

Technical Note: Preventing CO₂ overestimation from mercuric or 1 copper (II) chloride preservation of dissolved greenhouse gases in 2 freshwater samples 3 4 5 François Clayer^{1*}, Jan Erik Thrane¹, Kuria Ndungu¹, Andrew King¹, Peter Dörsch², Thomas Rohrlack² 6 7 ¹Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway 8 9 ²Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of 10 Life Sciences, PO Box 5003, 1432 Ås, Norway 11 *Corresponding author(s): François Clayer (<u>francois.clayer@niva.no</u>) 12 13 14 Abstract 15 The determination of dissolved gases (O2, CO2, CH4, N2O, N2) in surface waters allows to estimate 16 biological processes and greenhouse gas fluxes in aquatic ecosystems. Mercuric chloride (HgCl₂) has 17 been widely used to preserve water samples prior to gas analysis. However, alternates are needed 18 because of the environmental impacts and regulation of mercury. HgCl2 is a weak acid and interferes 19 with dissolved organic carbon (DOC). Hence, we tested the effect of HgCl2 and two substitutes 20 (copper (II) chloride – CuCl₂ and silver nitrate – AgNO₃), as well as storage time (24h to 3 months) on the determination of dissolved gases in low ionic strength and high DOC lake water. Furthermore, 21 22 we investigated and predicted the effect of HgCl2 on CO2 concentrations in periodic samples from 23 another lake experiencing pH variations (5.4-7.3) related to in situ photosynthesis. Samples fixed 24 with inhibitors generally showed negligible O2 consumption. However, effective preservation of dissolved CO2, CH4 and N2O for up to three months prior to dissolved gas analysis, was only achieved 25 with AgNO3. In contrast, HgCl2 and CuCl2 caused an initial increase in CO2 and N2O followed by a 26 27 decrease. The CO₂ overestimation, caused by HgCl₂-acidification and shift in the carbonate equilibrium, can be calculated from predictions of chemical speciation. Errors due to CO2 28 29 overestimation in HgCl2-preserved water, sampled from low ionic strength and high DOC freshwater, 30 could lead to an overestimation of the CO₂ diffusion efflux by a factor of >20 over a month, or a factor of 2 over the ice-free season. 31

32

- 33 **Key-words**: lake, greenhouse gases, water sample preservation, mercuric chloride, metal toxicity,
- 34 carbon dioxide

https://doi.org/10.5194/egusphere-2023-1745 Preprint. Discussion started: 31 July 2023 © Author(s) 2023. CC BY 4.0 License.

 CO_2 overestimation from $HgCl_2$ fixation – Clayer et al.

35 Running tile: CO₂ overestimation from HgCl₂ fixation

36	1 Introduction
37	
38	The determination of dissolved gases by gas chromatography from samples collected in the field
39	allows the estimation of biological processes in aquatic ecosystems such as photosynthesis and oxic
40	respiration (O2, CO2), denitrification (N2, N2O) and methanogenesis (CH4). This technique is also
41	useful to test the calibration of <i>in-situ</i> sensors in long term deployment. The partial pressure of these
42	dissolved gases will continue to evolve in the water sample from the time of collection to the time of
43	analysis unless biological activity is prevented. This is an issue when field sites are far from
44	laboratory facilities, and it may be more efficient to process the samples in large batches at the end of
45	the field season.
46	Mercuric (II) chloride (HgCl ₂) has been widely used as an inhibitor of the above-mentioned biological
47	processes to preserve water samples for the determination of dissolved CO ₂ in seawaters (e.g.
48	Dickson, Sabine & Christian, 2007) and several dissolved gases in natural and artificial freshwater
49	bodies (e.g. O ₂ , CO ₂ , CH ₄ , N ₂ and/or N ₂ O; (Guérin et al., 2006; Hessen et al., 2017; Hilgert et al.,
50	2019; Okuku et al., 2019; Schubert et al., 2012; Xiao et al., 2014; Yan et al., 2018; Yang et al., 2015)
51	because it is extremely toxic at very low concentrations compared to other reagents (e.g. Horvatić &
52	Peršić, 2007; Hassen et al., 1998). Worldwide efforts have sought to reduce the use of mercury
53	because it is considered toxic to the environment and exposure can severely affect human health
54	(Chen et al., 2018). Therefore, alternative preservation techniques to HgCl ₂ have been tested for
55	dissolved inorganic carbon (DIC) and $\delta^{13}\text{C-DIC}$ such as acidification with phosphoric acid (Taipale &
56	Sonninen, 2009) or a combination of filtration and exposure to benzalkonium chloride or sodium
57	chloride (Takahashi et al., 2019). At least two studies, one also including dissolved organic carbon
58	(DOC) and δ^{13} C-DOC, showed that simple filtration (and cooling), fixation (precipitation) or
59	acidification were better than the use of toxic inhibitors, including HgCl ₂ (Wilson, Munizzi & Erhardt,
60	2020). However, these techniques were not tested for the simultaneous determination of several
61	dissolved gases, including CH ₄ which is subject to rapid degassing during handling or storage if
62	samples are not preserved because of its low solubility in water (Duan & Mao, 2006).
63	The addition of HgCl ₂ to water is known to produce hydrochloric acid through hydrolysis (Ciavatta &
64	Grimaldi, 1968) and to form complexes with many environmental ligands, both inorganic (Powell et
65	al., 2004) and organic (Tipping, 2007; Foti et al., 2009; Liang et al., 2019; Chen et al., 2017). The
66	complexation of Hg ⁺ with the carboxyl or thiol groups of dissolved organic carbon in oxic
67	environments could further increase the concentration of H ⁺ (Khwaja et al., 2006; Skyllberg, 2008).
68	This acidification could be an issue in poorly buffered water (low ionic strength) with high
69	concentration of DOC where a shift in the pH and carbonate equilibrium could be induced, thus
70	resulting in an overestimation of dissolved CO ₂ concentration. Such effects would not be expected in
71	marine water due to the high ionic strength of the water (Chou et al., 2016) or freshwater with low pH

72 (<5.5) under which conditions nearly all dissolved inorganic carbon is CO₂ (Stumm & Morgan, 1981). 73 Thus, there are clear limits of the application of HgCl2 for freshwater preservation, in addition to 74 exposing field workers to the risks of its high toxicity. 75 The use of HgCl2 to preserve water samples prior to dissolved gas analyses is part of the current 76 guidelines for greenhouse gas measurements in freshwater reservoirs (Machado Damazio et al., 2012; UNESCO/IHA, 2008, 2010). Hence, there is a risk of overestimating CO₂ concentrations and 77 78 emissions, in absence of discrete measurement of emissions, from hydropower reservoirs with 79 consequence on the present and expected greenhouse gas footprint from hydroelectricity. To ensure precise estimation of greenhouse gas emission from hydropower, the largest present and future 80 81 renewable source of electricity (IEA, 2020), the use of HgCl₂ should therefore be discontinued. 82 Here we tested the effect of storage of a natural water sample with circumneutral pH, low ionic strength (poor buffering capacity) and high DOC concentration on the determination of five dissolved 83 gases (O2, CO2, CH4, N2 and N2O) by headspace equilibration and gas chromatography in the 84 85 presence of mercuric chloride (HgCl₂), two alternative inhibitors, chosen for their wide and effective application in water treatments and water purification (copper (II) chloride - CuCl₂ and silver nitrate -86 AgNO₃; Xu & Imlay, 2012; Rai, Gaur & Kumar, 1981), and a control (samples chilled in the dark at 87 88 +4°C). We further investigated the effect of preservation with HgCl₂ on the determination of 89 dissolved CO2 from water samples collected weekly during a full ice-free season from a lake experiencing varying pH conditions related to photosynthesis. Finally, we show that the 90 91 overestimation of dissolved CO2 concentrations caused by HgCl2 fixation can be predicted based on 92 chemical equilibria. 93 94 2. Methods 95 2.1. Effects of storage time and inhibitors on the determination of dissolved gases 96 Study area 97 Water samples were collected from Lake Svartkulp (59.9761313 N, 10.7363544 E; Southeast Norway) north of Oslo, Norway, on the 4th of September 2019. Lake water was carefully collected 98 into 5 L plastic bottles to avoid sampling large particles and immediately brought back to the lab. 99 Upon arrival at the laboratory, water from the 5 L bottles were slowly poured, to avoid gas loss, into a 100 101 25 L tank to provide a single bulk sample to start the incubation experiment. Filtration, e.g., with 0.45 or 0.2 µm filters, was avoided to minimize changes in dissolved gas concentrations (e.g., Magen et al., 102 2014). The mixed water sample (25 L) was sub-sampled (0.5 L) for the determination of alkalinity 103 104 (127 μmol L⁻¹), pH (6.73), ammonium (3 μg N L⁻¹), nitrate (5 μg N L⁻¹), total N (230 μg N L⁻¹), 105 phosphate (1 μg P L⁻¹), total P (9 μg P L⁻¹), TOC (8.9 mg C L⁻¹) and colour (59 mg L⁻¹ Pt), all

analysed by standard methods at the accredited NIVA lab (see Table S1). Temperature of the lake water was 18.5 °C. Note that particulate organic carbon is a negligible fraction of TOC in Norwegian lake waters, representing less than 3% (de Wit et al., 2023).

109

106

107

108

Laboratory experiment

110 The experimental design involved four treatments (HgCl₂, CuCl₂, AgNO₃ and control, i.e., no added 111 112 preservative), three time points of dissolved gas analysis (t=0, i.e., within 24h, t= 3 weeks and t = 3113 months) and six replicates, yielding in total 72 experimental units. The same day as the water samples were collected, water from the mixed sample (25 L) was added gently to 72 borosilicate glass bottles 114 (120 mL) and the bottles were randomized. 115 116 Stock solutions of HgCl₂, CuCl₂ and AgNO₃ were prepared according to Table 1. For measurement of 117 CO₂ in seawater samples, the standard method involves poisoning the samples by adding a saturated HgCl₂ solution in a volume equal to 0.05-0.02% of the total volume (Dickson 2007). We used this as 118 a starting point and added 0.02 % saturated HgCl₂ solution to 1/4th of the samples (240 µL of HgCl₂ 119 10× diluted saturated solution), resulting in a sample concentration of 14 μg HgCl₂ mL⁻¹ (51.6 μM; 120 Table 1). Based on estimated toxicity relative to Hg (Deheyn et al., 2004; Halmi et al., 2019), the 121 122 silver and copper salts were added in molar concentrations equal to two and three times the molar 123 concentration of HgCl₂, respectively (Table 1), although it varies between species of microorganisms 124 and environmental matrices (Hassen et al., 1998; Rai, Gaur & Kumar, 1981). CuCl₂ and AgNO₃, the most toxic form of Silver, were chosen because of their wide application in water treatments and 125 water purification (Larrañaga et al., 2016; Nowack et al., 2011; NPIRS, 2023; Ullmann et al., 1985). 126 Equal volume of MilliQ water was added to 1/4th of the samples as a control. The bottles were capped 127 with gas tight butyl rubber stoppers after ensuring that there were no air bubbles in the samples. The 128 129 samples for measurement of starting concentrations (t=0) were stored dark and cold (+4°C) overnight 130 and analyzed within 24h of preparation, while the rest were stored dark and cold (+4°C) until measurement after 3 weeks (t= 3w) and 3 months (t= 3m) of storage. Concentrations of O₂, N₂, N₂O, 131 CO₂ and CH₄ were determined by gas chromatography (see below) using the headspace technique 132 following Yang et al. (2015). Unfortunately, pH was not measured at the end of the storage period. 133

Table 1. Stock and sample concentrations of HgCl2, CuCl2 and AgNO3.

