
Response to Reviewers for: ‘On the need for physical constraints in deep leaning rainfall-runoff 

projections under climate change: a sensitivity analysis to warming and shifts in potential 

evapotranspiration’ 

 

Sungwook Wi, Scott Steinschneider 

Corresponding author: Sungwook Wi, sw2275@cornell.edu 

 

Key 

Black font:   Reviewer comments 

Blue font:   Author responses 

Italicized orange font:  Updated manuscript wording, underline for changes to original 

--------------------------------------------------------------------------------------------------------------------- 

 

We greatly appreciate the time and detail that the three reviewers put into their evaluation of our 

manuscript. We have addressed all of the comments on a point-by-point basis, which we detail 

below. In particular, we have made substantial revisions throughout the manuscript to address 

several major concerns expressed by the reviewers, including: 

 

• A more nuanced presentation of the specific experiments conducted in this work, 

emphasizing that we conduct sensitivity analyses rather than formal projections under 

climate change; 

• Improved context for our results and experiments, in particular with respect to the 

machine learning literature on distribution shifts and causality;  

• More detail on how our results highlight the strength and weaknesses of DL models to 

simulate hydrologic responses under changing snow accumulation and melt processes 

with warming; and 

• A more thorough treatment of parametric uncertainty in the process models, and how it 

impacts the interpretation of DL model responses to warming.   

We think these revisions, along with several others, have served to significantly improve the 

manuscript. 

 

Reviewer #1 

This study examines the behavior of different models under a hypothetical scenario where 4°C 

are added to the daily minimum and maximum temperatures. In doing so, the contribution finds 

that models with more explicit representations of hydrological processes are likely to exhibit 

more realistic behaviors under this shift.  

I find this kind of study very important and very timely (as other discussion papers show; see 

e.g.: Reichert et al. 2023). On top of that, the execution is done well: The work is, by and large, 

well motivated; the idea is good; and, all tables and images are clear; almost everything is 

documented. I therefore think that the study should definitely be published on HESS. In terms of 

critique I have one point about the literature that I think is crucial, and some small 

questions/comments. The latter are, however, not so important. 

mailto:sw2275@cornell.edu


We thank the reviewer for their overall positive, constructive, and speedy review. We greatly 

appreciate the feedback and believe it has served to significantly improve the manuscript. 

 

Major Comment 

 

The references are quite thorough with regard to the recent use of deep learning in hydrology. I 

complement the authors for that. They do, however, ignore large amounts of work from the 

outside the field. Normally this would not be a concern --- since one feeds into the other --- but 

here it does skew the motivation somewhat. As of now the introduction/motivation of the work 

reads as if current researcher are not aware that one can increase the temperature by some 

degrees and then test what the model would do under such circumstances. This is however not 

the case. For example, the group I am involved with, did not conduct such counterfactual 

experiments because we knew that deep learning models are  out of the box not be able cope 

with arbitrary shifts in the covariance structures of the inputs. Statistical learning hinges on the 

idea that the future looks similar to the past --- and in a counterfactual setting this property is not 

given by design.  

 

I strongly believe that the paper should give a better overview of the current machine learning 

literature and use that to discuss the merits and limits of the study design. This would give 

readers a much richer picture of what the proposed evaluation can probe.  

Specifically, I am thinking that the paper should reference current work on (a) causality and (b) 

distribution shifts; and then use it feed into the discussion of the limitations of the current study. 

The reason why I think of (a) and (b) is that both research branches are fundamental to 

understand the study design: (a) Causality is important because the examination is a true 

counterfactual in that the adopted input has not --- and will never be --- observed in reality 

(remember, the daily values of the min and max temperatures change by adding exactly 4°C to 

all basins, while inputs like the radiation, wind, precipitation, and vapor pressure remain entirely 

the same). (a) The research on distribution shifts is important because adding 4°C to each day is 

a prime example of a covariate shift. Detecting, handling, "robustifiyng" and/or adapting to 

distribution shifts is an active area of research and should be seen as an open problem. Roughly 

speaking, results from (a) and (b) provide a counter point to the current motivation of the 

research in that they suggest that dara-driven models should per-se not be able to withstand a 

counterfactual examination. I think this would help readers to understand that the "physical 

plausible" response of the catchment model is measured with a "physically implausible" 

counterfactual signal (which is not observed in any catchment no matter what and will force the 

models into a sort of "extrapolation regime"). I believe that only then readers will understand that 

this is a very special form of test --- and that is very impressive that it is possible to design data-

driven models that already show promising result in this setting, while having just a few more 

inductive biases than the current LSTM based rainfall-runoff models. In this regard, I do not 

want to force the authors to cite any particular work, but beg them to align their work with these 

branches of research (even if it means that they need to relativize their a-priori expectations) 

We are grateful to the reviewer for making this suggestion. We agree that the literature on 

causality and distribution shifts in machine learning is extremely relevant to our study design, 

and in particular to its interpretation, limitations, as well as a fertile ground for future work. The 



last two concluding paragraphs in our original manuscript were an attempt to address some of 

these issues, although admittedly this was not done to the extent necessary or with reference to 

the large body of work on these topics in the broader ML literature that the reviewer notes here. 

Consistent with one of the last reviewer suggestions below, we have taken this opportunity to 

significantly revise (i.e., large rewrite) our Discussion and Conclusion section, removing some of 

the older content and replacing it with a more robust treatment of the issues raised here. In the 

process of this revision, we tried to integrate our discussion around physics-informed machine 

learning (PIML) into the broader discussion on distribution shifts and causality, as we view 

PIML as one set of approaches (among several) that falls under the broader umbrella of causal 

deep learning methods.  

We also note that in response to this comment and another by Reviewer #2, we have 

significantly revised the text throughout our manuscript to better convey what our experiment 

actually tests: the sensitivity of these models to imposed shifts in temperature and associated 

changes in potential evapotranspiration, rather than internally consistent climate changes across 

all meteorological variables. We believe these revisions also support the general points being 

made in this reviewer’s comment.   

 

Minor Comments  

 

L. 85-86. Please add a reference to this sentence (or an explanation why no reference is given). 

You make the claim that "many argue" without even giving a single example. 

We have added a recent paper (Nearing et al., 2022) that makes this argument based on past 

literature (or an adjusted version of this argument, see response to comment below), and also 

changed “many” to “some” to avoid overstating this claim.  

L. 85-86. I think the meaning of "state-of-the-science" should be outlined. As far as I am aware it 

is not common terminology in hydrology (I, for one, had to look it up and am still not sure what 

is meant with it in this context).  

We have changed the wording here to be more explicit, removing ‘state-of-the-science’ and 

instead replacing it with ‘most accurate and extrapolatable’ 

L.100-101. I disagree with the claim about the corollary. Maybe it is an implication? I am not 

sure however: (a) Given the noise in the data, even without new climate conditions the 

predictions might be physically implausible. (b) Just because a ML model is "physically 

plausible" in in a out os sample setting does not mean that it remains so under a shift setting. 

What do you think about writing something like "From these results one might think that ..." or 

"If we spin these results further one could think that...". 

We agree a wording change is warranted here. From the suggestions provided, we have altered 

this sentence to read: 

A potential implication of this finding might be that these models can produce physically 

plausible streamflow predictions under new climate conditions. 



L.108ff Is it correct that, from a hydrological perspective, this assume that there are no 

Glaciers/permanent snow in the basins (which, I think is, e.g., not true for CAMELS US as used 

in Liu et al. 2022)? The mechanism would be that as long as there is more melting happening, we 

should see higher water levels with higher temperatures.  

That is correct, and our study in Wi and Steinschneider (2022) does point out (and highlight in 

the results) that this assumption of streamflow loss under warming would not apply to 

watersheds that drain regions with glaciers or over-year snow cover. We have adjusted this line 

to highlight this exception.    

L. 334. Would you be so kind and make a comparison of the (normal) LSTM performance with 

normalized streamflow and without it? I once made a similar test, where I trained an LSTM on 

CMALES US without setting the standard deviations to one. And, got very bad results... 

However, your performance seems to be comparable to the ones reported in Mai et al. (2022). To 

me it is not really clear how you did that (especially since you used a relatively small learning 

rate and since the linear layer requires much bigger parameters in your setting). Maybe it is 

because the magnitude and behavior of the GRIP-GL rivers are much less diverse than the ones 

in CAMELS US?   

