for identifying the aerosol type. CRI, a 175 

key microphysical characteristic of aerosols, plays a significant role in determining 176 

their intrinsic optical properties, such as their ability to scatter and absorb light (Raut 177 

and Chazette, 2008). The CRI is also vital for determining aerosols' chemical and 178 

physical compositions (Dubovik and King, 2000) and the CRI value is known for pure 179 

aerosol components (Nandan et al., 2021).Unlike the mean, the median CRI value is 180 

employed in this research for it represents the central tendency of data, especially 181 

beneficial in skewed distributions or when outliers are present. This is particularly 182 

useful when an average value of a specific aerosol-type might be influenced by the 183 

presence of other aerosol types. Moreover, Further, we have selected the aerosol 184 

classification based on the source (as described in Section 1), according to the 185 

parameters applied in this study and the requirements for AOD retrieval. Figure 2 186 

shows the working flowchart of the new hybrid aerosol-type identification approach, 187 

including three stages: aerosol typing preliminary classification, aerosol optical 188 

database generation, and global aerosol typing identification and validation. The 189 

details of these three stages are as follows.  190 
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 192 

 193 

Figure 2. Flow chart of the new hybrid algorithm in aerosol type identification.  194 

3.1 Aerosol typing preliminary classification (Stage 1) 195 

Stage 1 aimed to solve the problem of obtaining a feature parameter dataset for 196 

the baseline aerosol type. In previous studies, the Gaussian kernel density clustering 197 

algorithm showed great potential for distinguishing the optical properties of different 198 

aerosol types and determining their corresponding thresholds rapidly ( Kalapureddy et 199 

al. 2009;  Pathak et al. 2012). The high concentration value in each cluster generally 200 

represents the dominant pattern of a specific aerosol type, particularly the data within 201 

the window, taking the cluster centroid as the center and a specific distance as the 202 

radius. Preliminary aerosol-type datasets can be generated by digging deep into the 203 

distribution information of the effective radius, variance, and refractive index of the 204 

data within the window. The spectral absorbability and particle size of aerosols guide 205 

the identification of dust, carbonaceous, or hygroscopic aerosols; SSA indicates the 206 
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absorption of aerosol particles; and EAE describes aerosol particle size (Giles et al., 207 

2012). Consequently, in this study, SSA440nm and EAE440-870nm of 47 AERONET sites 208 

and the Gaussian kernel density clusteringGaussian kernel density method was used 209 

to estimate the relative densities and determine the primary patterns of the dominant 210 

aerosol types; here, the aerosol type was classified as a dust aerosol. Eqs. (1) and (2) 211 

represent the kernel density and Gaussian kernel density clusteringGaussian kernel 212 

density methods (Rosenblatt, 1956). 213 


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where σ is the kernel size used as a smoothing factor (Moraes et al., 2021).  

220 

The mixed aerosols comprised fine- and coarse-mode aerosols, indicated by 221 

EAE > 0.8 and EAE ≤ 0.8, respectively. Figure 3 shows the clustering distribution of 222 

EAE and SSA using the Gaussian kernel density clusteringGaussian kernel density 223 

method for different aerosol types at the 47 AERONET sites. For the dust aerosol 224 

cluster, the density core area EAE was 0.1–0.3, and SSA was 0.89–0.94, implying that 225 

it contained many coarse aerosol particles with moderate absorptivity. Furthermore, 226 

the mixed aerosols had two distinct centers: one for the coarse-mode aerosols with a 227 

median EAE value of 0.4, indicating that the cluster contained massive high-228 

absorption aerosols, and the other for fine-mode aerosols with a median EAE value of 229 

1.3. Low-absorption aerosols were dominant in the cluster, similar to U/I aerosols. 230 

Additionally, the density core region EAE of U/I aerosol was 1.5–1.8, and SSA was 231 

0.94–0.97, implying the dominance of fine and low-absorption aerosols. Conversely, 232 

BB aerosols had two indistinct centers. This is because, during biomass combustion, 233 
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gas and particulate matter emissions are limited by the combustion conditions, divided 234 

into combustion and simmering. Combustion produces black smoke, and simmering 235 

produces white smoke. Combustion, such as burning flames (grass) with high black 236 

carbon content, has a strong absorption capacity, resulting in a low SSA. Simmering, 237 

such as burning wood (i.e., trees), tends to be smoldering, lasts longer, has a weaker 238 

absorption capacity, and has a higher SSA value. Therefore, despite possessing 239 

different absorption characteristics, BB aerosols are defined as one aerosol type with 240 

an unseparated center of combustion and simmering. 241 

 

242 

Figure 3. The clustering distribution of EAE and SSA using the Gaussian kernel density clustering 243 

method for different aerosol types. 244 

3.2 Aerosol optical database generation (Stage 2)  245 

In stage 2, the aerosol optical parameter database was built using the aerosol size 246 

distribution parameters, CRI, and Mie scattering model. The main reasons for 247 

constructing an aerosol optical parameter database instead of using the AERONET 248 

data directly are as follows: 1) many data are missed in AERONET, particularly those 249 

for sites dominated by biomass combustion, which does not meet the requirements of 250 

machine learning methods or traditional aerosol type identification algorithms; 2) 251 
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Calculating the optical properties of aerosols based on a fixed refractive index can 252 

accurately determine aerosol types. Therefore, once the aerosol spectral distribution 253 

parameters, such as effective radius, variance, and refractive index of the five aerosol 254 

types, are determined in stage 1, the aerosol optical parameter database can be 255 

constructed using the Mie scattering model in stage 2, assuming that aerosols are 256 

spherical particles. The Mie scattering model is a simple, practical, and ideal spherical 257 

particle model commonly used in radiation transport models (Michael et al., 1994). 258 

Figure 4 shows the details involved in the building aerosol optical database. The 259 

aerosol optical database has four major parameters (AOD, EAE, SSA, and g) at four 260 

wavelengths (440, 675, 870, and 1020 nm, respectively).  261 

 262 

Figure 4. The diagram of building aerosol optical property database. 263 

As shown in Figure 4, size distribution is a major parameter in building aerosol 264 

optical databases. Table 3 presents the aerosol size distribution parameters, including 265 

the effective radius and standard deviation range for the five aerosol types in the 266 

coarse and fine modes, which were calculated using the data in the window 267 

determined by the Gaussian kernel density algorithm. These aerosol size distribution 268 

parameters were used to build the aerosol optical database for the Mie scattering 269 

model.  270 

Table 3. Size distribution parameters of five aerosol types in coarse and fine mode (unit: μm) 271 
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Aerosol type REFF-fine REFF-coarse Std-fine Std-coarse 

Dust 0.05-0.42 1.3-2.65 0.5-0.8 0.4-0.7 

Mixed-coarse 0.05-0.25 1.25-3.5 0.4-0.8 0.4-0.7 

Mixed-fine 0.05-0.27 1.2-4.5 0.3-0.6 0.5-0.8 

U/I 0.05-0.26 1.45-3.5 0.3-0.6 0.5-0.8 

BB 0.05-0.17 1.35-4.5 0.3-0.5 0.5-0.8 

Table 3 presents the aerosol size distribution parameters, including the effective 272 

radius and standard deviation range for the five aerosol types in coarse and fine modes, 273 

which were derived from the data window set by the Gaussian kernel density 274 

clustering algorithm. These aerosol size distribution parameters and the median CRI 275 

value were utilized to construct the optical database for the Mie scattering model. 276 

