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Abstract 25 

Deep learning (DL) rainfall-runoff models outperform conceptual, process-based models in a range of 26 

applications. However, it remains unclear whether DL models can produce physically plausible projections 27 

of streamflow under climate change. We investigate this question through a sensitivity analysis of modeled 28 

responses to increases in temperature and potential evapotranspiration (PET), with other meteorological 29 

variables left unchanged. Previous research has shown that temperature-based PET methods overestimate 30 

evaporative water loss under warming compared to energy budget-based PET methods. We therefore 31 

assume that reliable streamflow responses to warming should exhibit less evaporative water loss when 32 

forced with smaller, energy budget-based PET compared to temperature-based PET. We conduct this 33 

assessment using three conceptual, process-based rainfall-runoff models and three DL models, trained and 34 

tested across 212 watersheds in the Great Lakes basin. The DL models include a Long Short-Term Memory 35 

network (LSTM), a mass-conserving LSTM (MC-LSTM), and a novel variant of the MC-LSTM that also 36 

respects the relationship between PET and evaporative water loss (MC-LSTM-PET). After validating 37 

models against historical streamflow and actual evapotranspiration, we force all models with scenarios of 38 

warming, historical precipitation, and both temperature-based (Hamon) and energy budget-based 39 

(Priestley-Taylor) PET, and compare their responses in long-term mean daily flow, low flows, high flows, 40 

and seasonal streamflow timing. We also explore similar responses using a National LSTM fit to 531 41 

watersheds across the United States to assess how the inclusion of a larger and more diverse set of basins 42 

influences signals of hydrologic response under warming. The main results of this study are as follows: 43 

1. The three Great Lakes DL models substantially outperform all process-based models in streamflow 44 

estimation. The MC-LSTM-PET also matches the best process-based models and outperforms the 45 

MC-LSTM in estimating actual evapotranspiration.  46 

2. All process-based models show a downward shift in long-term mean daily flows under warming, 47 

but median shifts are considerably larger under temperature-based PET (-17% to -25%) than energy 48 

budget-based PET (-6% to -9%). The MC-LSTM-PET model exhibits similar differences in water 49 
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loss across the different PET forcings. Conversely, the LSTM exhibits unrealistically large water 50 

losses under warming using Priestley-Taylor PET (-20%), while the MC-LSTM is relatively 51 

insensitive to PET method.  52 

3. DL models exhibit smaller changes in high flows and seasonal timing of flows as compared to the 53 

process-based models, while DL estimates of low flows are within the range estimated by the 54 

process-based models.  55 

4. Like the Great Lakes LSTM, the National LSTM also shows unrealistically large water losses under 56 

warming (-25%), but it is more stable when many inputs are changed under warming and better 57 

aligns with process-based model responses for seasonal timing of flows.  58 

Ultimately, the results of this sensitivity analysis suggest that physical considerations regarding model 59 

architecture and input variables may be necessary to promote the physical realism of deep learning-based 60 

hydrologic projections under climate change.  61 

 62 
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1. Introduction 75 

Rainfall-runoff models are used throughout hydrology in a range of applications, including retrospective 76 

streamflow estimation (Hansen et al. 2019), streamflow forecasting (Demargne et al., 2014), and prediction 77 

in ungauged basins (Hrachowitz et al., 2013). Work over the last few years has demonstrated that deep 78 

learning (DL) rainfall-runoff models (e.g., Long Short-Term Memory networks (LSTMs); Hochreiter and 79 

Schmidhuber, 1997) outperform conventional process-based models in each of these applications, 80 

especially when those DL models are trained with large datasets collected across watersheds with diverse 81 

climates and landscapes (Kratzert et al., 2019a,b; Feng et al., 2020; Ma et al., 2021; Gauch et al., 2021a,b; 82 

Nearing et al., 2021). For example, in one extensive benchmarking study, Mai et al. (2022) found that a 83 

regionally trained LSTM outperformed 12 other lumped and distributed process-based models of varying 84 

complexity in rivers and streams throughout the Great Lakes basin. These and similar results have led some 85 

to argue that DL models represent the most accurate and spatially extrapolatable rainfall-runoff models 86 

available (Nearing et al., 2022).  87 

 88 

However, there remains one use case of rainfall-runoff models where the superiority of DL is unclear: long-89 

term projections of streamflow under climate change. Past studies using DL rainfall-runoff models for 90 

hydrologic projections under climate change are rare (Lee et al., 2020; Li et al., 2022), and few have 91 

evaluated their physical plausibility (Razavi, 2021; Reichert et al., 2023; Zhong et al., 2023). A reasonable 92 

concern is whether DL rainfall-runoff models can extrapolate hydrologic response under unprecedented 93 

climate conditions, given that they are entirely data driven and do not explicitly represent the physics of the 94 

system. It is not clear a priori whether this concern has merit, because DL models fit to a large and diverse 95 

set of basins have the benefit of learning hydrologic response across climate and landscape gradients. In so 96 

doing, the model can, for example, learn hydrologic responses to climate in warmer regions and then 97 

transfer this knowledge to projections of streamflow in cooler regions subject to climate change induced 98 

warming. In addition, past work has shown that LSTMs trained only to predict streamflow have memory 99 

cells that strongly correlate with independent measures of soil moisture and snowpack (Lees et al. 2022), 100 



5 

 

suggesting that DL hydrologic models can learn fundamental hydrologic processes. A potential implication 101 

of this finding might be that these models can produce physically plausible streamflow predictions under 102 

new climate conditions.  103 

 104 

It is challenging to assess the physical plausibility of DL-based hydrologic projections under substantially 105 

different climate conditions, because there are no future observations against which to compare. This 106 

challenge is exacerbated by significant uncertainty in process-based model projections under alternative 107 

climates, which makes establishing reliable benchmarks difficult. Future process-based model projections 108 

can vary widely due to both parametric and structural uncertainty (Bastola et al., 2011; Clark et al., 2016; 109 

Melsen et al., 2018), and even for models that exhibit similar performance under historical conditions 110 

(Krysanova et al., 2018). Assumptions around stationary model parameters are not always valid (Merz et 111 

al., 2011; Wallner and Haberlandt, 2015), and added complexity for improved process representation is not 112 

always well supported by data (Clark et al., 2017; Towler et al., 2023; Yan et al., 2023). Together, these 113 

challenges highlight the difficulty in establishing good benchmarks of hydrologic response under 114 

alternative climates against which to compare and evaluate DL-based hydrologic projections under climate 115 

change.  116 

 117 

Recently, Wi and Steinschneider (2022) (hereafter WS22) forwarded an experimental design to evaluate 118 

the physical plausibility of DL hydrologic responses to new climates, in which DL hydrologic models were 119 

forced with historical precipitation and temperature, but with temperatures adjusted by up to 4°C. Based on 120 

past literature, WS22 posited that in non-glaciated regions, physically plausible hydrologic responses 121 

should show an increase in water loss, defined as water that enters the watershed via precipitation but never 122 

contributes to streamflow because it is ‘lost’ to a terminal sink. Specifically, WS22 assumed that 123 

evaporative water loss should increase and annual average streamflow should decline compared to a 124 

baseline simulation due to increases in potential evapotranspiration (PET) with warming (and no changes 125 

in precipitation). Results showed that an LSTM trained to the 15 watersheds in California often led to 126 
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misleading increases in annual runoff under warming, while this phenomenon was less likely (though still 127 

present) in a DL model trained to 531 catchments across the United States. WS22 also conducted their 128 

experiment with physics-informed machine learning (PIML) models (Karpatne et al., 2017; Karniadakis et 129 

al., 2021), using process-based model output directly as input to the LSTM (similar to Konapala et al., 2020; 130 

Lu et al., 2021; Frame et al., 2021a) or as additional target variables in a multi-output architecture. The 131 

former approach had some success in removing instances of increasing runoff ratio with warming, although 132 

this was dependent on the process-based model used.  133 

 134 

Other PIML approaches that more directly adjust the architecture of DL rainfall-runoff models may be 135 

better suited for improving long-term streamflow projections under climate change without requiring an 136 

accurate process-based model. For instance, Hoedt et al. (2021) introduced a mass conserving LSTM (MC-137 

LSTM) that ensures cumulative streamflow predictions do not exceed precipitation inputs. Hybrid models 138 

present a related approach, where DL modules are combined with process-based model structures (Jiang et 139 

al., 2020; Feng et al., 2022; Hoge et al., 2022; Feng et al., 2023a). In some cases, these architectural changes 140 

can degrade performance compared to a standard LSTM (Frame et al., 2021b; Frame et al., 2002; Feng et 141 

al., 2023b), but other times such changes can be beneficial (Feng et al., 2023a). To date, the benefits of 142 

mass conserving architectures have not been tested when employed under previously unobserved climate 143 

change.  144 

 145 

For all models considered in WS22, a major focus was evaluating the direction of annual total runoff change 146 

in the presence of warming and no change in precipitation. However, that study did not consider the 147 

magnitude of runoff change and how it relates to projected changes in PET. As we argue below, this 148 

comparison provides a unique way to assess the physical plausibility of future hydrologic projections. 149 

Several studies have investigated the effects of different PET estimation methods on the magnitude of PET 150 

and runoff change in a warming climate (Lofgren et al., 2011; Shaw and Riha, 2011; Lofgren and Rouhana, 151 

2016; Milly and Dunne, 2017; Lemaitre-Basset et al. 2022). Broadly, these studies have shown that 152 
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temperature-based PET estimation methods (e.g., Hamon, Thornthwaite) substantially overestimate 153 

increases in PET under warming as compared to energy budget-based PET estimation methods (e.g., 154 

Penman-Monteith, Priestley-Taylor), and consequently lead to unrealistic declines in streamflow under 155 

climate change. This is because the actual drying power of the atmosphere is driven by the availability of 156 

energy at the surface from net radiation, the current moisture content of the air, temperature (and its effect 157 

on the water holding capacity of the air and vapor pressure deficit), and wind speeds. Energy budget-based 158 

methods, while imperfect and at times empirical (Greve et al. 2019; Liu et al., 2022), account for some or 159 

all of these factors in ways that are generally consistent with their causal impact on PET, while temperature-160 

based methods estimate PET using strictly empirical relationships based largely or entirely on temperature. 161 