Sure thing. We went ahead and refit the LSTM using normalized streamflow, employing the 

exact same training process as for the LSTM described in the article. We’ve pasted below a 

comparison of performance (KGE) between the original LSTM (without normalization) and the 

LSTM with normalization, showing results separately for training and testing sites and training 

and testing periods. We do not see any meaningful difference between the two. We agree that 

perhaps this result is driven by the fact that the diversity across sites in our domain is less than 

across the entire continuous US. Related to this, the flow in our region is much less skewed 

compared to some other arid and semi-arid regions, which might be contributing to this result.  

  



 

L. 165ff. I know this is a choice of style and I will not mention this for the other occurrences, 

but: I would appreciate if you could already sketch the outcome of the experiments here (and in 

the other instances where you hypothesize about properties that one actually already knows at the 

time of writing).  

We have adjusted the wording throughout the Introduction to state the outcomes we found, rather 

than posit them as hypothesized outcomes.  

L. 176. Maybe adjust sentence a bit. I pretty sure that Frame et al. 2022 did not made an 

argument that physical constraints are not needed in for generating plausible projections under 

climate change. And, this sentence could easily be misread in that way. 

To avoid any confusion or misinterpretation, we have simply removed the reference to Frame et 

al. 2022 (and arguments that physics-informed constraints are unneeded) altogether. We think 

the sentence stands fine on its own without this added clause.  

L.268ff & L.350-351. It is probably an oversight on my side, but cannot find the code for this 

analysis in the zenodo repository.   



This was an oversight on our part. The code for the National LSTM has now been added to the 

Zenodo repository.  

L.344ff. Can you add a description or table with the grid you searched the hyper-parameters for 

to the supplementary?  

Yes, we have added a table in the Supporting Information that shows the grid search used for the 

hyper-parameters, and now reference this SI table in the main manuscript.  

L.377. I would recommend to explicitly write about $\sigma$ and $\hat{\sigma}$ here so that 

readers know what you are referring to. 

We now include the equation for 𝜎̂(∙) in relation to 𝜎(∙), and provide a brief explanation of its 

output. 

Table 2. I think the MC-LSTM KGE for "Testing Sites: Testing Period" should also be marked 

in bold since it is also 0.72 (the decimals that follow and are not shown should not  be considered 

for a tie breaker here).  

We agree, we have bolded the 0.72 being referred to in this table. We also slightly revised the 

manuscript text to be consistent with this change.  

In particular, the LSTM outperforms the MC-LSTM and MC-LSTM-PET for NSE and 

FLV (as well as KGE in the training period), the MC-LSTM-PET outperforms the LSTM 

and MC-LSTM for PBIAS, and either the MC-LSTM or MC-LSTM-PET are the best 

performers for FHV. 

L.497ff Please describe the actual changes that you made to the static attributes either here or in 

the supplementary. I can see the changes in the data, but that requires readers to reconstruct what 

you did.  

We have added a section to our Supporting Information to more clearly describe the changes 

made to the static attributes, and refer to this section here in the main article.   

L.497ff I am probably missing something here, but to me its is not obvious why you changed the 

snow fraction of the precipitation with temperatures below 0°C? If the model gets an input with -

3°C it should not matter to this whether this value was the true input or the counterfactually 

modified one; no?  

The static input frac_snow is defined as the fraction of precipitation falling on days with mean 

daily temperatures below 0°C, i.e., the total amount of precipitation falling on days with T < 0C 

divided by the total amount of precipitation falling on all days. Under our warming scenario, the 

number of days with precipitation falling when temperatures are below 0°C declines, and thus, 

so does frac_snow. We now clarify this in our revised manuscript (see response to comment 

directly above).  



L.656 consist -> consistent  

This has been corrected.  

L. 803ff. Is it really necessary to discuss short-wave radiation for so long here? You also did not 

consider that the thermic and dynamic behavior of the atmosphere and hence, the precipitation 

patterns would, for example, change over the whole region. I think you could abbreviate this 

paragraph considerably by just stating that the input modification is pragmatic and intuitiv, but 

does not reflect how the meteorological behavior would actually play out under climate change. 

This would then also my proposed literature references if you decide to include it. 

We have taken the reviewer’s suggestion, and have significantly shortened our focus on radiation 

here in favor of a broader treatment of the issues of distribution shifts and causality, as 

mentioned in the reviewer’s main comment.  

Upon reflection I would like to add that I think it would be highly beneficial if you could add 

some representative Hydrographs to an Appendix. This is, for one because I am interested to see 

some because of my personal experience with mass-conserving models; but secondly I also 

genuinely believe that it would help readers to put the performance and interventions into 

perspective.  

When describing the results in Figure 7, we now reference individual hydrographs for specific 

sites (at both daily and monthly timescales), which are provided in the SI. We reference these SI 

figures while highlighting changes to key attributes of streamflow (FLV, FHV, COM) under 

warming, in an effort to better show what some of these differences in flow statistics mean in 

terms of daily flow time series.  
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Abstract 27 

Deep learning (DL) rainfall-runoff models have recently emerged as state-of-the-science tools for 28 

hydrologic prediction that outperform conventional, process-based models in a range of applications. 29 

However, it remains unclear whether deep learningDL models can produce physically plausible projections 30 

of streamflow under significant amounts of climate change. We investigate this question  here, focusing 31 

specifically onthrough a sensitivity analysis of modeled responses to increases in temperature and potential 32 

evapotranspiration (PET), with other meteorological variables left unchanged. Previous research has shown 33 

that temperature-based PET methods to estimate PET lead to overestimates evaporative of water loss in 34 

rainfall-runoff models under warming, as compared to energy budget-based PET methods. We therefore 35 

Consequently, we assess the reliability of streamflow projections under warming by comparing projections 36 

with both temperature-based and energy budget-based PET estimates, assumeing that reliable streamflow 37 

projections responses to warming should exhibit less evaporative water loss when forced with smaller, 38 

(energy budget-based ) projections of future PET compared to temperature-based PET. We conduct this 39 

assessment using three conceptual, process-based rainfall-runoff models rainfall-runoff models and three 40 

deep learningDL models, trained and tested across 212 watersheds in the Great Lakes basin. The deep 41 

learningDL models include a regional Long Short-Term Memory network (LSTM), a mass-conserving 42 

LSTM (MC-LSTM) that preserves the water balance, and a novel variant of the MC-LSTM that also 43 

respects the relationship between PET and evaporative water loss (MC-LSTM-PET). After validating 44 

models against We first compare historical streamflow and actual watershed-scale evapotranspiration, 45 

predictions from all models under spatial and temporal validation, and also assess model skill in estimating 46 

watershed-scale evapotranspiration. We thenwe force all models with scenarios of warming, historical 47 

precipitation, and both temperature-based (Hamon) and energy budget-based (Priestley-Taylor) PET, and 48 

compare their projections responses for changes in average long-term mean daily flow, as well as low flows, 49 

high flows, and seasonal streamflow seasonal timing. Finally, wWe also explore similar projections 50 
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responses using a National LSTM fit to to a broader set of 531 watersheds across the contiguous United 51 

States to assess how the inclusion of a larger and more diverse set of basins influences signals of hydrologic 52 

response under warming. The main results of this study are as follows: 53 

1. The three Great Lakes deep learningDL models significantly substantially outperform all process 54 

models in streamflow estimation under spatiotemporal validation, with only small differences 55 

between the DL models. The MC-LSTM-PET also matches the best process models and 56 

outperforms the MC-LSTM in estimating actual evapotranspiration under spatiotemporal 57 

validation.  58 

2. All process models show a downward shift in long-term mean daily average flows under warming, 59 

but this median shifts is are significantly considerably larger under temperature-based PET (17% 60 

to 25%) estimates than energy budget-based PET (-6% to -9%). The MC-LSTM-PET model 61 

exhibits similar differences in water loss across the different PET forcings, consistent with the 62 

process models. HoweverConversely, the LSTM exhibits unrealistically large water losses under 63 

warming as compared to the process models using Priestley-Taylor PET (20%), while the MC-64 

LSTM is relatively insensitive to PET method.  65 

3. All deep learningDL models exhibit smaller changes in high flows and streamflow seasonal timing 66 

of flows as compared to the process models while deep learningDL projections estimates of low 67 

flows are all very consistent and within the range projected estimated by the process models.  68 