Many studies proven it is a reliable model with the advantage of  lower computing 277 

load and high calculation accuracy (Zhao et al., 2008; Fu et al., 2009; Quirantes et al, 278 

2019; Nandan et al., 2021).  279 

The Mie scattering model has various size distribution functions, including log-280 

normal, power-law, and bimodal log-normal distributions, which describe the aerosol 281 

type. According to the particle radii provided by AERONET, the size distributions of 282 

different aerosol types can be divided into coarse and fine modes. The bimodal log-283 

normal function [Eq. (3)] is reportedly the most suitable size distribution function for 284 

modeling aerosol particle size distribution (Remer et al., 2009)： 285 
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where n(r) is the number of particles at different radii; constant is obtained by fitting; 287 

While rg1 and rg2 denote the radii, σg1 and σg2 denote the variances of the aerosol in the 288 

coarse and fine modes, respectively; and γ is determined by the volume distribution. 289 

In the bimodal normal distribution model, γ is the ratio of coarse to fine modes, which 290 

can be fitted by the volume distribution from AERONET; notably, volume distribution 291 

is the average of the standard aerosols obtained after clustering at the training sites. 292 

Figure 5 shows the volume distributions of the different aerosol types. The 293 
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aerosol volume distribution of dust aerosol-dominant sites focuses on the large radius; 294 

the peak value of γ was 8.1, and the radius of dust aerosols was 1.5–2.0 μm. 295 

Additionally, the mixed-coarse aerosol with the radius in the range of 0.04–0.2 μm 296 

and 4.9 as the maximum value of γ. The mixed-fine aerosol had two obvious peaks: 297 

one with a large radius, namely the coarse mode, with a radius of 2.2–3 μm and 2.1 as 298 

the peak point of γ; a second with a small radius of 0.1–0.22 μm and 0.14 as the peak 299 

point of γ. Moreover, the volume distributions of U/I and BB aerosols were similar. 300 

Both had a relatively low range of γ values at large radii and relatively high values at 301 

small radii, with peak values of 0.81 and 0.7 for U/I and BB aerosols, respectively. 302 

 303 

Figure 5. Volume distribution of the five aerosol types. 304 

The CRI of aerosols is another key parameter among aerosol optical properties; it 305 

determines inherent optical properties of aerosols, such as scattering and absorption 306 

(Raut and Chazette, 2008). The CRI is vital for determining aerosols' chemical and 307 

physical compositions (Dubovik and King, 2000). Aerosols in the real atmosphere are 308 

usually mixed with different types of particles, which a single refractive index cannot 309 

identify; however, the CRI represents the entire aerosol model in the atmosphere 310 

(Redemann et al., 2000). Ideally, the CRI and aerosol components can be mutually 311 

determined (Wu et al., 2021). Table 4 depicts the CRI standard values for the five 312 
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aerosol types obtained by calculating the median value of the CRI of the dominant 313 

aerosol type after Gaussian density clustering. These values were used as a baseline 314 

for identifying the aerosol types in subsequent studies. As presented in Table 4, the 315 

minimum imaginary index part is represented by the dust aerosol with CRI of 316 

0.003396, 0.000731, 0.000639, and 0.000597 at 440, 675, 870, and 1020 nm, 317 

respectively, owing to the weakest absorption of dust aerosols. Moreover, the 318 

imaginary index part of the mixed-fine aerosols (0.01) was close to that of the BB 319 

aerosols (0.02) because of their similar absorption properties.  320 

Table 4. Real and imaginary index of CRI for the five aerosol types (Bands:440/675/870/1020 321 

nm). 322 

The CRI  is an inherent optical property of aerosols. Aerosols in the real 323 

atmosphere are usually mixed with different types of particles, which a single 324 

refractive index cannot identify; however, the CRI represents the entire aerosol model 325 

in the atmosphere (Redemann et al., 2000). Ideally, the CRI and aerosol components 326 

can be mutually determined (Wu et al., 2021). The CRI can effectively characterize 327 

the main properties of the aerosols and accurately quantify the difference between 328 

aerosol-type identification algorithms. Table 4 depicts the CRI standard values for the 329 

five aerosol types obtained by calculating the median value of the CRI of the 330 

dominant aerosol type after Gaussian kernel density clustering. These values were 331 

used as a baseline for identifying the aerosol types in subsequent studies. As presented 332 

in Table 4, the minimum imaginary index part is represented by the dust aerosol with 333 

CRI of 0.003396, 0.000731, 0.000639, and 0.000597 at 440, 675, 870, and 1020 nm, 334 

respectively, owing to the weakest absorption of dust aerosols. Moreover, the 335 

imaginary index part of the mixed-fine aerosols (0.01) was close to that of the BB 336 

Aerosol Type Imaginary Index Real Index 

Dust 0.003396/0.000731/0.000639/0.000597 1.4584/1.4681/1.4513/1.4376 

Mixed-coarse 0.005766/0.002921/0.002383/0.002043 1.4291/1.4787/1.4745/1.4695 

Mixed-fine 0.01075/0.008444/0.009147/0.008955 1.5001/1.5044/1.5056/1.4977 

U/I 0.004315/0.004331/0.004419/0.004432 1.4372/1.4280/1.4264/1.4214 

BB 0.01828/0.017862/0.018125/0.017858 1.5051/1.5190/1.5228/1.5185 
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aerosols (0.02) because of their similar absorption properties. 337 

Lastly, by fixing the CRI, changing the size distribution, and using the Mie 338 

scattering model, we generated the aerosol optical property database for five aerosols, 339 

including the data for AOD, EAE, SSA, and g. In the aerosol optical property 340 

database, AOD is the value obtained after eliminating the influence of the aerosol 341 

concentration. The AOD was obtained from the extinction cross section (Cext) 342 

calculated using the Mie scattering model in Eqs. (3) and (4), where  βext is the 343 

extinction coefficient, n(r) is the aerosol spectral distribution, and N(z) is the variation 344 

of aerosol concentration with height. Notably, the effect of aerosol concentration 345 

needs to be removed from the AOD when referring to aerosol optical properties. The 346 

AOD was normalized by dividing the aerosol optical thickness at the four 347 

wavelengths by the optical thickness at 440 nm. The other parameters (EAE, SSA, 348 

and g) were calculated using Eqs. (6) – (8). 349 
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355 

where τ440 and τ870 are the extinction optical depths of the aerosol at 440 and 870 nm, 356 

respectively, EAE440-870 nm is the extinction Ångström index from the 440 to 870 nm 357 

band, and Ɵ denotes the scattering angle. 358 

The amount of data for the five aerosol types calculated using the Mie scattering 359 

model is presented in Table 5. The least amount of data was observed for the mixed-360 
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fine aerosol owing to its small distribution range of effective variance. The largest 361 

data was observed for dust and mixed aerosols owing to their widely distributed 362 

effective radii. A total of 326400 datasets were present in the aerosol optical database, 363 

which meets the requirements for random forest algorithm.he amount of data for the 364 

five aerosol types calculated using the Mie scattering model is presented in Table 5. 365 

The least amount of data was observed for the mixed-fine aerosol owing to its small 366 

distribution range of effective variance. The largest data was observed for dust and 367 

mixed aerosols owing to their widely distributed effective radii. A total of 326400 368 

datasets were present in the aerosol optical database, which meets the requirements 369 

for random forest algorithm. 370 

  Table 5. The data size of optical database simulated by Mie scattering model. 371 

