

Driving sustainability transitions through financial tipping points

Nadia Ameli, University College London, London, UK, n.ameli@ucl.ac.uk

Hugues Chenet, IESEG School of Management, Univ. Lille, CNRS, UMR 9221 – LEM – Lille

Economie Management, F-59000 Lille, France ; and University College London, London, UK,

h.chenet@ieseq.fr

Max Falkenberg, City University of London, London, UK, max.falkenberg@city.ac.uk

Sumit Kothari, University College London, London, UK, sumit.kothari.16@ucl.ac.uk

Jamie Rickman, University College London, London, UK, jamie.rickman@ucl.ac.uk

Francesco Lamperti, Scuola Superiore Sant'Anna, Pisa, Italy, francesco.lamperti@santannapisa.it

Abstract

Achieving a net-zero carbon economy requires significant structural changes in the financial system, driving a substantial shift in investment towards low-carbon assets. This transformation of finance is necessary beyond the objective of climate stabilisation, but is more broadly required to foster sustainably thriving economies. In this paper, we offer a critical discussion of the positive tipping points that can be activated in the financial system to drive a fast, sustainable transition. Indeed, the identification and activation of critical and positive tipping points can lead to the amplification of sustainable investments and foster transformative changes in the practices of the financial sector. Through the alignment of expectations, steering of herding behaviour, mobilisation of public finance, reduction of capital costs, attainment of low-carbon investment thresholds in developing nations, and implementation of robust financial regulations and policies, the financial system can assume a central role in re-orienting economies onto a net-zero and sustainable course. Taken together, such mechanisms highlight the positive tipping points that can be triggered within sustainable finance and emphasise the necessity of policy interventions to activate and capitalise on these dynamics.

Keywords

Sustainable finance, tipping point, expectations alignment, feedback loop, path-dependency, investment threshold and dynamics, herding behaviour, financial regulation and policies

32 **1. Introduction**

33 Scientific consensus regarding the need to reduce increasing resource demands is
34 unequivocal (IPCC 2022, Richardson et al 2023), as humanity faces a confluence of urgent
35 environmental challenges, including climate destabilisation and biodiversity collapse. In the
36 face of this unprecedented situation, the financial system is called upon to play its part in
37 shifting the economy back towards a 'safe operating space' (Rockström et al 2009). This
38 necessitates a rapid shift from financing the 'undesirable' (i.e. the 'dirty', the 'harmful') to
39 financing the 'desirable' (i.e. the 'sustainable', the 'green'). However, the primary function of
40 the financial system, as widely accepted within most advanced (market-)economies, is to
41 maximise financial risk-adjusted returns. Finance is agnostic with respect to the greenhouse
42 gas emissions of its activities, or whether they promote or harm biodiversity. The effective
43 implementation of finance in a sustainable manner, or 'sustainable finance', is thus not
44 assured. Indeed, the current economic paradigm to which finance predominantly adheres is
45 based on ever-rising demand, short-term profitability, inadequate environmental policy and
46 unclear industrial priorities at both national and international levels. In this context,
47 perpetuating historical patterns remains the preferred approach for the financial sector to
48 ensure profitability, and as such it fails to fulfil its transformative role (Ameli et al. 2019,
49 Christophers 2022). Driven by backward-looking, climate- and nature-blind indicators, and
50 ignoring the complexity and systemic impacts of their investments on the environment (Chenet
51 et al. 2021, Crona et al. 2021), financial actors continue to allocate massive amounts of capital
52 to environmentally damaging industries, such as fossil fuel assets and deforestation. This
53 practice consolidates carbon lock-ins and contributes to long-term biodiversity decline (FTM
54 2023, Ruzzenenti et al 2023, Svartzman et al 2021, Kedward and Ryan-Collins 2022).
55 Ironically, by doing so, the financial sector is driving the accumulation of environment-related
56 financial risks to which, by its own admission, it is now dangerously exposed (Chenet 2024).
57

58 Our paper discusses a number of mechanisms that may push the financial system towards
59 positive tipping points, potentially triggering transformative change across the real economy
60 by influencing the volume of financial flows and the associated costs. Tipping points describe
61 critical thresholds in a complex system that, if crossed, activate self-perpetuating processes
62 of change that drive the system into a qualitatively different state (Lenton 2020). Here, the
63 complex system under examination is the financial system, broadly defined as the set of
64 banking and non-banking financial institutions, regulatory bodies and investors, along with the
65 market and non-market relationships they share among themselves and with the real
66 economy. Especially after the Global Financial Crisis (2008-2009), the financial system has
67 been increasingly understood as a complex system (e.g. Farmer and Foley 2009; Dosi and
68 Roventini, 2019), that is, a system composed of heterogeneous interacting entities
69 characterised by varied emergent properties at the macro level which are shaped by the
70 structure and dynamics of these interactions. The architecture of the financial system
71 determines the direction and allocation of financial flows to different economic actors and
72 sectors, thus propelling activities in favoured segments of the economy with substantial
73 financial capital, while constraining activities in less favoured areas. Governments, central
74 banks and regulatory authorities through the exercise of their powers to frame policy and
75 regulations, can alter the structure and the dynamics of the financial system. This provides the
76 opportunity to activate positive tipping points leading to a structural transformation of the real
77 economy.
78

79 Here, we focus our analysis on positive tipping points, which describe how social, political,
80 economic or technological systems can shift rapidly into new system states (Tabara et al.
81 2018), that are less harmful, or even offer solutions to the challenge of climate change. While
82 the examples discussed herein predominantly focus on climate finance, similar reasoning and
83 principles can be applied to broader sustainability issues, such as biodiversity. Indeed, the
84 financial sector is currently modelling its approach to biodiversity finance on climate finance
85 principles developed over the past decade (Chenet 2023). Transformation of the financial
86 system is not the singular, definitive solution capable of addressing all environmental
87 challenges. Finance functions merely as a tool, affecting change through its interactions with
88 the real economy, and should be viewed as part of a broader strategy incorporating, for
89 example, industrial policy, transition planning, social justice, and changes in consumption
90 habits. This holistic approach is crucial to ensure a long-term equilibrium of humanity within
91 planetary boundaries. Our objective is to leverage the theoretical and empirical aspects of the
92 financial system, as it is or as it could be reimagined, to explore how it could more effectively
93 address the systemic challenges we are facing. Rather than presenting a prescriptive solution,
94 our efforts represent an initial inventory of potential tools. We thus try to provide a broad
95 overview of how tipping points may facilitate the transition to sustainable finance, while
96 recognising the composite nature of the financial system. Some dynamics may hold relevance
97 across diverse contexts globally, others are more suitable for specific sectors, regions or
98 stakeholders.