4. Like the Great Lakes LSTM, the National LSTM also shows unrealistically large water losses under 69 

warming (25%), but . However, when compared to the Great Lakes deep learning models, 70 

projections from the National LSTM wereit is more stable when many inputs were are changed 71 

under warming and better alignsed with process model projections responses for streamflow 72 

seasonal timing of flows. This suggests that the addition of more, diverse watersheds in training 73 

does help improve climate change projections from deep learning models, but this strategy alone 74 

may not guarantee reliable projections under unprecedented climate change. 75 
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Ultimately, the results of this work sensitivity analysis suggest that physical considerations regarding model 76 

architecture and input variables are may be necessary to promote the physical realism of deep learning-77 

based hydrologic projections under climate change.  78 

 79 

Keywords 80 

 Deep learning, machine learning, Long Short-Term Memory network, LSTM, Great Lakes, climate 81 

change, rainfall-runoff  82 

 83 

 84 

 85 

 86 

 87 

 88 

 89 

 90 

 91 

1. Introduction 92 

Rainfall-runoff models are used throughout hydrology in a range of applications, including retrospective 93 

streamflow estimation (Hansen et al. 2019), streamflow forecasting (Demargne et al., 2014), and prediction 94 

in ungauged basins (Hrachowitz et al., 2013). Work over the last few years has demonstrated that deep 95 

learning (DL) rainfall-runoff models (e.g., Long Short-Term Memory networks (LSTMs); Hochreiter and 96 

Schmidhuber, 1997) outperform conventional process-based models in each of these applications, 97 

especially when those DL models are trained with large datasets collected across watersheds with diverse 98 

climates and landscapes (Kratzert et al., 2019a,b; Feng et al., 2020; Ma et al., 2021; Gauch et al., 2021a,b; 99 

Nearing et al., 2021). For example, in one extensive benchmarking study, Mai et al. (2022) found that a 100 
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regionally trained LSTM outperformed 12 other lumped and distributed process-based models of varying 101 

complexity in rivers and streams throughout the Great Lakes basin. These and similar results have led many 102 

some to argue that DL models represent the most accurate and extrapolatable rainfall-runoff models 103 

available (Nearing et al., 2022)most accurate and extrapolatable rainfall-runoff models available (Nearing 104 

et al., 2022).  105 

 106 

However, there remains one use case of rainfall-runoff models where the superiority of DL is unclear: long-107 

term projections of streamflow under climate change. Past studies using DL rainfall-runoff models for 108 

hydrologic projections under climate change are rare (Lee et al., 2020; Li et al., 2022), and few have 109 

evaluated their physical plausibility (Razavi, 2021; Reichert et al., 2023; Zhong et al., 2023). A reasonable 110 

concern is whether DL rainfall-runoff models can extrapolate hydrologic response under unprecedented 111 

climate conditions, given that they are entirely data driven and do not explicitly represent the physics of the 112 

system. It is not clear a priori whether this concern has merit, because DL models fit to a large and diverse 113 

set of basins have the benefit of learning hydrologic response across climate and landscape gradients. In so 114 

doing, the model can, for example, learn hydrologic responses to climate in warmer regions and then 115 

transfer this knowledge to projections of streamflow in cooler regions subject to climate change induced 116 

warming. In addition, past work has shown that LSTMs trained only to predict streamflow have memory 117 

cells that strongly correlate with independent measures of soil moisture and snowpack (Lees et al. 20221), 118 

suggesting that DL hydrologic models can learn fundamental hydrologic processes. A corollary potential 119 

implication to of this finding is might be that these models can may produce physically plausible streamflow 120 

predictions under new climate conditions.  121 

 122 

 123 

 124 

It is challenging to assess the physical plausibility of DL-based hydrologic projections under significantly 125 

substantially different climate conditions, because there are no future observations against which to 126 
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compare. This challenge is exacerbated by significant uncertainty in process model projections under 127 

alternative climates, which makes establishing reliable benchmarks difficult. Future process model-based 128 

projections can vary widely due to both parametric and structural uncertainty (Bastola et al., 2011; Clark et 129 

al., 2016; Melsen et al., 2018), and even for models that exhibit similar performance under historical 130 

conditions (Krysanova et al., 2018). Assumptions around stationary model parameters are not always valid 131 

(Merz et al., 2011; Wallner and Haberlandt, 2015), and added complexity for improved process 132 

representation is not always well supported by data (Clark et al., 2017; Towler et al., 2023; Yan et al., 2023). 133 

Together, these challenges highlight the difficulty in establishing good benchmarks of hydrologic response 134 

under alternative climates against which to compare and evaluate DL-based hydrologic projections under 135 

climate change.  136 

 137 

 138 

Recently, Wi and Steinschneider (2022) (hereafter WS22) addressed this challenge directly, 139 

forwardingforwarded an experimental design to evaluate the physical plausibility of DL hydrologic 140 

responses to new climates, in which DL hydrologic models fit to 15 watersheds in California and 531 141 

catchments across the United States were forced with historical precipitation and temperature, but with 142 

temperatures adjusted by up to 4°C. Based on past literature (Cayan et al., 2001; Stewart et al., 2005; 143 

Kapnick and Hall, 2010; Lehner et al., 2017; McCabe et al., 2017; Dierauer et al., 2018; Mote et al., 2018; 144 

Woodhouse & Pederson, 2018; Martin et al., 2020; Milly & Dunne, 2020; Rungee et al., 2021; Gordon et 145 

al., 2022; Liu et al., 2022), WS22 posited that in non-glaciated regions, physically plausible hydrologic 146 

projections responses should show an increase in water loss, defined as water that enters the watershed via 147 

precipitation but never contributes to streamflow because it is ‘lost’ to a terminal sink. Specifically, WS22 148 

assumed that evaporative water loss should increase and annual  decline in total annual average streamflow 149 

should decline compared to a baseline historical simulation, due to increases in potential evapotranspiration 150 

(PET) with warming (and no changes in precipitation). Results showed that the an LSTM trained to the 15 151 

watersheds in California often led to misleading increases in annual runoff under significant warming, while 152 
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this phenomenon was less likely (though still present) in the a DL model trained to 531 catchments across 153 

the United States.  154 

 155 

WS22 also conducted their experiment with physics-informed machine learning (PIML) models, in which 156 

data-driven techniques are imbued with process-knowledge constructs (Karpatne et al., 2017), . WS22 157 

focused on two PIML strategies for the smaller case study in California, using process model output (e.g., 158 

soil moisture, evapotranspiration (ET)) directly as input to the LSTM (similar to Konapala et al., 2020; Lu 159 

et al., 2021; Frame et al., 2021a), and alsoor as additional target variables in a multi-output architecture. 160 

The former approach had some success in removing instances of increasing runoff ratio with warming, but 161 

although this depended heavily on the accuracy ofwas dependent on the the process -model usedET.  162 

 163 

Other PIML approaches that more directly adjust the architecture of DL rainfall-runoff models may be 164 

better suited for improving long-term streamflow projections under climate change without requiring an 165 

accurate process-based model. For instance, Hoedt et al. (2021) introduced a mass conserving LSTM (MC-166 

LSTM) that ensures cumulative streamflow predictions do not exceed precipitation inputs. Hybrid models 167 

present a related approach, where DL modules are embedded within process models structures (Jiang et al., 168 

2020; Feng et al., 2022; Hoge et al., 2022; Feng et al., 2023a). In some cases, Ttheseis architectural changes 169 

cane slightly degrade performance compared to underperformed a standard LSTM when predicting out-of-170 

sample extreme events (Frame et al., 2021b; Feng et al., 2023b), but other times such changes can be 171 

beneficial (Feng et al., 2023a). and sSome have argued that these physical constraints may inhibit the ability 172 

of DL models to learn biases in forcing data (Frame et al. 2022)). Still, but the benefits of this such mass 173 

conserving architectures have not been tested when employed under previously unobserved climate change.  174 

 175 

For all models considered in WS22, a major focus was evaluating the direction of annual total runoff change 176 

in the presence of warming and no change in precipitation. However, that study did not consider the 177 

magnitude of runoff change and how it relates to projected changes in PET. As we argue below, this 178 



8 

 

comparison provides a unique way to assess the physical plausibility of future hydrologic projections. 179 

Several studies have investigated the effects of different PET estimation methods on the magnitude of PET 180 

and runoff change in a warming climate (Lofgren et al., 2011; Shaw and Riha, 2011; Lofgren and Rouhana, 181 

2016; Milly and Dunne, 2017; Lemaitre-Basset et al. 2022). Broadly, this these work studies haves shown 182 

that temperature-based PET estimation methods (e.g., Hamon, Thornthwaite) significantly substantially 183 

overestimate increases in PET under warming as compared to energy budget-based PET estimation methods 184 