The latter approach works sufficiently well for rainfall-runoff modeling under historical conditions because 162 

of the strong correlation between temperature, net radiation, and PET on seasonal timescales, even though 163 

this correlation weakens considerably at shorter timescales (Lofgren et al., 2011). Under climate change, 164 

consistent and prominent increases are projected for temperature, but projected changes are less prominent 165 

or more uncertain for other factors affecting PET (Lin et al., 2018; Pryor et al., 2020, Liu et al. 2020). 166 

Consequently, temperature-based PET methods substantially overestimate future projections of PET 167 

compared to energy budget-based methods (Lofgren et al., 2011; Shaw and Riha, 2011; Lofgren and 168 

Rouhana, 2016; Milly and Dunne, 2017; Lemaitre-Basset et al. 2022).  169 

 170 

As argued by Lofgren and Rouhana (2016), the bias in PET and runoff that results from different PET 171 

estimation methods under warming provides a unique opportunity to assess the physical plausibility of 172 

hydrologic projections under climate change. In this study, we adopt this strategy for DL rainfall-runoff 173 

models through a sensitivity analysis in which both conceptual, process-based and DL hydrologic models 174 

are trained with either temperature-based or energy budget-based estimates of PET, along with other 175 

meteorological data (precipitation, temperature). These models are then forced with the historical 176 

precipitation and temperature series, but with the temperatures warmed by an additive factor and PET 177 

calculated from the warmed temperatures using both PET estimation methods. We show that the process-178 
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based models 1) exhibit similar performance in historical training and testing periods when using either 179 

temperature-based or energy budget-based PET estimates; but 2) exhibit substantially larger long-term 180 

mean streamflow declines under warming when using future PET estimated with a temperature-based 181 

method. If the DL rainfall-runoff models follow the same pattern, this would suggest that these models are 182 

able to learn the role of PET on evaporative water loss. However, if DL-based models estimate similarly 183 

large long-term mean streamflow declines regardless of the method used to estimate and project PET, this 184 

would suggest that the DL models did not learn a mapping between PET and evaporative water loss. Rather, 185 

the DL models learned the historical (but non-causal) correlation between temperature and evaporative 186 

water loss, and then incorrectly extrapolated that effect into the future with warmer temperatures. We show 187 

this latter outcome to be the case, which indicates that we either need to build models on large data sets that 188 

comprise similar conditions to the ones under climate change, or we need to guide the model selection using 189 

theory (see e.g., Karpatne et al., 2017). 190 

 191 

We conduct the experiment above in a case study on 212 watersheds across the Great Lakes basin, using 192 

both standard and PIML-based LSTMs. We show that a standard LSTM produces unrealistic hydrologic 193 

responses to warming because it relies on historical and geographically pervasive correlations between 194 

temperature and PET to estimate streamflow losses. We also show that PIML-based DL models are better 195 

able to relate changes in temperature and PET to streamflow change, especially those PIML approaches 196 

that directly map PET to evaporative water loss in their architecture.  197 

 198 

The Great Lakes provides an important case study for this work, given their importance to the culture, 199 

ecosystems, and economy of North America (Campbell et al., 2015; Steinman et al., 2017). Projections of 200 

future water supplies and water levels in the Great Lakes are highly uncertain (Gronewold and Rood, 2019), 201 

in part because of uncertainty in future runoff draining into the lakes from a large contributing area 202 

(Kayastha et al. 2022), much of which is ungauged (Fry et al., 2013). Improved rainfall-runoff models that 203 

can regionalize across the entire Great Lakes basin are necessary to help address this challenge, and so an 204 
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auxiliary goal of this work is to contribute PIML rainfall-runoff models to the Great Lakes Runoff 205 

Intercomparison Project Phase 4 presented in Mai et al. (2022). This study currently provides one of the 206 

most robust benchmarks comparing DL rainfall-runoff models to a range of process-based models, and so 207 

we design our experiment to be consistent with the data and model development rules outlined in that 208 

intercomparison project. 209 

 210 

2. Data 211 

This study focuses on 212 watersheds draining into the Great Lakes and Ottawa River, which are all located 212 

in the St. Lawrence River basin (Figure 1). For direct comparability to previous results from the Great Lakes 213 

Runoff Intercomparison Project, all data for these watersheds are taken directly from the work in Mai et al. 214 

(2022) and include daily streamflow time series, meteorological forcings, geophysical attributes for each 215 

watershed, and auxiliary hydrologic fluxes. Daily streamflow were gathered from the U.S. Geological 216 

Survey and Water Survey Canada between January 2000 and December 2017. All streamflow gauging 217 

stations have a drainage area greater than or equal to 200 km2 and less than 5% missing data in the study 218 

period. The watersheds are evenly distributed across the five lake basins and the Ottawa River basin, and 219 

they represent a range of land use/land cover types and degrees of hydrologic alteration from human activity. 220 

In the experiments described further below, 141 of the watersheds are designated as training sites, and the 221 

remaining 71 watersheds are used for testing (see Figure 1). In addition, the period between January 2000 222 

to December 2010 is reserved for model training (termed the training period), and the period between 223 

January 2011 – December 2017 is used for model testing (termed the testing period).  224 

 225 
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 226 

Figure 1. Great Lakes domain, with training and testing streamflow gauges used throughout this study. A 227 

subset of seventeen of these gauges that are also in the CAMELS database are highlighted, as are six sites 228 

used to present select results in Section 4.  229 

 230 

Meteorological forcings are taken from the Regional Deterministic Reanalysis System v2, which is an 231 

hourly, 10 km dataset available across North America (Gasset et al., 2021). Hourly precipitation, net 232 

incoming shortwave radiation (Rs), and temperature are aggregated into a basin-wide daily precipitation 233 

average, daily Rs average, and daily minimum and maximum temperature. We note that the precipitation 234 

data from the Regional Deterministic Reanalysis System v2 is produced from the Canadian Precipitation 235 

Analysis, which combines available surface observations of precipitation with a short-term reforecast 236 

provided by the 10 km Regional Deterministic Reforecast System. That is, the precipitation data is not 237 

model based, but rather is based on gauged data and spatially interpolated using information from modeled 238 

output.  239 

 240 

Geophysical attributes for each watershed were collected from a variety of sources. Basin-average statistics 241 

of elevation and slope were derived from the HydroSHEDS dataset (Lehner et al., 2008), which provides a 242 
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digital elevation model with 3 arcsec resolution. Soil properties (e.g., soil texture, classes) were gathered 243 

from the Global Soil Dataset for Earth System Models (Shangguan et al., 2014), which is available at a 30 244 

arcsec resolution. Land cover data at a 30 m resolution and based on Landsat imagery from 2010-2011 were 245 

derived from the North American Land Change Monitoring System (NALCMS, 2017). These geophysical 246 

datasets were used to derive basin-averaged attributes for each watershed, listed in Table 1.  247 

 248 

Table 1. Watershed attributes used in the deep learning models developed in this work (adapted from Mai 249 

et al., 2022).  250 

Attribute Description 

p_mean Mean daily precipitation 

pet_mean  Mean daily potential evapotranspiration 

aridity Ratio of mean PET to mean precipitation 

t_mean  Mean of daily maximum and daily minimum 
temperature 

frac_snow  Fraction of precipitation falling on days with 
mean daily temperatures below 0°C 

high_prec_freq Fraction of high-precipitation days (= 5 times 
mean daily precipitation) 

high_prec_dur  Average duration of high-precipitation events 
(number of consecutive days with = 5 times mean 
daily precipitation) 

low_prec_freq  Fraction of dry days (< 1 mm d-1 daily 
precipitation) 

low_prec_dur  Average duration of dry periods (number of 
consecutive days with daily precipitation < 1 mm 
d-1) 

mean_elev  Catchment mean elevation 

std_elev  Standard deviation of catchment elevation 

mean_slope  Catchment mean slope 

std_slope  Standard deviation of catchment slope 

area_km2  Catchment area 

Temperate-or-sub-polar-needleleaf-forest  Fraction of land covered by “Temperate-or-sub-
polar-needleleaf-forest” 

Temperate-or-sub-polar-grassland  Fraction of land covered by “Temperate-or-sub-
polar-grassland” 

Temperate-or-sub-polar-shrubland Fraction of land covered by “Temperate-or-sub-
polar-shrubland” 

Temperate-or-sub-polar-grassland  Fraction of land covered by “Temperate-or-sub-
polar-grassland” 

Mixed-Forest Fraction of land covered by “Mixed-Forest” 

Wetland  Fraction of land covered by “Wetland” 
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Cropland  Fraction of land covered by “Cropland” 

Barren-Lands  Fraction of land covered by “Barren-Lands” 

Urban-and-Built-up  Fraction of land covered by “Urban-and-Built-up” 

Water  Fraction of land covered by “Water” 

BD  Soil bulk density (g cm-3) 

CLAY  Soil clay content (% of weight) 

GRAV Soil gravel content (% of volume) 

OC  Soil organic carbon (% of weight) 

SAND  Soil sand content (% of weight) 

SILT  Soil silt content (% of weight) 
 251 

Finally, we also collect daily actual evapotranspiration (AET) for each watershed in millimeters per day, 252 

which was originally taken from the Global Land Evaporation Amsterdam Model (GLEAM) v3.5b dataset 253 

(Martens et al., 2017). GLEAM couples remotely sensed observations of microwave Vegetation Optical 254 

Depth, a multi-layer soil moisture model driven by observed precipitation and assimilating satellite surface 255 

soil moisture observations, and Priestly-Taylor based estimates of PET to derive an estimate of AET for 256 

each day. The daily data were originally available over the entire study domain at a 0.25° resolution between 257 