99

100 The next sections are organised as follows. Section 2 discusses the role of the financial system
101 with respect to the problem of sustainability and climate change in particular; section 3
102 provides a critical overview of the positive tipping points that may be activated in the financial
103 system and offers a (non-exhaustive) review of the available empirical and modelling
104 evidence; finally, section 4 concludes the paper and summarises the key points.

105

106 **2. The financial system in the face of environmental challenges**

107

108 In the 2000s, the financial sector was largely absent from the key discussions on climate
109 change and the environment. Banks' action on climate change was limited to reporting on the
110 efficiency of their light bulbs and reducing business trips, with no mention of the detrimental
111 consequences of their increasing lending to fossil fuels companies.¹ An important milestone
112 was the 2015 Paris Agreement, which explicitly acknowledged the role of finance in
113 addressing climate change through Article 2.1(c) (Zamarioli et al. 2021). Although its full
114 implementation is still pending, it triggered a new institutional regime and narrative related to
115 finance and climate change, highlighting the responsibility of the financial sector to shift the
116 economic pathway in line with climate targets. In the same year, Mark Carney's speech on
117 financial stability and the risks associated with climate change (Carney, 2015) brought the
118 topic of climate-related financial risk to the fore. By emphasising the urgent need for financial
119 institutions to adopt climate risk management and reporting measures 'before it's too late',
120 Carney initiated an important climate move, mainstreaming climate change in discussions of
121 the financial sector's practices and regulations. Fully establishing transparency across the
122 financial system thereby became a prime goal of financial policy, regulation and industry

¹ See e.g. BNP Paribas Annual Report 2005 - <https://invest.bnpparibas/en/document/annual-report-2005> [pp. 68-72, 107-113, 330-344]

123 efforts in the climate finance arena (Ameli et al 2021a). A similar path was recently followed
124 by financial institutions and authorities concerning biodiversity (Chenet 2023, 2024). In some
125 respects, Carney's speech can be seen as an institutional tipping point for sustainable finance
126 that kick-started discussions, voluntary initiatives and, eventually, regulatory mandates that
127 have led to distinct changes in the financial sector's operations and practices.

128

129 More recently, the establishment of initiatives such as the private sector-led Glasgow Financial
130 Alliance for Net Zero (GFANZ) and the central banks-led Network for Greening the Financial
131 System (NGFS), have demonstrated the growing commitment of financial institutions, from
132 commercial entities to public authorities, to align themselves with climate targets. GFANZ
133 signatories committed to reaching net-zero carbon emissions by 2050, in a manner that is in
134 line with the +1.5°C target (i.e., with limited temperature overshoot and using existing
135 technologies). This marked the first instance in which financial institutions committed and
136 pledged to align with climate targets.² On the financial authorities side, the NGFS created a
137 landmark governance framework to better coordinate and regulate financial institutions in
138 addressing climate change. Given their status and regulatory strength within the financial
139 system, this has provided a strong signal to financial institutions worldwide that a low-carbon
140 transformation of their activities is imminently needed.

141

142 This sequence of events can be viewed as the initial catalyst, or accelerator (cf. GTPR2023,
143 Fig.2 p.33), for challenging traditional practices in the financial system, prompting financial
144 actors to embark on a different path in terms of their investment outlays (Farmer et al. 2019).
145 These initial shifts have the potential to cross critical thresholds (i.e. 'tipping points'), where a
146 minor alteration can trigger a larger and systemic change, and where nonlinear feedback
147 effects act as amplifiers of such change (Lenton et al. 2022). By influencing the allocation of
148 capital to different sectors or activities, the financial system has indeed the power to affect the
149 evolution and composition of the real economy, thereby opening the way to the emergence of
150 tipping points across sectors.

151

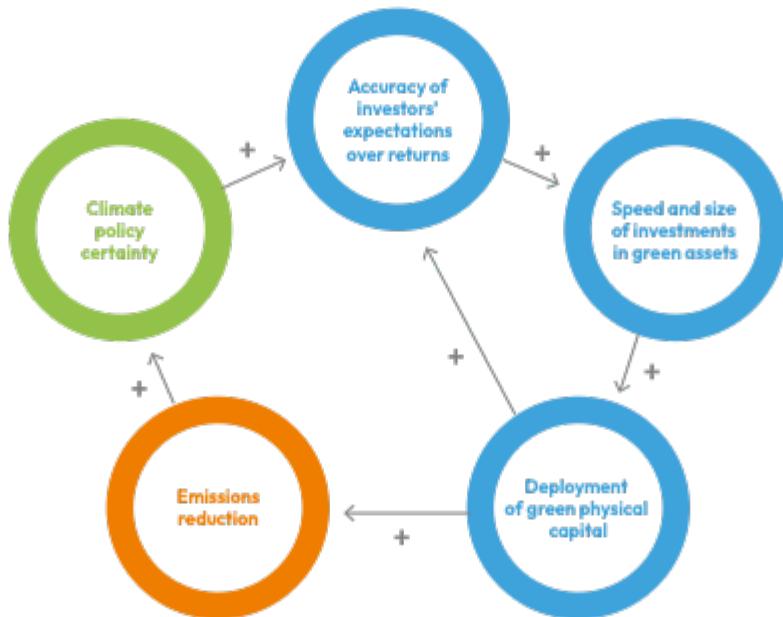
152 In a variety of historical episodes, the financial system has acted as an amplifier of shocks,
153 both positive and negative. This phenomenon is commonly referred to as the 'financial
154 accelerator' (Bernanke et al. 1999; Delli Gatti et al. 2010), which describes how developments
155 in financial markets amplify and propagate the effects of minor changes in the economy. For
156 example, bursts of financial bubbles have triggered uncertainty, instability, contagion among
157 financial actors, and feedback loops that cause ripple effects in the real economy, even though
158 the initial shock was not particularly severe. The Global Financial Crisis of 2008 is a prominent
159 example of such a negative shock. On the other hand, financial accelerators have the potential
160 to amplify positive shocks through, for example, mechanisms which dampen the financial
161 fragility of firms operating in the real economy or enhance the effects of innovation and its
162 diffusion, resulting in positive outcomes in the medium and long run (Lamperti et al. 2021).
163 Similarly, favourable financial conditions can magnify the impact of policies aimed at
164 sustaining aggregate demand, creating significant synergies between prudential, fiscal, and
165 monetary measures.