3.3 Global aerosol type identification and validation (Stage 3) 372 

In stage 3, the random forest model was introduced to the aerosol-type 373 

identification algorithm. The random forest model is an integrated model based on 374 

classification and regression trees, in which multiple trees are aggregated using 375 

majority voting and averaging for classification and regression (Breiman, 2001). The 376 

model has a high prediction accuracy, excellent tolerance for abnormal values and 377 

noise, and a hard overfit. In a comparison by Fernandez (2014), the random forest 378 

algorithm ranked as the top performer among 179 classification algorithms. In 379 

addition, the evaluation matrix was brought into this study, and it further 380 

quantitatively assesses the performance of the Gaussian density clustering algorithm 381 

and the new hybrid algorithm. The metric indexes include accuracy, recall, precision, 382 

and F-scores (Reddy et al., 2022). Here, the indexes are adjusted to micro-precision, 383 

micro-recall, micro-F1-score, and accuracy to solve the multi-classification problem. 384 

Micro refers to the weighted average of the five aerosol types rather than the 385 

arithmetic mean, due to the large difference in sample size among the five aerosol 386 

types, the arithmetic mean is highly susceptible to the influence of very large or very 387 

Total Dust Mixed-coarse Mixed-fine U/I BB 

326400 88200 96000 42000 51840 48360 
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few sample size aerosol types.The random forest model is an integrated model based 388 

on classification and regression trees, in which multiple trees are aggregated using 389 

majority voting and averaging for classification and regression (Breiman, 2001). The 390 

model has a high prediction accuracy, excellent tolerance for abnormal values and 391 

noise, and a hard overfit. In a comparison by Fernandez (2014), the random forest 392 

algorithm performed the best among 179 classification algorithms. Moreover  393 

The input parameters for random forest model training, including SSA440nm, 394 

SSA675nm, SSA870nm, SSA1020nm, g440nm, g675nm, g870nm, g1020nm, normalized AOD440nm, 395 

AOD675nm, AOD870nm, AOD1020nm, and EAE440-870nm, were selected from the aerosol 396 

optical property database, and the expected output values were the specific aerosol 397 

types. The random forest model was optimized and the parameters were determined 398 

using the grid-searching method. The parameters, including n_estimators (classifier), 399 

max_features (maximum feature value), and min_samples_leaf (minimum number of 400 

samples for nodes), were set as 160, 10, 12, and 12, respectively. Then, based on the 401 

trained and optimized model, aerosol typing of any AERONET site in different 402 

regions of the world can be identified quickly.  Generating the aerosol type 403 

distribution map on a global scale is vital for regional and global climate studies and 404 

ground remote sensing. 405 

4 Results  406 

4.1 Algorithm comparison  407 

To demonstrate the effectiveness of the new hybrid algorithm, its performance 408 

was compared with that of Gaussian kernel density clusteringGaussian density 409 

clustering algorithm. Figure 6 shows the confusion matrix between the new hybrid 410 

and Gaussian kernel density clustering algorithms in identifying aerosol types. The 411 

results of the new hybrid algorithm showed 90% consistency with that from the 412 

Gaussian kernel density clustering algorithm, in delineating dusty aerosols, indicating 413 

that its efficiency in identifying dust. For mixed-coarse aerosols, the consistency 414 

reached 85%, with 14% identified as mixed-fine aerosols, 1% as dust by the new 415 
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hybrid algorithm, and 15% as mixed-coarse aerosols by the Gaussian kernel density 416 

clustering algorithm. Similarly, for mixed-fine aerosols, both algorithms showed 84% 417 

consistency, with 14% identified as a mixed-coarse aerosol by thethe new  hybrid 418 

algorithm and as a mixed-fine aerosol by the Gaussian kernel density cluster 419 

algorithm. Furthermore, both algorithms identified 84% of U/I aerosols correctly, with 420 

the remaining 16% identified as mixed aerosols (fine and coarse). Lastly, the 421 

classification of BB aerosols using these two methods was the same. Overall, the 422 

Gaussian kernel density clustering and new hybrid algorithms were consistent in dust, 423 

mixed-coarse, U/I, and BB aerosol identification.  424 

425 
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 426 

Figure 6. The confusion matrix between Gaussian kernel density clustering and new hybrid 427 

algorithm. 428 

Table 5 shows the metric index value of the random forest algorithm in the new 429 

hybrid algorithm. The micro-precision, micro-recall, micro-F1 score, and accuracy are 430 

0.95, 0.89, 0.91, and 0.89, respectively. These metrics are derived from the core 431 

values of the window, as determined by the Gaussian density clustering algorithm. 432 

Consequently, the strong performance of these indicators further confirms the efficacy 433 

and reliability of the newly developed hybrid algorithm. 434 

Table 5. Matrix evaluation between new hybrid classification algorithm and Gaussian kernel 435 

density clustering algorithm 436 

 Micro-Precision Micro-Recall Micro-F1-Score Accuracy 

New Hybrid algorithm 0.95 0.89 0.91 0.89 

As described in the Methods section, a specific aerosol type theoretically has a 437 

fixed CRI owing to its constant composition. The CRI characterizes the mixture 438 

composition of aerosol particles and is a key parameter controlling the inherent 439 

scattering and absorption characteristics of aerosol particles. To further analyze the 440 

accuracy of the new algorithm, the aerosol CRI was applied as a key criterion for 441 

aerosol identification. The CRI has two parts: imaginary and real. The imaginary part 442 

indicates radiation absorption by aerosols, with a small value signifying a small 443 
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absorption. Because the radiation of aerosols is more dependent on the imaginary than 444 

the real part, the imaginary part is essential for inferring the optical properties and 445 

aerosol types. Hence, we compared the real and imaginary parts of the CRI calculated 446 

using the new hybrid and Gaussian kernel density clustering algorithms. 447 

As described in the Methods section, a specific aerosol type theoretically has a 448 

fixed CRI owing to its constant composition. The CRI characterizes the mixture 449 

composition of aerosol particles and is a key parameter controlling the inherent 450 

scattering and absorption characteristics of aerosol particles. To further analyze the 451 

accuracy of the new algorithm, the aerosol CRI was applied as a key criterion for 452 

aerosol identification. The CRI has two parts: imaginary and real. The imaginary part 453 

indicates radiation absorption by aerosols, with a small value signifying a small 454 

absorption. Because the radiation of aerosols is more dependent on the imaginary than 455 

the real part, the imaginary part is essential for inferring the optical properties and 456 

aerosol types. Hence, we compared the real and imaginary parts of the CRI calculated 457 

using the hybrid and Gaussian density clustering algorithms. 458 

Figure 7 shows box plots of the aerosol CRI for dust, mixed-coarse, mixed-fine, 459 

U/I, and BB aerosols using the new hybrid classification and Gaussian kernel density 460 

clustering algorithms. Based on the principle that the CRI of aerosols is fixed under 461 

ideal conditions, the closer the median value of the CRI of the identified aerosol type 462 

is to the median value of the benchmark CRI, the more accurate is the identification 463 

method.  464 

As shown in Figures 7 (a) and (f), the median values of the CRI real part for dust 465 

aerosol are in the range 1.45–1.53 at four bands, and those of the imaginary part are 466 

0.003–0.004 at 440 nm; further, the values in other bands decrease rapidly as 467 

wavelength increases. The imaginary part of CRI represents the absorption of light by 468 

the aerosol, with a small absorption indicating strong scattering. The results of the 469 

imaginary part are consistent with the spectral dependence properties of dust-based 470 

aerosols according to the wavelength. This is primarily because dust aerosols, 471 

composed of clay, quartz, and hematite, exhibit strong absorption in the blue band 472 