2003-2017 and were aggregated to basin-wide totals for each watershed. While AET from GLEAM is still 258 

uncertain, it provides a useful, independent, remote-sensing based benchmark against which to compare 259 

rainfall-runoff model estimates of AET.  260 

 261 

3. Methods 262 

We design an experiment to test the two primary hypotheses of this study, namely that a standard LSTM 263 

will overestimate evaporative water losses under warming because of an overreliance on historical 264 

correlations between temperature and PET, while this effect will be lower in PIML-based rainfall-runoff 265 

models designed to better account for evaporative water loss in the system. To conduct this experiment, we 266 

develop three different DL rainfall-runoff models to predict daily streamflow across the Great Lakes region, 267 

as well as three conceptual, process-based models as benchmarks, each of which is trained twice with either 268 

an energy budget-based or temperature-based estimate of PET. The DL models include a regional LSTM 269 

very similar to the model in Mai et al., (2022), an MC-LSTM that conserves mass, and a new variant of the 270 
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MC-LSTM that also respects the relationship between PET and evaporative water loss (termed MC-LSTM-271 

PET). After comparing historical model performance, we conduct a sensitivity analysis on all models in 272 

which historical temperatures are warmed by 4°C, PET is updated based on those warmed temperatures, 273 

and all other meteorological variable time series are left unchanged from historical values. This is a similar 274 

approach to that taken in WS22, but in contrast to that study this work 1) focuses on the magnitude of 275 

streamflow response to warming under two different PET formulations; 2) considers a different set of 276 

physics-informed DL models in which the architecture (rather than the inputs or targets) of the model are 277 

changed to better preserve physical plausibility under shifts in climate; and 3) evaluates an expanded set of 278 

hydrologic metrics to better understand both the plausibility and the variability of responses across the 279 

different models. Finally, in a subset of the analysis, we also utilize a fourth DL model, the LSTM used in 280 

WS22 that was previously fit to 531 basins across the CONUS (Kratzert et al. 2021), which uses daily 281 

precipitation, maximum and minimum temperature, radiation, and vapor pressure as input but not PET. 282 

This model is used to evaluate whether a DL model fit to many more watersheds that span a more diverse 283 

gradient of climate conditions behaves differently under warming than an LSTM fit only to locations in the 284 

Great Lakes basin. Figure 2 presents an overview of our experimental design. 285 

 286 
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 287 

Figure 2. Overview of experiment design. Three deep learning rainfall-runoff models (LSTM, MC-288 

LSTM, MC-LSTM-PET) and three conceptual, process-based models (HBV, SAC-SMA, HYMOD) are 289 

trained and tested across 212 watersheds throughout the Great Lakes basin. Models are validated by 290 

comparing predictions to streamflow (Q) and actual evapotranspiration (AET). All models are then forced 291 

with historical meteorology, but with historical temperatures warmed by 4°C and potential 292 

evapotranspiration (PET) updated based on those warmed temperatures using either the Hamon or 293 

Priestley-Taylor method. Hydrologic model responses across all models are then compared in terms of 294 

long-term mean daily flows, low flows, high flows, and streamflow seasonal timing statistics. The 295 

experiment is also repeated with an LSTM fit to 531 basins across the contiguous United States, except 296 

that model uses a different set of inputs, does not use PET as an input, and vapor pressure is also adjusted 297 

along with temperature.  298 

 299 

3.1. Models 300 

3.1.1. Benchmark Conceptual Models 301 

We calibrate three conceptual, process-based hydrologic models as benchmarks, including the 302 

Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Bergström and Forsman, 1973), HYMOD 303 

(Boyle, 2001), and the Sacramento Soil Moisture Accounting (SAC-SMA) model (Burnash, 1995) coupled 304 
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with SNOW-17 (Anderson, 1976). These models are developed as lumped, conceptual models for each 305 

watershed, and were selected for several reasons. First, in the Great Lakes Intercomparison Project (Mai et 306 

al., 2022), HYMOD was one of the best performing process-based models for both streamflow and AET 307 

estimation. SAC-SMA is widely used in the United States, forming the core hydrologic model in NOAA’s 308 

Hydrologic Ensemble Forecasting System (Demargne et al., 2014). This model was also shown to 309 

outperform the National Water Model across hundreds of catchments in the United States (Nearing et al. 310 

2021). We also found in WS22 that AET from SAC-SMA matched the seasonal pattern of MODIS-derived 311 

AET well across California. HBV is also used for operational forecasting in multiple countries (Olsson and 312 

Lindstrom, 2008; Krøgli et al., 2018) and performs very well in hydrologic model intercomparison projects 313 

(Breuer et al., 2009; Plesca et al., 2012; Beck et al., 2016, 2017; Seibert and Bergström, 2022). Importantly, 314 

the HYMOD, SAC-SMA, and HBV models can exhibit significant inter-model differences in behavior, 315 

dominant processes, and performance controls through time, even in situations where they share similar 316 

process formulations (Herman et al., 2013). 317 

 318 

We calibrate the process-based models with the genetic algorithm from Wang et al. (1991) to minimize the 319 

mean-squared error (MSE), using a population size equal to 100 times the number of parameters, evolved 320 

over 100 generations, and with a spin-up period of 1 year. Each benchmark model is calibrated separately 321 

to each of the 141 training sites using the temporal train/test split described in Section 2, and training is 322 

repeated 10 separate times with different random initializations to account for uncertainty in the training 323 

process and to estimate parametric uncertainty. Benchmark models are calibrated for the 71 testing sites in 324 

two ways: 1) separate models are trained for the testing sites during the training period; and 2) each testing 325 

site is assigned a donor from among the 141 training sites, and the calibrated parameters from that donor 326 

site are transferred to the testing site. The first of these approaches enables a comparison between DL 327 

models fit only to the training sites to benchmark models developed for the testing sites, i.e., a spatial out-328 

of-sample versus in-sample comparison. The second of these approaches enables a more direct spatial out-329 

of-sample comparison between DL and benchmark models. We note that donor sites were used to assign 330 
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model parameters to testing sites in the benchmarking study of Mai et al. (2022), and to retain direct 331 

comparability to the results of that work we use the same donor sites for each testing site. Donor sites were 332 

selected based on spatial proximity, while also prioritizing donor sites that were nested within the watershed 333 

of the testing site. 334 

 335 

3.1.2. LSTM  336 

We develop a single, regional LSTM for predicting daily streamflow across the Great Lakes region. In the 337 

LSTM, nodes within hidden layers feature gates and cell states that address the vanishing gradient problem 338 

of classic recurrent neural networks and help capture long-term dependencies between input and output 339 

time series. The model defines a D-dimensional vector of recurrent cell states 𝒄[𝑡] that is updated over a 340 

sequence of t=1,…,T time steps based on a sequence of inputs 𝒙 = 𝒙[1], … , 𝒙[𝑇], where each input 𝒙[𝑡] is 341 

a K-dimensional vector of features. Information stored in the cell states is then used to update a D-342 

dimensional vector of hidden states 𝒉[𝑡], which form the output of the hidden layer in the model. The 343 

structure of the LSTM is given as follows: 344 

 345 

𝒊[𝑡] = 𝜎(𝑾𝑖𝒙[𝑡] +  𝑼𝑖𝒉[𝑡 − 1] + 𝒃𝑖)        (Eq. 1.1) 346 

𝒇[𝑡] = 𝜎(𝑾𝑓𝒙[𝑡] + 𝑼𝑓𝒉[𝑡 − 1] + 𝒃𝑓)        (Eq. 1.2) 347 

𝒈[𝑡] = 𝑡𝑎𝑛ℎ(𝑾𝑔𝒙[𝑡] +  𝑼𝑔𝒉[𝑡 − 1] + 𝒃𝑔)       (Eq. 1.3) 348 

𝒐[𝑡] = 𝜎(𝑾𝑜𝒙[𝑡] +  𝑼𝑜𝒉[𝑡 − 1] + 𝒃𝑜)        (Eq. 1.4) 349 

𝒄[𝑡] = 𝒇[𝑡] ⊙ 𝒄[𝑡 − 1] + 𝒊[𝑡] ⊙ 𝒈[𝑡]        (Eq. 1.5) 350 

𝒉[𝑡] = 𝒐[𝑡] ⊙ 𝑡𝑎𝑛ℎ(𝒄[𝑡])         (Eq. 1.6) 351 

𝒚[𝑇] = 𝑅𝑒𝐿𝑈(𝑾𝑦𝒉[𝑇] + 𝑏𝑦)         (Eq. 1.7) 352 

 353 

Here, the input gate (𝒊[𝑡]) controls how candidate information (𝒈[𝑡]) from inputs and previous hidden states 354 

flows to the current cell state (𝒄[𝑡]); the forget gate (𝒇[𝑡]) enables removal of information within the cell 355 
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state over time; and the output gate (𝒐[𝑡]) controls information flow from the current cell state to the hidden 356 

layer output. All bolded terms are vectors, and ⊙  denotes element-wise multiplication.  To produce 357 

streamflow predictions, 𝒉[𝑇] at the last time step in the sequence is passed through a fully connected layer 358 

to a single-node output layer (i.e., a many-to-one formulation). We ensure nonnegative streamflow 359 

predictions using the rectified linear unit (ReLU) activation function for the output neuron, expressed as 360 

ReLU(x) = max(0,x). Importantly, there are no constraints requiring the mass of water entering as 361 

precipitation to be conserved within this architecture.   362 

  363 

The LSTM takes K=39 input features: 9 dynamic and 30 static. The dynamic input features are basin-364 

averaged climate, including daily precipitation, maximum temperature, minimum temperature, net 365 

incoming shortwave radiation, specific humidity, surface air pressure, zonal and meridional components of 366 

wind, and PET. The static features represent catchment attributes (see Table 1) and are repeated for all time 367 

steps in the input sequences 𝒙. All input features are standardized before training (by subtracting the mean 368 

and dividing by the standard deviation for data across all training sites in the training period). Note that we 369 

do not standardize the observed streamflow, besides dividing by drainage area to represent streamflow in 370 

units of millimeters. 371 

 372 

We train the LSTM by minimizing the mean-squared error averaged over the 141 training watersheds 373 

during the training period:  374 

𝑀𝑆𝐸 =
1

𝑁
∑

1

𝑇𝑛
∑ (�̂�𝑛,𝑡 − 𝑄𝑛,𝑡)