² NB: the efficiency of these initiatives is nevertheless questioned, from the business-as-usual of financing decisions (e.g. Sastry et al 2024) to the current 'ESG backlash' in the US (e.g. 'The real impact of the ESG backlash', FT 2024, <https://www.ft.com/content/a76c7feb-7fa5-43d6-8e20-b4e4967991e7>, 'Insurance industry turmoil over climate alliance exodus', FT 2023, <https://www.ft.com/content/1dd66ce1-a720-4c56-96d9-8d47f07f376f>).

166 Finance can also have a more direct impact on the real economy. Following Perez (2003),
167 financial actors and, more prominently, public investors (Mazzucato 2013) play a central role
168 in enabling technological revolutions by actively contributing to the advancement and
169 implementation of innovative processes, technologies and services, extending their
170 involvement beyond simply providing funds. In fact, they often take part in the management of
171 the innovation process, assuming the role of financial entrepreneurs and 'picking winners'. But
172 other mechanisms can also operate concurrently. For instance, once a particular path is
173 established, financial behaviours can lead to a self-reinforcing cycle where an accepted choice
174 gains momentum and becomes increasingly difficult to change (Arthur, 1989). Also, financial
175 markets have a tendency to replicate the economy as it is and resist making potentially costly
176 new decisions. Finance thus has the capacity to both expedite or impede the dissemination of
177 new products and technologies, particularly those of utmost importance for the transition to a
178 low-carbon future.

179

180 **3. Finance and positive tipping points**


181 **3.1 The potential for positive tipping points in sustainable finance**

182
183 In this section, we outline and critically discuss mechanisms that exhibit the potential to
184 leverage tipping points in the financial system, with a particular reference to investments
185 towards low-carbon assets and technologies.

186
187 Theoretical and empirical evidence suggests that public finance has a catalytic role for
188 mobilising investments (Mazzucato 2013). Indeed, the ability of public actors (e.g. public
189 investment banks, governmental agencies) to take on risk induces private investors to follow.
190 This is not only due to the substantial amount of funding provided by public actors, but also
191 because of the quality of financing they offer. Public financing, with its long-term horizons,
192 favourable repayment conditions and ancillary support, resembles the role of financial
193 entrepreneurs. By underwriting risks associated with low-carbon investments and supporting
194 specific technological trajectories using green subsidies, public finance can mitigate market
195 uncertainty, potentially creating tipping points in the financing of low-carbon projects and
196 assets (Campiglio and Lamperti 2021; Mazzucato and Semieniuk 2018). However, the
197 emergence of positive tipping points cannot be easily guaranteed and needs adequate policy
198 support. For example, a mission-oriented industrial policy shaping the behaviour of financial
199 actors under direct or indirect public control (e.g. public investment banks, development banks,
200 government agencies, large public utilities) can increase the likelihood of positive tipping
201 points in the dynamics of investments and, hence, aggregate production (Dosi et al. 2023).

202
203 Expectation alignment on the timing and speed of the transition may also act as a tipping point
204 with the potential to significantly scale up sustainable investment (Campiglio and Lamperti
205 2021; Campiglio et al. 2023). Uncertainty about the future prospects of low carbon assets
206 coupled with unclear information about the strength of climate policy may delay substantial
207 portfolio rebalancing decisions. In such cases, investors may adopt a more cautious 'wait-and-
208 see' approach, favouring conventional investments whose profitability appears less affected
209 by unclear climate policies. On the contrary, certainty regarding future climate policy schedules
210 through legally-binding climate commitments, carbon budgets and strategic plans, can signal

211 the long-term trajectory of the economy, inducing a positive correlation between low-carbon
212 asset returns and macroeconomic performance. This alignment of beliefs can coordinate and
213 shift the strategies of long-term institutional investors (e.g. pension funds), which are typically
214 influenced by a wide range of subjective beliefs about asset returns (Broeders and Jansen,
215 2021). Hence, aligning expectations on the timing and speed of the low-carbon transition could
216 mitigate risk and spur momentum towards sustainable investments. A shift in the investment
217 behaviour of large financial actors may push the financial system past a tipping point resulting
218 in a self-reinforcing cycle in which sustainable investments become increasingly attractive,
219 transforming from mere diversification assets into strategic ones (see Figure 1).
220

221

222 **Figure 1:** A positive feedback loop favouring a tipping point in the dynamics of low-carbon
223 investments. The set of self-reinforcing mechanisms and feedback loops occurring in the process
224 between climate policy certainty and deployment of green physical capital. Expectation alignment
225 creates a positive feedback which can be triggered and sustained by certainty in climate policy. The '+'
226 symbol indicates a positive effect (Source: Ameli et al. 2023).

227

228 Tipping points in financial markets can also emerge through herding behaviour, wherein a
229 critical mass adopts a particular trend, ultimately influencing the broader population to follow
230 suit (Bikhchandani and Sharma, 2000). Herding behaviour refers to the tendency of investors
231 to mimic others, especially during periods of uncertainty or when faced with limited information,
232 resulting in the amplification of market movements. In the context of financial tipping points,
233 herding behaviour can have both positive and negative impacts. On the one hand, it can
234 exacerbate market instability and contribute to the formation of speculative bubbles. When
235 investors flock towards certain assets or sectors, it may lead to an unsustainable surge in
236 prices and valuations. However, on the other hand, herding behaviour can also be channelled
237 positively to drive sustainable investments and foster the transition towards a low-carbon
238 economy. For instance, policy action targeted at the global systemically important banks (G-
239 SIB) to ensure financial stability by better managing transition risks in their portfolios, can
240 induce sector-wide portfolio rebalancing away from fossil fuel investments that are mis-aligned

241 with climate goals and carry stranded asset risks (International Monetary Fund 2023).
242 Similarly, critical mass comes into play when a sufficient number of investors adopt
243 sustainable practices (e.g. if GFANZ were to become a dominant approach) or allocate funds
244 to sustainable investments. This creates a self-reinforcing cycle, attracting more capital and
245 generating increased demand for sustainable products and services. Of course, such a self-
246 reinforcing mechanism should by no means give rise to a 'green bubble'. The significance of
247 herding and critical mass lies in their potential to facilitate the scaling up of sustainable
248 investments. Herding behaviour can rapidly accelerate the adoption of sustainable
249 investments until a critical mass is reached. Once this tipping point is reached, it becomes
250 easier for sustainable investments to attract more funding and support from a widening pool
251 of investors. This positive feedback loop can lead to a transformative shift in the financial
252 landscape, where sustainability becomes the new norm rather than the exception.
253