(e.g., Penman-Monteith, Priestley-Taylor), and consequently lead to unrealistic declines in streamflow 185 

under climate change. This is because the actual drying power of the atmosphere is driven by the availability 186 

of energy at the surface from net radiation, the current moisture content of the air, temperature (and its 187 

effect on the water holding capacity of the air and vapor pressure deficit), and wind speeds. Energy budget-188 

based methods, while imperfect and at times empirical (Greve et al. 2019; Liu et al., 2022), account for 189 

some or all of these factors in ways that are generally consistent with their causal impact on PET, while 190 

temperature-based methods estimate PET using strictly empirical relationships based largely or entirely on 191 

temperature. The latter approach works sufficiently well for rainfall-runoff modeling under historical 192 

conditions because of the strong correlation between temperature, net radiation, and PET on seasonal 193 

timescales, even though this correlation weakens considerably at shorter timescales (Lofgren et al., 2011). 194 

Under climate change, consistent and prominent increases are projected for temperature, but projected 195 

changes are less prominent or more uncertain for other factors affecting PET (Lin et al., 2018; Pryor et al., 196 

2020, Liu et al. 2020). Consequently, temperature-based PET methods significantly substantially 197 

overestimate future projections of PET compared to energy budget-based methods (Lofgren et al., 2011; 198 

Shaw and Riha, 2011; Lofgren and Rouhana, 2016; Milly and Dunne, 2017; Lemaitre-Basset et al. 2022).  199 

 200 

As argued by Lofgren and Rouhana (2016), the bias in PET and runoff that results from different PET 201 

estimation methods under warming provides a unique opportunity to assess the physically plausibility of 202 

hydrologic projections under climate change. In this study, we adopt this strategy for DL rainfall-runoff 203 

models and forward an experimental designthrough a sensitivity analysis in which both conceptual, process-204 
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based and DL hydrologic models are trained with either temperature-based or energy budget-based 205 

estimates of PET, along with other meteorological data (precipitation, temperature). These models are then 206 

forced with the historical precipitation and temperature series, but with the temperatures warmed by an 207 

additive factor and PET calculated from the warmed temperatures using both PET estimation methods. We 208 

anticipate show that the process models 1) will exhibit similar performance in historical training and testing 209 

periods when using either temperature-based or energy budget-based PET estimates; but 2) will exhibit 210 

significantly substantially larger long-term mean streamflow declines under warming when using future 211 

PET estimated with a temperature-based method. If the DL rainfall-runoff models follow the same pattern, 212 

this would suggest that these models are able to learn the role of PET on evaporative water loss. However, 213 

if DL-based models estimate similarly and large long-term mean streamflow declines regardless of the 214 

method used to estimate and project PET, this would suggest that the DL models did not learn a mapping 215 

between PET and evaporative water loss. Rather, the DL models learned the historical (but non-causal) 216 

correlation between temperature and evaporative water loss, and then incorrectly extrapolated that effect 217 

into the future with warmer temperatures. Such We show this latter an outcome to be the case,  wouldwhich 218 

indicates that some degree of PIML is may be necessary to guide a DL model towards physically plausible 219 

projections under climate change, in contrast to previous arguments against the need for such physical 220 

constraints (Frame et al. 2022). 221 

 222 

We conduct the experiment above in a case study on 212 watersheds across the Great Lakes basin, using 223 

both standard and PIML-based LSTMs. We hypothesize show that a standard LSTM will produces 224 

unrealistic hydrologic projections responses to warming because it relies on historical and geographically 225 

pervasive correlations between temperature and PET to project estimate streamflow losses under warming. 226 

We also hypothesize show that PIML-based DL models will beare better able to relate future projections 227 

ofchanges in temperature and PET to streamflow change, especially those PIML approaches that directly 228 

map PET to evaporative water loss in their architecture.  229 

 230 
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The primary goal of this work is to forward an experimental design that can be used to evaluate the 231 

suitability of DL rainfall-runoff models for hydrologic projections under climate change, in line with a 232 

recent call to design benchmarking studies that assess whether models are fit for specific purposes (Beven, 233 

2023). The Great Lakes provides an important case study for this work, given their importance to the culture, 234 

ecosystems, and economy of North America (Campbell et al., 2015; Steinman et al., 2017). Projections of 235 

future water supplies and water levels in the Great Lakes are highly uncertain (Gronewold and Rood, 2019), 236 

in part because of uncertainty in future runoff draining into the lakes from a large contributing area 237 

(Kayastha et al. 2022), much of which is ungauged (Fry et al., 2013). Improved rainfall-runoff models that 238 

can regionalize across the entire Great Lakes basin are necessary to help address this challenge, and so an 239 

auxiliary goal of this work is to contribute PIML rainfall-runoff models to the Great Lakes Runoff 240 

Intercomparison Project Phase 4 (GRIP-GL) presented in Mai et al. (2022). This study currently provides 241 

one of the most robust benchmarks comparing DL rainfall-runoff models to a range of process-based 242 

models, and so we design our experiment to be consistent with the data and model development rules 243 

outlined in the GRIP-GLthat intercomparison project. 244 

 245 

2. Data 246 

This study focuses on 212 watersheds draining into the Great Lakes and Ottawa River, which are all located 247 

in the St. Lawrence River basin (Figure 1). We note that this region is of similar spatial scale to other 248 

benchmarking datasets for DL rainfall-runoff models (e.g., CAMELS-GB; Coxon et al., 2020). For direct 249 

comparability to previous results from the Great Lakes Runoff Intercomparison ProjectGRIP-GL, all data 250 

for these watersheds are taken directly from the work in Mai et al. (2022) and include daily streamflow time 251 

series, meteorological forcings, geophysical attributes for each watershed, and auxiliary hydrologic fluxes. 252 

Daily streamflow were gathered from the U.S. Geological Survey (USGS) and Water Survey Canada (WSC) 253 

between January 2000 and December 2017. All streamflow gauging stations have a drainage area greater 254 

than or equal to 200 km2 and less than 5% missing data in the study period. The watersheds are evenly 255 

distributed across the five lake basins and the Ottawa River basin, and they represent a range of land 256 
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use/land cover types and degrees of hydrologic alteration from human activity. In the experiments described 257 

further below, 141 of the watersheds are designated as training sites, and the remaining 71 watersheds are 258 

used for testing (see Figure 1). In addition, the period between January 2000 to December 2010 is reserved 259 

for model training (termed the training period), and the period between January 2011 – December 2017 is 260 

used for model testing (termed the testing period).  261 

 262 

 263 

Figure 1. Great Lakes domain, with training and testing streamflow gauges used throughout this study. A 264 

subset of seventeen of these gauges that are also in the CAMELS database are highlighted, as are six sites 265 

used to present select results in Section 4.  266 

 267 

Meteorological forcings are taken from the Regional Deterministic Reanalysis System v2 (RDRS-v2), 268 

which is an hourly, 10 km dataset available across North America (Gasset et al., 2021). Hourly precipitation, 269 

net incoming shortwave radiation (Rs), and temperature are aggregated into a basin-wide daily precipitation 270 

average, daily Rs average, and daily minimum and maximum temperature. We note that the precipitation 271 

data from the Regional Deterministic Reanalysis System v2 RDRS-v2 is produced from the Canadian 272 

Precipitation Analysis (CaPA), which combines available surface observations of precipitation with a short-273 
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term reforecast provided by the 10 km Regional Deterministic Reforecast System. That is, the precipitation 274 

data is not model based, but rather is based on gauged data and spatially interpolated using information 275 

from modeled output.  276 

 277 

Geophysical attributes for each watershed were collected from a variety of sources. Basin-average statistics 278 

of elevation and slope were derived from the HydroSHEDS dataset (Lehner et al., 2008), which provides a 279 

digital elevation model (DEM) with 3 arcsec resolution. Soil properties (e.g., soil texture, classes) were 280 

gathered from the Global Soil Dataset for Earth System Models (GSDE; Shangguan et al., 2014), which is 281 

available at a 30 arcsec resolution. Land cover data at a 30 m resolution and based on Landsat imagery from 282 

2010-2011 were derived from the North American Land Change Monitoring System (NALCMS, 2017). 283 

These geophysical datasets were used to derive basin-averaged attributes for each watershed, listed in Table 284 

1.  285 

 286 

Table 1. Watershed attributes used in the deep learning models developed in this work (adapted from Mai 287 

et al., 2022).  288 

Attribute Description 

p_mean Mean daily precipitation 

pet_mean  Mean daily potential evapotranspiration 

aridity  Ratio of mean PET to mean precipitation 

t_mean  
Mean of daily maximum and daily minimum 
temperature 

frac_snow  
Fraction of precipitation falling on days with 
mean daily temperatures below 0°C 

high_prec_freq 

Fraction of high-precipitation days (= 5 times 
mean daily precipitation) 

high_prec_dur  

Average duration of high-precipitation events 
(number of consecutive days with = 5 times mean 
daily precipitation) 

low_prec_freq  
Fraction of dry days (< 1 mm d-1 daily 
precipitation) 

low_prec_dur  

Average duration of dry periods (number of 
consecutive days with daily precipitation < 1 mm 
d-1) 

mean_elev  Catchment mean elevation 

std_elev  Standard deviation of catchment elevation 



13 

 

mean_slope  Catchment mean slope 

std_slope  Standard deviation of catchment slope 

area_km2  Catchment area 

Temperate-or-sub-polar-needleleaf-forest  
Fraction of land covered by “Temperate-or-sub-
polar-needleleaf-forest” 