2𝑇𝑛
𝑡=1

𝑁
𝑛=1       (Eq. 2) 375 

where N is the number of training watersheds and Tn is the number samples in the nth watershed. �̂�𝑛,𝑡 and 376 

𝑄𝑛,𝑡 are, respectively, the streamflow prediction and observation for basin n and day t. To estimate �̂�𝑛,𝑡, 377 

we feed into the network an input sequence for the past T=365 days. The model was developed with 1 378 

hidden layer composed of D=256 nodes, a mini-batch size of 256, a learning rate of 0.0005, and a drop-out 379 

rate of 0.4, and it was trained across 30 epochs. All hyperparameters (number of hidden layer nodes, mini-380 
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batch size, learning rate, dropout rate, and number of epochs) were selected in a 5-fold cross-validation on 381 

the training sites (see Table S2 for details on grid search). Network weights are tuned using the ADAM 382 

optimizer (Kingma & Ba, 2015). The model is trained 10 separate times with different random 383 

initializations to account for uncertainty in the training process.  384 

 385 

For the evaluation of streamflow responses to warming, we also use an LSTM taken from Kratzert et al. 386 

(2021) and employed in WS22, which was fit to 531 basins across the contiguous United States (hereafter 387 

called the National LSTM). This model was trained using a different set of data compared to our Great 388 

Lakes LSTM but also used a mix of dynamic and static features, all of which were drawn from the 389 

Catchment Attributes and Meteorology for Large-Sample Studies (CAMELS) dataset (Newman et al., 390 

2015). This model uses daily precipitation, maximum and minimum temperature, shortwave downward 391 

radiation, and vapor pressure as input but not PET. However, we note that temperature, radiation, and vapor 392 

pressure are the three major inputs (besides wind speeds) needed to calculate energy budget-based PET. 393 

There are 29 CAMELS watersheds located within the Great Lakes basin, and 17 of those 29 watersheds 394 

were also used in the training and testing sets for the Great Lakes LSTM (see Figure 1).  395 

 396 

3.1.3. MC-LSTM 397 

Following Hoedt et al. (2021) and Frame et al. (2021b), we adapt the architecture of the LSTM into a mass 398 

conserving MC-LSTM that preserves the water balance within the model, i.e., the total quantity of 399 

precipitation entering the model is tracked and redistributed to streamflow and losses from the watershed. 400 

Using similar notation as for the LSTM above, the model structure is given as follows: 401 

 402 

𝒊[𝑡] = �̂�(𝑾𝑖𝒙[𝑡] +  𝑼𝑖𝒄[𝑡 − 1] + 𝑽𝑖𝒂[𝑡] + 𝒃𝑖)       (Eq. 3.1) 403 

𝒐[𝑡] = 𝜎(𝑾𝑜𝒙[𝑡] +  𝑼𝑜𝒄[𝑡 − 1] + 𝑽𝑜𝒂[𝑡] + 𝒃𝑜)      (Eq. 3.2) 404 

𝑹[𝑡] = �̂�(𝑾𝑅𝒙[𝑡] +  𝑼𝑅𝒄[𝑡 − 1] + 𝑽𝑅𝒂[𝑡] + 𝒃𝑅)      (Eq. 3.3) 405 
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𝒎[𝑡] = 𝑹[𝑡]𝒄[𝑡 − 1] + 𝒊[𝑡]𝒙[𝑡]         (Eq. 3.4) 406 

𝒄[𝑡] = (1 − 𝒐[𝑡]) ⊙ 𝒎[𝑡]         (Eq. 3.5) 407 

𝒉[𝑡] = 𝒐[𝑡] ⊙ 𝒎[𝑡]          (Eq. 3.6) 408 

 409 

Here, the inputs to the model are split between quantities x[t] to be conserved (i.e., precipitation), and non-410 

conservative inputs a[t] (i.e., temperature, wind speeds, PET, catchment properties, etc.). Water in the 411 

system is stored in the D-dimensional vector m[t] and is updated at each time step based on water left over 412 

from the previous time step (c[t-1]) and water entering the system at the current time step (x[t]).  The input 413 

gate i[t] and a redistribution matrix R[t] are designed to ensure water is conserved from 𝒄[𝑡 − 1] and 𝒙[𝑡] 414 

to m[t], by basing these quantities on a normalized sigmoid activation function: 415 

 416 

�̂�(𝑧𝑗) =
𝜎(𝑧𝑗)

∑ 𝜎(𝑧𝑗)𝑗
           (Eq. 4) 417 

 418 

Here, 𝜎(∙) is the sigmoid activation function, while �̂�(∙) is a normalized sigmoid activation that produces a 419 

vector of fractions that sum to unity. The normalized sigmoid activation function is applied column-wise 420 

to the matrix R[t]. 421 

 422 

The mass in 𝒎[𝑡], which is stored across D elements in the vector, is then distributed to the output of the 423 

hidden layer, 𝒉[𝑡], or the next cell state, 𝒄[𝑡]. To account for water losses from evapotranspiration or other 424 

sinks, one element of the D-dimensional vector 𝒉[𝑡] is considered a ‘trash cell’, and the output of this cell 425 

is ignored when calculating the final streamflow prediction, which at time T is given by the sum of outgoing 426 

water mass: 427 

 428 

𝑦[𝑇] = ∑ ℎ𝑑[𝑇]𝐷−1
𝑑=1           (Eq. 5) 429 

 430 
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Here, the Dth cell of h (ℎ𝐷) is set as the trash cell, and water allocated to this cell at each time step t=1,..,T 431 

is lost from the system. We note that the MC-LSTM was trained in the same way as the LSTM (i.e., same 432 

inputs, loss function, training and test sets, hyperparameter selection process, number of ensemble members 433 

with random initialization).  434 

 435 

3.1.4. MC-LSTM-PET 436 

We also propose a novel variant of the MC-LSTM that requires water lost from the system to not exceed 437 

PET (hereafter referred to as the MC-LSTM-PET). In the original MC-LSTM, any amount of water can be 438 

delegated to the trash cell ℎ𝐷. Therefore, while water is conserved in the MC-LSTM, the model has the 439 

freedom to transfer any amount of water from 𝒎[𝑡] to the trash cell (and out of the hydrologic system) as 440 

it seeks to improve the loss function during training. This has the benefit of handling biased data, e.g., cases 441 

where the precipitation input to the system is systematically too high compared to the measured outflow. 442 

However, this structure also has the drawback of potentially removing more water from the system than is 443 

physically plausible. To address this issue, we propose a small change to the architecture of the MC-LSTM, 444 

where any water relegated to the trash cell that exceeds PET at time t is directed back to the stream: 445 

 446 

𝑦[𝑡] = ∑ ℎ𝑑[𝑡]𝐷−1
𝑑=1 + 𝑅𝑒𝐿𝑈(ℎ𝐷[𝑡] − 𝑃𝐸𝑇[𝑡])       (Eq. 6) 447 

 448 

Here, the ReLU activation ensures that any water in the trash cell (ℎ𝐷) which exceeds PET at time t is 449 

added to the streamflow prediction 𝑦[𝑡], but the streamflow prediction is the same as the original MC-450 

LSTM (Eq. 5) if water in the trash cell is less than PET. This approach assumes that the maximum allowable 451 

water lost from the system cannot exceed PET, and therefore ignores other potential terminal sinks (e.g., 452 

inter-basin lateral groundwater flows; human diversions and inter-basin transfers). This assumption is more 453 

strongly supported in moderately-sized (> 200 km2), low-gradient, non-arid watersheds where inter-basin 454 

groundwater flows are less impactful (Fan 2019; Gordon et al., 2022), such as the Great Lakes basins 455 
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examined in this work. However, we discuss the potential to relax the assumptions of the MC-LSTM-PET 456 

model in Section 5. The MC-LSTM-PET was trained in the same way as the LSTM (i.e., same inputs, loss 457 

function, training and test sets, hyperparameter selection process, number of ensemble members with 458 

random initialization).  459 

 460 

3.2. Model Performance Evaluation 461 

As noted previously, 141 of the watersheds are designated as training sites, and the remaining 71 watersheds 462 

are used for testing. In addition, the training and testing periods were restricted to January 2000 -December 463 

2010 and January 2011 – December 2017, respectively. This provides three separate ways to evaluate model 464 

performance: 465 

• Temporal validation – Performance across models is evaluated at training sites during the testing 466 

period.  467 

• Spatial validation – Performance across models is evaluated at testing sites during the training 468 

period. 469 

• Spatiotemporal validation – Performance across models is evaluated at testing sites during the 470 

testing period. 471 

 472 

All three evaluation strategies are utilized. For benchmark process-based models that are calibrated locally 473 

on a site-by-site basis, we consider model versions that are transferred to testing sites from training sites, 474 

as well as models that are trained to the testing sites directly (see Section 3.1.1). The former can be used 475 

for all three evaluation strategies above, while the latter can only be used for temporal validation at the 476 

testing sites.    477 

 478 

Following other intercomparison studies (Frame et al., 2022; Gauch et al., 2021a; Klotz et al., 2022; Kratzert 479 

et al., 2021), several metrics are considered for model evaluation, including percent bias (PBIAS), the Nash-480 
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Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970), Kling-Gupta Efficiency (KGE; Gupta et al. 2009), 481 

top 2% peak flow bias (FHV; Yilmaz et al. 2008), and bottom 30% low flow bias (FLV; Yilmaz et al. 2008). 482 

Each metric is calculated separately for training and testing periods for each site. For all models, all results 483 

are estimated from the ensemble mean from 10 separate training trials. 484 

 485 

For the process-based models, the MC-LSTM, and the MC-LSTM-PET, we also compare simulations of 486 

AET to AET from the GLEAM database. We note that AET data were not used to train any of the models. 487 