254 These individual tipping points in financial markets signal the existence of sensitive
255 intervention points (SIPs), i.e. identifiable opportunities for deliberate actions that can trigger
256 associated tipping points. SIPs can either be small 'kicks' that trigger positive feedback cycles
257 in a system, or can drive a systemic shift in the inherent dynamics of a system that lead to
258 transformative changes even without external triggers (Sharpe and Lenton 2021; Farmer et
259 al. 2019). Activating an SIP initiates tipping dynamics, causing significant shifts in the market.
260 Policy intervention can serve as the catalyst for such changes directly, by providing the initial
261 'kick', or indirectly, by shifting the underlying dynamics that bring about the transformation.
262

263 Additionally, Farmer et al. (2019) identified two finance-related SIPs. The first involves
264 financial disclosure and falls into the 'kick' type of SIP. Indeed, a change in accounting
265 standards and disclosure guidelines to measure and report climate-related financial risks
266 complemented by policy initiatives such as green taxonomies and sectoral transition plans,
267 could trigger a substantial repricing of fossil assets, such as fossil fuel reserves and securities
268 valuations. Consequently, this would limit the ability of the fossil fuel sector to invest in new
269 fields, thereby reducing committed emissions. Preventing such investments lowers the
270 economic, social, and political costs of transforming the energy industry, as it levels the playing
271 field for renewables, reduces the risk of stranded assets, and enhances the credibility of
272 climate targets. Here, the mechanism at stake relies on market efficiency, a theory where
273 information availability is core to investment decisions and its relevance, in terms of optimal
274 capital allocation. Based on this disclosed information, risk/return expectation will be the prime
275 – if not the sole – guide for financial institutions, which would then contribute to the transition
276 with no need to have any extraneous intention to align their portfolio with such transition goals.
277 Disclosure of environment-related financial risk has been the most prominent mechanism
278 promoted by financial authorities and institutions over the last decade, despite its inherent
279 limits (Ameli et al 2020, 2021b). These concern the extent to which markets can effectively
280 incorporate disclosed financial risk information in asset prices without any long-term guidance
281 concerning an inherently uncertain and evolving low-carbon transition. The progressively more
282 'interventionist' regulatory propositions, especially in Europe, can be seen as attempts to
283 correct these limits.
284

285 The second SIP pertains to technology selection and a targeted 'shift' towards low-carbon
286 investment. Contrary to traditional portfolio theory, diversification of investments can be
287 detrimental, especially when it comes to developing novel and uncertain technologies where
288 spreading resources too thin can hinder significant progress. Instead, rapid progress requires

289 concentrating resources on specific technologies (Way et al. 2019). For example, solar PV
290 has achieved remarkable progress due to targeted support, becoming cheaper than most
291 alternatives. The next step is to similarly focus on developing technologies that can accelerate
292 the deployment of solar PV, such as energy storage. In essence, inducing a tipping point in
293 this context involves not attempting to invest across a broad range of options with hopes of
294 developing each of them but concentrating efforts on technological complementarities that
295 synergistically support research, development, and actual deployment. Further, identifying
296 these technological complementarities dramatically reduces technological uncertainty, which
297 would amplify the dynamics of technology diffusion even further. In contrast to pure market
298 mechanisms, such choices may be directly or indirectly fostered by public sector interventions,
299 in line with some sustainability transition planning. The objective here is to align financial
300 portfolios with an environmental goal or scenario.

301

302 There may however be trade-offs involved between the two SIPs wherein the policies and
303 practices related to disclosure of climate-related financial risks and portfolio realignment may
304 result in lower investments in low-carbon projects due to a higher perception of transition risks.
305 This is possible both in cases of 'bridge' technologies that may have uncertain prospects in
306 the longer term, such as hydrogen-fuelled transport or storage solutions, and innovative low-
307 carbon technologies, such as marine power, whose future cost and deployment trends are
308 highly uncertain. The inherent uncertainty of the energy transition may create higher
309 perception of risks due to indeterminate eventual outcomes, specific technological trajectories
310 or timing of different climate-mitigating actions. Strong policy choices, however, can foster
311 market confidence, despite risks of inefficiency, to create a conducive environment where
312 portfolio realignment is accompanied by higher investment in technologies necessary for a
313 timely energy transition.

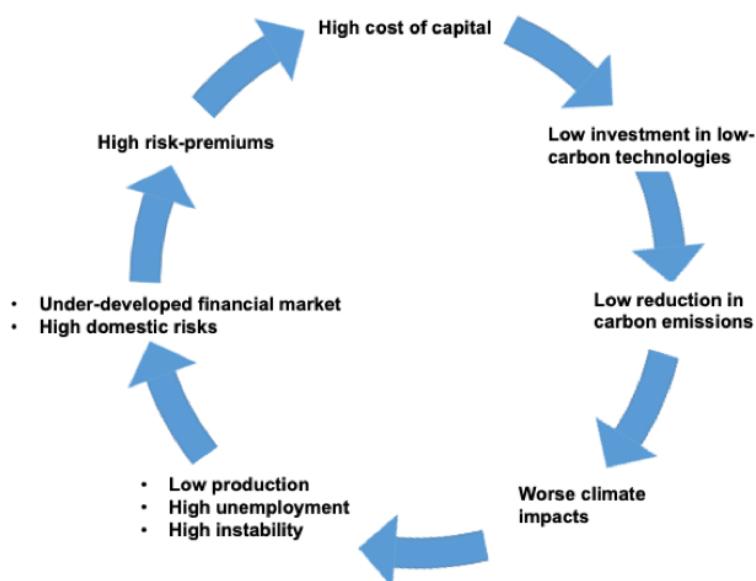
314

315

316 **3.2 Empirical and modelling evidence of tipping points in sustainable finance**

317 In terms of empirical and modelling evidence, a variety of examples show how the financial
318 system can play a pivotal role in activating tipping points to accelerate the transition to a net-
319 zero carbon economy.

320 In developing countries, policy support can help to overcome climate investment traps created
321 by the high costs of accessing finance (Ameli et al 2021a). Access to finance, understood as
322 the costs of raising funding for a specific project from different sources, varies significantly
323 across countries. For instance, in some African nations, such as the Democratic Republic of
324 the Congo, Madagascar and Zimbabwe, the cost of capital can soar to 30%, while in
325 developed countries such as Germany and Japan, it can be as low as 3% (Ameli et al 2021a).
326 The high cost of accessing capital is preventing developing countries from decarbonizing their
327 economies. Levelling the finance playing field could thus help poorer nations to steer their
328 economies onto a net-zero course.