(440 nm) and low absorption in the visible and near-infrared bands. For the dust 473 
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aerosols, the CRI determined by the two methods did not differ much. However, the 474 

median value of the CRI obtained using the new hybrid algorithm was slightly closer 475 

to the benchmark CRI than that obtained using the Gaussian kernel density clustering 476 

algorithm for dust aerosols. Therefore, the new hybrid algorithm was concluded to be 477 

more accurate in identifying dust aerosol. 478 

Figures 7 (b) and (g) show the median values of the CRI real part for mixed-479 

coarse aerosol is 1.47–1.55 at four bands using the new hybrid algorithm, but the 480 

imaginary part is 0.004–0.009 at 440 nm. However, the real part is 1.44-1.50 at four 481 

bands determined by Gaussian kernel density clustering algorithm, and the imaginary 482 

part is 0.006–0.009 at 440nm. The median value of the hybrid algorithm was closer to 483 

the baseline median value than that of the Gaussian kernel density clustering 484 

algorithm for both the real and imaginary parts.  485 

Figures 7 (c) and (h) show the median value of the CRI real part for mixed-fine 486 

aerosols determined using the new hybrid and Gaussian kernel density clustering 487 

algorithms, which was 1.42–1.51 at four bands. This result is close to the range (1.44–488 

1.52) reported by Wu (2021) in Beijing using a random forest algorithm. The median 489 

CRI of the real part at four bands and imaginary part at the (675-870-1020 nm) bands 490 

were close to the baseline median value for the new algorithm. Additionally, the 491 

median value of the imaginary part was lower than that of the new hybrid algorithm 492 

and further from baseline data for the identifying aerosol type results mixed with 14% 493 

coarse aerosols. Mixed coarse aerosols result in weaker absorption. Hence, the new  494 
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 495 

Figure 7. Box plots of the real index (left) and the imaginary (right) index of the CRI for (a-b) 496 

dust, (c-d) mixed-coarse, (e-f) mixed-fine aerosol, (g-h) U/I, and (i-j) BB aerosol identified by the 497 

Gaussian kernel density clustering algorithm and new hybrid algorithm, respectively.498 
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 499 

 500 
Figure 7. Box plots of the real index and the imaginary index of the CRI for (a) dust, (b)mixed-coarse, (c) mixed-fine aerosol, (d)U/I, and (e) BB aerosol identified 501 

by the Gaussian density clustering algorithm and new hybrid algorithm, respectively (the upper line is the real part, and the bottom line is the imaginary part).502 
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hybrid algorithm performed better at identifying mixed-fine aerosols than the 503 

Gaussian kernel density clustering algorithm. 504 

Similarly, as seen in Figures 7 (d) and (i), the median value of the CRI real part 505 

for U/I aerosol identified using the new hybrid algorithm was 1.39–1.47. This median 506 

value was lower than that of the mixed-fine aerosols. This is because the real part 507 

indicates the absorption ability of aerosols, and the absorption ability of U/I aerosols 508 

was less than that of mixed-fine aerosols. For the imaginary part also, the new hybrid 509 

algorithm performed slightly better than the Gaussian kernel density clustering 510 

algorithm at the four bands. 511 

For BB aerosols, the median value of the real part generated using the new hybrid 512 

algorithm differed slightly from that generated by the Gaussian kernel density 513 

clustering algorithm. Additionally, the median obtained using the Gaussian kernel 514 

density clustering algorithm was closer to the baseline. Furthermore, when analyzing 515 

the imaginary part, the new hybrid algorithm performed much better than the 516 

Gaussian kernel density clustering algorithm. Even with a 100% concordance rate 517 

between the new hybrid and Gaussian kernel density clustering algorithms in 518 

identifying BB aerosols, the refractive index still differed. This result indicates that 1% 519 

of mixed-fine aerosols classified using the Gaussian kernel density clustering 520 

algorithm were correctly identified as BB aerosols by the new algorithm. Overall, 521 

these results demonstrate that the new algorithm is reliable. 522 

Additionally, in this study, the number of 326400 data points from optical 523 

parameters database and 98000 observed data for calculation spans from Jan.1st,1993 524 

to Dec.31st,2021, passing through Gaussian kernel density clustering algorithm and 525 

new hybrid algorithm Python progresses, which is archived on the personal Windows 526 

system computer (Intel® Core™ i7-10710U,16G DDR4 2666MHz, 512G PCIE SSD). 527 

The computational time for the two algorithms indicates the new hybrid algorithm 528 

runs faster than the Gaussian kernel density clustering algorithm with huge quantities 529 
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of data and trained in advance, which can obtain aerosol type in 20 seconds, in 530 

contrast, it will take 30 to 40 seconds to obtain aerosol type in one site by using the 531 

Gaussian algorithm.  532 

4.2 Aerosol type determination for typical sites 533 

4.2.1 Dust aerosol 534 

Figure 8 shows the aerosol types obtained using the new hybrid algorithm for the 535 

five sites selected for dust aerosol identification. According to the prediction by the 536 

new hybrid algorithm, the aerosols at these five sites mainly contained dust aerosols 537 

along with a small amount of U/I, mixed-fine, and BB aerosols, and a large amount of 538 

mixed coarse aerosols. This shows that other types of aerosols invaded these areas 539 

besides dust aerosol. BB aerosols may have been transferred from the southern 540 

African savannah. Additionally, U/I aerosols could be from industrial cities, such as 541 

Dakar, Abidjan, and Lagos, which are dominated by anthropogenic aerosols and are 542 

close to the AERONET sites. 543 

 544 

Figure 8. Identification of dust aerosol at dominant aerosol sites.  545 

4.2.2 Mixed aerosol   546 

Besides Ilorin in Africa, the mixed aerosol AERONET sites, including Kanpur, 547 
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Sede_Boker, and XiangHe, are in Asia. The aerosol types at these four sites were 548 

determined using the new hybrid algorithm (Figure 9). Mixed coarse aerosols 549 

dominated the Kanpur, Ilorin, and Sede Sede_Boker sites, and mixed fine aerosols 550 

dominated XiangHe. Part of the dust in Xianghe could be due to the Takla Desert in 551 

spring and the westerly winds prevailing in western China, which transported dust 552 

aerosols over long distances. Additionally, the U/I aerosol in Xianghe could be a result 553 

of human activities, construction emissions, and fuel burning in winter. The BB 554 

aerosol was traced to the burning of a small amount of biomass in Xianghe, located in 555 

a suburban area.  556 

Furthermore, excluding dust aerosols, we observed BB and U/I aerosols in the 557 

Kanpur site in the Ganges Basin of India. A certain amount of U/I and dust aerosols 558 

were also observed in Sede Sede_Boker, located in the industrial center of Israel, 559 

possibly from the Arabian desert. Lastly, Ilorin had the most dust and least BB 560 

aerosols because it is located in central Africa, often affected by the Saharan Desert 561 

and African savannah. 562 

 563 

Figure 9.  Same as Figure 8 but for Mixed aerosol. 564 
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4.2.3 Urban/industrial aerosol 565 

All the selected AERONET sites for evaluating the performance of the new 566 

hybrid algorithm in terms of U/I aerosol identification are in Europe or North America 567 