Salt	Stock solution	Sample concentration	Rationale
HgCl ₂	70 g/L (saturated)	14.0 μg/mL (51.6 μM)	Dickson, Sabine & Christian, 2007
$CuCl_2$	131.9 g/L	$26.4~\mu\text{g/mL}~(154.7~\mu\text{M})$	$3 \times Hg$
AgNO ₃	87.6 g/L	$17.5~\mu g/mL~(103.1~\mu M)$	$2 \times Hg$

134

136	2.2. Effects of HgCl ₂ on dissolved CO ₂ analyses over a range of pH values
137	Lake Lundebyvannet time series
138	Water samples were collected from Lake Lundebyvannet located southeast of Oslo (59.54911 N,
139	11.47843 E, Southeast Norway). The lake has a surface area of 0.4 km ² and a maximum depth of
140	5.5 m. Samples were taken from 1, 1.5, 2 and 2.5 m depth once or twice a week between April 2020
141 142	and January 2021. Samples for GC analysis were filled into 120 mL glass bottles, which were sealed immediately without air bubbles. Sample preservation prior to GC analysis (within 24h) was ensured
143	by adding a half-saturated (at 20°C) solution of HgCl ₂ (150 μL) through the rubber seal of each bottle
144	using a syringe directly after sampling, resulting in a concentration of 161 µM similar to previous
145	studies (Clayer et al., 2021; Hessen et al., 2017; Yang et al., 2015). Samples for DIC analysis were
146	filled without bubbles in 100 ml Winkler glass bottles that were sealed airtight directly after sampling.
147	These samples were not fixed in any way and were analysed by a TOC analyzer and a pH-meter
148	within two hours. The lake water was characterised by high concentrations of humic substances (with
149	DOC concentrations ranging from 8 to 28 mg C L ⁻¹), weak ionic strength with alkalinity ranging
150	between 30 and 150 µmol L ⁻¹ , and electric conductivity varying from 40 to 70 µS cm ⁻¹ . Temperature
151	and pH were measured <i>in-situ</i> using a HOBO pH data logger placed at 1, 1.5, 2 and 2.5 m (Elit,
152	Gjerdrum, Norway). For more details, see Rohrlack et al. (2020).
153	
153 154	2.3. Analytical chemistry
	2.3. Analytical chemistry Gas chromatography
154	
154 155	Gas chromatography
154 155 156	Gas chromatography Headspace was prepared by gently backfilling sample bottles with 20–30 mL helium (He; 99,9999%)
154 155 156 157	Gas chromatography Headspace was prepared by gently backfilling sample bottles with 20–30 mL helium (He; 99,9999%) into the closed bottle while removing a corresponding volume of water. Care was taken to control the headspace pressure within 5% of ambient and a slight He overpressure was released before
154 155 156 157 158	Gas chromatography Headspace was prepared by gently backfilling sample bottles with 20–30 mL helium (He; 99,9999%) into the closed bottle while removing a corresponding volume of water. Care was taken to control the headspace pressure within 5% of ambient and a slight He overpressure was released before equilibration. The bottles were shaken horizontally at 150 rpm for 1 h to equilibrate gases between
154 155 156 157 158 159	Gas chromatography Headspace was prepared by gently backfilling sample bottles with 20–30 mL helium (He; 99,9999%) into the closed bottle while removing a corresponding volume of water. Care was taken to control the headspace pressure within 5% of ambient and a slight He overpressure was released before equilibration. The bottles were shaken horizontally at 150 rpm for 1 h to equilibrate gases between sample and headspace. The temperature during shaking was recorded by a data logger. Immediately
154 155 156 157 158 159 160 161	Gas chromatography Headspace was prepared by gently backfilling sample bottles with 20–30 mL helium (He; 99,9999%) into the closed bottle while removing a corresponding volume of water. Care was taken to control the headspace pressure within 5% of ambient and a slight He overpressure was released before equilibration. The bottles were shaken horizontally at 150 rpm for 1 h to equilibrate gases between sample and headspace. The temperature during shaking was recorded by a data logger. Immediately after shaking, the bottles were placed in an autosampler (GC-Pal, CTC, Switzerland) coupled to a gas
154 155 156 157 158 159 160 161 162	Gas chromatography Headspace was prepared by gently backfilling sample bottles with 20–30 mL helium (He; 99,9999%) into the closed bottle while removing a corresponding volume of water. Care was taken to control the headspace pressure within 5% of ambient and a slight He overpressure was released before equilibration. The bottles were shaken horizontally at 150 rpm for 1 h to equilibrate gases between sample and headspace. The temperature during shaking was recorded by a data logger. Immediately after shaking, the bottles were placed in an autosampler (GC-Pal, CTC, Switzerland) coupled to a gas chromatograph (GC) with He back-flushing (Model 7890A, Agilent, Santa Clara, CA, US).
154 155 156 157 158 159 160 161 162 163	Gas chromatography Headspace was prepared by gently backfilling sample bottles with 20–30 mL helium (He; 99,9999%) into the closed bottle while removing a corresponding volume of water. Care was taken to control the headspace pressure within 5% of ambient and a slight He overpressure was released before equilibration. The bottles were shaken horizontally at 150 rpm for 1 h to equilibrate gases between sample and headspace. The temperature during shaking was recorded by a data logger. Immediately after shaking, the bottles were placed in an autosampler (GC-Pal, CTC, Switzerland) coupled to a gas chromatograph (GC) with He back-flushing (Model 7890A, Agilent, Santa Clara, CA, US). Headspace gas was sampled (approx. 2 mL) by a hypodermic needle connected to a peristaltic pump
154 155 156 157 158 159 160 161 162	Gas chromatography Headspace was prepared by gently backfilling sample bottles with 20–30 mL helium (He; 99,9999%) into the closed bottle while removing a corresponding volume of water. Care was taken to control the headspace pressure within 5% of ambient and a slight He overpressure was released before equilibration. The bottles were shaken horizontally at 150 rpm for 1 h to equilibrate gases between sample and headspace. The temperature during shaking was recorded by a data logger. Immediately after shaking, the bottles were placed in an autosampler (GC-Pal, CTC, Switzerland) coupled to a gas chromatograph (GC) with He back-flushing (Model 7890A, Agilent, Santa Clara, CA, US).
154 155 156 157 158 159 160 161 162 163 164	Gas chromatography Headspace was prepared by gently backfilling sample bottles with 20–30 mL helium (He; 99,9999%) into the closed bottle while removing a corresponding volume of water. Care was taken to control the headspace pressure within 5% of ambient and a slight He overpressure was released before equilibration. The bottles were shaken horizontally at 150 rpm for 1 h to equilibrate gases between sample and headspace. The temperature during shaking was recorded by a data logger. Immediately after shaking, the bottles were placed in an autosampler (GC-Pal, CTC, Switzerland) coupled to a gas chromatograph (GC) with He back-flushing (Model 7890A, Agilent, Santa Clara, CA, US). Headspace gas was sampled (approx. 2 mL) by a hypodermic needle connected to a peristaltic pump (Gilson Minipuls 3), which connected the autosampler with the 250 μL heated sampling loop of the
154 155 156 157 158 159 160 161 162 163 164 165	Gas chromatography Headspace was prepared by gently backfilling sample bottles with 20–30 mL helium (He; 99,9999%) into the closed bottle while removing a corresponding volume of water. Care was taken to control the headspace pressure within 5% of ambient and a slight He overpressure was released before equilibration. The bottles were shaken horizontally at 150 rpm for 1 h to equilibrate gases between sample and headspace. The temperature during shaking was recorded by a data logger. Immediately after shaking, the bottles were placed in an autosampler (GC-Pal, CTC, Switzerland) coupled to a gas chromatograph (GC) with He back-flushing (Model 7890A, Agilent, Santa Clara, CA, US). Headspace gas was sampled (approx. 2 mL) by a hypodermic needle connected to a peristaltic pump (Gilson Minipuls 3), which connected the autosampler with the 250 μL heated sampling loop of the GC.
154 155 156 157 158 159 160 161 162 163 164 165	Gas chromatography Headspace was prepared by gently backfilling sample bottles with 20–30 mL helium (He; 99,9999%) into the closed bottle while removing a corresponding volume of water. Care was taken to control the headspace pressure within 5% of ambient and a slight He overpressure was released before equilibration. The bottles were shaken horizontally at 150 rpm for 1 h to equilibrate gases between sample and headspace. The temperature during shaking was recorded by a data logger. Immediately after shaking, the bottles were placed in an autosampler (GC-Pal, CTC, Switzerland) coupled to a gas chromatograph (GC) with He back-flushing (Model 7890A, Agilent, Santa Clara, CA, US). Headspace gas was sampled (approx. 2 mL) by a hypodermic needle connected to a peristaltic pump (Gilson Minipuls 3), which connected the autosampler with the 250 μL heated sampling loop of the GC. The GC was equipped with a 20-m wide-bore (0.53 mm) Poraplot Q column for separation of CH ₄ ,