329

330 While energy system transitions in developing economies require particularly high investment,
331 these parts of the world are also particularly financially constrained. They are characterised
332 domestically by under-developed capital markets and lack of capital stock (Ameli et al 2021a).
333 Furthermore, international finance is restricted due to high sovereign and local currency risks.
334 Projects funded with foreign currency while generating returns in local currencies lead to

335 volatile economic fundamentals (Ameli et al 2021b, Bilir et al 2019), resulting in restricted
336 access to external funding sources. This leads to a chronic lack of available finance to support
337 low-carbon investments, creating a climate investment trap which occurs when climate-related
338 investments remain chronically insufficient, with dynamics similar to those of the poverty trap
339 (Ameli et al 2021a). A self-reinforcing cycle takes place where high risk perceptions lead to
340 increased capital costs, delaying the transition to cleaner energy systems and carbon emission
341 reductions. Climate change impacts exacerbate the situation (IPCC 2022), causing adverse
342 impacts on production systems, economic output, unemployment, and political stability (see
343 Figure 2).

344

345 Policies that reduce capital costs, such as credit guarantee schemes, foreign exchange
346 hedges and political risk insurance can shift risk away from private investors resulting in a
347 lower cost of capital that may act as a tipping point for low-carbon technology deployment and
348 allow developing economies to achieve large sustainable energy capacity and faster
349 emissions reduction. In the case of Africa, reducing the cost of capital by 2050 would allow
350 the continent to reach net-zero emissions approximately 10 years earlier than when reduction
351 is not considered (Ameli et al, 2021).

352

353 **Figure 2: A climate investment trap.** The figure shows the set of self-reinforcing mechanisms and
354 related links occurring in developing economies characterised by high cost of capital. The strength of
355 these links is strongly linked to local conditions implying that the set of self-reinforcing mechanisms
356 could be exacerbated (or less relevant) in some economies. Note that some mechanisms are more
357 relevant at global/regional levels through aggregations across developing countries. For instance, local
358 carbon emissions are not necessarily linked with local climate impacts.

359

360 Additionally, the flow of international capital into renewable projects in developing countries is
361 influenced by path-dependency, creating a tipping point in the scaling up of renewable
362 investments (Rickman et al. 2023). Countries with a track record of renewable investments
363 are more likely to attract future investments leading to positive feedback loops within

364 renewable energy markets. As countries build a track record in renewables, market confidence
365 grows, bringing down financing costs and attracting further investments in a virtuous cycle
366 (Egli et al 2018). Climate investment thus evolves through the strengthening of historical
367 investment and capital stock, rather than new investment. However, this also results in an
368 'investment lock-in' across countries as well as income groups, with only a small fraction of
369 countries receiving the majority of investment. Between 2010 and 2019, 76% of private capital
370 and 67% of public funds went to the top eight recipient countries (Rickman et al. 2023).

371
372 Evidence of path-dependency thus implies a new mechanism of the 'climate investment trap'
373 whereby historical inequities in financing are locked-in across countries and income groups
374 and perpetuate over time. To escape this investment lock-in, developing countries must
375 mobilise sustained investment to build a renewables track record that creates market
376 confidence and attracts private finance. Indeed, there is a non-linear relationship between the
377 probability of private investment in developing countries and their track record in renewables
378 investment, as measured by installed capacity. Once a significant capacity base of around
379 1GW (of wind or solar) is installed a tipping point is reached and the probability of private
380 investment increases sharply (Rickman et al. 2023). Crucially, low-income countries (e.g. in
381 Sub-Saharan Africa) fall far below this threshold, highlighting the inefficiency of opening
382 finance channels into poorer nations without sustained investment which can mobilise private
383 finance at scale. Investment decisions by public actors should thus move beyond project-
384 specific inducements to support more holistic renewable roadmaps and unlock developmental
385 co-benefits (Schwerhoff and Sy, 2017). Innovative financial and policy mechanisms, such as
386 transition plans with public funding from multilateral agencies and associated labelled
387 transition financing products, can target the evolution of the sector and build networks of
388 relationships in the financial sector to initiate path-dependent flows from private sources (Ameli
389 et al 2021b) and leverage tipping points in the renewable finance ecosystem.

390
391 Inducement effects between investors are another example of tipping points that can be
392 leveraged in sustainable finance. Financing in renewables markets is driven by a
393 heterogeneous set of actors spanning energy, financial, utilities and diversified sectors
394 (Mazzucato and Semieniuk 2018), who invest according to their investment remits,
395 preferences and capacities, as well as technological maturity and the market environment.
396 They collaborate across the development and operational stages of a project based on their
397 risk appetite and expected return, contributing different types of capital to the project in the
398 form of equity and loan investments. Their interaction and relationships drive the market
399 growth and technological maturity of renewable technologies within the energy system
400 resulting in unique emergent characteristics of the renewables sector across countries based
401 on their enabling investment environments.

402 In solar finance markets, co-investment relationships between different actors are established
403 at different stages of the market's development and evolve with the continued growth of the
404 sector (Kothari et al 2024). Actors exercise influence over their peers by inducing them into the
405 market and leveraging their investments alongside their own. These facets of relationships
406 differ between different actors in the solar sector based on existing co-investments, market
407 position of actors and the alignment of their interests. As markets evolve and different actors
408 enter the market, these processes of influence create tipping points in investment trajectories.
409 In the initial stages of the market development, for instance, investments by government
410 agencies induce investment by international institutions, supporting the initial deployment of

411 the technology. Increasing investments by renewable energy companies similarly influences
412 the actions of state-owned and private utilities. As markets grow, the involvement of
413 institutional investors creates the largest leverage (i.e. the amount of investment attracted)
414 through sizable investments from the private banking sector who are their natural debt partners
415 in renewable projects. The development of this relationship thus creates large flows of
416 investment into solar energy as a result of their investment dynamics.