(Figure 10). GSFC is located in the densely populated and industrially developed area 568 

of Washington in the United States, explaining its complex aerosol type dominated by 569 

the U/I aerosol followed by a few mixed and BB aerosols and a small amount of dust 570 

aerosols.  571 

Ispra is in Turin, one of Italy’s largest industrial centers. However, dust-type 572 

aerosols were identified, possibly transported from the Libyan desert when Italian 573 

winters were controlled by southwesterly winds. Moreover, Mexico, where the 574 

Mexico City site is located, is an industrialized country with modern industries and 575 

agriculture, abundant oil production, and a dense population. Nevertheless, we 576 

identified dust, mixed coarse, and BB aerosols in this site using the new hybrid 577 

algorithm. These aerosol types could be from the Chihuahuan Desert, an inland desert 578 

covering 12% of Mexico's area and a major source of coarse and dust aerosols. 579 

Additionally, the literature shows that Mexico City is surrounded by forested 580 

mountains, which experience many wildfires during the dry period between 581 

November and May; this accounts for BB aerosols in Mexico City (Yokelson et al. 582 

2007). Finally, the BB aerosols identified at the Moldova site could be attributed to its 583 

rich vegetation cover. 584 
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 585 
 Figure 10.  Same as Figure 9 but for urban/industrial aerosol. 586 

4.2.4 Biomass burning aerosol  587 

The selected sites were mainly located in the mountains and highlands. Figure 11 588 

shows the aerosol types identified using the new hybrid algorithm. Large amounts of 589 

BB aerosols were identified at all sites. Additionally, a small amount of dust and 590 

mixed-coarse aerosols were identified at the Alta Alta_Floresta site, transported over 591 

a long distance from the Patagonian Desert in Argentina, in southern South America. 592 

Moreover, the city where the site is located is industrially developed and has a large 593 

population; therefore, more U/I aerosols were identified using the new hybrid 594 

algorithm. The geographically close Abracos_Hill and Alta Alta_Floresta sites were 595 

characterized by the same aerosol type and source. Furthermore, one data point in 596 

Lake Argyle was classified as a dust aerosol. This means that, although the site is 597 

located on the Kimberley Plateau, Australia has a large desert area, and coarse 598 

aerosols still exist. Lastly, a few U/I and several dust-type aerosols were identified at 599 

the Mongu site, possibly caused by aerosol emissions from nearby cities and dust 600 

transport from the Saharan Desert.  601 
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 602 

Figure 11.  Same as Figure 10 but for BB aerosol. 603 

4.3 Aerosol type distribution on a global scale 604 

Given the advantages and accuracy of the new hybrid algorithm in identifying 605 

aerosol types, we used it to divide the data of AERONET sites in different regions of 606 

the world to obtain global aerosol type distribution information. The aerosol types of 607 

each continent are shown in Figures 12-16. Additionally, Figure 17 shows the global 608 

aerosol-type distribution. Notably, the pie chart was placed on each site in the study, 609 

which is a "point source" assessment of the aerosol type and does not represent the 610 

entire region (the size of the pie chart is independent of the optical properties). 611 

Moreover, the sites were screened, and only those with valid data of > 100 aerosol 612 

types were considered; however, offshore sites and sites classified as marine aerosol-613 

dominated by other literature were excluded. 614 

Figure 12 shows pie charts of the aerosol types for each scanned AERONET site 615 

in North America. The U/I aerosols, particularly in most mid-eastern regions, 616 
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contained mixed and small amounts of biomass aerosols. Additionally, the AERONET 617 

sites in large cities, such as Chicago, New York, Toronto, Ottawa, and Boston, had U/I 618 

aerosols. Many studies have shown that dust aerosols from the Saharan Desert can 619 

cross the Atlantic Ocean to North America in summer. Moreover, there is an inland 620 

desert in western North America, the Chihuahua Desert, responsible for a small 621 

amount of dust and mixed aerosols at the AERONET sites in North America. 622 

Additionally, wildfires in western North America and household wood burning 623 

contribute to most BB aerosols yearly. The central region site is affected by the 624 

environment, with an increased proportion of BB aerosols, and U/I aerosols are still 625 

prevalent because the site is located in a large city and is densely populated. 626 

627 
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 628 

Figure 12.  Pie charts of the aerosol types at the major sites of North American. 629 

Figure 13 shows the aerosol types in Africa. Northern Africa has the largest desert 630 

in the world, the Saharan Desert; therefore, dust aerosols dominate north of the 631 

equator in Africa. However, some AERONET sites in the Sudanese steppe were 632 

primarily BB, with some U/I aerosols in nearby urban sites. The Ilorin site is a typical 633 

mixed aerosol site close to the equator with a small amount of BB aerosols. Most sites 634 

close to the Atlantic coast were affected by dust aerosols, even those on the islands of 635 

CapeCapo_Verde. The reliability of the new model in distinguishing U/I and BB 636 

aerosols is demonstrated. Sites in Southern Africa, such as Namibia, Botswana, and 637 

Zambia, are dominated by BB aerosols. Nevertheless, studies have shown the 638 

presence of U/I aerosols at sites in the urban areas of South Africa. Although U/I and 639 

BB aerosols are difficult to distinguish, the two can be identified in the context of a 640 

large urban population and less biomass combustion, thus establishing the model's 641 

accuracy. 642 
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643 

 644 

Figure 13.  Same as Figure 12 but for Africa. 645 

The aerosol types in South America are shown in Figure 14. Here, only eight sites 646 
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met the requirement for valid data >100 aerosol types. South America is mainly 647 

dominated by mountainous plateaus, and under the influence of the Brazilian warm 648 

current, many tropical rainforests are distributed in the south; therefore, the 649 

background aerosols are mainly BB aerosols. As shown in Figure 14, large cities, such 650 

as Rio Branco, Campo Grande, Manaus, Santa Cruz, and São Paulo, showed an 651 

increased proportion of anthropogenic and mixed aerosols because of their large 652 

population and developed industries. Due to the tropical rainforest climate in southern 653 

South America, the proportion of BB aerosols increased, such as that at the Cuiaba 654 

site near the Amazon River. Additionally, the Manaus site contained a small amount of 655 

dust aerosols that were presumably transported across the Atlantic Ocean from 656 

African dust at the same latitude. 657 

658 
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 659 

Figure 14. Same as Figure 12 but for South America. 660 

The aerosol types in Asia are shown in Figure 15. In western Asia, influenced by 661 

the Indian Desert, sites on the Indian Peninsula were dominated by coarse-particle 662 

aerosols, including dust and mixed coarse aerosols. Kanpur and Pune are densely 663 

populated cities in India, with more mixed-fine aerosols produced by human activities. 664 

Additionally, in Southeast Asia, all sites contained BB aerosols, consistent with 665 

Hamill (2014). This is because of the abundance of tropical rainforests in Southeast 666 

Asia. Moreover, some urban sites, such as Singapore and Penang, had large numbers 667 

of U/I and mixed-fine aerosols. The coastal areas of East Asia, which are densely 668 

populated and industrially developed, were mainly dominated by U/I aerosols. 669 

Moreover, dust aerosols appeared at these sites due to dust transported from the 670 

Taklamakan Desert in East Asia.  671 
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 673 
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Figure 15. Same as Figure 12 but for Asia. 674 

The inland areas of East Asia have a smaller population than the coastal areas; 675 

therefore, the proportion of U/I aerosols was small, and that of mixed aerosols was 676 

high. Generally, mixed aerosols are more easily overestimated than U/I aerosols; 677 

however, the new hybrid algorithm identified a larger proportion of U/I aerosols than 678 

mixed aerosols at Asian sites. Therefore, this new hybrid algorithm can be considered 679 

for improving the classification of mixed aerosols versus U/I aerosols. 680 

Similarly, southern Europe, which is close to the Saharan and Arabian deserts, 681 

was dominated by dust aerosols, with small amounts of mixed and U/I aerosols. 682 