2.4. Data analysis

170 171 172 173 174 175 176 177 178 179	respectively. CO ₂ , O ₂ , and N ₂ were measured with a thermal conductivity detector (TCD). Certified standards of CO ₂ , N ₂ O, and CH ₄ in He were used for calibration (AGA, Germany), whereas air was used for calibrating O ₂ and N ₂ . The analytical error for all gases was lower than 2%. For the Lake Lundebyvannet time series, CO ₂ was separated from other gases using the 20 m wide-bore (0.53 mm) Poraplot Q column while the other gases were not measured. The results from gas chromatography give the relative concentration of dissolved gases (in ppm) in the headspace in equilibrium with the water. For the lab experiment (section 2.1), the concentration of dissolved gases in the water at equilibrium with the headspace were calculated from the solubility of gases in water using Carroll, Slupsky and Mather (1991) for CO ₂ , Weiss and Price (1980) for N ₂ O, Yamamoto, Alcauskas and Crozier (1976) for CH ₄ , Millero, Huang and Laferiere (2002) for O ₂ ,
1/9	ramamoto, Alcauskas and Crozier (1976) for CH ₄ , Millero, Huang and Lateriere (2002) for O ₂ ,
180	Hamme and Emerson (2004) for N ₂ . For the Lake Lundebyvannet time series (section 2.2), the
181	concentration of CO ₂ in the water samples were determined using temperature-dependent Henry's law
182	constants given by Wilhelm, Battino and Wilcock (1977). The quantities of gases in the headspace
183	and water were summed to find the concentrations and partial pressures of dissolved gases from the
184	water collected in the field. The calculations were similar to Yang et al. (2015).
185	
186	DIC analyses
187	DIC analysis was performed for the Lake Lundebyvannet time series using a Shimadzu TOC-V CPN
188	(Oslo, Norway) instrument equipped with a non-dispersive infrared (NDIR) detector with O2 as a
189	carrier gas at a flow rate of 100 mL min ⁻¹ . Two to three replicate measurements were run per sample.
190	The system was calibrated using a freshly prepared solution containing different concentrations of
191	NaHCO ₃ and Na ₂ CO ₃ . CO ₂ concentrations in water samples ([CO ₂]) were calculated on the bases of
191 192	NaHCO ₃ and Na ₂ CO ₃ . CO ₂ concentrations in water samples ([CO ₂]) were calculated on the bases of temperature, pH and DIC concentrations as follows (Rohrlack <i>et al.</i> , 2020):
191	NaHCO ₃ and Na ₂ CO ₃ . CO ₂ concentrations in water samples ([CO ₂]) were calculated on the bases of
191 192	NaHCO ₃ and Na ₂ CO ₃ . CO ₂ concentrations in water samples ([CO ₂]) were calculated on the bases of temperature, pH and DIC concentrations as follows (Rohrlack <i>et al.</i> , 2020):
191 192 193	NaHCO ₃ and Na ₂ CO ₃ . CO ₂ concentrations in water samples ([CO_2]) were calculated on the bases of temperature, pH and DIC concentrations as follows (Rohrlack <i>et al.</i> , 2020): $[CO_2] = \frac{[H^+]^2 C_T}{Z} $ (Eq. 1)
191 192 193 194 195	NaHCO ₃ and Na ₂ CO ₃ . CO ₂ concentrations in water samples ([CO_2]) were calculated on the bases of temperature, pH and DIC concentrations as follows (Rohrlack <i>et al.</i> , 2020): $[CO_2] = \frac{[H^+]^2 c_T}{Z} \qquad (Eq. 1)$ where [H^+] is the proton concentration (10 ^{-pH}), C_T is the dissolved inorganic carbon concentration and Z is given by:
191 192 193 194	NaHCO ₃ and Na ₂ CO ₃ . CO ₂ concentrations in water samples ([CO_2]) were calculated on the bases of temperature, pH and DIC concentrations as follows (Rohrlack <i>et al.</i> , 2020): $[CO_2] = \frac{[H^+]^2 C_T}{Z} \qquad (Eq. 1)$ where [H^+] is the proton concentration (10 ^{-pH}), C_T is the dissolved inorganic carbon concentration
191 192 193 194 195	NaHCO ₃ and Na ₂ CO ₃ . CO ₂ concentrations in water samples ([CO_2]) were calculated on the bases of temperature, pH and DIC concentrations as follows (Rohrlack <i>et al.</i> , 2020): $[CO_2] = \frac{[H^+]^2 c_T}{Z} \qquad (Eq. 1)$ where [H^+] is the proton concentration (10 ^{-pH}), C_T is the dissolved inorganic carbon concentration and Z is given by:
191 192 193 194 195	NaHCO ₃ and Na ₂ CO ₃ . CO ₂ concentrations in water samples ([CO_2]) were calculated on the bases of temperature, pH and DIC concentrations as follows (Rohrlack <i>et al.</i> , 2020): $[CO_2] = \frac{[H^+]^2 c_T}{Z} \qquad (Eq. 1)$ where [H^+] is the proton concentration (10^{-pH}), C_T is the dissolved inorganic carbon concentration and Z is given by: $Z = [H^+]^2 + K_1[H^+] + K_1K_2 \qquad (Eq. 2)$
191 192 193 194 195 196	NaHCO ₃ and Na ₂ CO ₃ . CO ₂ concentrations in water samples ([CO_2]) were calculated on the bases of temperature, pH and DIC concentrations as follows (Rohrlack <i>et al.</i> , 2020): $[CO_2] = \frac{[H^+]^2 c_T}{Z} \qquad (Eq. 1)$ where $[H^+]$ is the proton concentration (10^{-pH}), C_T is the dissolved inorganic carbon concentration and Z is given by: $Z = [H^+]^2 + K_1[H^+] + K_1K_2 \qquad (Eq. 2)$ where K_1 and K_2 are the first and second carbonic acid dissociation constant adjusted for temperature

- 201 pCO_2 and saturation deficit
- 202 Lake Lundebyvannet CO₂ concentrations provided by GC and DIC analyses were converted to pCO₂
- 203 (in µatm) as follows:

$$pCO_2 = \frac{[CO_2]}{0.987 \times K_H P_{atm}}$$
 (Eq. 3)

- where K_H is Henry constant for CO_2 adjusted for in-situ water temperature (Stumm & Morgan, 1996)
- and P_{atm} is the atmospheric pressure in bar given by:

207
$$P_{atm} = (1013 - 0.1 \times altitude) \times 0.001$$
 (Eq. 4)

- where altitude is the altitude of Lake Lundebyvannet (158 m). Finally, the CO₂ saturation deficit
- 209 (Sat_{CO_2} in μ atm) was given by

210
$$Sat_{CO_2} = pCO_2 - [CO_2]_{air}$$
 (Eq. 5)

- where $[CO_2]_{air}$ is the pCO₂ in the air (416 µatm for 2020 in Southern Norway retrieved from EBAS
- database; NILU, 2022; Tørseth et al., 2012). Sat_{CO_2} gives the direction of CO_2 flux at the air water
- interface, and its product with gas transfer velocity determine the CO₂ flux at the water-atmosphere
- interface, i.e., whether lake ecosystems are sink $(Sat_{CO_2} < 0)$ or source $(Sat_{CO_2} > 0)$ of atmospheric
- 215 CO₂.
- 216
- 217 Statistical analyses
- The effect of storage time and treatment on five dissolved gases (O2, N2, CO2, CH4, N2O) from the
- 219 Lake Svartkulp samples was tested with a two-way ANOVA at an alpha level adapted using the
- 220 Bonferroni correction for multiple testing, i.e., α =0.05/5=0.01. To evaluate the impact of Hg fixation
- 221 on Lake Lundebyvannet samples, $[CO_2]$ values determined by headspace equilibration and GC
- 222 analysis of HgCl₂-fixed samples were compared with those calculated from DIC measurements of
- 223 unfixed samples with a paired t-test.
- 224 A regression analysis was performed to describe the overestimation of CO₂ concentrations caused by
- 225 HgCl₂ fixation in Lake Lundebyvannet samples as a function of pH. The total CO₂ concentration in
- the HgCl₂-fixed samples ($[CO_2]_{HgCl_2}$) can be expressed as:

$$[CO_2]_{HgCl_2} = [CO_2]_i + [CO_2]_{ex}$$
 (Eq. 6)

- where $[CO_2]_i$ is the initial CO₂ concentration prior to HgCl₂ fixation, i.e., CO₂ concentration in the
- unfixed samples, and $[CO_2]_{ex}$ is the excess CO₂ concentration caused by a decrease in pH following
- HgCl₂ fixation. The relative CO_2 overestimation (*E*) is given by:

231	$E = \frac{ CO_2 _{HgCl_2} - CO_2 _i}{ CO_2 _i} = \frac{ CO_2 _{ex}}{ CO_2 _i} $ (Eq. 7)
232	The impact of pH (or $[H^+]$) on E was mathematically described by running a regression analysis
233	using MATLAB®. The fminsearch MATLAB function from the Optimization toolbox was used to
234	find the minimum sum of squared residuals (SSR) for functions of the form of: $E = A/[H^+]$ or $E =$
235	$A \times 10^{-B \times pH}$. For each optimal solution, the root-mean-square error (RMSE) and coefficient of
236	determination (R^2) were calculated against observed values of E , i.e., values of E determined
237	empirically from observed $[CO_2]_i$ and $[CO_2]_{ex}$.
238	
239	Chemical speciation, saturation-index calculations, and prediction of CO ₂ overestimation
240	The speciation of solutes and saturation index values (SI) of selected minerals were calculated with
241	the program PHREEQC developed by the USGS (Parkhurst & Appelo, 2013), neglecting the effect of
242	dissolved organic matter. This was used to assess the impact of the addition of preservative on shifting
243	the carbonate equilibrium as well as dissolved inorganic carbon losses due to carbonate mineral
244	precipitation. For each PHREEQC simulation, two files, respectively the database and input files,
245	were used to define the thermodynamic model and the type of calculations to perform. The database
246	of MINTEQA2 (e.g., minteq.dat, Allison et al., 1991) was used to describe the chemical system
247	because it includes, inter alia, reactions and constants for Ag, Cu and Hg complexation with Cl, NO ₃
248	and carbonates. In total, three simulations were run representing the addition of each preservative
249	solution to sample water from Lake Svartkulp. The input files described the composition of two
250	aqueous solutions: (i) the preservative solution assumed to contain only the preservative and (ii)
251	sample water from Lake Svartkulp with observed major element concentrations (pH, Al, Ca, Cl, Cu,
252	Fe, Mg, Mn, N as nitrate, K, Na, S as sulfate, Zn; Table S1) and Hg and Ag concentration assumed to
253	be 10 ⁻⁵ mg/L. The output file provided the activities of the various solutes in the preserved samples,
254	i.e., simulating the mixing of 120 mL of lake water with 240 µL of the AgNO ₃ , CuCl ₂ and HgCl ₂
255	preservative solutions, as described in section 2.1. This procedure allows to estimate the pH of the
256	preserved samples as well as SI for various mineral phases. The SI is calculated by PHREEQC
257	comparing the chemical activities of the dissolved ions of a mineral (ion activity product, IAP) with
258	their solubility product (Ks). When SI > 1, precipitation is thermodynamic favourable. However,
259	PHREEQC does not give information about precipitation kinetics.
260	PHREEQC was also used to estimate the decrease in pH caused by adding 150 μL of a half-saturated
261	$HgCl_2$ solution to Lake Lundebyvannet samples prior to GC analyses, as described in section 2.2. In
262	absence of data on the chemical composition of Lake Lundebyvannet, we assumed that it had the
263	same composition as Lake Svartkulp water samples. This assumption is supported by the fact that
264	waters from both lakes have circumneutral nH low ionic strength (noor buffering canacity) and high

- DOC concentration and would therefore behave similarly in presence of acids. Briefly, for each 0.1 pH value between pH of 5.4 and 7.3, the carbonate alkalinity was first adjusted by increasing HCO₃ concentrations in the input files for PHREEQC to confirm that the water was at equilibrium at the given pH value. Then, the effect of adding 150µL of a half-saturated HgCl₂ solution was simulated as described above for Lake Svartkulp. Knowing the new equilibrated pH, after addition of HgCl₂, the overestimation of CO₂ concentration in Hg-fixed samples relative to unfixed samples (*E*, described in Eq. 7 above) can be predicted as described below.
- 272 Adapting Eq. (1), we obtain:

[
$$CO_2$$
] _{$HgCl_2$} = $\frac{[H^+]^2_{HgCl_2} c_T}{z_{HgCl_2}}$ (Eq. 8)

274 and

275
$$[CO_2]_i = \frac{[H^+]_i^2 c_T}{Z_i}$$
 (Eq. 9)

- where $[H^+]_i$ is the proton concentration measured in the initial water samples prior to HgCl₂ fixation, and $[H^+]_{HgCl_2}$ is the proton concentration estimated by PHREEQC following HgCl₂ fixation, and
- similarly for Z_i and Z_{HgCl_2} from Eq. (2). Combining Eqs. (6), (8) and (9) we obtain:

[
$$CO_2$$
]_{ex} = $C_T \left(\frac{[H^+]_{HgCl_2}^2}{Z_{HgCl_2}} - \frac{[H^+]_i^2}{Z_i} \right)$ (Eq. 10)

280 Hence:

282

281
$$E = \frac{[co_2]_{ex}}{[co_2]_i} = \frac{\left(\frac{[H^+]_{HgCl_2}^2}{Z_{HgCl_2}} - \frac{[H^+]_i^2}{Z_i}\right)}{\frac{[H^+]_i^2}{Z_i}}$$
(Eq. 11)

Alternatively, *E* can also simply be predicted based on the carbonic acid dissociation:

$$CO_2 + H_2O \stackrel{K_1}{\Leftrightarrow} HCO_2^- + H^+ \qquad \text{(Reaction 1)}$$