417 Country context also determines the structure of solar finance markets and the strength of
418 relationships between different actors. The influencing power of different actors differs
419 significantly across countries. For example, in the United States, private bank lending induces
420 investments from a range of energy and diversified sectors, whereas in China, government
421 agencies and state-owned banks are major influencers and in Germany, renewable energy
422 companies and state-owned utilities exert a strong influence (Kothari et al 2024). From a policy
423 standpoint, therefore, it is important to consider the impact of policy instruments on prominent
424 actors in solar financing and the relationships that are driving the markets. Creating incentives
425 for these actors or using the relationships formed by government agencies and state-owned
426 actors effectively, can induce other actors into the markets and trigger non-linear growth of
427 investment, particularly from the private sector.

428 Theoretical modelling also reveals tipping points in the global network of banks which supply
429 debt to the fossil fuel industry (Rickman et al. 2024). A sharp decline in fossil fuel use is
430 necessary to achieve the Paris Agreement target of keeping global temperature rise below
431 1.5°C (Tong et al. 2019) and this will require a corresponding decline in bank lending to the
432 fossil fuel sector (Kirsch et al. 2021). However, mainstream financial theory holds that debt
433 flows to the fossil fuel sector will be resilient to the phase-out of lending by climate-friendly
434 banks, as their capital can simply be substituted by banks with a neutral stance on the climate
435 transition (Ansar et al. 2013). Capital substitution thus poses a challenge to a system-wide
436 decline in fossil fuel lending in an unregulated market. Macroprudential tools³, such as capital
437 requirements rules, can counteract capital substitution by disincentivizing, or setting a limit, on
438 the amount of fossil fuel assets a banks' can hold, depending on their capital reserves. Models
439 suggest that while fossil fuel debt markets are resilient to the unregulated phase-out of capital,
440 the introduction of carbon-tilted macroprudential regulation can trigger a rapid contraction of
441 fossil fuel debt flows. The first banks to exit the fossil fuel debt market have little impact on
442 debt flows, as their capital is substituted by other banks. However, a sudden transition is
443 observed after a certain number of banks have exited the sector, at which point debt flows
444 sharply contract. The tipping point depends critically on the stringency of regulations; the
445 number of banks that must exit the sector before the tipping point is reached decreases rapidly
446 as regulatory rules are tightened. Moreover, the tipping point is reached sooner if large banks
447 (G-SIBs) move first and coordinate their actions.

448 Suitable macroprudential regulation, such as capital requirements rules, or other policy
449 measures which cap a banks' fossil fuel assets, will deliver a managed decline in fossil fuel
450 lending. On the one hand, overly stringent requirements could precipitate a tipping point too

³ Macroprudential policy is composed of different tools having the goal of preserving financial stability. This includes making the financial system more resilient to losses and limiting the build-up of vulnerabilities in order to mitigate systemic risk and ensure that financial services continue to be provided effectively to the economy.

451 early, leading to a disruptive transition in which the failure of fossil fuel companies is too
452 widespread to be managed sustainably. On the other hand, loose requirements resulting in a
453 late, or non-existent, tipping point could delay the emissions reductions necessary to keep
454 Paris temperature targets within reach. Such rules can be developed by formal standard-
455 setting bodies and prudential regulators such as the Basel Committee on Banking Supervision
456 and the Financial Stability Board. At the same time, banks could strategically coordinate their
457 transition plans to increase their collective impact on debt markets through voluntary alliances
458 such as the Net Zero Banking Alliance (NZBA 2021), to which many of the most influential
459 banks in the sector are signatories. Here again, we see the articulation of the two basic
460 mechanisms activatable within the financial system: market-driven risk/return dis/incentives,
461 and purpose-driven alignment strategies.

462 Finally, the utilisation of policy mixes that incorporate a combination of command-and-control
463 and market-based instruments can be likened to 'kicks' that yield positive outcomes for the
464 transition to a net-zero carbon economy. These could take the form of policy mandates such
465 as progressive emissions reduction targets, environmental and industrial regulation,
466 mandated transition planning, green central banking, green infrastructure requirements and
467 building codes working alongside market-shifting initiatives like carbon pricing, climate-related
468 financial disclosures, green subsidies, risk underwriting mechanisms and green certificates.
469 Recent advancements in modelling have demonstrated that these policy combinations have
470 the potential to initiate a virtuous cycle, driving technological development, reducing the overall
471 need for public investment, and simultaneously stimulating employment and economic growth
472 (Wieners et al. 2023; Lamperti et al. 2020; Lamperti and Roventini 2022; Stern and Stiglitz
473 2023). Moreover, such positive feedback loops significantly lessen the reliance on carbon
474 taxes by decreasing their intensity. As a result, this enhances their political acceptability and
475 potentially triggers another tipping point.

476
477 The importance of these tipping points in the financial system will ultimately be defined by the
478 impact they have on the decarbonisation of different sectors in the economy. A regulatory
479 mandate or a market-based measure that affects only a subset of the financial market, such
480 as commercial banks or publicly-listed companies, or only impacts flows from a specific
481 country or geography (such as EU-wide), could potentially lead to redistribution of high-carbon
482 assets across the financial system rather than their absolute reduction, resulting in limited
483 economy-wide decarbonisation. Broad-based policies are thus needed to influence a sizable
484 portion of markets to pass a tipping point where financial markets are unable to adequately
485 substitute the money leaving high-carbon assets. Further, different financial policies are likely
486 to draw a diverse response from market participants, such as the impact of capital reserve
487 requirements for the banking sector or carbon disclosure requirements for asset managers
488 that might not have a significant impact on other actors like private equity funds. Thus a
489 combination of financial policies will be needed to cover the various investment channels in
490 the financial system. Specific policies will also be needed to spur investments in climate
491 projects by mandating investments in specific green sectors or providing market-based
492 incentives that influence the risk-adjusted returns of these projects. This will ensure that capital
493 flows diverting from high-carbon sectors reach their intended target and lead to
494 decarbonisation of the economy. Similarly, targeted international flows to developing countries
495 will result in an expansion of green sectors in these countries and thereby sustainable
496 development. Further, the interlinkage between financial and other economic systems needs

497 to be acknowledged. Policy mixes work well because they influence multiple systems and
498 attempt to gain non-linear benefits through reinforcing mechanisms and positive tipping points.
499

500 **4. Conclusion**

501

502 As of today, the financial sector is contributing to a projected +3°C global warming scenario
503 by 2100. The financial system itself does not inherently favour any particular climate objectives
504 ex ante. To successfully shift the economy towards a net-zero emission path, it becomes
505 crucial to harness the potential of tipping points in the financial system in order to contribute
506 to this transition in its full capacity, by enabling and accelerating the necessary capital
507 reallocation. These elements can play a pivotal role in redirecting economic activities towards
508 sustainable practices.