For the process-based models, AET is a direct output of the model and so can immediately be extracted for 488 

comparison, but AET is not directly simulated by the MC-LSTM or MC-LSTM-PET. Instead, we assume 489 

water delegated to the trash cell permanently leaves the system because of evapotranspiration. Several 490 

metrics are used to compare model based AET to GLEAM AET, including KGE, correlation, and PBIAS, 491 

and the comparison is conducted for training sites during the training period and under temporal, spatial, 492 

and spatiotemporal validation (as described above). Similar to streamflow, all AET results are based on the 493 

ensemble mean from the 10 separate training trials.  494 

 495 

3.3. Evaluating Hydrologic Response under Warming 496 

All Great Lakes models in this study are trained twice with different PET estimates as input, including the 497 

Hamon method (a temperature-based approach; Hamon, 1963) and the Priestley-Taylor method (an energy 498 

budget-based approach; Priestley and Taylor, 1972). We select the Hamon method because of its stronger 499 

dependence on temperature compared to other temperature-based approaches that also depend on radiation 500 

(e.g., Hargreaves and Samani, 1985; Oudin et al., 2005). We select the Priestley-Taylor method based on 501 

its widespread use in the literature (Wu et al., 2021; Su and Singh, 2023) and its approximation of the more 502 

physically-based Penman-Monteith approach (Allen et al. 1998). Together, these two approaches lie 503 

towards the lower and upper bounds of temperature sensitivity across multiple PET approaches (see Shaw 504 

and Riha, 2011). 505 

 506 
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PET (in mm/day) under the Hamon method is calculated as follows (Shaw and Riha, 2011): 507 

 508 

𝑃𝐸𝑇𝐻 = 𝛼𝐻 × 29.8 × 𝐻𝑟𝑑𝑎𝑦
𝑒𝑠𝑎𝑡

𝑇𝑎+273.2
         (Eq. 7) 509 

𝑒𝑠𝑎𝑡 = 0.611 × 𝑒𝑥𝑝 (
17.27×𝑇𝑎

237.3+𝑇𝑎
)         (Eq. 8) 510 

 511 

where 𝐻𝑟𝑑𝑎𝑦 is the number of daylight hours, 𝑇𝑎 is the average daily temperature (C) calculated from daily 512 

minimum and maximum temperature, 𝑒𝑠𝑎𝑡 is the saturation vapor pressure (kPa), and 𝛼𝐻 is a calibration 513 

coefficient set to 1.2 for all models in this study (similar to Lu et al., 2005).  514 

 515 

PET under the Priestley-Taylor method is calculated as follows: 516 

 517 

𝑃𝐸𝑇𝑃𝑇 = 𝛼𝑃𝑇 (
∆(𝑇𝑎)×(𝑅𝑛−𝐺)

𝜆(∆(𝑇𝑎)+𝛾)
) × 1000         (Eq. 9) 518 

 519 

Here, ∆(𝑇𝑎) is the slope of the saturation vapor pressure temperature curve (kPa/C) and is a function of 520 

𝑇𝑎, 𝛾 is the psychrometric constant (kPa/C), 𝜆 is the volumetric latent heat of vaporization (MJ/m3), 𝑅𝑛 is 521 

the net radiation (MJ/m2-day) equal to the difference between net incoming shortwave (𝑅𝑛𝑠 ) and net 522 

outgoing longwave (𝑅𝑛𝑙) radiation, G is the heat flux to the ground (MJ/m2-day), and 𝛼𝑃𝑇 is a dimensionless 523 

coefficient set to 1.1 for all models in this study (similar to Szilagyi et al., 2017). Details on how to calculate 524 

𝛾, ∆(𝑇𝑎), and 𝑅𝑛𝑙 are available in Allen et al. (1998), and we assume G=0. Net shortwave radiation is given 525 

by 𝑅𝑛𝑠 = (1 − 𝜁)𝑅𝑠, with 𝜁 = .23 the assumed albedo and 𝑅𝑠 the incoming shorwave radiation. We note 526 

that net outgoing longwave radiation 𝑅𝑛𝑙 is a function of maximum and minimum temperature, actual vapor 527 

pressure, and 𝑅𝑠 (see Eq. 39 in Allen et al. 1998). All exogenous meteorological inputs for the two methods 528 

are derived from the Regional Deterministic Reanalysis System v2 (see Section 2). We note that using 529 

𝛼𝐻 = 1.2 and 𝛼𝑃𝑇 = 1.1 leads to very similar long-term average PET estimates between the Hamon and 530 
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Priestley-Taylor methods under baseline climate conditions, helping to ensure their comparability. We also 531 

note that both PET series are highly correlated with daily average temperatures (average Pearson 532 

correlations across sites of 0.94 and 0.83 for Hamon and Priestley-Taylor PET, respectively).  533 

 534 

We then conduct a sensitivity analysis of model response in which the historical minimum and maximum 535 

temperature time series are increased uniformly by 4 C, and the two PET estimates are updated using these 536 

warmed temperatures. We focus the assessment on training period data at the training sites, so that any 537 

differences in responses that emerge between the DL and process-based models are due to model structural 538 

differences and not the effects of spatiotemporal regionalization. In the Priestly-Taylor method, we maintain 539 

historical values for Rs to isolate how changes in temperature and its effect on ∆(𝑇𝑎) and 𝑅𝑛𝑙 influence 540 

changes in PET. The use of historical Rs is supported by the results from CMIP5 projections presented in 541 

Lai et al. (2022), but this assumption is discussed further in Section 5.   542 

 543 

We also conduct a similar sensitivity analysis on the National LSTM, which uses five dynamic input 544 

features from the CAMELS dataset (daily precipitation, maximum temperature, minimum temperature, Rs, 545 

and water vapor pressure). Here, temperatures are increased by 4C, while precipitation and Rs are held at 546 

historical values. There is a strong correlation between vapor pressure and minimum temperature in the 547 

CAMELS dataset, since minimum temperature is used to estimate the water vapor pressure (Newman et al., 548 

2015). Thus, to run the National LSTM under warming, we also adjust the vapor pressure input based on 549 

the change imposed to minimum temperature. This procedure is detailed in WS22. 550 

 551 

For both the Great Lakes DL models and the National LSTM, the dynamic inputs are adjusted based on the 552 

warming scenarios above. We also consider changes to the static input features that depend on temperature 553 

and PET in their calculation (e.g., pet_mean, aridity, t_mean, frac_snow; see Table 1 for feature descriptions 554 

and Supporting Information S1 and Table S1 for details on adjustments to these features), and then run all 555 
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models using two settings: 1) with changes only to the dynamic features, and 2) with changes to both 556 

dynamic features and to static features that depend on those dynamic features. In total, there are six 557 

scenarios run in this work, which are shown in Table 2.  558 

 559 

Table 2. Overview of the setup for the different scenarios run in this analysis. All models are driven with 560 

temperatures warmed by 4C. The Great Lakes models include the HBV, SAC-SMA, HYMOD, LSTM, 561 

MC-LSTM, and MC-LSTM-PET models that are trained and tested to the 212 sites across the Great Lakes 562 

basin.  563 

Scenario Model PET method adjusted 

with warmer 

temperatures 

Are static features also 

changed along with 

dynamic features? 

1 Great Lakes models Hamon Yes 

2 Great Lakes models Priestley-Taylor Yes 

3 Great Lakes models Hamon No 

4 Great Lakes models Priestley-Taylor No 

5 National LSTM NA Yes 

6 National LSTM NA No 

 564 

Ultimately, for each model we compare hydrologic responses under the warmed scenario to their values 565 

under the baseline scenario with no warming. For the National LSTM, we only consider basins in the 566 

CAMELS dataset within the Great Lakes Basin. For the process-based models, we also evaluate the 567 

uncertainty in hydrologic response based on the range predicted across the 10 different training trials, as a 568 

simple means to evaluate how parametric uncertainty influences the predictions. We examine four different 569 

metrics for this comparison, including:  570 

• AVG.Q: the long-term mean of daily streamflow across the entire series. 571 

• FHV: the average of the top 2% peak flows. 572 

• FLV: the average of the bottom 30% low flows. 573 

• COM: the median center of mass across all water years, where the center of mass is defined as the 574 

day of the water year by which half of the total annual flow has passed.  575 

 576 

If our hypothesis is correct that the LSTM cannot distinguish evaporative water loss differences with 577 

different PET series but similar warming while process-based and PIML models can, we would expect that 578 
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under the LSTM using both PET series, long-term mean flow will decline substantially and with similar 579 

magnitude to the process-based models using the temperature-based PET method but not the energy budget-580 

based PET method. We would also expect the National LSTM to exhibit similar behavior, even though it 581 

was able to learn from a larger set of watersheds across a more diverse range of climate conditions. Finally, 582 

if our hypothesis is correct, we would expect the PIML models (MC-LSTM, MC-LSTM-PET) to follow 583 

the process-based model responses more closely across the two different PET series, at least in terms of the 584 

difference in magnitude of long-term mean streamflow declines. To facilitate a broader inter-model 585 

comparison of DL and process-based models under warming (which is largely absent from the literature), 586 

we also explore the differences in low flow (FLV), high flow (FHV), and seasonal timing (COM) metrics 587 

across all model versions, where we have less reason to anticipate how DL and process-based models will 588 

differ in their responses and across PET formulations. However, for responses like seasonal streamflow 589 

timing (COM), we do anticipate that realistic responses should show a shift towards more streamflow earlier 590 

in the year, as warmer temperatures lead to more precipitation falling as rain rather than snow and drive 591 

snowmelt earlier in the spring. 592 

 593 

4. Results 594 

4.1. Model Performance Evaluation 595 

Figure 3 shows the distribution of KGE values across sites for streamflow from the LSTM, MC-LSTM, 596 

MC-LSTM-PET, and the three process-based models for both the training and testing sites during both the 597 

training and testing periods. All results here and elsewhere in Section 4.1 are shown for the models fit with 598 

Priestley-Taylor PET, but there is little difference in performance for the models fit with Hamon PET (see 599 

Figure S1). For the process-based models, we show results for models fit to the training sites and then used 600 

as donors at the testing sites, as well as models fit to the testing sites directly. We denote the latter with the 601 

suffix “-test” and note that performance metrics at the training sites are not available for process-based 602 

models fit to the testing sites.  603 
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 604 

Several insights emerge from Figure 3. First, for the training sites during the training period, all models 605 

perform very well (Figure 3a). Across the three process-based models, the median KGE is 0.79, 0.78, and 606 