285 At equilibrium, we have:

286
$$K_1 = \frac{[HCO_3^-][H^+]}{[CO_2]}$$
 (Eq. 12)

When pH is decreased upon addition of $HgCl_2$, a fraction (α) of the initial bicarbonate concentration $[HCO_3^-]_i$ is turned into CO_2 . This fraction, expressed as $[CO_2]_{ex}$ in Eq. (6) above, can be estimated with Eq. 12 as follows:

290
$$[CO_2]_{ex} = \alpha [HCO_3^-]_i = \frac{\alpha K_1 [CO_2]_i}{[H^+]_i}$$
 (Eq. 13)

Introducing the expression of $[CO_2]_{ex}$ from Eq. 13 into Eq. 7 yields:

292
$$\frac{[CO_2]_{ex}}{[CO_2]_i} = E = \frac{\alpha K_1}{[H^+]_i}$$
 (Eq. 14)

- When the decrease in pH, or acidification, is greater than the buffering capacity of the water: $\alpha = 1$.
- The value of α cannot exceed 1 because the amount of CO₂ produced by a decrease in pH cannot
- 295 exceed the amount of HCO_3^- initially present. In all the other cases, we have: $\alpha < 1$. For both
- predictions of E, i.e., with Eqs. 11 and 14, the root-mean-square error (RMSE) and coefficient of
- 297 determination (R²) were calculated.
- 298 Finally, additional sources of CO₂ overestimation were investigated by analysing the residuals of the
- 299 model described by Eq. 11, i.e., the difference between E predicted with Eq. 11 and E determined
- 300 empirically with Eq. 7. Briefly, residuals were plotted against pH and in situ temperature. Residuals
- were separated in two groups based on the empirical value of $[HCO_3^-]_i [CO_2]_{ex}$, i.e., the first group
- had values of $[HCO_3^-]_i [CO_2]_{ex} \ge a$ while the second group had values of $[HCO_3^-]_i [CO_2]_{ex} \le a$
- 303 -a where different values for a were used: 20, 10 or 5 μ M. The justification for separating residuals
- in two groups is that: (i) the first group represents samples for which bicarbonate alkalinity in the
- 305 original sample is, as expected, higher than CO₂ overestimation after HgCl₂-fixation, while (ii) the
- 306 second group represents samples for which bicarbonate alkalinity is not sufficient to explain CO₂
- 307 overestimation after HgCl₂-fixation.
- 309 CO2 diffusion fluxes from Lake Lundebyvannet
- The diffusive flux of CO_2 (F_{CO_2} in mol m⁻² d⁻¹) from Lake Lundebyvannet surface water was
- 311 estimated according to:

308

312
$$F_{CO_2} = \frac{k_{CO_2}([CO_2] - [CO_2]_{eq})}{1000}$$
 (Eq. 12)

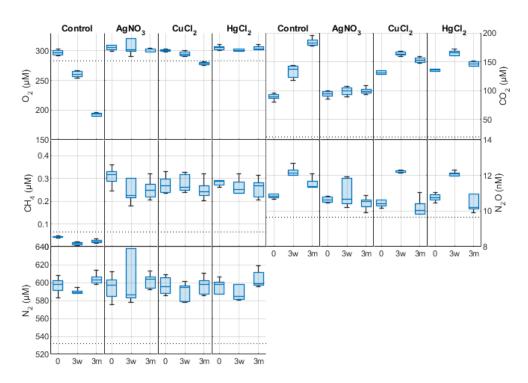
- where k_{CO_2} is the CO₂ transfer velocity in m d⁻¹, [CO₂] is the surface water CO₂ concentration (μ M),
- and 1000 is a factor to ensure consistency in the units and $[CO_2]_{eq}$ is the theoretical water CO_2
- 315 concentration (μM) in equilibrium with atmospheric CO₂ concentration calculated with Eq. (3) and
- 316 pCO₂ of 416 μ atm (see above).
- The CO₂ transfer velocity (k_{CO_2}) was estimated as follows (Vachon & Prairie, 2013):

318
$$k_{CO_2} = k_{600} \left(\frac{600}{Sc_{CO_2}} \right)^{-n}$$
 (Eq. 14)

CO₂ overestimation from HgCl₂ fixation – Clayer et al.

320 is the CO₂ Schmidt number for a given temperature (unitless; Wanninkhof, 2014). We used n values of 0.5 or 2/3 when wind speed was below or above 3.7 m s⁻¹, respectively (Guérin et al., 2007). 321 Empirical k_{600} models included those from Cole & Caraco (1998; $k_{600} = 2.07 + 0.215U_{10}^{1.7}$), 322 Vachon & Prairie (2013; $k_{600} = 2.51 + 1.48U_{10} + 0.39U_{10} \log_{10} LA$) and Crusius & Wanninkhof 323 (2003; power model: $k_{600} = 0.228 U_{10}^{2.2} + 0.168$ in cm h⁻¹). U_{10} and LA refer to mean wind speed at 324 10 m in m s⁻¹ and lake area in km², respectively. Sub-hourly U_{10} data for 2020 was retrieved from a 325 weather station of the Norwegian Meteorological Institute located 1.5 km west of Lake 326 327 Lundebyvannet (station name: E18 Melleby; ID: SN 3480; 59.546 N, 11.4535E) using the Frost 328 application programming interface (Frost API, 2022). Daily, monthly, and yearly (only covering the ice-free season: April-November) F_{CO_2} was estimated using Eq. (12). Daily [CO₂] was interpolated 329 330 from weekly data using a modified Akima spline (makima spline in Matlab® based on Akima, 1974). This interpolation method is known to avoid excessive local undulations. 331 332 3. Results and discussion 333 3.1. Effects of inhibitors and storage time on dissolved gases 334 In the control samples from Lake Svartkulp, the concentration of O₂ declined while CO₂ increased 335 over time in a close to 1:1 molar ratio, likely reflecting the effect of microbial respiration activity and mineralisation of organic matter (Fig. 1, Table S2). Concentration of O2 in the control decreased from 336 near 300 to below 200 μM (Fig. 1). In the presence of inhibitors, O₂ concentrations tended to be 337 slightly higher at t=0 and remained constant or declined only slightly over time to generally remain at 338 339 or above saturation (280 to 300 µM). Thus, the inhibitors were effective in reducing oxic respiration. The concentration of CO_2 in the presence of AgNO₃ at t = 0 was not significantly different to the 340 control at t = 0 (Fig 1; paired t-test, P > 0.1). At t = 0, CO₂ concentrations were however much higher 341 342 in the presence of HgCl₂ (135 μM) or CuCl₂ (131 μM) than in the control (89 μM; Fig 1, Table S2). This is likely due to an acidification of the poorly buffered (alkalinity 127 µM) and near neutral water 343 344 (pH=6.73), shifting the carbonate equilibrium from HCO₃ to CO₂ as also shown by Borges et al. (2019). The increase of CO₂ from 130 μM to ~160 μM after 3 weeks in both sample sets preserved 345 346 with HgCl₂ and CuCl₂ is not mirrored by a similar decrease in O₂. This suggests that oxic respiration is not the main source for this additional 30 µM of CO2 but rather points towards additional 347 acidification of the samples caused by kinetically controlled complexation of Hg2+ with dissolved 348 organic matter (Miller et al., 2009). In fact, the relatively slow complexation of Hg²⁺ with organic 349 thiol groups can release two protons (Skyllberg, 2008) and up to three, with some participation of a 350 351 third weak-acid group (Khwaja et al., 2006). The following decrease in CO₂ after 3 months (down to ~145 µM) points to other processes. Overall, the addition of HgCl₂ or CuCl₂ following sampling 352 increased CO₂ concentrations by 47% within the first 24h compared to the control and caused further 353

where k_{600} is the gas transfer velocity (m d⁻¹) estimated from empirical wind-based models and Sc_{CO_2}



354	changes over the three-month storage time, while preservation with AgNO ₃ yielded CO ₂
355	concentrations consistent with the control and caused negligible changes over time (Fig. 1; paired t-
356	test, P>0.1).
357	The concentration of CH ₄ ranged between 0.017 and 0.377 µM (Fig. 1), as expected two orders of
358	magnitude smaller than CO2. At $t=0$, the concentration of CH4 was over 0.2 μM in the presence of
359	inhibitors while it was below saturation in the control (0.03 μM ; Fig. 1). CH ₄ oversaturation in the
360	preserved samples persisted after three weeks and three months of storage and CH ₄ concentration
361	remained constant (Fig. 1, Table S2). Both observations are consistent with the fact that the three
362	preservatives were effective in preserving CH ₄ from oxidation. Even at t = 0, i.e., for samples
363	analysed within 24h after sampling, preservatives are required to preserve CH ₄ in oxic samples.

364

365

366

367

368

Fig 1. Changes in dissolved O_2 , CO_2 , CH_4 , N_2O and N_2 concentrations (nM or μ M) in the absence (control) and presence of different preservatives (AgNO₃, CuCl₂, HgCl₂) at three times (0, day after sample collection; 3w, three weeks after collection; 3m, three months after collection). The horizontal dotted line is the saturated gas concentration corresponding to 100% gas saturation.