Northern European sites have many cities and a large population; therefore, the 683 

aerosol type was mainly U/I aerosols, identified using the new hybrid algorithm 684 

(Figure 16). Additionally, small amounts of BB aerosols were identified at most sites 685 

in Europe because of olive groves in agricultural lands in the EU, which produce 91% 686 

of the world's olive oil (Lopez-Pineiro et al., 2011). Papadakis et al. (2015) suggested 687 

that the biomass produced from olive oil is used for heating and industry, and its 688 

combustion produces carbonaceous aerosols, considered the major source of fine 689 

particle aerosols in Europe during winter (Puxbaum et al., 2007). 690 
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691 

 692 

Figure 16. Same as Figure 12 but for Europe. 693 
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 694 

Figure 17.  Global dominant aerosol types distribution based on AERONET sites.  695 

The global distribution of dominant aerosols in the AERONET site is shown in 696 

Figure 17. The graph does not include marine aerosols. There are more aerosol sites 697 

on the global map than those on each continent because AERONET sites with > 5 698 

years of data were selected for the global map; however, sites with > 100 valid data 699 

points were required for each continent. The global distribution map shows that many 700 

BB aerosols were distributed between 20°N and 20°S. This is because this region has 701 

a predominantly tropical rainforest climate, with many tropical rainforests and more 702 

carbon-containing aerosol emissions. This finding is consistent with those from 703 

previous studies that found that global BB aerosols mainly originate from Africa 704 

(approximately 52%), followed by South America (approximately 15%), equatorial 705 

Asia (approximately 10%), boreal forests (approximately 9%), and Australia 706 

(approximately 7%) (Van  G. R. et al., 2010). Furthermore, the global distribution map 707 

shows a clear distribution band of dust aerosols between 5°N and 35°N, originating 708 

from the Saharan Desert in Africa and the Saudi Arabian Desert in Western Asia, 709 

which are transported across the ocean to other regions. 710 

5. Conclusion 711 

We developed a new hybrid algorithm to support the rapid classification of 712 
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aerosol types by building an aerosol optical database for global AERONET sites. This 713 

hybrid algorithm is a complex aerosol-type processing algorithm that effectively 714 

integrates machine learning and density clustering algorithms. Additionally, this 715 

algorithm is not limited by the amount of data and improves the accuracy of aerosol-716 

type classification. On investigating the aerosol types at specific sites with dominant 717 

aerosols, we observed that different sites contained one or more aerosol types, with 718 

the composition of some specific dominant aerosol sites being more complex than that 719 

of others. The new algorithm showed a higher accuracy than that shown by algorithms 720 

used in previous studies in identifying aerosol types at specific sites, particularly in 721 

distinguishing between U/I and mixed-fine aerosols. Finally, the recognition results of 722 

the new hybrid algorithm were closer to the baseline CRI, confirming that the new 723 

hybrid algorithm is better than the density-clustering algorithm. On investigating the 724 

aerosol types at global sites across the continents using the new algorithm, we 725 

observed the dominance of different types of aerosols at different sites, and the 726 

composition of these could be logically and effectively attributed to the geographical 727 

location, energy consumption structure, meteorological conditions and activities 728 

happening at the respective sites. 729 

In this study, the existing aerosol type identification algorithm was improved 730 

using global ground-based AERONET optical property parameter data, and the spatial 731 

distribution characteristics of global aerosol types were analyzed, which impacted 732 

aerosol radiation research and optical thickness inversion accuracy. Additionally, the 733 

presumption of spherical dust aerosols in the Mie scattering model diverges from their 734 

actual non-spherical nature in the environment, introducing potential inaccuracies. 735 

The optical database's precision, therefore, necessitates further refinement. Future 736 

advancements could involve adopting more potent machine learning techniques, such 737 

as advanced algorithms beyond the current random forest method. Meanwhile, multi-738 

source satellite data and reanalysis products can be incorporated into aerosol-type 739 

identification. Ultimately, this study will provide support for the identification and 740 

control of air pollution sources. 741 

In this study, the existing aerosol type identification algorithm was improved 742 
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using global ground-based AERONET optical property parameter data, and the spatial 743 

distribution characteristics of global aerosol types were analyzed, which impacted 744 

aerosol radiation research and optical thickness inversion accuracy. However, marine 745 

Author contributions  746 

Feng Zhang designed the study. Xiaoli Wei analyzed the results, and wrote the 747 

original draft. Qian Cui engaged in data processing, manuscript editing, and 748 

restructuring. Qian Cui collected and processed the data. Leiming Ma revised the 749 

paper and given constructive suggestions. Wenwen Li constructive comments on the 750 

paper. Peng Liu revised the paper. All authors contributed to the study. 751 

Competing interests 752 

The authors declare that they have no conflict of interest. 753 

Acknowledgments  754 

This work was supported by the National Key R&D Program 755 

(2021YFB3900401), the National Natural Science Foundation of China (42105081 756 

and 42075125) and Science and Technology Foundation of Shanghai (23ZR1454100) 757 

References 758 

Van  G. R.,  der W., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., 759 

Defries, R. S., Jin, Y., and Van Leeuwen, T. T.: Global fire emissions and the contribution of 760 

deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 761 

11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010. 762 

Bahadur, R., Praveen, P. S., Xu, Y., and Ramanathan, V.: Solar absorption by elemental and brown 763 

carbon determined from spectral observations, Proc. Natl. Acad. Sci. U. S. A., 109, 17366–17371, 764 

https://doi.org/10.1073/pnas.1205910109, 2012. 765 

Boselli, A., Caggiano, R., Cornacchia, C., Madonna, F., Mona, L., Macchiato, M., Pappalardo, G., and 766 

Trippetta, S.: Multi year sun-photometer measurements for aerosol characterization in a Central 767 

Mediterranean site, Atmos. Res., 104–105, 98–110, https://doi.org/10.1016/j.atmosres.2011.08.002, 768 

2012. 769 

Breiman: Random forests, Machine Learning, 45(1), 5–32, https://doi.org/10.1023/A:1010933404324, 770 

2001. 771 

Che, H., Bing, Q., Zhao, H., Xia, X., and Zhang, X.: Aerosol optical properties and direct radiative 772 

forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in 773 

eastern China, Atmos. Chem. Phys., 18, 405–425, https://doi.org/10.5194/acp-18-405-2018, 2018. 774 



43 
 

Choi, W., Lee, H., and Park, J.: A first approach to aerosol classification using space-borne 775 

measurement data: Machine learning-based algorithm and evaluation, Remote Sens., 13, 1–21, 776 

https://doi.org/10.3390/rs13040609, 2021a. 777 

Choi, W., Lee, H., Kim, D., and Kim, S.: Improving spatial coverage of satellite aerosol classification 778 

using a random forest model, Remote Sens., 13 (7):1268. https://doi.org/10.3390/rs13071268,2021b. 779 

Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties 780 

from Sun and sky radiance measurements, J. Geophys. Res. Atmos., 105, 20673–20696, 781 

https://doi.org/10.1029/2000JD900282, 2000. 782 

Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and Slutsker, 783 

I.: Variability of absorption and optical properties of key aerosol types observed in worldwide 784 

locations, J. Atmos. Sci., 59, 590–608, https://doi.org/10.1175/1520-0469, 2002. 785 

Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O’Neill, N. T., Slutsker, I., and Kinne, 786 