Temperate-or-sub-polar-grassland  
Fraction of land covered by “Temperate-or-sub-
polar-grassland” 

Temperate-or-sub-polar-shrubland 

 Fraction of land covered by “Temperate-or-sub-
polar-shrubland” 

Temperate-or-sub-polar-grassland  
Fraction of land covered by “Temperate-or-sub-
polar-grassland” 

Mixed-Forest  Fraction of land covered by “Mixed-Forest” 

Wetland  Fraction of land covered by “Wetland” 

Cropland  Fraction of land covered by “Cropland” 

Barren-Lands  Fraction of land covered by “Barren-Lands” 

Urban-and-Built-up  Fraction of land covered by “Urban-and-Built-up” 

Water  Fraction of land covered by “Water” 

BD  Soil bulk density (g cm-3) 

CLAY  Soil clay content (% of weight) 

GRAV  Soil gravel content (% of volume) 

OC  Soil organic carbon (% of weight) 

SAND  Soil sand content (% of weight) 

SILT  Soil silt content (% of weight) 
 289 

Finally, we also collect daily actual evapotranspiration (AET) for each watershed in millimeters per day, 290 

which was originally taken from the Global Land Evaporation Amsterdam Model (GLEAM) v3.5b dataset 291 

(Martens et al., 2017). GLEAM couples remotely sensed observations of microwave Vegetation Optical 292 

Depth, a multi-layer soil moisture model driven by observed precipitation and assimilating satellite surface 293 

soil moisture observations, and Priestly-Taylor based estimates of PET to derive an estimate of AET for 294 

each day. The daily data were originally available over the entire study domain at a 0.25° resolution between 295 

2003-2017 and were aggregated to basin-wide totals for each watershed. While AET from GLEAM is still 296 

uncertain, it provides a useful, independent, remote-sensing based benchmark against which to compare 297 

rainfall-runoff model estimates of AET.  298 

 299 
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3. Methods 300 

We design an experiment to test the two primary hypotheses of this study, namely that a standard LSTM 301 

will overestimate hydrologic water losses under warming because of an overreliance on historical 302 

correlations between temperature and PET, while this effect will be lower in PIML-based rainfall-runoff 303 

models designed to better account for water loss in the system. To conduct this experiment, we develop 304 

three different DL rainfall-runoff models to predict daily streamflow across the Great Lakes region, as well 305 

as three conceptual, process-based models as benchmarks, each of which is trained twice with either an 306 

energy budget-based or temperature-based estimate of PET. The DL models include a regional LSTM very 307 

similar to the model in Mai et al., (2022), an MC-LSTM that conserves mass, and a new variant of the MC-308 

LSTM that also respects the relationship between PET and water loss (termed MC-LSTM-PET). After 309 

comparing historical model performance, we conduct a sensitivity analysis force on all models with climate 310 

change scenariosin which composed of historical precipitation and historical but warmed temperatures are 311 

warmed by 4°C, as well as PET is updated based on those warmed temperatures, and all other 312 

meteorological variable time series are left unchanged from historical values. This is a similar approach to 313 

that taken in SW22, but in contrast to that study this work 1) focuses on the magnitude of streamflow 314 

response to warming under two different PET formulations; 2) considers a different set of physics-informed 315 

DL models in which the architecture (rather than the inputs or targets) of the model are changed to better 316 

preserve physical plausibility under unprecedented shifts in climate change; and 3) evaluates an expanded 317 

set of hydrologic metrics to better understand both the plausibility and the variability of climate change 318 

responses across the different models. Finally, in a subset of the analysis, we also utilize a fourth DL model, 319 

the LSTM used in SW22 that was previously fit to 531 basins across the CONUS (Kratzert et al. 2021), 320 

which uses daily precipitation, maximum and minimum temperature, radiation, and vapor pressure as input 321 

but not PET. This model is used to evaluate whether a DL model fit to many more watersheds that span a 322 

more diverse gradient of climate conditions behaves differently under warming than an LSTM fit only to 323 

locations in the Great Lakes basin. Figure 2 presents an overview of our experimental design. 324 

 325 
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 326 

 327 

Figure 2. Overview of experiment design. Three deep learning rainfall-runoff models (LSTM, MC-328 

LSTM, MC-LSTM-PET) and three conceptual, process-based models (HBV, SAC-SMA, HYMOD) are 329 

trained and tested across 212 watersheds throughout the Great Lakes basin. Models are validated by 330 

comparing predictions to streamflow (Q) and actual evapotranspiration (AET). All models are then forced 331 

with historical meteorology, but with historical temperatures warmed by 4°C and potential 332 

evapotranspiration (PET) updated based on those warmed temperatures using either the Hamon or 333 

Priestley-Taylor method. Hydrologic model responses across all models are then compared in terms of 334 

long-term mean daily flows, low flows, high flows, and streamflow seasonal timing statistics. The 335 

experiment is also repeated with an LSTM fit to 531 basins across the contiguous United States, except 336 

that model does not use PET as an input and vapor pressure is also adjusted along with temperature.  337 

 338 

3.1. Models 339 

3.1.1. Benchmark Conceptual Models 340 

We develop three conceptual, process-based hydrologic models as benchmarks, including the Hydrologiska 341 

Byråns Vattenbalansavdelning (HBV) model (Bergström and Forsman, 1973), HYMOD (Boyle, 2001), and 342 



16 

 

the Sacramento Soil Moisture Accounting (SAC-SMA) model (Burnash, 1995) coupled with SNOW-17 343 

(Anderson, 1976). These models are developed as lumped, conceptual models for each watershed, and were 344 

selected for several reasons. First, in the Great Lakes Intercomparison Project (Mai et al., 2022), HYMOD 345 

was one the best performing process models for both streamflow and AET estimation. SAC-SMA is widely 346 

used in the United States, forming the core hydrologic model in NOAA’s Hydrologic Ensemble Forecasting 347 

System (Demargne et al., 2014). We also found in WS22 that AET from SAC-SMA matched the seasonal 348 

pattern of MODIS-derived AET well across California. HBV is also an extremely popular model (Seibert 349 

and Bergström, 2022), is used for operational forecasting in multiple countries (Olsson and Lindstrom, 350 

2008; Krøgli et al., 2018), and performs very well in hydrologic model intercomparison projects (Breuer et 351 

al., 2009; Plesca et al., 2012; Beck et al., 2016, 2017). 352 

 353 

We calibrate the process-based models with the genetic algorithm from Wang et al. (1991) to maximize 354 

minimize the Nash mean-Sutcliffe squared Efficiency error (NSEMSE), using a population size equal to 355 

100 times the number of parameters, evolved over 100 generations, and with a spin-up period of 1 year. 356 

Each benchmark model is calibrated separately to each of the 141 training sites using the temporal train/test 357 

split described in Section 2, and training is repeated.  10 separate times with different random initializations 358 

to account for uncertainty in the training process and to estimate parametric uncertainty. Benchmark models 359 

are developed for the 71 testing sites in two ways: 1) separate models are trained for the testing sites during 360 

the training period; and 2) each testing site is assigned a donor from among the 141 training sites, and the 361 

calibrated parameters from that donor site are transferred to the testing site. The first of these approaches 362 

enables a comparison between DL models fit only to the training sites to benchmark models developed for 363 

the testing sites, i.e., a spatial out-of-sample versus in-sample comparison. The second of these approaches 364 

enables a more direct spatial out-of-sample comparison between DL and benchmark models. We note that 365 

donor sites were used to assign model parameters to testing sites in the benchmarking study of Mai et al. 366 

(2022), and to retain direct comparability to the results of that work we use the same donor sites for each 367 
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testing site. Donor sites were selected based on spatial proximity, while also prioritizing donor sites that 368 

were nested within the watershed of the testing site. 369 

 370 

3.1.2. LSTM  371 

We develop a single, regional LSTM for predicting daily streamflow across the Great Lakes region. In the 372 