369	In fact, oxic methanotrophy typically show rates in the order of μM day-1 (Thottathil et al., 2019; van
370	Grinsven et al., 2021). Hence, a CH_4 consumption of 0.3 μM within 24h in the unpreserved, control
371	water samples is realistic (Fig. 1).
372	The concentration of N_2O ranged between 9.8 and 12.7 nM with only samples preserved with $AgNO_3$
373	showing negligible changes over time (Fig. 1; paired t-test, P>0.1). All the other samples showed
374	consistent patterns with storage time. N_2O concentrations initially increased within the first 3 weeks,
375	followed by a decrease after 3 months. Similar patterns of net N2O production followed by net
376	consumption were also reported in short-term incubations of seawater from the high latitude Atlantic
377	Ocean, although over much shorter timescales, i.e., 48 and 96h (Rees et al., 2021). The lack of
378	inhibition of N_2O production and consumption in the samples preserved with $HgCl_2$ and $CuCl_2$ can be
379	attributed to the fact that N_2O production tends to increase under increasing acidic conditions
380	(Knowles, 1982; Mørkved et al., 2007; Seitzinger, 1988). In fact, the mole fraction of N_2O produced
381	during denitrification increases compared to N2 as pH decreases (Knowles, 1982). In summary,
382	$AgNO_3 \ appears \ to \ be \ the \ only \ preservative \ inhibiting \ N_2O \ cycling, \ although \ further \ tests \ with \ a \ larger$
383	range of N ₂ O concentrations are required to confirm its efficiency.
384	The changes in N ₂ were likely within handling and analytical errors and not different in the presence
385	or absence of inhibitors (Fig. 1; Table S2).
386	3.2. Contrasting impacts of HgCl ₂ , CuCl ₂ and AgNO ₃ on dissolved CO ₂ estimation revealed by
386 387	3.2. Contrasting impacts of HgCl ₂ , CuCl ₂ and AgNO ₃ on dissolved CO ₂ estimation revealed by chemical speciation modelling
387	chemical speciation modelling
387 388	chemical speciation modelling The PHREEQC simulation of unpreserved samples, based on concentrations of all major elements
387 388 389	chemical speciation modelling The PHREEQC simulation of unpreserved samples, based on concentrations of all major elements (Table S1), predicted a pH of 6.72 (Table 2) which is very close to the measured pH of 6.73 (Table
387 388 389 390	chemical speciation modelling The PHREEQC simulation of unpreserved samples, based on concentrations of all major elements (Table S1), predicted a pH of 6.72 (Table 2) which is very close to the measured pH of 6.73 (Table S1). This suggests that chemical information provided to PHREEQC is likely sufficient to describe
387 388 389 390 391	chemical speciation modelling The PHREEQC simulation of unpreserved samples, based on concentrations of all major elements (Table S1), predicted a pH of 6.72 (Table 2) which is very close to the measured pH of 6.73 (Table S1). This suggests that chemical information provided to PHREEQC is likely sufficient to describe the system, without having to invoke more complex reactions with dissolved organic matter. The
387 388 389 390 391 392	chemical speciation modelling The PHREEQC simulation of unpreserved samples, based on concentrations of all major elements (Table S1), predicted a pH of 6.72 (Table 2) which is very close to the measured pH of 6.73 (Table S1). This suggests that chemical information provided to PHREEQC is likely sufficient to describe the system, without having to invoke more complex reactions with dissolved organic matter. The addition of HgCl ₂ and CuCl ₂ both caused a significant decrease in pH to 6.40 and 6.45, respectively
387 388 389 390 391 392 393	chemical speciation modelling The PHREEQC simulation of unpreserved samples, based on concentrations of all major elements (Table S1), predicted a pH of 6.72 (Table 2) which is very close to the measured pH of 6.73 (Table S1). This suggests that chemical information provided to PHREEQC is likely sufficient to describe the system, without having to invoke more complex reactions with dissolved organic matter. The addition of $HgCl_2$ and $CuCl_2$ both caused a significant decrease in pH to 6.40 and 6.45, respectively (Table 2). The proximity of these pH values to the first carbonic acid dissociation constant (pK ₁ =
387 388 389 390 391 392 393 394	chemical speciation modelling The PHREEQC simulation of unpreserved samples, based on concentrations of all major elements (Table S1), predicted a pH of 6.72 (Table 2) which is very close to the measured pH of 6.73 (Table S1). This suggests that chemical information provided to PHREEQC is likely sufficient to describe the system, without having to invoke more complex reactions with dissolved organic matter. The addition of $HgCl_2$ and $CuCl_2$ both caused a significant decrease in pH to 6.40 and 6.45, respectively (Table 2). The proximity of these pH values to the first carbonic acid dissociation constant (pK ₁ = 6.41 at 25°C; Stumm & Morgan, 1996) implies a significant shift in the carbonate equilibrium from
387 388 389 390 391 392 393 394 395	chemical speciation modelling The PHREEQC simulation of unpreserved samples, based on concentrations of all major elements (Table S1), predicted a pH of 6.72 (Table 2) which is very close to the measured pH of 6.73 (Table S1). This suggests that chemical information provided to PHREEQC is likely sufficient to describe the system, without having to invoke more complex reactions with dissolved organic matter. The addition of HgCl ₂ and CuCl ₂ both caused a significant decrease in pH to 6.40 and 6.45, respectively (Table 2). The proximity of these pH values to the first carbonic acid dissociation constant (pK ₁ = 6.41 at 25°C; Stumm & Morgan, 1996) implies a significant shift in the carbonate equilibrium from HCO ₃ to CO ₂ . In fact, introducing pH and CO ₂ concentration values of 6.41–6.45 and 130 μ M,
387 388 389 390 391 392 393 394 395 396	chemical speciation modelling The PHREEQC simulation of unpreserved samples, based on concentrations of all major elements (Table S1), predicted a pH of 6.72 (Table 2) which is very close to the measured pH of 6.73 (Table S1). This suggests that chemical information provided to PHREEQC is likely sufficient to describe the system, without having to invoke more complex reactions with dissolved organic matter. The addition of HgCl ₂ and CuCl ₂ both caused a significant decrease in pH to 6.40 and 6.45, respectively (Table 2). The proximity of these pH values to the first carbonic acid dissociation constant (pK ₁ = 6.41 at 25°C; Stumm & Morgan, 1996) implies a significant shift in the carbonate equilibrium from HCO ₃ to CO ₂ . In fact, introducing pH and CO ₂ concentration values of 6.41–6.45 and 130 μ M, respectively, for the samples preserved with HgCl ₂ and CuCl ₂ into Eqs. 1 and 2 yields DIC
387 388 389 390 391 392 393 394 395 396 397	chemical speciation modelling The PHREEQC simulation of unpreserved samples, based on concentrations of all major elements (Table S1), predicted a pH of 6.72 (Table 2) which is very close to the measured pH of 6.73 (Table S1). This suggests that chemical information provided to PHREEQC is likely sufficient to describe the system, without having to invoke more complex reactions with dissolved organic matter. The addition of HgCl ₂ and CuCl ₂ both caused a significant decrease in pH to 6.40 and 6.45, respectively (Table 2). The proximity of these pH values to the first carbonic acid dissociation constant (pK ₁ = 6.41 at 25°C; Stumm & Morgan, 1996) implies a significant shift in the carbonate equilibrium from HCO ₃ to CO ₂ . In fact, introducing pH and CO ₂ concentration values of 6.41–6.45 and 130 μ M, respectively, for the samples preserved with HgCl ₂ and CuCl ₂ into Eqs. 1 and 2 yields DIC concentrations (C _T) of about 270 μ M at t=0. These DIC concentrations are almost equal to those
387 388 389 390 391 392 393 394 395 396 397 398	chemical speciation modelling The PHREEQC simulation of unpreserved samples, based on concentrations of all major elements (Table S1), predicted a pH of 6.72 (Table 2) which is very close to the measured pH of 6.73 (Table S1). This suggests that chemical information provided to PHREEQC is likely sufficient to describe the system, without having to invoke more complex reactions with dissolved organic matter. The addition of HgCl ₂ and CuCl ₂ both caused a significant decrease in pH to 6.40 and 6.45, respectively (Table 2). The proximity of these pH values to the first carbonic acid dissociation constant (pK ₁ = 6.41 at 25°C; Stumm & Morgan, 1996) implies a significant shift in the carbonate equilibrium from HCO ₃ to CO ₂ . In fact, introducing pH and CO ₂ concentration values of 6.41–6.45 and 130 μ M, respectively, for the samples preserved with HgCl ₂ and CuCl ₂ into Eqs. 1 and 2 yields DIC concentrations (C _T) of about 270 μ M at t=0. These DIC concentrations are almost equal to those calculated for the control and samples preserved with AgNO ₃ at t = 0, i.e., with a pH of 6.73 and CO ₂
387 388 389 390 391 392 393 394 395 396 397 398 399	chemical speciation modelling The PHREEQC simulation of unpreserved samples, based on concentrations of all major elements (Table S1), predicted a pH of 6.72 (Table 2) which is very close to the measured pH of 6.73 (Table S1). This suggests that chemical information provided to PHREEQC is likely sufficient to describe the system, without having to invoke more complex reactions with dissolved organic matter. The addition of HgCl ₂ and CuCl ₂ both caused a significant decrease in pH to 6.40 and 6.45, respectively (Table 2). The proximity of these pH values to the first carbonic acid dissociation constant (pK ₁ = 6.41 at 25°C; Stumm & Morgan, 1996) implies a significant shift in the carbonate equilibrium from HCO ₃ to CO ₂ . In fact, introducing pH and CO ₂ concentration values of 6.41–6.45 and 130 μ M, respectively, for the samples preserved with HgCl ₂ and CuCl ₂ into Eqs. 1 and 2 yields DIC concentrations (C _T) of about 270 μ M at t=0. These DIC concentrations are almost equal to those calculated for the control and samples preserved with AgNO ₃ at t = 0, i.e., with a pH of 6.73 and CO ₂ concentration of 88 μ M. Interestingly, the concentration of CO ₂ in the samples preserved with HgCl ₂

CO₂ overestimation from HgCl₂ fixation - Clayer et al.

2009; Skyllberg, 2008). Note that PHREEQC could not predict complexation of Hg²⁺ with dissolved organic matter given that we neglected the effect of dissolved organic matter.

In absence of preservatives, none of the common carbonate minerals, including calcite, were

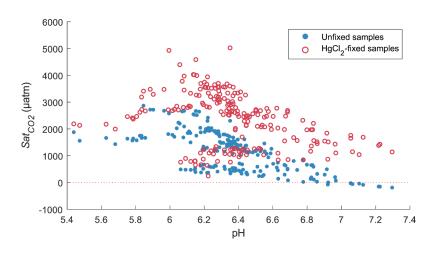
associated with a saturation index higher than 1, i.e., dissolution was thermodynamically favourable for all these minerals and no DIC loss was expected (Table 2). However, upon addition of HgCl₂ or CuCl₂, some carbonate minerals, e.g., HgCO₃ or malachite and azurite, respectively, were expected to spontaneously precipitate given their relatively high saturation index values. This observation can explain the consistent decrease in CO₂ concentrations observed between three weeks and three months for sampled treated with HgCl₂ and CuCl₂. Calcite precipitation is typically observed in supersaturated solutions within 48h (Kim et al., 2020). Hence, it is realistic to consider that Hg and Cu carbonate precipitation influenced the CO₂ concentration within the preserved samples over the three months of storage time. Impacts of Hg or Cu carbonate precipitation is not evident after three weeks likely because of slow but persistent CO₂ production in presence of HgCl₂ and CuCl₂ related to acidification as described above (Fig. 1). However, after three weeks, this production likely weakens and is counterbalanced by increasing carbonate precipitation.

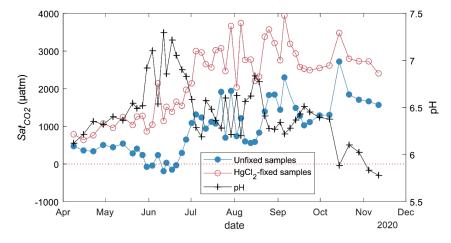
Table 2. pH and saturation indexes of selected carbonate minerals estimated by PHREEQC for the unpreserved and preserved samples

			Saturat	ion indexes	
Preservatives	pН	HgCO ₃	Cu ₂ (OH) ₂ CO ₃ - Malachite	Cu ₂ (OH) ₂ CO ₃ - Azurite	Ag ₂ CO ₃
Unpreserved	6.72	-2.31	-4.96	-8.71	-16.42
$HgCl_2$	6.40	3.64	-5.89	-10.10	-17.20
$CuCl_2$	6.45	-2.55	2.26	2.11	-17.44
$AgNO_3$	6.71	-2.31	-4.97	-8.73	-4.33

3.3. Effects of HgCl2 on dissolved CO2 concentration under a range of pH

 CO_2 concentrations in unfixed water samples from Lake Lundebyvannet were significantly lower than in the $HgCl_2$ -fixed samples (mean difference: $52~\mu\text{M}$; paired t-test; P<0.0001; Table 3). Fixation with $HgCl_2$ caused a general overestimation of CO_2 concentration and the saturation deficit (Fig. 2), thus missing out events of CO_2 influx (carbon sink) under high photosynthesis activity (high pH; Fig. 2). As for the samples from Lake Svartkulp described above, the overestimation in CO_2 concentration likely stems from the acidification by $HgCl_2$ (161 μM added) shifting the carbonate equilibrium towards CO_2 . In fact, PHREEQC predicted a decrease of 0.6 to 1.8 units of pH related to $HgCl_2$ addition (Fig. S1).