S.: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, 787 

J. Geophys. Res. Atmos., 104, 31333–31349, https://doi.org/10.1029/1999JD900923, 1999. 788 

Elham Ghasemifar.:Climatology of aerosol types and their vertical distribution over Iran using 789 

CALIOP dataset during 2007–2021,Remote Sensing Applications: Society and Environment,32, 790 

101053, 2352-9385,https://doi.org/10.1016/j.rsase.2023.101053.2023. 791 

Fernandez-Delgado, M., Cernadas, E., Barro, S., and Amorim, D.: Do we Need Hundreds of Classifiers 792 

to Solve Real World Classification Problems?, J. Mach. Learn. Res., 15, 3133–3181, 793 

https://dl.acm.org/doi/10.5555/2627435.2697065, 2014. 794 

Giles, D. M., Holben, B. N., Eck, T. F., Sinyuk, A., Smirnov, A., Slutsker, I., Dickerson, R. R., 795 

Thompson, A. M., and Schafer, J. S.: An analysis of AERONET aerosol absorption properties and 796 

classifications representative of aerosol source regions, J. Geophys. Res. Atmos., 117, 1–16, 797 

https://doi.org/10.1029/2012JD018127, 2012. 798 

Hamill, P., Giordano, M., Ward, C., Giles, D., and Holben, B.: An AERONET-based aerosol 799 

classification using the Mahalanobis distance, Atmos. Environ., 140, 213–233, 800 

https://doi.org/10.1016/j.atmosenv.2016.06.002, 2016. 801 

Hess, M., Koepke, P., and Schult, I.: Optical properties of Aerosols and Clouds: The Software Package 802 

OPAC, Bull. Am. Meteorol. Soc., 79, 831–844, https://doi.org/10.1175/1520-803 

0477(1998)079<0831:OPOAAC>2.0.CO;2, 1998. 804 

Kalapureddy, M. C. R., Kaskaoutis, D. G., Ernest Raj, P., Devara, P. C. S., Kambezidis, H. D., 805 

Kosmopoulos, P. G., and Nastos, P. T.: Identification of aerosol type over the Arabian Sea in the 806 

premonsoon season during the Integrated Campaign for Aerosols, Gases and Radiation Budget 807 

(ICARB), J. Geophys. Res. Atmos., 114, 1–12, https://doi.org/10.1029/2009JD011826, 2009. 808 

Kaskaoutis, D. G., Kharol, S. K., Sinha, P. R., Singh, R. P., Badarinath, K., Mehdi, W., and Sharma, M.: 809 

Contrasting aerosol trends over South Asia during the last decade based on MODIS observations, 810 

Atmos. Meas. Tech. Discuss., 4, 5275–5323, https://doi.org/10.5194/amtd-4-5275-2011, 2011. 811 

Kiehl, J. T. and Briegleb, B. P.: The relative roles of sulfate aerosols and greenhouse gases in climate 812 

forcing, Science (80-. )., 260, 311–314, http://dx.doi.org/10.1126/science.260.5106.311, 1993. 813 

Kim, J., Lee, J., Lee, H. C., Higurashi, A., Takemura, T., and Song, C. H.: Consistency of the aerosol 814 

type classification from satellite remote sensing during the Atmospheric Brown Cloud-East Asia 815 

Regional Experiment campaign, J. Geophys. Res. Atmos., 112, 1–12, 816 

https://doi.org/10.1029/2006JD008201, 2007. 817 

Kumar, K. R., Kang, N., and Yin, Y.: Classification of key aerosol types and their frequency 818 



44 
 

distributions based on satellite remote sensing data at an industrially polluted city in the Yangtze 819 

River Delta, China, Int. J. Climatol., 38, 320–336, https://doi.org/10.1002/joc.5178, 2018. 820 

Lee, J., Kim, J., Song, C. H., Kim, S. B., Chun, Y., Sohn, B. J., and Holben, B. N.: Characteristics of 821 

aerosol types from AERONET sunphotometer measurements, Atmos. Environ., 44, 3110–3117, 822 

https://doi.org/10.1016/j.atmosenv.2010.05.035, 2010. 823 

Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J.: Second-generation 824 

operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate 825 

Resolution Imaging Spectroradiometer spectral reflectance, J. Geophys. Res. Atmos., 112, 826 

https://doi.org/10.1029/2006JD007811, 2007. 827 

Li, K., Bai, K., Ma, M., Guo, J., Li, Z., Wang, G., and Chang, N. Bin: Spatially gap free analysis of 828 

aerosol type grids in China: First retrieval via satellite remote sensing and big data analytics, ISPRS 829 

J. Photogramm. Remote Sens., 193, 45–59, https://doi.org/10.1016/j.isprsjprs.2022.09.001, 2022. 830 

Lin, J., Zheng, Y., Shen, X., Xing, L., and Che, H.: Global aerosol classification based on aerosol 831 

robotic network (Aeronet) and satellite observation, Remote Sens., 13, 1–23, 832 

https://doi.org/10.3390/rs13061114, 2021. 833 

Lopez-Pineiro, A., Cabrera, D., Albarran, A., and Pefia, D.: Influence of two-phase olive mill waste 834 

application to soil on terbuthylazine behaviour and persistence under controlled and field conditions, 835 

J. Soils Sediments, 11, 771–782, https://doi.org/10.1007/s11368-011-0362-3, 2011. 836 

Lu, F., Chen, S., Hu, Z., Han, Z., Alam, K., Luo, H., Bi, H., Chen, J., and Guo, X.: Sensitivity and 837 

uncertainties assessment in radiative forcing due to aerosol optical properties in diverse locations in 838 

China, Sci. Total Environ., 860, 160447, https://doi.org/10.1016/j.scitotenv.2022.160447, 2023. 839 

Michael, I., Mishchenko, and, Larry, D., and Travis: Light scattering by polydisperse, rotationally 840 

symmetric nonspherical particles: Linear polarization, J. Quant. Spectrosc. Radiat. Transf., 841 

https://doi.org/10.1016/0022-4073(94)90130-9, 1994. 842 

Moraes, C. P. A., Fantinato, D. G., and Neves, A.: Epanechnikov kernel for PDF estimation applied to 843 

equalization and blind source separation, Signal Processing, 189, 108251, 844 

https://doi.org/10.1016/j.sigpro.2021.108251, 2021. 845 

Nandan, R., Ratnam, M.V., Kiran, V.R., Madhavan, B.L., & Naik, D.N.: Estimation of Aerosol 846 

Complex Refractive Index over a tropical atmosphere using a synergy of in-situ measurements. 847 

Atmospheric Research, 257, 105625, https://doi.org/10.1016/J.ATMOSRES.2021.105625, 2021 848 

Nicolae, D., Vasilescu, J., Talianu, C., Binietoglou, I., Nicolae, V., Andrei, S., and Antonescu, B.: A 849 

neural network aerosol-typing algorithm based on lidar data, Atmos. Chem. Phys., 18, 14511–14537, 850 

https://doi.org/10.5194/acp-18-14511-2018, 2018. 851 

Omar, A. H., Won, J. G., Winker, D. M., Yoon, S. C., Dubovik, O., and McCormick, M. P.: 852 

Development of global aerosol models using cluster analysis of Aerosol Robotic Network 853 

(AERONET) measurements, J. Geophys. Res. D Atmos., 110, 1–14, 854 

https://doi.org/10.1029/2004JD004874, 2005. 855 

Pace, G., di Sarra, A., Meloni, D., Piacentino, S., and Chamard, P.: Aerosol optical properties at 856 

Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol 857 

types, Atmos. Chem. Phys., 6, 697–713, https://doi.org/10.5194/acp-6-697-2006, 2006. 858 

Papadakis, G. Z., Megaritis, A. G., and Pandis, S. N.: Effects of olive tree branches burning emissions 859 

on PM2.5 concentrations, Atmos. Environ., 112, 148–158, 860 

https://doi.org/10.1016/j.atmosenv.2015.04.014, 2015. 861 

Pathak, B., Bhuyan, P. K., Gogoi, M., and Bhuyan, K.: Seasonal heterogeneity in aerosol types over 862 



45 
 

Dibrugarh-North-Eastern India, Atmos. Environ., 47, 307–315, 863 

https://doi.org/10.1016/j.atmosenv.2011.10.061, 2012. 864 

Pawar, G. V., Devara, P. C. S., and Aher, G. R.: Identification of aerosol types over an urban site based 865 

on air-mass trajectory classification, Atmos. Res., 164–165, 142–155, 866 

https://doi.org/10.1016/j.atmosres.2015.04.022, 2015. 867 

Puxbaum, H., Caseiro, A., Sánchez-Ochoa, A., Kasper-Giebl, A., Claeys, M., Gelencsér, A., Legrand, 868 

M., Preunkert, S., and Pio, C.: Levoglucosan levels at background sites in Europe for assessing the 869 

impact of biomass combustion on the European aerosol background, J. Geophys. Res., 112, D23S05, 870 

https://doi.org/10.1029/2006JD008114, 2007. 871 

Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D., Anderson, J., Andreae, M. O., 872 

Cantrell, W., Cass, G. R., and Chung, C. E.: Indian Ocean Experiment: An integrated analysis of the 873 

climate forcing and effects of the great Indo-Asian haze, J. Geophys. Res. Atmos., 106, 874 

https://doi.org/10.1029/2001JD900133, 2001. 875 

Raut, J. C. and Chazette, P.: Radiative budget in the presence of multi-layered aerosol structures in the 876 

framework of AMMA SOP-0, Atmos. Chem. Phys., 8, 6839–6864, https://doi.org/10.5194/acp-8-877 

6839-2008, 2008. 878 

Reddy LA, Glover TA, Dudek CM, Alperin A, Wiggs NB, Bronstein B.: A randomized trial examining 879 

the effects of paraprofessional behavior support coaching for elementary students with disruptive 880 

behavior disorders: Paraprofessional and student outcomes. J Sch Psychol. 2022 Jun;92:227-245. 881 

https://doi.org/10.1016/j.jsp.2022.04.002, 2022. 882 

Redemann, J., Turco, R. P., Liou, K. N., Russell, P. B., Bergstrom, R. W., Schmid, B., Hobbs, P. V, 883 

Hartley, W. S., Ismail, S., and Ferrare, R. A.: Retrieving the vertical structure of the effective aerosol 884 

complex index of refraction from a combination of aerosol in situ and remote sensing measurements 885 

during TARFOX, J. Geophys. Res., 105( D8), 9949– 9970, doi:10.1029/1999JD901044,2000. 886 

Remer, L. A., Tanré, D., and Kaufman, Y. J.: Algorithm for remote sensing of tropospheric aerosol from 887 

MODIS: Collection 005, 2009. 888 

Rosenblatt, M.: Remarks on Some Nonparametric Estimates of a Density Function, Remarks on Some 889 

Nonparametric Estimates of a Density Function. In: Davis, R., Lii, KS., Politis, D. (eds) Selected 890 

Works of Murray Rosenblatt. Selected Works in Probability and Statistics. Springer, New York, NY. 891 

https://doi.org/10.1007/978-1-4419-8339-8_13, 2011. 892 

Sheridan, P. J., Delene, D. J., and Ogren, J. A.: Four Years of Continuous Surface Aerosol 893 

Measurements from the DOE / ARM Southern Great Plains CART Site, 1–8, 894 

https://doi.org/10.1029/2001JD000785, 2001. 895 

Shin, S. K., Tesche, M., Noh, Y., and Müller, D.: Aerosol-type classification based on AERONET 896 

version 3 inversion products, Atmos. Meas. Tech., 12, 3789–3803, https://doi.org/10.5194/amt-12-897 

3789-2019, 2019. 898 

Siomos, N., Fountoulakis, I., Natsis, A., Drosoglou, T., and Bais, A.: Automated aerosol classification 899 

from spectral UV measurements using machine learning clustering, Remote Sens., 12, 1–18, 900 

https://doi.org/10.3390/rs12060965, 2020. 901 

Tanré, D., Kaufman, Y. J., Holben, B. N., Chatenet, B., Karnieli, A., Lavenu, F., Blarel, L., Dubovik, O., 902 

Remer, L. A., and Smirnov, A.: Climatology of dust aerosol size distribution and optical properties 903 

derived from remotely sensed data in the solar spectrum, J. Geophys. Res. Atmos., 106, 18205–904 

18217, https://doi.org/10.1029/2000JD900663, 2001. 905 

Tong, H., Lakey, P. S. J., Arangio, A. M., Socorro, J., Kampf, C. J., Berkemeier, T., Brune, W. H., 906 



46 
 

Pöschl, U., and Shiraiwa, M.: Reactive oxygen species formed in aqueous mixtures of secondary 907 

organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene, 908 

Faraday Discuss., 200, 251–270, https://doi.org/10.1039/c7fd00023e, 2017. 909 

Wang J, Liu Y, Chen L, Liu Y, Mi K, Gao S, Mao J, Zhang H, Sun Y, Ma Z.: Validation and calibration 910 

of aerosol optical depth and classification of aerosol types based on multi-source data over China. 911 

Sci Total Environ. 2023 Dec 10;903:166603. doi: 10.1016/j.scitotenv.2023. 912 

Wu, Y., Li, J., Xia, Y., Deng, Z., Tao, J., Tian, P., Gao, Z., Xia, X., and Zhang, R.: Size-resolved 913 

refractive index of scattering aerosols in urban Beijing: A seasonal comparison, Aerosol Sci. 914 

Technol., 55, 1070–1083, https://doi.org/10.1080/02786826.2021.1924357, 2021. 915 

Yang, M., Howell, S. G., Zhuang, J., and Huebert, B. J.: Attribution of aerosol light absorption to black 916 

carbon, brown carbon, and dust in China - Interpretations of atmospheric measurements during 917 

EAST-AIRE, Atmos. Chem. Phys., 9, 2035–2050, https://doi.org/10.5194/acp-9-2035-2009, 2009. 918 

Yokelson, R. J., Urbanski, S. P., Atlas, E. L., Toohey, D. W., Alvarado, E. C., Crounse, J. D., Wennberg, 919 

P. O., Fisher, M. E., Wold, C. E., and Campos, T. L.: Emissions from forest fires near Mexico City , 920 

Atmos. Chem. Phys., 7, 5569–5584, https://doi.org/10.5194/acp-7-5569-2007, 2007.  921 

Yousefi, R., Wang, F., Ge, Q., and Shaheen, A.: Long-term aerosol optical depth trend over Iran and 922 

identification of dominant aerosol types, Sci. Total Environ., 722, 923 

https://doi.org/10.1016/j.scitotenv.2020.137906, 2020. 924 

Zhang, L. and Li, J.: Variability of major aerosol types in China classified using AERONET 925 

measurements, Remote Sens., 11, https://doi.org/10.3390/rs11202334, 2019. 926 

 927 