509

510 Taken together, the mechanisms detailed above highlight examples of the system-wide tipping
511 points' potential within sustainable finance and emphasise the necessity of policy interventions
512 to activate and capitalise on these dynamics. Through the alignment of expectations,
513 promotion of herding behaviour, utilisation of public finance, reduction of capital costs and
514 attainment of low-carbon investment thresholds in developing economies, and implementation
515 of robust financial regulation and policies, the financial system can assume a central role in
516 expediting the shift towards a net-zero carbon economy.

517

518 Regulation plays a critical role in driving tipping points within the financial sector and its role
519 has become increasingly prominent in recent years. A climate risk information ecosystem has
520 evolved with standards for climate-related financial data, assessing climate risk impacts,
521 transparency requirements, green taxonomies, green labels for financial products and
522 transition risk management plans (International Monetary Fund 2023). Robust monitoring and
523 supervision by entities like central banks and financial regulators are forcing financial
524 institutions to move faster and more decisively than market signals alone would prompt them
525 to do. In this regard, policy makers and financial authorities hold the potential to take a leading
526 role in steering the financial system towards transformative tipping points, dedicated to
527 financing the transition to a net-zero carbon economy. A just transition needs investments in
528 all parts of the economy and society. This will in-turn require policy combinations incorporating
529 both market-based and structural change instruments to work effectively to deliver
530 opportunities and investment-friendly conditions while avoiding trade-offs between prudential
531 behaviour and a shift in asset allocation by financial institutions to low-carbon activities. As
532 key stakeholders increase their efforts to guide the financial system, leveraging all the
533 available tools and exploring new avenues, they can also create a coordinated momentum
534 with industrial policy makers. In this way, financial and economic policies can be more
535 effectively aligned to support sustainable industries and practices. This collaboration further
536 strengthens the potential to tip the financial system into a new momentum, where the
537 identification of critical intervention points can lead to the amplification of sustainable
538 investments, mitigate risks, and foster transformative changes in the practices of the financial
539 sector.

540

541 **References**

542

543 Ameli N., H. Chenet, M. Falkenberg, S. Kothari, J. Rickman, F. Lamperti (2023). Report Chapter 4.4. "Cross-cutting
544 enablers of positive tipping points", 4.4.3 "Financial systems" in the Global Tipping Points report 2023.

545
546 Ameli, N., Dessens, O., Winning, M., Cronin, J., Chenet, H., Drummond, P., ... & Grubb, M. (2021a). Higher cost
547 of finance exacerbates a climate investment trap in developing economies. *Nature Communications*, 12(1), 4046.
548
549 Ameli, N., Kothari, S., Grubb, M. (2021b). Misplaced expectations from climate disclosure initiatives. *Nature Climate
550 Change*, 11(11), 917-924.
551
552 Ameli, N., Drummond, P., Bisaro, A., Grubb, M., & Chenet, H. (2020). Climate finance and disclosure for institutional
553 investors: why transparency is not enough. *Climatic Change*, 160(4), 565-589.
554
555 Ansar, A., Caldecott, B., & Tilbury, J. (2013). Stranded assets and the fossil fuel divestment campaign: what does
556 divestment mean for the valuation of fossil fuel assets?. *Stranded assets and the fossil fuel divestment campaign*.
557
558 Bernanke, B. S., Gertler, M., & Gilchrist, S. (1999). The financial accelerator in a quantitative business cycle
559 framework. *Handbook of macroeconomics*, 1, 1341-1393.
560
561 Bikhchandani, S., & Sharma, S. (2000). Herd behavior in financial markets. *IMF Staff papers*, 47(3), 279-310.
562
563 Bilir, L. K., Chor, D., & Manova, K. (2019). Host-country financial development and multinational activity. *European
564 Economic Review*, 115, 192-220.
565
566 Broeders, D., & Jansen, K. (2021). Pension funds' portfolio choices and investment beliefs.
567
568 Buchner, B., Naran, B., Fernandes, P. de A., Padmanabhi, R., Rosane, P., Solomon, M., Stout, S., Wakaba, G.,
569 Zhu, Y., Meattle, C., Guzmán, S., Strinati, C., 2021. Global Landscape of Climate Finance 2021. San Francisco.
Available at <https://www.climatepolicyinitiative.org/publication/global-landscape-of-climate-finance-2021/>
570
571 Campiglio, E., & Lamperti, F. (2021). Sustainable Finance Policy-Making: Why and How. *European Economy*, (2),
572 59-74.
573
574 Campiglio, E., Lamperti, F., & Terranova, R. (2023). Believe me when I say green! Heterogeneous expectations
and climate policy uncertainty. *Centre for Climate Change Economics and Policy Working Paper*, 419.
575
576 Carney, M., 2015. Breaking the Tragedy of the Horizon - climate change and financial stability. Speech by Mr Mark
577 Carney, Gov. Bank Engl. Chairm. Financ. Stab. Board, Lloyd's London, London, 29 Sept. 2015. Available at
<https://www.bis.org/review/r151009a.pdf>
578
579 Chenet, H. (2023). Financial institutions in the face of environmental emergency. *Forthcoming in The Elgar
580 Companion to Energy and the Sustainable Development Goals*, Edward Elgar Publishing.
581
582 Chenet, H. (2021). Climate change and financial risk (pp. 393-419). Springer International Publishing.
583
584 Christophers, B. (2022) Fossilised Capital: Price and Profit in the Energy
585 Transition, *New Political Economy*, 27:1, 146-159, DOI: 10.1080/13563467.2021.1926957
586
587 Dosi, G., Lamperti, F., Mazzucato, M., Napoletano, M., & Roventini, A. (2023). Mission-oriented policies and the
588 'Entrepreneurial State' at work: An agent-based exploration. *Journal of Economic Dynamics and Control*, 151,
589 104650.
590
591 Dosi, G., & Roventini, A. (2019). More is different... and complex! the case for agent-based macroeconomics.
592 *Journal of Evolutionary Economics*, 29, 1-37.
593
594 Egli, F., B. Steffen, and T.S. Schmidt (2018). A dynamic analysis of financing conditions for renewable energy
595 technologies. *Nature Energy*, 3(12), 1084-1092.
596
597 Gatti, D. D., Gallegati, M., Greenwald, B., Russo, A., & Stiglitz, J. E. (2010). The financial accelerator in an evolving
598 credit network. *Journal of Economic Dynamics and Control*, 34(9), 1627-1650.