432

433

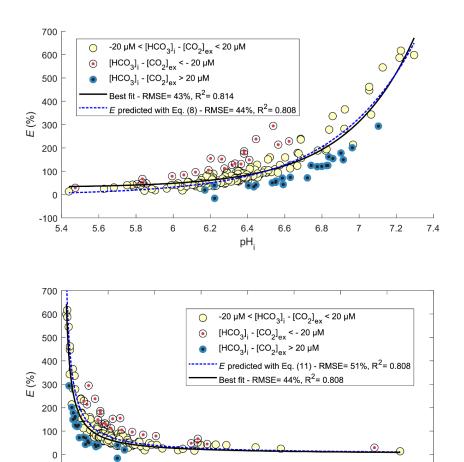
434

Figure 2. CO₂ saturation deficit in Lake Lundebyvannet as a function of pH for all unfixed and HgCl₂-fixed samples (top panel). Timeseries of pH and CO₂ saturation deficit of Lake Lundebyvannet surface water (1-m deep) for unfixed and HgCl₂-fixed samples (bottom panel).

Table 3. CO₂ concentrations ([CO₂], μM) and diffusion fluxes (F_{CO2}, mol m⁻² d⁻¹) from Lake Lake
 Lundebyvannet estimated from HgCl₂-fixed and unfixed samples following Cole and Caraco (1998)

Pres	ervatives	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Ice-free season
[CO ₂	HgCl ₂	45.3	39.0	18.7	67.9	59.2	85.1	123.4	119.8	66.8
J	None	67.9	75.1	74.0	132.9	129.9	149.1	179.3	178.1	121.5
	Diff (%)	50 %	93 %	296 %	96 %	119 %	75 %	45 %	49 %	82 %
$F_{\rm CO2}$	$HgCl_2$	0.10	0.07	0.01	0.15	0.11	0.23	0.37	0.48	0.17
	None	0.20	0.21	0.16	0.34	0.29	0.47	0.57	0.77	0.35
	Diff (%)	97 %	188 %	2163 %	130 %	162 %	99 %	55 %	62 %	108 %

The pH value of water samples from Lake Lundebyvannet varied between 5.4 and 7.3 (Fig 2 and 3), mainly due to marked variations in phytoplankton photosynthetic activity (Rohrlack et al., 2020). The relative overestimation of CO_2 (E) follows an exponential increase with pH and is well reproduced by a simple exponential function ($2.56 \times 10^{-5} \times 10^{1.015 \times pH}$,RMSE=44%, R^2 =0.81, p<0.0001; Fig. 3). This exponential increase likely reflects the corresponding decrease in absolute CO_2 concentration with pH (Stumm & Morgan, 1981) concomitant here to phytoplankton photosynthesis (Fig. 2). In fact, the exponential increase in CO_2 overestimation is easily predicted by Eq. (8) with an equivalent level of accuracy than the optimized exponential function (Fig. 3). Consistently, the relative overestimation of CO_2 (E) shows an inverse decrease with [H^+] that is well reproduced by a simple inverse function (3.25 × 10⁻⁵/[H^+]; RMSE=44%, R^2 =0.81, p<0.0001; Fig. 3) and predicted by Eq. (14), with an α value of 1. Combining Eqs. 7 and 14 and solving it with pH values estimated from PHREEQC (Fig. S1) for α yields values ranging between 0.72 and 0.89 with an average of 0.85. Unexpectedly, this average α value is almost equal to the ratio of the inverse function coefficient and K_1 , i.e., $\frac{3.25 \times 10^{-5}}{K_1}$ = 0.87. Hence, the relative overestimation of CO_2 (E) caused by HgCl₂ fixation is easily predicted by the change in bicarbonate equilibrium knowing the proton release from HgCl₂ addition.


In waters with higher ionic strength, the release of proton from HgCl₂ addition will likely be smaller. PHREEQC can be used to predict it, if sufficient knowledge is gathered on the ionic water composition. Proton release during HgCl₂ fixation can be represented by the following reaction:

456
$$HgCl_2 + 2H_2O = Hg(OH)_2 + 2H^+ + 2Cl^-$$
 (Reaction 2)

From reaction 2, it becomes evident that the initial concentration of chloride in the water samples will likely limit HgCl₂ dissociation and proton release. This is a likely mechanism occurring in seawater where HgCl₂ has been shown to cause a decrease in pH, although at a negligible level (Chou et al., 2016).

461 462

463

464

465 466

467

468

-100 ^L 0

0.5

Figure 3. Comparison of observed (circles) and predicted (blue line) relative overestimation (E) of CO₂ concentrations caused by HgCl₂ fixation in Lake Lundebyvannet samples as a function of pH (top panel) or proton concentration (bottom panel). The black line shows the best fit of the regression analysis. White symbols represent samples for which the bicarbonate concentration in the unfixed samples ([HCO_3^-]_i) is nearly equal to CO₂ overestimation ([CO_2]_{ex}), i.e., \pm 20 μ M, while red and blue symbols represent samples for which initial bicarbonate concentration was lower and higher than the CO₂ overestimation, respectively.

2

 $[H^{+}]_{i}(M)$

2.5

3

3.5

 $\times 10^{-6}$

1.5

460	
469	Figure 2 shows that a range of water samples were associated with a relative CO ₂ overestimation (<i>E</i>)
470	that substantially deviated from the overestimation predicted with Eq. 11 (red and blue symbols in
471	Fig. 3). In fact, some samples had a higher initial bicarbonate content ($[HCO_3^-]_i$) than the excess CO ₂
472	concentration ($[CO_2]_{ex}$), while other showed the opposite. The former case (blue symbols in Fig. 3)
473	can easily be explained by a higher buffering capacity of the sampled water, i.e., a higher pH after
474	HgCl ₂ -fixation than that predicted by PHREEQC related to a different water composition. Indeed, the
475	concentration of major elements in the water from Lake Lundebyvannet may vary significantly over
476	time, and in absence of data, we considered that the water composition, except for DIC, pH and
477	$HgCl_2$, was constant over time. By contrast, samples associated with $[\mathcal{CO}_2]_{ex}$ being larger than
478	$[HCO_3^-]_i$ are more enigmatic. In order to shed light on possible explanations, we visually inspected
479	trends between empirical deviations from predictions, i.e., residuals, and in situ temperature or pH.
480	Absolute values of residuals showed a progressive increase with pH and in situ temperature which is
481	in agreement with decreasing precision of the headspace method with increasing temperature and pH
482	(Koschorreck et al., 2021). In fact, CO ₂ is less soluble at higher temperature, hence more gas can
483	evade during sampling, and thus the error increases with in situ temperature. In addition, at higher pH,
484	CO ₂ concentration decreases and consequently the absolute error on CO ₂ quantification becomes
485	larger relative to measured CO ₂ concentration. Interestingly, many of the high residual values were
486	not evenly distributed across the year, nor across the summer and were rather associated with only a
487	few specific sampling events during summer (Fig. S2). This suggests that gas loss could have
488	occurred due to high ambient temperature in the field. Water associated with $[CO_2]_{ex}$ being larger
489	than $[HCO_3^-]_i$ (red symbols in Fig. 3 and S4) could have been subject to a larger gas loss in the
490	samples collected for DIC analysis than the samples for GC analysis. On the other hand, loss of gas
491	was likely larger for samples for GC analysis than for DIC analysis for water associated with
492	$[HCO_3^-]_i$ being larger than $[CO_2]_{ex}$ (blue symbols in Fig. 3 and Fig. S2). In addition to gas losses and
493	temperature effects, errors in pH measurements can also cause a large misestimation of CO ₂
494	concentration from DIC analysis, and this error increases exponentially with pH following the shift in
495	carbonate equilibrium. In summary, our analysis is consistent with that of Koschorreck et al. (2021)
496	showing that errors in the determination of CO ₂ concentrations are smaller at lower pH and lower
497	temperature (Fig. S2).
498	3.4. Implications for the estimation of lake and reservoir C cycling
499	Using HgCl ₂ (or CuCl ₂) to preserve dissolved gas samples in poorly buffered water samples would
500	have large impacts on CO2 concentrations with considerable risk of leading to incorrect
501	interpretations. In fact, over the ice-free season, average CO ₂ concentrations in Lake Lundebyvannet
502	determined following HgCl ₂ -fixation and GC analysis were 82% higher than those obtained from DIC
503	analyses (Table 3; Fig. 4 and S3). CO ₂ concentrations obtained from HgCl ₂ -fixed samples created the
504	illusion that Lake Lundebyvannet was a steady net source of CO2 to the atmosphere over the ice-free

506

507

508

509

510

511

512

513

514

515

516

517

518 519

520 521

522

523

524

525

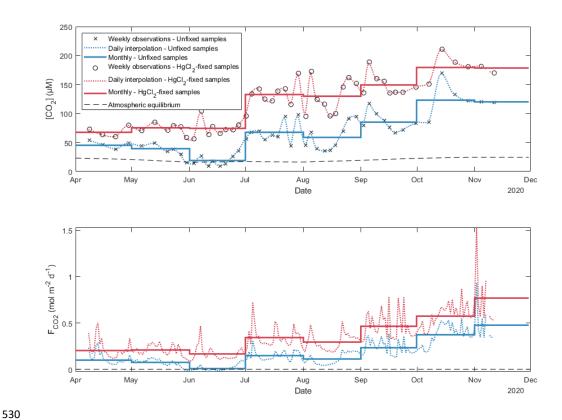
526

527 528

529

CO₂ overestimation from HgCl₂ fixation - Clayer et al.

season with large CO2 saturation deficit (Fig. 3) while, in reality, the lake switched from being a net source in May, to a net sink over a few weeks in June, and returning to a net source in July (Fig. 4 and S3). Indeed, monthly CO₂ overestimation related to HgCl₂-fixation reached about 300% in June (Table 3). Propagating this overestimation into the estimates of CO₂ diffusion fluxes with typical wind-based models yields overestimation of CO₂ fluxes of 108-112% over the ice-free season and up to 2100% in June (Tables 3 and S3). Hence, interpreting CO2 data without correcting for CO2 overestimation caused by HgCl₂-fixation leads to negligence of the role of photosynthesis in lake C cycling with major implications for current and future predictions of lake CO₂ emissions. Conclusion Mercury is a potent neurotoxin for humans and toxic for the environment and its use should be discouraged, notably following the Minamata convention on mercury, a global treaty ratified by 126 countries (16 December 2020) to protect human health and the environment from the adverse effects of mercury. This study further questions the use of HgCl₂ for preservation of poorly buffered (low ionic strength) water samples with high DOC concentration for analysis of dissolved gases in the laboratory. Although CuCl₂ is less toxic, it behaved similarly to HgCl₂ and cannot be recommend. In fact, both chlorinated inhibitors caused a significant decrease in pH shifting the carbonate equilibrium towards CO₂ and are also suspected to promote carbonate precipitation over long-term storage. The only promising inhibitor tested in this study was AgNO₃ notably for dissolved CO₂, CH₄ and N₂O. Silver nitrate may be a suitable substitute for HgCl₂, but further tests should be carried out with a range of inhibitor concentration and more diverse water samples. The use of chemical inhibitors may not be the best approach. Alternatives exist, such as directly measuring gas concentrations in situ with sensors, or sampling the headspace out in the field, and bringing back gas samples (e.g., Cole et al., 1994; Karlsson et al., 2013; Kling et al., 1991; Valiente et al., 2022), rather than water samples, to the lab for gas chromatography analyses. However, care must be taken to know the exact equilibration temperature (Koschorreck et al., 2021).



532

533

534

Figure 4. Daily and monthly surface CO₂ concentrations ([CO₂]; top panel) and diffusion fluxes (F_{CO2}; bottom panel) at the water-atmosphere interface from Lake Lundebyvannet. Daily [CO₂] was interpolated from weekly data using a modified spline (see text for details). Diffusion fluxes were calculated following Cole & Caraco (1998).