LSTM, nodes within hidden layers feature gates and cell states that address the vanishing gradient problem 373 

of classic recurrent neural networks and help capture long-term dependencies between input and output 374 

time series. The model defines a D-dimensional vector of recurrent cell states 𝒄[𝑡] that is updated over a 375 

sequence of t=1,…,T time steps based on a sequence of inputs 𝒙 = 𝒙[1], … , 𝒙[𝑇], where each input 𝒙[𝑡] is 376 

a K-dimensional vector of features. Information stored in the cell states is then used to update a D-377 

dimensional vector of hidden states 𝒉[𝑡], which form the output of the hidden layer in the model. The 378 

structure of the LSTM is given as follows: 379 

 380 

𝒊[𝑡] = 𝜎(𝑾𝑖𝒙[𝑡] +  𝑼𝑖𝒉[𝑡 − 1] + 𝒃𝑖)        (Eq. 1.1) 381 

𝒇[𝑡] = 𝜎(𝑾𝑓𝒙[𝑡] + 𝑼𝑓𝒉[𝑡 − 1] + 𝒃𝑓)        (Eq. 1.2) 382 

𝒈[𝑡] = 𝑡𝑎𝑛ℎ(𝑾𝑔𝒙[𝑡] +  𝑼𝑔𝒉[𝑡 − 1] + 𝒃𝑔)       (Eq. 1.3) 383 

𝒐[𝑡] = 𝜎(𝑾𝑜𝒙[𝑡] +  𝑼𝑜𝒉[𝑡 − 1] + 𝒃𝑜)        (Eq. 1.4) 384 

𝒄[𝑡] = 𝒇[𝑡] ⊙ 𝒄[𝑡 − 1] + 𝒊[𝑡] ⊙ 𝒈[𝑡]        (Eq. 1.5) 385 

𝒉[𝑡] = 𝒐[𝑡] ⊙ 𝑡𝑎𝑛ℎ(𝒄[𝑡])         (Eq. 1.6) 386 

𝒚[𝑇] = 𝑅𝑒𝐿𝑈(𝑾𝑦𝒉[𝑇] + 𝑏𝑦)         (Eq. 1.7) 387 

 388 

Here, the input gate (𝒊[𝑡]) controls how candidate information (𝒈[𝑡]) from inputs and previous hidden states 389 

flows to the current cell state (𝒄[𝑡]); the forget gate (𝒇[𝑡]) enables removal of information within the cell 390 

state over time; and the output gate (𝒐[𝑡]) controls information flow from the current cell state to the hidden 391 

layer output. All bolded terms are vectors, and ⊙  denotes element-wise multiplication.  To produce 392 
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streamflow predictions, 𝒉[𝑇] at the last time step in the sequence is passed through a fully connected layer 393 

to a single-node output layer (i.e., a many-to-one formulation). We ensure nonnegative streamflow 394 

predictions using the rectified linear unit (ReLU) activation function for the output neuron, expressed as 395 

ReLU(x) = max(0,x). Importantly, there are no constraints requiring the mass of water entering as 396 

precipitation to be conserved within this architecture.   397 

  398 

The LSTM takes K=39 input features: 9 dynamic and 30 static. The dynamic input features are basin-399 

averaged climate, including daily precipitation, maximum temperature, minimum temperature, net 400 

incoming shortwave radiation, specific humidity, surface air pressure, zonal and meridional components of 401 

wind, and PET. The static features represent catchment attributes (see Table 1) and are repeated for all time 402 

steps in the input sequences 𝒙. All input features are standardized before training (by subtracting the mean 403 

and dividing by the standard deviation for data across all training sites in the training period). Note that we 404 

do not standardize the observed streamflow, besides dividing my by drainage area to represent streamflow 405 

in units of millimeters. 406 

 407 

We train the LSTM by minimizing the mean-squared error averaged over the 141 training watersheds 408 

during the training period:  409 

𝑀𝑆𝐸 =
1

𝑁
∑

1

𝑇𝑛
∑ (𝑄̂𝑛,𝑡 − 𝑄𝑛,𝑡)

2𝑇𝑛
𝑡=1

𝑁
𝑛=1       (2) 410 

where N is the number of training watersheds and Tn is the number samples in the nth watershed. 𝑄̂𝑛,𝑡 and 411 

𝑄𝑛,𝑡 are, respectively, the streamflow prediction and observation for basin n and day t. To estimate 𝑄̂𝑛,𝑡, 412 

we feed into the network an input sequence for the past T=365 days. The model was developed with 1 413 

hidden layer composed of D=256 nodes, a mini-batch size of 256, a learning rate of 0.0005, and a drop-out 414 

rate of 0.4, and it was trained across 30 epochs. All hyperparameters (number of hidden layer nodes, mini-415 

batch size, learning rate, dropout rate, and number of epochs) were selected in a 5-fold cross-validation on 416 

the training sites (see Table S2 for details on grid search). Network weights are tuned using the ADAM 417 
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optimizer (Kingma & Ba, 2015). The model is trained 10 separate times with different random 418 

initializations to account for uncertainty in the training process.  419 

 420 

For the evaluation of streamflow projections responses to under climate changewarming, we also use an 421 

LSTM taken from Kratzert et al. (2021) and employed in SW22, which was fit to 531 basins across the 422 

contiguous United States (hereafter called the National LSTM). This model was trained using a different 423 

set of data compared to our Great Lakes LSTM but also used a mix of dynamic and static features, all of 424 

which were drawn from the Catchment Attributes and Meteorology for Large-Sample Studies (CAMELS) 425 

dataset (Newman et al., 2015). This model uses daily precipitation, maximum and minimum temperature, 426 

shortwave downward radiation, and vapor pressure as input but not PET. However, we note that 427 

temperature, radiation, and vapor pressure are the three major inputs (besides wind speeds) needed to 428 

calculate energy budget-based PET. There are 29 CAMELS watersheds located within the Great Lakes 429 

basin, and 17 of those 29 watersheds were also used in the training and testing sets for the Great Lakes 430 

LSTM (see Figure 1).  431 

 432 

3.1.3. MC-LSTM 433 

Following Hoedt et al. (2021) and Frame et al. (2021b), we adapt the architecture of the LSTM into a mass 434 

conserving MC-LSTM that preserves the water balance within the model, i.e., the total quantity of 435 

precipitation entering the model is tracked and redistributed to streamflow and losses from the watershed. 436 

Using similar notation as for the LSTM above, the model structure is given as follows: 437 

 438 

𝒄̂[𝑡 − 1] =
𝒄[𝑡−1]

‖𝒄[𝑡−1]‖1
          (Eq. 3.1) 439 

𝒊[𝑡] = 𝜎̂(𝑾𝑖𝒙[𝑡] +  𝑼𝑖𝒄̂[𝑡 − 1] + 𝑽𝑖𝒂[𝑡] + 𝒃𝑖)       (Eq. 3.2) 440 

𝒐[𝑡] = 𝜎(𝑾𝑜𝒙[𝑡] +  𝑼𝑜𝒄̂[𝑡 − 1] + 𝑽𝑜𝒂[𝑡] + 𝒃𝑜)      (Eq. 3.3) 441 

𝑹[𝑡] = 𝜎̂(𝑾𝑅𝒙[𝑡] +  𝑼𝑅𝒄̂[𝑡 − 1] + 𝑽𝑅𝒂[𝑡] + 𝒃𝑅)      (Eq. 3.4) 442 
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𝒎[𝑡] = 𝑹[𝑡]𝒄[𝑡 − 1] + 𝒊[𝑡]𝒙[𝑡]         (Eq. 3.5) 443 

𝒄[𝑡] = (1 − 𝒐[𝑡]) ⊙ 𝒎[𝑡]         (Eq. 3.6) 444 

𝒉[𝑡] = 𝒐[𝑡] ⊙ 𝒎[𝑡]          (Eq. 3.7) 445 

 446 

Here, the inputs to the model are split between quantities x[t] to be conserved (i.e., precipitation), and non-447 

conservative inputs a[t] (i.e., temperature, wind speeds, PET, catchment properties, etc.). Water in the 448 

system is stored in the D-dimensional vector m[t] and is updated at each time step based on water left over 449 

from the previous time step (c[t-1]) and water entering the system at the current time step (x[t]).  The input 450 

gate i[t] and a redistribution matrix R[t] are designed to ensure water is conserved from 𝒄[𝑡 − 1] and 𝒙[𝑡] 451 

to m[t], by basing these quantities on a normalized sigmoid activation function that sums to unity: 452 

 453 

𝜎̂(𝑧𝑗) =
𝜎(𝑧𝑗)