599 Farmer, J. D., & Foley, D. (2009). The economy needs agent-based modelling. *Nature*, 460(7256), 685-686.

600 Farmer, J. D., Hepburn, C., Ives, M. C., Hale, T., Wetzer, T., Mealy, P., ... & Way, R. (2019). Sensitive intervention
601 points in the post-carbon transition. *Science*, 364(6436), 132-134.

602 FTM. (2023). 'The Great Green Investment Investigation: Fossil Finance.' <https://www.ftm.eu/fossil-finance>

603 International Monetary Fund (2023). Global Financial Stability Report: Financial and Climate Policies for a High-
604 Interest-Rate Era. Washington, DC, October.

605 IPCC (2022). Kreibiehl, S., Jung, T.Y., Battiston, S., Carvajal, P.E., Clapp, C., Dasgupta, D., Dube, N., Jachnik, R.,
606 Morita, K., Samargandi, N., Williams, M., Bechtoldt, M., Bertram, C., Caiado, L.C., Mercure, J.-F., Ohiare, S.M.,
607 Okitasari, M., Singh, T., Sohag, K., Sokona, M.Y., Stabinsky, D., 2022. Chapter 15: Investment and Finance, in:
608 Climate Change 2022: Mitigation of Climate Change — IPCC Sixth Assessment Report, Working Group III. Bonn.

609 Kirsch, A., Opena Disterhoff, J., Marr, G., McCully, P., Breech, R., Dilworth, T., ... & Wickham, M. S. (2021). Banking
610 on Climate Chaos 2021.

611 Kothari S., N. Strachan, N. Ameli (2024). Heterogeneous actors and relationships in the global solar finance market
612 (in progress).

613 Lamperti, F., Dosi, G., Napoletano, M., Roventini, A., & Sapi, A. (2020). Climate change and green transitions in
614 an agent-based integrated assessment model. *Technological Forecasting and Social Change*, 153, 119806.

615 Lamperti, F., Roventini, A. (2022). Beyond climate economics orthodoxy: impacts and policies in the agent-based
616 integrated-assessment DSK model. *European Journal of Economics and Economic Policies: Intervention*, 19(3),
617 357-380.

618 Lamperti, F., Bosetti, V., Roventini, A., Tavoni, M., & Treibich, T. (2021). Three green financial policies to address
619 climate risks. *Journal of Financial Stability*, 54, 100875.

621 Lenton, T.M., Benson, S., Smith, T., Ewer, T., Lanel, V., Petykowski, E., Powell, T.W.R., Abrams, J.F., Blomsma,
622 F., Sharpe, S., (2022). Operationalising positive tipping points towards global sustainability. *Glob. Sustain.* 5, e1.

623 Mazzucato, M. (2013). *Entrepreneurial State: Debunking Public Vs. Private Sector Myths*. Anthem Press.

624 Mazzucato, M., Semieniuk, G. (2018). Financing renewable energy: Who is financing what and why it matters.
625 *Technological Forecasting and Social Change*, 127, 8-22.

626 NZBA (2021). <https://www.unepfi.org/net-zero-banking/>

627 Rickman J., S. Kothari, F. Larosa, N. Ameli (2023). Investment suitability and path dependency perpetuate inequity
628 in international mitigation finance towards developing countries. (forthcoming in *One Earth*).

629 Rickman J., M. Falkenberg, S. Kothari, F. Larosa, M. Grubb, N. Ameli (2024). 'The challenge of phasing out fossil
630 fuel finance in the banking sector' (available here).

631 Pauw, P., Dasgupta, D., de Coninck, H., 2022. Transforming the finance system to enable the achievement of the
632 Paris Agreement, in: *Emissions Gap Report 2022: The Closing Window — Climate Crisis Calls for Rapid
633 Transformation of Societies*. United Nations Environment Program [UNEP], Nairobi. Available at
634 <https://www.unep.org/resources/emissions-gap-report-2022>

635 Perez, C. (2003). *Technological revolutions and financial capital*. Edward Elgar Publishing.

636 Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S.E., Donges, J.F., Drücke, M., Fetzer, I., Bala, G.,
637 von Bloh, W., Feulner, G., Fiedler, S., Gerten, D., Gleeson, T., Hofmann, M., Huiskamp, W., Kummu, M., Mohan,
638 C., Nogués-Bravo, D., Petri, S., Porkka, M., Rahmstorf, S., Schaphoff, S., Thonicke, K., Tobian, A., Virkki, V.,

644 Wang-Erlandsson, L., Weber, L. and Rockström, J. (2023) 'Earth beyond six of nine planetary boundaries', Science
645 Advances, 9(37), p. eadh2458.

646

647 Schwerhoff, G., & Sy, M. (2017). Financing renewable energy in Africa - Key challenge of the sustainable
648 development goals. Renewable and Sustainable Energy Reviews, 75, 393-401.

649

650 Sharpe, S., & Lenton, T. M. (2021). Upward-scaling tipping cascades to meet climate goals: plausible grounds for
651 hope. Climate Policy, 21(4), 421-433.

652

653 Stern, N., Stiglitz, J. E. (2023). Climate change and growth. Industrial and Corporate Change, 32(2), 277-303.

654 Tàbara, J.D., Frantzeskaki, N., Hölscher, K., Pedde, S., Kok, K., Lamperti, F., Christensen, J.H., Jäger, J., Berry,
655 P., 2018. Positive tipping points in a rapidly warming world. Curr. Opin. Environ. Sustain. 31, 120–129.
656 <https://doi.org/10.1016/j.cosust.2018.01.012>

657 Tong, D., Zhang, Q., Zheng, Y., Caldeira, K., Shearer, C., Hong, C., ... & Davis, S. J. (2019). Committed emissions
658 from existing energy infrastructure jeopardize 1.5 C climate target. Nature, 572(7769), 373-377.

659 Way, R. et al. (2019) 'Wright meets Markowitz: How standard portfolio theory changes when assets are
660 technologies following experience curves', Journal of Economic Dynamics and Control, 101, pp. 211–238.

661 Wieners, C., Lamperti, F., Buizza, R., Dosi, G., Roventini, A. (2023): Macroeconomic policies to stay below 2°C
662 with sustainable growth, Technical Report, LEM Working Papers, forthcoming.

663 Zamarioli, L.H., Pauw, P., König, M., Chenet, H., 2021. The climate consistency goal and the transformation of
664 global finance. Nature Climate Change 11, 578–583. <https://doi.org/10.1038/s41558-021-01083-w>

665