536

CO₂ overestimation from HgCl₂ fixation – Clayer et al.

537	caused by HgCl ₂ can mask the effect of photosynthesis on lake carbon balance, creating the illusion
538	that lakes are net CO ₂ sources when they are net CO ₂ sinks. Our analysis from Lake Lundebyvannet
539	shows that HgCl ₂ fixation led to an overestimation of the CO ₂ concentration by a factor of 1.8, on
540	average, but approaching a factor of 4 during the peak photosynthetic period. An even larger impact is
541	expected on CO ₂ diffusive fluxes which were overestimated by a factor of 2 on average and up to a
542	factor of >20 during peak photosynthesis. Interpreting such data would have underestimated the
543	current and future role of aquatic photosynthesis.
544	Data availability
545	All data supporting this study will be made available on a permanent repository upon acceptance, e.g.
546	Hydroshare.
547	Author contribution
548	JET, AK, and TR supervised and PD, KN and FC contributed to the study design. JET, KN and TR
549	carried out the experiments. PD and TR performed the chemical analyses. JET and FC wrote the first
550	draft. FC performed the modelling, data, and statistical analyses, and drafted the figures. All co-
551	authors edited the manuscript.
552	Competing interests
553	The contact author has declared that none of the authors has any competing interests.
554	Acknowledgements
555	We are grateful to Benoît Demars for research assistance, coordination, and useful comments and
556	discussions on an earlier version of this manuscript and to Heleen de Wit for discussions. Research
557	was funded by NIVA and through the Global Change at Northern Latitude (NoLa) project #200033.
558	
559	References
560 561 562	Akima, H. (1974). A method of bivariate interpolation and smooth surface fitting based on local procedures. <i>Communications of the ACM</i> , <i>17</i> (1), 18–20. https://doi.org/10.1145/360767.360779
563 564	Allison, J., Brown, D., & Novo-Gradac, K. (1991). MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3. 0 user's manual. GA: US
565	Environmental Protection Agency.
566 567 568	Borges, A. V., Darchambeau, F., Lambert, T., Morana, C., Allen, G. H., Tambwe, E., Toengaho Sembaito, A., Mambo, T., Nlandu Wabakhangazi, J., Descy, JP., Teodoru, C. R., & Bouillon, S. (2019). Variations in dissolved greenhouse gases (CO ₂ , CH ₄ , N ₂ O) in the Congo

We further advise against interpretation of CO2 concentration data from low ionic strength, circum-

neutral water samples preserved with HgCl₂ or CuCl₂. The overestimation of CO₂ concentration

587

595

596 597

598 599

600 601

602

603

604 605

606

607 608

609

- River network overwhelmingly driven by fluvial-wetland connectivity. *Biogeosciences*, 16(19), 3801–3834. https://doi.org/10.5194/bg-16-3801-2019
- Carroll J.J., Slupsky J.D. & Mather A.E. (1991) The solubility of carbon dioxide in water at low
 pressure. *Journal of Physical and Chemical Reference Data*, 20, 1201-1209.
 https://doi.org/10.1063/1.555900
- Chen, C. Y., Driscoll, C., Eagles-Smith, C. A., Eckley, C. S., Gay, D. A., Hsu-Kim, H., Keane, S. E.,
 Kirk, J. L., Mason, R. P., Obrist, D., Selin, H., Selin, N. E., & Thompson, M. R. (2018). A
 Critical Time for Mercury Science to Inform Global Policy. *Environmental Science & Technology*, 52(17), 9556–9561. https://doi.org/10.1021/acs.est.8b02286
- Chen H., Johnston R.C., Mann B.F., Chu R.K., Tolic N., Parks J.M. & Gu B. (2017) Identification of
 mercury and dissolved organic matter complexes using ultrahigh resolution mass
 spectrometry. Environmental Science & Technology Letters, 4, 59-65.
 https://doi.org/10.1021/acs.estlett.6b00460
- Chou W.C., Gong G.C., Yang C.Y. & Chuang K.Y. (2016) A comparison between field and
 laboratory pH measurements for seawater on the East China Sea shelf. *Limnology and Oceanography-Methods*, 14, 315-322. https://doi.org/10.1002/lom3.10091
 Ciavatta L. & Grimaldi M. (1968) The hydrolysis of mercury(II) chloride, HgCl2. *Journal of*
 - Ciavatta L. & Grimaldi M. (1968) The hydrolysis of mercury(II) chloride, HgCl2. *Journal of Inorganic and Nuclear Chemistry*, **30**, 563-581. https://doi.org/10.1016/0022-1902(68)80483-X
- Clayer, F., Thrane, J.-E., Brandt, U., Dörsch, P., & de Wit, H. A. (2021). Boreal Headwater
 Catchment as Hot Spot of Carbon Processing From Headwater to Fjord. *Journal of Geophysical Research: Biogeosciences*, 126(12), e2021JG006359.
 https://doi.org/10.1029/2021JG006359
- Cole, J. J., Caraco, N. F., Kling, G. W., & Kratz, T. K. (1994). Carbon Dioxide Supersaturation in the
 Surface Waters of Lakes. *Science*, 265(5178), Article 5178.
 https://doi.org/10.1126/science.265.5178.1568
 - Cole, J. J., & Caraco, N. F. (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. *Limnology and Oceanography*, 43(4), Article 4. https://doi.org/10.4319/lo.1998.43.4.0647
 - Crusius, J., & Wanninkhof, R. (2003). Gas transfer velocities measured at low wind speed over a lake. Limnology and Oceanography, 48(3), Article 3. https://doi.org/10.4319/lo.2003.48.3.1010
 - Deheyn, D. D., Bencheikh-Latmani, R., & Latz, M. I. (2004). Chemical speciation and toxicity of metals assessed by three bioluminescence-based assays using marine organisms. *Environmental Toxicology*, 19(3), 161–178. https://doi.org/10.1002/tox.20009
 - de Wit, H. A., Garmo, Ø. A., Jackson-Blake, L. A., Clayer, F., Vogt, R. D., Austnes, K., Kaste, Ø., Gundersen, C. B., Guerrerro, J. L., & Hindar, A. (2023). Changing Water Chemistry in One Thousand Norwegian Lakes During Three Decades of Cleaner Air and Climate Change. Global Biogeochemical Cycles, 37(2), e2022GB007509. https://doi.org/10.1029/2022GB007509
 - Dickson A.G., Sabine C.L. & Christian J.R. (2007) Guide to best practices for ocean CO2 measurements, North Pacific Marine Science Organization.
- Duan, Z., & Mao, S. (2006). A thermodynamic model for calculating methane solubility, density and
 gas phase composition of methane-bearing aqueous fluids from 273 to 523K and from 1 to
 2000bar. Geochimica et Cosmochimica Acta, 70(13), Article 13.
 https://doi.org/10.1016/j.gca.2006.03.018
- Foti C., Giuffre O., Lando G. & Sammartano S. (2009) Interaction of inorganic mercury (II) with
 polyamines, polycarboxylates, and amino acids. *Journal of Chemical & Engineering Data*,
 54, 893-903. https://doi.org/10.1021/je800685c
- 617 Frost API. (2022). https://frost.met.no/index.html
- Guérin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler, P., & Delmas, R. (2006).
 Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. *Geophysical Research Letters*, 33(21). https://doi.org/10.1029/2006GL027929
- Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., & Varfalvy, L.
 (2007). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river

646

647

651

652

653

654

- downstream. *Journal of Marine Systems*, 66(1), Article 1.
 https://doi.org/10.1016/j.jmarsys.2006.03.019
- Halmi, M. I. E., Kassim, A., & Shukor, M. Y. (2019). Assessment of heavy metal toxicity using a
 luminescent bacterial test based on Photobacterium sp. Strain MIE. *Rendiconti Lincei. Scienze Fisiche e Naturali*, 30(3), 589–601. https://doi.org/10.1007/s12210-019-00809-5
- Hamme R.C. & Emerson S.R. (2004) The solubility of neon, nitrogen and argon in distilled water and seawater. *Deep-Sea Research Part I-Oceanographic Research Papers*, 51, 1517-1528.
 https://doi.org/10.1016/j.dsr.2004.06.009
- Hassen A., Saidi N., Cherif M. & Boudabous A. (1998) Resistance of environmental bacteria to heavy
 metals. Bioresource technology, 64, 7-15. https://doi.org/10.1016/S0960-8524(97)00161-2
- Hessen, D. O., Håll, J. P., Thrane, J.-E., & Andersen, T. (2017). Coupling dissolved organic carbon,
 CO2 and productivity in boreal lakes. *Freshwater Biology*, 62(5), 945–953.
 https://doi.org/10.1111/fwb.12914
- Hilgert, S., Scapulatempo Fernandes, C. V., & Fuchs, S. (2019). Redistribution of methane emission hot spots under drawdown conditions. *Science of The Total Environment*, 646, 958–971.
 https://doi.org/10.1016/j.scitotenv.2018.07.338
- Horvatić J. & Peršić V. (2007) The effect of Ni 2+, Co 2+, Zn 2+, Cd 2+ and Hg 2+ on the growth
 rate of marine diatom Phaeodactylum tricornutum Bohlin: microplate growth inhibition test.
 Bulletin of Environmental Contamination and Toxicology, 79, 494-498.
 https://doi.org/10.1007/s00128-007-9291-7
- 643 IEA. (2020). *Key World Energy Statistics 2020*. IEA, International Energy Agency. 644 https://www.iea.org/reports/key-world-energy-statistics-2020
 - Karlsson, J., Giesler, R., Persson, J., & Lundin, E. (2013). High emission of carbon dioxide and methane during ice thaw in high latitude lakes. *Geophysical Research Letters*, 40(6), Article 6. https://doi.org/10.1002/grl.50152
- Khwaja, A. R., Bloom, P. R., & Brezonik, P. L. (2006). Binding Constants of Divalent Mercury
 (Hg2+) in Soil Humic Acids and Soil Organic Matter. Environmental Science & Technology,
 40(3), 844–849. https://doi.org/10.1021/es051085c
 - Kim, D., Mahabadi, N., Jang, J., & van Paassen, L. A. (2020). Assessing the Kinetics and Pore-Scale Characteristics of Biological Calcium Carbonate Precipitation in Porous Media using a Microfluidic Chip Experiment. Water Resources Research, 56(2), e2019WR025420. https://doi.org/10.1029/2019WR025420
- Kling, G. W., Kipphut, G. W., & Miller, M. C. (1991). Arctic Lakes and Streams as Gas Conduits to
 the Atmosphere: Implications for Tundra Carbon Budgets. *Science*, 251(4991), 298–301.
 https://doi.org/10.1126/science.251.4991.298
- Knowles, R. (1982). Denitrification. *Microbiological Reviews*, 46(1), 43–70.
 https://doi.org/10.1128/mr.46.1.43-70.1982
- Koschorreck, M., Prairie, Y. T., Kim, J., & Marcé, R. (2021). Technical note: CO₂ is not like CH₄ –
 limits of and corrections to the headspace method to analyse pCO₂ in fresh water.
 Biogeosciences, 18(5), 1619–1627. https://doi.org/10.5194/bg-18-1619-2021
- Larrañaga, M., Lewis, R., & Lewis, R. (2016). Hawley's Condensed Chemical Dictionary, Sixteenth
 Edition. i–xiii. https://doi.org/10.1002/9781119312468.fmatter
- Liang X., Lu X., Zhao J., Liang L., Zeng E.Y. & Gu B. (2019) Stepwise reduction approach reveals
 mercury competitive binding and exchange reactions within natural organic matter and mixed
 organic ligands. *Environmental Science & Technology*, 53, 10685-10694.
 https://doi.org/10.1021/acs.est.9b02586
- Machado Damazio, J., Cordeiro Geber de Melo, A., Piñeiro Maceira, M. E., Medeiros, A., Negrini,
 M., Alm, J., Schei, T. A., Tateda, Y., Smith, B., & Nielsen, N. (2012). Guidelines for
 quantitative analysis of net GHG emissions from reservoirs: Volume 1: Measurement
 Programmes and Data Analysis. International Energy Agency (IEA).
- https://www.ieahydro.org/media/992f6848/GHG_Guidelines_22October2012_Final.pdf Magen, C., Lapham, L. L., Pohlman, J. W., Marshall, K., Bosman, S., Casso, M., & Chanton, J. P.
- 675 (2014). A simple headspace equilibration method for measuring dissolved methane.
- Limnology and Oceanography: Methods, 12(9), 637–650.
 https://doi.org/10.4319/lom.2014.12.637