∑ 𝜎(𝑧𝑗)𝑗
           (Eq. 4) 454 

 455 

Here, 𝜎(∙) is the sigmoid activation function, while 𝜎̂(∙) is a normalized sigmoid activation that produces a 456 

vector of fractions that sum to unity.  457 

 458 

The mass in 𝒎[𝑡], which is stored across D elements in the vector, is then distributed to the output of the 459 

hidden layer, 𝒉[𝑡], or the next cell state, 𝒄[𝑡]. To account for water losses from evapotranspiration or other 460 

sinks, one element of the D-dimensional vector 𝒉[𝑡] is considered a ‘trash cell’, and the output of this cell 461 

is ignored when calculating the final streamflow prediction, which at time T is given by the sum of outgoing 462 

water mass: 463 

 464 

𝑦[𝑇] = ∑ ℎ𝑑[𝑇]𝐷−1
𝑑=1           (Eq. 5) 465 

 466 
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Here, the Dth cell of h (ℎ𝐷) is set as the trash cell, and water allocated to this cell at each time step t=1,..,T 467 

is lost from the system. We note that the MC-LSTM was trained in the same way as the LSTM (i.e., same 468 

inputs, loss function, training and test sets, hyperparameter selection process, number of ensemble members 469 

with random initialization).  470 

 471 

3.1.4. MC-LSTM-PET 472 

We also propose a novel variant of the MC-LSTM that requires water lost from the system to not exceed 473 

PET (hereafter referred to as the MC-LSTM-PET). In the original MC-LSTM, any amount of water can be 474 

delegated to the trash cell ℎ𝐷. Therefore, while water is conserved in the MC-LSTM, the model has the 475 

freedom to transfer any amount of water from 𝒎[𝑡] to the trash cell (and out of the hydrologic system) as 476 

it seeks to improve the loss function during training. This has the benefit of handling biased data, e.g., cases 477 

where the precipitation input to the system is systematically too high compared to the measured outflow. 478 

However, this structure also has the drawback of potentially removing more water from the system than is 479 

physically plausible. To address this issue, we propose a small change to the architecture of the MC-LSTM, 480 

where any water relegated to the trash cell that exceeds PET at time t is directed back to the stream: 481 

 482 

𝑦[𝑡] = ∑ ℎ𝑑[𝑡]𝐷−1
𝑑=1 + 𝑅𝑒𝐿𝑈(ℎ𝐷[𝑡] − 𝑃𝐸𝑇[𝑡])       (Eq. 6) 483 

 484 

Here, the ReLU activation ensures that any water in the trash cell (ℎ𝐷) which exceeds PET at time t is 485 

added to the streamflow prediction 𝑦[𝑡], but the streamflow prediction is the same as the original MC-486 

LSTM (Eq. 5) if water in the trash cell is less than PET. This approach assumes that the maximum allowable 487 

water lost from the system cannot exceed PET, and therefore ignores other potential terminal sinks (e.g., 488 

inter-basin lateral groundwater flows; human diversions and inter-basin transfers). This assumption is more 489 

strongly supported in moderately-sized (> 200 km2), low-gradient, non-arid watersheds where inter-basin 490 

groundwater flows are less impactful (Fan 2019; Gordon et al., 2022), such as the Great Lakes basins 491 
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examined in this work. However, we discuss the potential to relax the assumptions of the MC-LSTM-PET 492 

model in Section 5. This approach assumes that the maximum allowable water lost from the system cannot 493 

exceed PET, and therefore ignores other potential terminal sinks (e.g., deep groundwater percolation that 494 

remains disconnected from the stream; lateral groundwater flows out of the watershed; human diversions). 495 

However, given that evapotranspiration accounts for the vast majority of water lost in most hydrologic 496 

systems, this assumption is likely reasonable in most cases. The MC-LSTM-PET was trained in the same 497 

way as the LSTM (i.e., same inputs, loss function, training and test sets, hyperparameter selection process, 498 

number of ensemble members with random initialization).  499 

 500 

3.2. Model Performance Evaluation 501 

As noted previously, 141 of the watersheds are designated as training sites, and the remaining 71 watersheds 502 

are used for testing. In addition, the training and testing periods were restricted to January 2000 -December 503 

2010 and January 2011 – December 2017, respectively. This provides three separate ways to evaluate model 504 

performance: 505 

• Temporal validation - Performance across models is evaluated at training sites during the testing 506 

period.  507 

• Spatial validation - Performance across models is evaluated at testing sites during the training 508 

period. 509 

• Spatiotemporal validation - Performance across models is evaluated at testing sites during the 510 

testing period. 511 

 512 

All three evaluation strategies are utilized. For benchmark process-based models that are calibrated locally 513 

on a site-by-site basis, we consider model versions that are transferred to testing sites from training sites, 514 

as well as models that are trained to the testing sites directly (see Section 3.1.1). The former can be used 515 
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for all three evaluation strategies above, while the latter can only be used for temporal validation at the 516 

testing sites.    517 

 518 

Following other intercomparison studies (Frame et al., 2022; Gauch et al., 2021a; Klotz et al., 2022; Kratzert 519 

et al., 2021), Several several metrics are considered for model evaluation, including percent bias (PBIAS), 520 

the Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970), Kling-Gupta Efficient (KGE; Gupta et al. 521 

2009), top 2% peak flow bias (FHV; Yilmaz et al. 2008), and bottom 30% low flow bias (FLV; Yilmaz et 522 

al. 2008). Each metric is calculated separately for training and testing periods for each site. For allthe DL 523 

models, all results are estimated from the ensemble mean from 10 separate training trials. 524 

 525 

For the process models, the MC-LSTM, and the MC-LSTM-PET, we also compare simulations of AET to 526 

observations of AET from the GLEAM database. We note that AET data were not used to train any of the 527 

models. For the process models, AET is a direct output of the model and so can immediately be extracted 528 

for comparison, but AET is not directly simulated by the MC-LSTM or MC-LSTM-PET. Instead, we 529 

assume water delegated to the trash cell permanently leaves the system because of evapotranspiration. 530 

Several metrics are used to compare model -based AET to GLEAM AET, including KGE, correlation, and 531 

PBIAS, and the comparison is conducted for training sites during the training period and under temporal, 532 

spatial, and spatiotemporal validation (as described above). Similar to streamflow, all AET results for the 533 

MC-LSTM and MC-LSTM-PET are based on the ensemble mean of water delegated to the trash cell from 534 

the 10 separate training trials.  535 

 536 

3.3. Evaluating Hydrologic Response under Warming 537 

All Great Lakes models in this study are trained twice with different PET estimates as input, including the 538 

Hamon method (a temperature-based approach; Hamon, 1963) and the Priestley-Taylor method (an energy 539 

budget-based approach; Priestley and Taylor, 1972). We select the Hamon method because of its stronger 540 

dependence on temperature compared to other temperature-based approaches that also depend on radiation 541 
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(e.g., Hargreaves and Samani, 1985; Oudin et al., 2005). We select the Priestley-Taylor method based on 542 

its widespread use in the literature (Wu et al., 2021; Su and Singh, 2023) and its approximation of the more 543 

physically-based Penman-Monteith approach (Allen et al. 1998). Together, these two approaches lie 544 

towards the lower and upper bounds of temperature sensitivity across multiple PET approaches (see Shaw 545 

and Riha, 2011). 546 

 547 

PET (in mm/day) under the Hamon method is calculated as follows (Shaw and Riha, 2011): 548 

 549 

𝑃𝐸𝑇𝐻 = 𝛼𝐻 × 29.8 × 𝐻𝑟𝑑𝑎𝑦
𝑒𝑠𝑎𝑡

𝑇𝑎+273.2
         (Eq. 7) 550 

𝑒𝑠𝑎𝑡 = 0.611 × 𝑒𝑥𝑝 (
17.27×𝑇𝑎

237.3+𝑇𝑎
)         (Eq. 8) 551 

 where 𝐻𝑟𝑑𝑎𝑦 is the number of daylight hours, 𝑇𝑎 is the average daily temperature (C) calculated from 552 

daily minimum and maximum temperature, 𝑒𝑠𝑎𝑡  is the saturation vapor pressure (kPa), and 𝛼𝐻  is a 553 

calibration coefficient set to 1.2 for all models in this study (similar to Lu et al., 2005).  554 

 555 

PET under the Priestley-Taylor method is calculated as follows: 556 

 557 

𝑃𝐸𝑇𝑃𝑇 = 𝛼𝑃𝑇 (
∆(𝑇𝑎)×(𝑅𝑛−𝐺)

𝜆(∆(𝑇𝑎)+𝛾)
) × 1000         (Eq. 9) 558 

 559 

Here, ∆(𝑇𝑎) is the slope of the saturation vapor pressure temperature curve (kPa/C) and is a function of 560 