0.77 for HBV, SAC-SMA, and HYMOD, respectfully. However, unsurprisingly, the DL models perform 607 

better for the training data, with median KGE values all equal or above 0.88. The LSTM performs best in 608 

this case. Under temporal validation (training sites during the testing period), performance degrades 609 

somewhat across all models, and the differences in KGE between all process-based models and between 610 

all DL models shrink considerably (Figure 3c). Larger performance declines are seen at the testing sites 611 

during the training period (Figure 3b) and testing period (Figure 3d). Here, the median KGE for all process-612 

based models falls to between 0.54-0.58 when streamflow at the testing sites is estimated with donor models 613 

from nearby gauged watersheds. In contrast, process-based models fit to the testing sites (denoted “-test”) 614 

exhibit performance similar to that seen in Figure 3a,c. All three DL models perform quite well for the 615 

testing sites, with median KGE values above 0.71 in both time periods. This is only modestly below the 616 

median KGE for the process-based models fit to the testing sites, which is quite impressive given that this 617 

represents the spatial out-of-sample performance of the DL models. We even see that for approximately 618 

20% of testing sites during the training period, the DL models outperform the process-based models fit to 619 

those locations in that period.   620 

 621 
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 622 

Figure 3. The distribution of Kling-Gupta efficiency (KGE) for streamflow estimates across sites from 623 

each model at the (a) 141 training sites and (b) 71 testing sites for the training period. Similar results for 624 

the testing period are shown in panels (c) and (d), respectively. For the process-based models fit to the 625 

testing sites (denoted “-test”), no performance results are available at the training sites. All models are 626 

trained using Priestley-Taylor PET. 627 

 628 

Table 3 shows the median KGE, NSE, PBIAS, FHV, and FLV across testing sites for all models, excluding 629 

the process-based models fit to the testing sites. Similar to Figure 3, all three DL models outperform the 630 

donor-based process-based models at the testing sites for all metrics. The performance across the three 631 

different DL models is similar, although there are some notable differences. In particular, the LSTM 632 

outperforms the MC-LSTM and MC-LSTM-PET for NSE and FLV (as well as KGE in the training period), 633 

the MC-LSTM-PET outperforms the LSTM and MC-LSTM for PBIAS, and either the MC-LSTM or MC-634 

LSTM-PET are the best performers for FHV. The fact that the MC-LSTM-PET performs best for PBIAS 635 

of all models suggests that the PET constraint imposed in that model improves the overall accounting of 636 
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water entering and existing the watershed on a long-term basis. We also note that percent biases for FLV 637 

are high because the absolute magnitude of low flows is small, so small absolute biases still lead to large 638 

percent biases.   639 

 640 

Table 3. The median KGE, NSE, PBIAS, FHV, and FLV for streamflow across testing sites for the training 641 

and testing periods for all models (excluding the process-based models fit to the testing sites). The metric 642 

from the best performing model in each period is bolded. All models are trained using Priestley-Taylor PET. 643 
 Testing Sites: Training Period Testing Sites: Testing Period 

Model KGE NSE PBIAS FHV FLV KGE NSE PBIAS FHV FLV 

LSTM 0.76 0.77 9.66 17.58 30.98 0.72 0.68 12.15 26.01 27.32 

MC-LSTM 0.74 0.72 9.48 15.52 41.46 0.72 0.65 12.13 22.82 35.80 

MC-LSTM-PET 0.73 0.72 8.63 18.80 48.10 0.71 0.66 10.22 22.49 44.43 

HBV 0.58 0.50 9.99 32.22 63.96 0.55 0.50 12.68 34.76 57.20 

SAC-SMA 0.57 0.48 11.74 34.72 45.17 0.54 0.47 12.24 40.45 46.78 

HYMOD 0.58 0.48 10.07 33.68 58.06 0.54 0.48 12.52 36.07 60.32 

 644 

Figure 4 shows similar results as Figure 3, but for the KGE based on estimates of AET. Also, only donor 645 

process-based models are shown for the testing sites. Results for correlation and PBIAS are available in the 646 

Supplemental Information (Figures S2-S3). Here, the LSTM is not included because estimates of AET are 647 

unavailable, while AET from the MC-LSTM and MC-LSTM-PET is based on water relegated to the trash 648 

cell. Note that none of the models were trained for AET, and so results at training sites during the training 649 

period also provide a form of model validation. Figure 4 shows that SAC-SMA and HBV predict AET with 650 

relatively high degrees of accuracy for both training and testing sites in both periods (median KGE between 651 

0.79-0.80). Performance is slightly worse for HYMOD. Notably, the MC-LSTM-PET exhibits very similar, 652 

strong performance for all sites and periods as compared to SAC-SMA and HBV, except for one testing 653 

site. In contrast, the MC-LSTM performs the worst of all models, with median KGE values ranging between 654 

0.53-0.57.  655 

 656 
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 657 

Figure 4. The Kling-Gupta efficiency (KGE) for AET estimated from each model at the (a) 141 training 658 

sites and (b) 71 testing sites for the training period. Similar results for the testing period are shown in 659 

panels (c) and (d), respectively. The LSTM is not included in this comparison. All models are trained 660 

using Priestley-Taylor PET. 661 

 662 

Further investigation reveals that the differences in KGE between the MC-LSTM and MC-LSTM-PET 663 

models for AET are largely driven by differences in correlation (see Figure S2). We examine this difference 664 

in more detail in Figure 5, which presents scatterplots of GLEAM AET versus water allocations to the trash 665 

cell for the two models from five randomly sampled testing sites across both training and testing periods 666 

(see Figure 1; also Table S3). Trash cell water from the MC-LSTM is not only more scattered around 667 

GLEAM AET compared to the MC-LSTM-PET, but it also exhibits many outlier values that are two to five 668 

times larger than GLEAM AET. The MC-LSTM-PET follows the variability of GLEAM AET much more 669 

closely, with virtually no outliers that exceed GLEAM AET by large margins. This suggests that the PET 670 
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constraint on the trash cell in the MC-LSTM-PET helps water allocated to that cell more faithfully represent 671 

evaporative water loss in the DL model.  672 

 673 

 674 

Figure 5. Scatterplots of daily AET versus trash cell water for the (top) MC-LSTM and (bottom) MC-675 

LSTM-PET at five randomly selected testing sites across both training and testing periods. All models are 676 

trained using Priestley-Taylor PET. 677 

 678 

5. Evaluating Hydrologic Response under Warming 679 

Next, we evaluate streamflow responses under a 4 C warming scenario. We focus on training sites during 680 

the training period, so that any differences that emerge between DL and process-based models are only 681 

related to model structure and not spatiotemporal regionalization. However, our results are largely 682 

unchanged if based on responses for testing sites in the testing period (see Figure S4). First, we show the 683 

differences in historic and warming-adjusted PET when using the Hamon and Priestley-Taylor methods 684 

(Figure 6). For the training period without any temperature change, PET estimated from the two methods 685 

is very similar (Figure 6a; shown at one sample location for demonstration, see Figure 1 and Table S3). 686 

However, under the scenario with 4 C of warming, Hamon-based PET is substantially larger than Priestley-687 

Taylor based PET (Figure 6b). On average, this difference reaches ~16% across all training sites and 688 

exhibits very little variability across locations (Figure 6c). The primary reason for the difference in the 689 

estimated change in PET is that the Hamon method attributes PET entirely to temperature, while only a 690 
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portion of PET is based on temperature in the Priestley-Taylor method, with the rest based on Rn. It is 691 

worthwhile to note that Rn does increase with temperature through its effects on net outgoing longwave 692 

radiation, but these changes are generally less than 5% across all sites (Allen et al. 1998).  693 

 694 

 695 

Figure 6. (a) Daily PET estimated using the Hamon and Priestley-Taylor method for one sample 696 

watershed, under historic climate conditions in the training period. (b) Same as (a), but under the scenario 697 

with 4 C of warming. (c) Percent change in average PET with 4 C of warming across all training sites 698 

using the Hamon and Priestley-Taylor methods. 699 

 700 

Figure 7 shows how these differences in PET under warming propagate into changes in different attributes 701 

of streamflow across training sites in the training period. The left and right columns of Figure 7 show 702 

streamflow responses using Hamon and Priestley-Taylor PET, respectively, while the rows of Figure 7 703 
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show the distribution of changes in different streamflow attributes (AVG.Q, FLV, FHV, COM) across 704 

models. Figure 7 shows results for DL models where only the dynamic inputs are changed under warming.  705 

 706 

Starting with changes in AVG.Q, Figure 7a,b shows that under the Hamon method for PET, the DL models 707 

exhibit similar changes in long-term mean streamflow to the process-based models, with the median 708 

AVG.Q across sites ranging between -17% and -25% across all models. However, when using Priestley-709 

Taylor PET, larger differences in the distribution of AVG.Q emerge. Across all three process-based 710 

models, the median AVG.Q is between -6% to -9%, and very few locations exhibit AVG.Q less than -711 

20%. Conversely, the LSTM shows a median water loss of -20% under Priestley-Taylor PET and a very 712 

similar distribution of water losses regardless of whether Hamon or Priestley-Taylor PET was used. The 713 

MC-LSTM is also relatively insensitive to PET, and as compared to the process-based models, the MC-714 

LSTM tends to predict smaller absolute changes to AVG.Q for Hamon PET and larger changes under 715 

Priestley-Taylor PET. Only the MC-LSTM-PET model achieves water loss that is considerably smaller 716 

under Priestley-Taylor PET than Hamon PET and closely follows the process-based models in both cases.  717 

 718 

The overall pattern of change in low flows (FLV) is very similar across all three DL models, with median 719 

declines between -15% to -25% and little variability across sites (Figure 7c,d). The process-based models 720 

disagree on the sign of change for FLV, and also bound the changes predicted by the DL models. HBV and 721 

HYMOD show mostly increases to FLV under warming and Priestley-Taylor PET, and a mix of increases 722 

and decreases across sites for Hamon PET. SAC-SMA exhibits large declines in FLV under warming and 723 