705

706

707 708

709

- Miller, C. L., Southworth, G., Brooks, S., Liang, L., & Gu, B. (2009). Kinetic Controls on the
 Complexation between Mercury and Dissolved Organic Matter in a Contaminated
 Environment. Environmental Science & Technology, 43(22), 8548–8553.
 https://doi.org/10.1021/es901891t
- Millero F.J., Huang F. & Laferiere A.L. (2002) Solubility of oxygen in the major sea salts as a function of concentration and temperature. *Marine Chemistry*, 78, 217-230.
 https://doi.org/10.1016/S0304-4203(02)00034-8
- Mørkved, P. T., Dörsch, P., & Bakken, L. R. (2007). The N2O product ratio of nitrification and its
 dependence on long-term changes in soil pH. *Soil Biology and Biochemistry*, 39(8), 2048–
 2057. https://doi.org/10.1016/j.soilbio.2007.03.006
- NILU. (2022). EBAS. https://ebas-data.nilu.no/Default.aspx
- Nowack, B., Krug, H. F., & Height, M. (2011). 120 Years of Nanosilver History: Implications for
 Policy Makers. Environmental Science & Technology, 45(4), 1177–1183.
 https://doi.org/10.1021/es103316q
- 692 NPIRS. (2023). Purdue University. https://www.npirs.org/public
- Okuku, E. O., Bouillon, S., Tole, M., & Borges, A. V. (2019). Diffusive emissions of methane and
 nitrous oxide from a cascade of tropical hydropower reservoirs in Kenya. *Lakes & Reservoirs: Science, Policy and Management for Sustainable Use*, 24(2), 127–135.
 https://doi.org/10.1111/lre.12264
- Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version
 3—A computer program for speciation, batch-reaction, one-dimensional transport, and
 inverse geochemical calculations: U.S. Geological Survey Techniques and Methods (book 6,
 chap. A43; p. 497). USGS. http://pubs.usgs.gov/tm/06/a43/
- Powell K.J., Brown P.L., Byrne R.H., Gajda T., Hefter G., Sjöberg S. & Wanner H. (2004) Chemical speciation of Hg (II) with environmental inorganic ligands. *Australian Journal of Chemistry*,
 57, 993-1000. https://doi.org/10.1071/CH04063
 - Rai L.C., Gaur J.P. & Kumar H.D. (1981) Phycology and heavy-metal pollution. *Biological Reviews*, **56**, 99-151. https://doi.org/10.1111/j.1469-185X.1981.tb00345.x
 - Rees, A. P., Brown, I. J., Jayakumar, A., Lessin, G., Somerfield, P. J., & Ward, B. B. (2021). Biological nitrous oxide consumption in oxygenated waters of the high latitude Atlantic Ocean. *Communications Earth & Environment*, 2(1), Article 1. https://doi.org/10.1038/s43247-021-00104-y
- Rohrlack T., Frostad P., Riise G. & Hagman C.H.C. (2020) Motile phytoplankton species such as
 Gonyostomum semen can significantly reduce CO₂ emissions from boreal lakes.
 Limnologica, 84, 125810. https://doi.org/10.1016/j.limno.2020.125810
- Schubert, C. J., Diem, T., & Eugster, W. (2012). Methane Emissions from a Small Wind Shielded
 Lake Determined by Eddy Covariance, Flux Chambers, Anchored Funnels, and Boundary
 Model Calculations: A Comparison. Environmental Science & Technology, 46(8), 4515–
 4522. https://doi.org/10.1021/es203465x
- Seitzinger, S. P. (1988). Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. *Limnology and Oceanography*, 33(4part2), 702–724.
 https://doi.org/10.4319/lo.1988.33.4part2.0702
- Silver S. & Phung L.T. (2005) A bacterial view of the periodic table: genes and proteins for toxic
 inorganic ions. *Journal of Industrial Microbiology & Biotechnology*, 32, 587-605.
 https://doi.org/10.1007/s10295-005-0019-6
- Skyllberg, U. (2008). Competition among thiols and inorganic sulfides and polysulfides for Hg and
 MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies
 and implications for MeHg net production. *Journal of Geophysical Research: Biogeosciences*, 113(G2). https://doi.org/10.1029/2008JG000745
- 727 Stumm W. & Morgan J.J. (1981) Aquatic Chemistry. An introduction emphasizing chemical
 728 equilibria in natural waters, Wiley Interscience, New York.
- Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural
 waters (3rd ed.). Wiley.

762

763

764

765

766 767

768

- Taipale S.J. & Sonninen E. (2009) The influence of preservation method and time on the delta C-13
 value of dissolved inorganic carbon in water samples. *Rapid Communications in Mass* Spectrometry, 23, 2507-2510. https://doi.org/10.1002/rcm.4072
- Takahashi H.A., Handa H., Sugiyama A., Matsushita M., Kondo M., Kimura H. & Tsujimura M.
 (2019) Filtration and exposure to benzalkonium chloride or sodium chloride to preserve water
 samples for dissolved inorganic carbon analysis. *Geochemical Journal*, 53, 305-318.
 https://doi.org/10.2343/geochemj.2.0570
- Thottathil, S. D., Reis, P. C. J., & Prairie, Y. T. (2019). Methane oxidation kinetics in northern
 freshwater lakes. *Biogeochemistry*, 143(1), Article 1. https://doi.org/10.1007/s10533-019-00552-x
- Tipping E. (2007) Modelling the interactions of Hg(II) and methylmercury with humic substances
 using WHAM/Model VI. Applied Geochemistry, 22, 1624-1635.
- Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C.,
 Solberg, S., & Yttri, K. E. (2012). Introduction to the European Monitoring and Evaluation
 Programme (EMEP) and observed atmospheric composition change during
 1972–2009. Atmospheric Chemistry and Physics, 12(12), 5447–5481.
 https://doi.org/10.5194/acp-12-5447-2012
- 748 Ullmann, F., Gerhartz, W., Yamamoto, Y. S., Campbell, F. T., Pfefferkorn, R., & Rounsaville, J. F.
 749 (1985). Ullmann's encyclopedia of industrial chemistry (5th, completely rev. ed ed.). VCH.
- UNESCO/IHA. (2008). Assessment of the GHG status of freshwater reservoirs: Scoping paper
 (IHP/GHG-WG/3; p. 28). UNESCO/IHA, International Hydropower Association International Hydrological Programme, Working Group on Greenhouse Gas Status of
 Freshwater Reservoirs. https://unesdoc.unesco.org/ark:/48223/pf0000181713
- UNESCO/IHA. (2010). GHG Measurement Guidelines for Freshwater Reservoirs (p. 154).
 UNESCO/IHA, International Hydropower Association.
 https://www.hydropower.org/publications/ghg-measurement-guidelines-for-freshwater-reservoirs
- Vachon, D., & Prairie, Y. T. (2013). The ecosystem size and shape dependence of gas transfer
 velocity versus wind speed relationships in lakes. *Canadian Journal of Fisheries and Aquatic Sciences*, 70(12), Article 12. https://doi.org/10.1139/cjfas-2013-0241
 - Valiente, N., Eiler, A., Allesson, L., Andersen, T., Clayer, F., Crapart, C., Dörsch, P., Fontaine, L., Heuschele, J., Vogt, R., Wei, J., de Wit, H. A., & Hessen, D. O. (2022). Catchment properties as predictors of greenhouse gas concentrations across a gradient of boreal lakes. 10(880619). https://doi.org/10.3389/fenvs.2022.880619
 - van Grinsven, S., Oswald, K., Wehrli, B., Jegge, C., Zopfi, J., Lehmann, M. F., & Schubert, C. J. (2021). Methane oxidation in the waters of a humic-rich boreal lake stimulated by photosynthesis, nitrite, Fe(III) and humics. *Biogeosciences*, 18(10), 3087–3101. https://doi.org/10.5194/bg-18-3087-2021
- Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited.
 Limnology and Oceanography: Methods, 12(6), Article 6.
 https://doi.org/10.4319/lom.2014.12.351
- Weiss R.F. & Price B.A. (1980) Nitrous oxide solubility in water and seawater. *Marine Chemistry*, 8,
 347-359. https://doi.org/10.1016/0304-4203(80)90024-9
- Wilhelm E., Battino R. & Wilcock R.J. (1977) Low-pressure solubility of gases in liquid water.
 Chemical Reviews, 77, 219-262. https://doi.org/10.1021/cr60306a003
- Wilson J., Munizzi J. & Erhardt A.M. (2020) Preservation methods for the isotopic composition of
 dissolved carbon species in non-ideal conditions. *Rapid Communications in Mass* Spectrometry, 34. https://doi.org/10.1002/rcm.8903
- Xiao, S., Yang, H., Liu, D., Zhang, C., Lei, D., Wang, Y., Peng, F., Li, Y., Wang, C., Li, X., Wu, G.,
 & Liu, L. (2014). Gas transfer velocities of methane and carbon dioxide in a subtropical
 shallow pond. Tellus B: Chemical and Physical Meteorology, 66(1), 23795.
 https://doi.org/10.3402/tellusb.v66.23795
- Xu F.F. & Imlay J.A. (2012) Silver(I), Mercury(II), Cadmium(II), and Zinc(II) Target Exposed
 Enzymic Iron-Sulfur Clusters when They Toxify Escherichia coli. *Applied and Environmental Microbiology*, 78, 3614-3621. https://doi.org/10.1128/aem.07368-11

786	Yamamoto S., Alcauskas J.B. & Crozier T.E. (1976) Solubility of methane in distilled water and
787	seawater. Journal of Chemical and Engineering Data, 21, 78-80.
788	https://doi.org/10.1021/je60068a029
789	Yan, F., Sillanpää, M., Kang, S., Aho, K. S., Qu, B., Wei, D., Li, X., Li, C., & Raymond, P. A.
790	(2018). Lakes on the Tibetan Plateau as Conduits of Greenhouse Gases to the Atmosphere.
791	Journal of Geophysical Research: Biogeosciences, 123(7), 2091–2103.
792	https://doi.org/10.1029/2017JG004379
793	Yang H., Andersen T., Dorsch P., Tominaga K., Thrane J.E. & Hessen D.O. (2015) Greenhouse gas
794	metabolism in Nordic boreal lakes. <i>Biogeochemistry</i> , 126 , 211-225.
795	https://doi.org/10.1007/s10533-015-0154-8
796	