Hamon PET, and shows a median change that is similar to the DL models under Priestley-Taylor PET. The 724 

percent changes in FLV across models tend to be large because the absolute magnitude of FLV is small, 725 

and so small changes in millimeters of flow lead to large percent changes. This can be seen in sample daily 726 

hydrographs for two sites (see Figure S5), where visually the changes in low flows are difficult to discern 727 

because they are all near zero for all models.  728 
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 729 

The differences between process-based and DL simulated changes for high flows (FHV; Figure 7e,f) and 730 

seasonal timing (COM; Figure 7g,h) are relatively consistent, with the process-based models exhibiting 731 

more substantial declines in high flows and earlier shifts in seasonal timing compared to the DL models. 732 

The choice of PET method has an impact on process-model based changes in FHV, with larger declines 733 

under Hamon PET. A similar signal is also seen for the MC-LSTM-PET but not the MC-LSTM or LSTM, 734 

although the LSTM predicts changes in FHV closest to the process-based models.  735 

 736 

For COM, the process-based models show a wide range of variability in projected change across sites, from 737 

no change to 60 days earlier. For the DL models the range of change is much narrower, and the median 738 

change in COM is approximately a week less than the median change across the process-based models. The 739 

earlier shift in COM across all models is consistent with anticipated changes to snow accumulation and 740 

melt dynamics under warming, with more water entering the stream during the winter and early spring as 741 

precipitation shifts more towards rainfall and snowpack melts off earlier in the year (Byun and Hamlet, 742 

2018; Mote et al., 2018; Kayastha  et al., 2022). However, this effect is seen more dramatically in the 743 

process-based models, as evidenced by more prominent changes to their daily and monthly hydrographs 744 

under warming during the winter and early spring as compared to the DL models (see Figures S5 and S6). 745 

The method of PET estimation has relatively little impact on both process-based model and DL based 746 

estimates of change in COM.  747 

 748 

We note that the results above do not change even when considering the parametric uncertainty in the 749 

process-based models, although for some metrics (FLV), uncertainty in process-based model estimated 750 

changes due to parametric uncertainty is large (see Figure S7). We also note that if the static watershed 751 

properties (pet_mean, aridity, t_mean, frac_snow; see Table 1) are changed to reflect warmer temperatures 752 

and higher PET, all three DL models exhibit unrealistic water gains for between 15%-40% of locations 753 

depending on the model and PET method, with the most water gains occurring under the LSTM (Figure 754 
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S8). These results suggest that changing the static watershed properties associated with long-term climate 755 

characteristics can degrade the quality of the estimated responses, at least when the temperature shifts are 756 

large and the range of average temperature and PET in the training set is limited.  757 

 758 

 759 

Figure 7. The distribution of change in (a,b) long term mean daily flow (AVG.Q), (c,d) low flows (FLV), 760 

(e,f) high flows (FHV), and (g,h) seasonal streamflow timing (COM) across the 141 training sites and all 761 

models under a scenario of 4C warming using (a,c,e,g) Hamon PET and (b,d,f,h) Priestley-Taylor PET. 762 

For the deep learning models, changes were only made to the dynamic inputs (i.e., no changes to static 763 

inputs). 764 
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 765 

One reason why the Great Lakes LSTM exhibits excessive water losses under warming could be that the 766 

model was trained using sites that are confined to a limited range of temperature and PET values found in 767 

the Great Lakes basin (spanning approximately 40.5-50N), and so is ill-suited to extrapolate hydrologic 768 

response under warming conditions that extend beyond this temperature and PET range. To evaluate this 769 

hypothesis, we examine changes to AVG.Q, FLV, FHV, and COM under 4C warming at the 29 CAMELS 770 

watersheds within the Great Lakes basin using the National LSTM (Figure 8). For comparison, we also 771 

examine similar changes under all six Great Lakes DL and process-based models at 17 of those 29 772 

CAMELS basins that were used in the training and testing sets for the Great Lakes models. We also 773 

highlight the National LSTM predictions for those 17 sites. Note that in Figure 8, the National LSTM 774 

predictions do not differ between Hamon and Priestley Taylor PET, because PET is not an input to that 775 

model.  776 

 777 

The National LSTM was trained to watersheds across the CONUS (spanning approximately 26-49N), 778 

and so was exposed to watersheds with much warmer conditions and higher PET during training. However, 779 

we find that the National LSTM still predicts very large declines in AVG.Q. For the 29 CAMELS 780 

watersheds in the Great Lakes basin, the median decline in AVG.Q under the National LSTM is 781 

approximately 25%, which is only 0-6% larger than the median predictions of loss under the process-based 782 

models using Hamon PET but 16-19% larger than the process-based model losses under Priestley-Taylor 783 

PET (Figure 8a,b). We also see larger declines in FLV under the National LSTM as compared to the other 784 

Great Lakes DL models (Figure 8c,d). The National LSTM predicts changes in FHV (Figure 8e,f) and COM 785 

(Figure 8g,h) that are relatively similar to the process-based models. For COM, the predictions of change 786 

are still smaller than the process-based models but closer to the process-based models than any Great Lakes 787 

DL model, suggesting that the National LSTM predicts shifting snow accumulation and melt dynamics 788 

more consistently with the process-based models than regionally fit DL models. In addition, the hydrologic 789 
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predictions are stable under the National LSTM regardless of whether only dynamic inputs or both dynamic 790 

and static inputs are changed under warming (see Figure S9), in contrast to the Great Lakes DL models. 791 

Therefore, the use of more watersheds in training that span a more diverse set of climate conditions likely 792 

benefits the model when inputs are shifted to reflect new climate conditions. However, as shown in Figure 793 

8a,b, this benefit does not mitigate the tendency for the National LSTM to overestimate water loss under 794 

warming.  795 

 796 
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 797 

Figure 8. The distribution of change in (a,b) long term mean daily flow (AVG.Q), (c,d) low flows (FLV), 798 

(e,f) high flows (FHV), and (g,h) seasonal streamflow timing (COM) across 29 CAMELS sites within the 799 

Great Lakes basin under the National LSTM (solid pink), as well as for 17 of those 29 sites from the 800 

Great Lakes deep learning and process-based models, under a scenario of 4C warming. Results from the 801 

National LSTM for those 17 sites are also highlighted (dashed pink). For the Great Lakes models only, 802 

results differ when using (a,c,e,f) Hamon PET and (b,d,f,h) Priestley-Taylor PET. For the National 803 

LSTM, changes were made only to the dynamic inputs. 804 

 805 
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To better understand why the National LSTM predicts large water losses under warming, it is instructive 806 

to examine how long-term mean streamflow, (Priestly-Taylor estimated) PET, and Rs vary across all 531 807 

CAMELS watersheds of different average temperatures, and compare this variability to predicted changes 808 

in PET at each site under warming. Specifically, we calculate the difference in long-term (1980-2014) mean 809 

streamflow (Figure 9a), PET (Figure 9b), and Rs (Figure 9c) across all pairs of basins in the CAMELS 810 

dataset with average long-term precipitation within 1% of each other (i.e., we only examine pairs of basins 811 

with very similar long-term mean precipitation). Then, for each basin pair, we plot the difference in long-812 

term mean streamflow, PET, and Rs against the difference in long-term average temperature for that pair. 813 

The results show that the difference in long-term mean streamflow across watersheds with similar 814 

precipitation becomes negative when the difference in temperature is positive (i.e., warmer watersheds have 815 

less flow on average), and that when the difference in average temperature reaches 4°C, flows differ by 816 

about 20% on average (Figure 9a). This is very similar to the predicted median decline in long-term mean 817 

streamflow seen for the National LSTM in Figure 8. We also note that average PET increases by 818 

approximately 20% between watersheds that differ in average temperature by 4°C (Figure 9b). However, 819 

higher PET in warmer watersheds is related both to the direct effect of temperature on vapor pressure deficit, 820 

as well as to the fact that higher incoming solar radiation co-occurs in warmer watersheds (Rs is 821 

approximately 9% higher across watershed pairs that differ by 4°C; Figure 9c). Using the Priestley-Taylor 822 

method, we estimate that average PET would only increase by between 9-14% (median of 11.5%) if 823 

temperatures warm by 4°C and Rs is held at historic values, while Rn is increased slightly due to declines 824 

in net outgoing longwave radiation with warming (Figure 9d). However, the National LSTM appears to 825 

convolute the effects of temperature and Rs and cannot separate out their effects on evaporative water loss, 826 

leading to larger predicted streamflow losses under 4°C warming than changes in PET would warrant. This 827 

is possibly because of the very strong correlation between at-site daily temperature and Rs historically 828 

(median correlation of 0.85 across all CAMELS watersheds).  829 

 830 
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 831 

Figure 9. The percent difference in long-term (1980-2014) mean (a) streamflow, (b) Priestley-Taylor 832 

based PET, and (c) downward shortwave radiation (Rs) for all pairs of CAMELS basins with average 833 

precipitation within 1% of each other, plotted against differences in average temperature for each pair. A 834 

loess smooth is provided for each scatter (blue), along with the changes in variable estimated at a 4°C 835 

temperature difference between pairs of sites (red). (d) The projected change in Priestley-Taylor based 836 

PET (as a percentage) for each CAMELS basin under 4°C warming, assuming no change in Rs. 837 

 838 

6. Discussion and Conclusion 839 

In this study, we contribute a sensitivity analysis that evaluates the physical plausibility of streamflow 840 

responses under warming using DL rainfall-runoff models. The basis for this evaluation is anchored to the 841 

assumption that differences in estimated streamflow responses should emerge under very different 842 

scenarios of PET under warming, and that realistic predictions of PET and water loss under warming tend 843 

to be much lower than those estimated by temperature-based PET methods. Accordingly, we assume that 844 

physically plausible streamflow predictions should be able to respond to lower energy-budget based PET 845 

projections under warming and, all else equal, estimate smaller streamflow losses.  846 

 847 

The results of this study show that a standard LSTM did not predict physically realistic differences in 848 

streamflow response across substantially different estimates of PET under warming. This discrepancy 849 
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emerged despite the fact that the standard LSTM was a far better model for streamflow estimation in 850 

ungauged basins compared to three process-based models under historic climate conditions. In addition, 851 

the National LSTM trained to a much larger set of watersheds (531 basins across 23° of latitude) using 852 

temperature, vapor pressure, and Rs directly (rather than PET) also estimated water loss under warming that 853 

far exceeded the losses estimated with process-based models forced with energy budget-based PET. Since 854 

water losses estimated using energy budget-based PET are generally considered more realistic (Lofgren et 855 

al., 2011; Shaw and Riha, 2011; Lofgren and Rouhana, 2016; Milly and Dunne, 2017; Lemaitre-Basset et 856 

al. 2022), this result casts doubt over the physical plausibility of the LSTM predictions produced in this 857 

work.   858 

 859 

Results from this work also suggest that PIML-based DL models can capture physically plausible 860 

streamflow responses under warming while still maintaining superior prediction skill compared to process-861 

based models, at least in some cases. In particular, a mass conserving LSTM that also respected the limits 862 

of water loss due to evapotranspiration (the MC-LSTM-PET) was able to predict changes in long-term 863 

mean streamflow that much more closely aligned with process-model based estimates, while also providing 864 

competitive out-of-sample performance across all models considered (including the other DL models). A 865 

more conventional MC-LSTM that did not limit water losses by PET was less consistent with process-based 866 

estimates of change in long-term mean streamflow. These results highlight the potential for PIML-based 867 

DL models to help achieve similar performance improvements over process-based models as documented 868 

in recent work on DL rainfall-runoff models (Kratzert et al., 2019a,b; Feng et al., 2020; Nearing et al., 2021) 869 

while also producing projections under climate change that are more consistent with theory than non-PIML 870 

DL models.  871 

 872 

An interesting result from this study was the disagreement in the change in high flows and seasonal 873 

streamflow timing between all Great Lakes DL models and process-based models, the latter which 874 

estimated greater reductions in high flows and larger shifts of water towards earlier in the year. Predictions 875 
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from the Great Lakes DL models were also unstable if static climate properties of each watershed were 876 

changed under warming. In contrast, the National LSTM was more stable if static properties were changed, 877 

and it predicted changes to high flows and seasonal timing that were more like the process-based models 878 

than predictions from the Great Lakes DL models. The results for COM in particular suggest that the 879 

National LSTM may be more consistent with the process-based models in terms of its representation of 880 

warming effects on snow accumulation and melt processes and the resulting shifts in the seasonal 881 

hydrograph, although differences with the process-based model predictions were still notable. Still, these 882 

results are consistent with past work showing that large-sample LSTMs can learn to represent snow 883 

processes internally from meteorological and streamflow data (Lees et al., 2022). While it is challenging to 884 

know which set of predictions are correct for these streamflow properties, these results overall favor 885 

predictions from the National LSTM over the regional LSTMs and highlight the benefits of DL rainfall-886 

runoff models trained to a larger set of diverse watersheds for climate change analysis.  887 

 888 

To properly interpret the results of this work, there are several limitations of this study that require 889 

discussion. First there were differences in the inputs and data sources between the National LSTM and all 890 

other Great Lakes models, including the source of meteorological data and the lack of PET as an input into 891 

the National LSTM.  While the National LSTM was provided meteorological inputs that together 892 

completely determine Hamon and Priestley-Taylor PET, the difference in meteorological data across the 893 

two sets of models is a substantial source of uncertainty and could lead to non-trivial differences in 894 

hydrologic response estimation, complicating a direct comparison of the National LSTM to the other 895 

models. Future work for the Great Lakes Intercomparison Project should consider developing consistent 896 

datasets with other (and larger) benchmark datasets like CAMELS to address this issue.   897 

 898 

Another important limitation is how we constructed the warming scenarios, with 4°C warming and shifts 899 

to PET but no changes to other meteorological variables (net incoming shortwave radiation, precipitation, 900 

humidity, air pressure, wind speeds). These scenarios and associated sensitivity analyses were constructed 901 
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in the style of other metamorphic tests for hydrologic models (Yang and Chui, 2021; Razavi, 2021; Reichert 902 

et al., 2023), where we define input changes with expected responses and test whether model behavior is 903 

consistent with these expectations. However, for DL and other machine learning models, the results of such 904 

sensitivity analyses may be unreliable because of distributional shifts between the training and testing data 905 

and poor out-of-distribution generalization (see Shen et al., 2021, Wang et al., 2023, and references within). 906 

When trained, conventional machine learning models try to leverage all of the correlations within the 907 

training set to minimize training errors, which is effective in out-of-sample performance only if those same 908 

patterns of correlation persist into the testing data (Liu et al., 2021). In our experimental design, we impose 909 

a distinct shift in the joint distribution of the inputs (i.e., a covariate shift) by increasing temperatures and 910 

PET but leaving unchanged other meteorological inputs, thereby altering the correlation among inputs. 911 

Therefore, one might expect some degradation in the DL model-based predictions of streamflow under 912 

these scenarios. 913 

 914 

The challenge of out-of-distribution generalization and its application to DL rainfall-runoff model testing 915 

under climate change highlights several important avenues for future work. First, additional efforts are 916 

needed to evaluate the physical plausibility of DL-based hydrologic projections under climate change while 917 

ensuring that the joint distribution of all meteorological inputs used in future scenarios is realistic. For 918 

example, there are physical relationships between changes in temperature and net radiation (Nordling et al., 919 

2021), as well as temperature, humidity, and extreme precipitation (Ali et al., 2018; Najibi et al., 2022), 920 

that should all be preserved in future climate scenarios. The use of climate model output may be well suited 921 

for such tests, although care is needed to avoid statistical bias correction and downscaling (i.e., post-922 

processing) of multiple climate fields that could cause shifts in the joint distribution across inputs (Maraun, 923 

2016). High-resolution convective-permitting models may be helpful in this regard, given their improved 924 

accuracy for key climate fields like precipitation (Kendon et al. 2017).  925 

 926 
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There are also several emerging techniques in machine learning to address out-of-distribution 927 

generalization directly. One set of promising methods is causal learning, defined broadly as methods aimed 928 

at identifying input variables that have a causal relationship with the target variable and to leverage those 929 

inputs for prediction (Shen et al., 2021). PIML approaches, such as the MC-LSTM-PET model proposed 930 

in this work, fall into this category (Vasudevan et al., 2021). Here, prior scientific knowledge on casual 931 

structures can be embedded into the DL model through tailored loss functions or, as in the case of the MC-932 

LSTM-PET model, through architectural adjustments or constraints (for other examples outside of 933 

hydrology, see Lin et al., 2017; Ma et al., 2018). The MC-LSTM-PET model can be viewed as a specific, 934 

limited case of a broader class of learnable, differentiable, process-based models (also referred to as hybrid 935 

differentiable models; Jiang et al., 2020; Feng et al., 2022; Feng et al., 2023a). These models use process-936 

based model architectures as a backbone for model structure, which is then enhanced through flexible, data-937 

driven learning for a subset of processes. Recent work has shown that these models can achieve similar 938 

performance to LSTMs but can also represent and output different internal hydrologic fluxes (Feng et al., 939 

2022; Feng et al., 2023a).  940 

 941 

However, challenges can arise when imposing architectural constraints in PIML models. For example, the 942 

MC-LSTM-PET model makes the assumption that all water loss in the system is due to evapotranspiration, 943 

and therefore cannot exceed PET. However, other terminal sinks are possible, such as human water 944 

extractions and inter-basin transfers (Siddik et al. 2023) or water lost to aquifer recharge and inter-basin 945 

groundwater fluxes (Safeeq et al., 2021; Jasechko et al., 2021). It is difficult to know the magnitude of these 946 

alternative sinks given unknown systematic errors in other inputs (e.g., underestimation of precipitation 947 

from under-catch) that confound water balance closure analyses. Still, recent techniques and datasets to 948 

help quantify these sinks (Gordon et al., 2022; Siddik et al. 2023) provide an avenue to integrate them into 949 

the MC-LSTM-PET constraints. Yet as constraints are added to the model architecture, the potential grows 950 

for inductive bias that negatively impacts generalizability. For instance, a recent evaluation of hybrid 951 

differentiable models showed that they underperformed relative to a standard LSTM due to structural 952 
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deficiencies in cold regions, arid regions, and basins with considerable anthropogenic impacts (Feng et al., 953 

2023b). Some of these challenges may be difficult to address because only differentiable process-based 954 

models can be considered in this hybrid framework, limiting the process-based model structures that could 955 

be adapted with this approach. Additional work is needed to evaluate the benefits and drawbacks of these 956 

different PIML-based approaches, preferably on large benchmarking datasets such as CAMELS or 957 

CAVARAN (Kratzert et al., 2023).  958 

 959 

Given some of the potential challenges above, other DL methods that make use of causal concepts while 960 

making fewer assumptions on watershed-scale process controls are also worth pursuing. For example, a 961 

series of techniques have emerged that embed the concept and constraints of directed acyclic graphs within 962 

deep neural networks in such a way that the architecture of the neural network is inferred from the data to 963 

encode causality among variables (see Luo et al., 2020 and references within). That is, frameworks to 964 

optimize the architecture of the model can be designed not only to maximize out-of-sample predictive 965 

performance, but also to promote causality. Alternatively, domain-invariant learning attempts to promote 966 

the identification of features that are domain-specific versus domain invariant, by separating and labeling 967 

training data from different ‘domains’ or ‘environments’ (Ilse et al., 2021). In the case of DL rainfall-runoff 968 

models, this strategy could be implemented, for instance, by pairing observed climate and streamflow (one 969 

domain) with land surface model-based streamflow estimated using future projected climate model output 970 

(another domain), with the goal to learn invariant relationships between key climate inputs (e.g., net 971 

radiation or PET) and streamflow across the two domains. Here, there may be a benefit from including data 972 

from the land surface and climate models, where the correlation between temperature, net radiation, and 973 

PET may be weaker under projected climate change. These techniques offer an intriguing alternative for 974 

the next generation of DL hydrologic models that can generalize well under climate change, and should be 975 

the focus of further exploration.  976 

 977 
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