𝑇𝑎, 𝛾 is the psychrometric constant (kPa/C), 𝜆 is the volumetric latent heat of vaporization (MJ/m3), 𝑅𝑛 is 561 

the net radiation (MJ/m2-day) equal to the difference between net incoming shortwave (𝑅𝑛𝑠 ) and net 562 

outgoing longwave (𝑅𝑛𝑙) radiation, G is the heat flux to the ground (MJ/m2-day), and 𝛼𝑃𝑇 is a dimensionless 563 

coefficient set to 1.1 for all models in this study (similar to Szilagyi et al., 2017). Details on how to calculate 564 

𝛾, ∆(𝑇𝑎), and 𝑅𝑛𝑙 are available in Allen et al. (1998), and we assume G=0. Net shortwave radiation is given 565 
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by 𝑅𝑛𝑠 = (1 − 𝜁)𝑅𝑠, with 𝜁 = .23 the assumed albedo and 𝑅𝑠 the incoming shorwave radiation. We note 566 

that net outgoing longwave radiation 𝑅𝑛𝑙 is a function of maximum and minimum temperature, actual vapor 567 

pressure, and 𝑅𝑠 (see Eq. 39 in Allen et al. 1998). All exogenous meteorological inputs for the two methods 568 

are derived from the Regional Deterministic Reanalysis System v2 RDRS-v2 (see Section 2). We note that 569 

using 𝛼𝐻 = 1.2 and 𝛼𝑃𝑇 = 1.1 leads to very similar long-term average PET estimates between the Hamon 570 

and Priestley-Taylor methods under baseline climate conditions, helping to ensure their comparability. We 571 

also note that both PET series are highly correlated with daily average temperatures (average Pearson 572 

correlations across sites of 0.94 and 0.83 for Hamon and Priestley-Taylor PET, respectively).  573 

 574 

We then develop a simple climate change scenarioconduct a sensitivity analysis of model response in which 575 

the historical minimum and maximum temperature time series are increased uniformly by 4 C, and the two 576 

PET estimates are updated using these warmed temperatures. We focus the climate change assessment on 577 

training period data at the training sites, so that any differences in climate change projectionsresponses that 578 

emerge between the DL and process models are due to model structural differences and not the effects of 579 

spatiotemporal regionalization. In the Priestly-Taylor method, we maintain historical values for Rs to isolate 580 

how changes in temperature and its effect on ∆(𝑇𝑎) and 𝑅𝑛𝑙 influence changes in PET. The use of historical 581 

Rs is supported by the results from CMIP5 projections presented in Lai et al. (2022), but this assumption is 582 

discussed further in Section 5.   583 

 584 

We also develop conduct a similar climate change scenariosensitivity analysis for on the National LSTM, 585 

which uses five dynamic input features from the CAMELS dataset (daily precipitation, maximum 586 

temperature, minimum temperature, Rs, and water vapor pressure). Here, temperatures are warmed by 4 C, 587 

while precipitation and Rs are held at historical values. There is a strong correlation between vapor pressure 588 

and minimum temperature in the CAMELS dataset, since minimum temperature is used to estimate the 589 

water vapor pressure (Newman et al., 2015). Thus, to run the National LSTM under warming, we also 590 
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adjust the vapor pressure input based on the change imposed to minimum temperature. This procedure is 591 

detailed in SW22. 592 

 593 

For both the Great Lakes DL models and the National LSTM, the dynamic inputs are adjusted based on the 594 

warming scenarios above. We also consider changes to some of the static input features that depend on 595 

temperature and PET in their calculation (e.g., pet_mean, aridity, t_mean, frac_snow; see Table 1 for feature 596 

descriptions and Table 1Supporting Information S1 and Table S1 for details on adjustments to these 597 

features), and then run all models using two settings: 1) with climate changes only to the dynamic features, 598 

and 2) with climate changes to both dynamic features and to static features that depend on those dynamic 599 

features. In total, there are six scenarios run in this work, which are shown in Table 2.  600 

 601 

Table 2. Overview of the setup for the different scenarios run in this analysis. All models are driven with 602 

temperatures warmed by 4C. The Great Lakes models include the HBV, SAC-SMA, HYMOD, LSTM, 603 

MC-LSTM, and MC-LSTM models that are trained and tested to the 212 sites across the Great Lakes basin.  604 

 605 

Scenario Model PET method adjusted 

with warmer 

temperatures 

Are static features also 

changed along with 

dynamic features? 

1 Great Lakes models Hamon Yes 

2 Great Lakes models Priestley-Taylor Yes 

3 Great Lakes models Hamon No 

4 Great Lakes models Priestley-Taylor No 

5 National LSTM NA Yes 

6 National LSTM NA No 

 606 

 607 

 608 

 609 

Ultimately, for each model we compare hydrologic projections responses under the warmed scenario to 610 

their values under the baseline scenario with no warming. For the National LSTM, we only consider basins 611 

in the CAMELS dataset within the Great Lakes Basin. For the process models, we also evaluate the 612 

uncertainty in hydrologic response based on the range predicted across the 10 different training trials, as a 613 
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simple means to evaluate how parametric uncertainty influences the predictions. We examine four different 614 

metrics for this comparison, including:  615 

• AVG.Q: the long-term average mean of daily streamflow runoff across the entire series. 616 

• FHV: the average of the top 2% peak flows. 617 

• FLV: the average of the bottom 30% low flows. 618 

• COM: the median center of mass across all water years, where the center of mass is defined as the 619 

day of the water year by which half of the total annual flow has passed.  620 

 621 

If our hypothesis is correct that the LSTM cannot distinguish water loss differences with different PET 622 

projections series but similar warming while process-based and PIML models can, we would expect that 623 

under the LSTM using both PET projectionsseries, average long-term mean flow will decline significantly 624 

substantially and with similar magnitude to the process models using the temperature-based PET method 625 

but not the energy budget-based PET method. We would also expect the National LSTM to exhibit similar 626 

behavior, even though it was able to learn from a larger set of watersheds across a more diverse range of 627 

climate conditions. Finally, if our hypothesis is correct, we would expect the PIML models (MC-LSTM, 628 

MC-LSTM-PET) to follow the process model projections responses more closely across the two different 629 

PET projectionsseries, at least in terms of the difference in magnitude of average long-term mean 630 

streamflow declines. For To facilitate a broader comparisoninter-model comparison of DL and process-631 

based models under warming (which is largely absent from the literature), we also explore the differences 632 

in low flow (FLV), high flow (FHV), and seasonal timing (COM) metrics across all model versions, where 633 

we have less reason to anticipate how DL and process models will differ in their projections responses and 634 

across PET formulations. However, for responses like seasonal streamflow timing (COM), we do anticipate 635 

that realistic responses should show a shift towards more streamflow earlier in the year, as warmer 636 

temperatures lead to more precipitation falling as rain rather than snow and drive snowmelt earlier in the 637 

spring. 638 
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 639 

4. Results 640 

4.1. Model Performance Evaluation 641 

Figure 3 shows the distribution of KGE values across sites for streamflow from the LSTM, MC-LSTM, 642 

MC-LSTM-PET, and the three process-based models for both the training and testing sites during both the 643 

training and testing periods. All results here and elsewhere in Section 4.1 are shown for the models fit with 644 

Priestley-Taylor PET, but there is little difference in performance for the models fit with Hamon PET (see 645 

Figure S1). For the process-based models, we show results for models fit to the training sites and then used 646 

as donors at the testing sites, as well as models fit to the testing sites directly. We denote the latter with the 647 

suffix “-test” and note that performance metrics at the training sites are not available for process models fit 648 

to the testing sites.  649 

 650 

Several insights emerge from Figure 3. First, for the training sites during the training period, all models 651 

perform very well (Figure 3a). Across the three process models, the median KGE is 0.820.79, 0.830.78, 652 

and 0.810.77 for HBV, SAC-SMA, and HYMOD, respectfully. However, unsurprisingly, the DL models 653 

perform better for the training data, with median KGE values all equal or above 0.88. The LSTM performs 654 

best in this case. Under temporal validation (training sites during the testing period), performance degrades 655 

somewhat across all models, and the differences in KGE between all process-based models and between 656 

all DL models shrink considerably (Figure 3c). Larger performance declines are seen at the testing sites 657 

during the training period (Figure 3b) and testing period (Figure 3d). Here, the median KGE for all process 658 

models falls to between 0.5654-0.587 when streamflow at the testing sites is estimated with donor models 659 

from nearby gauged watersheds. In contrast, process models fit to the testing sites (denoted “-test”) exhibit 660 

performance similar to that seen in Figure 3a,c. All three DL models perform quite well for the testing sites, 661 

with median KGE values above 0.71 in both time periods. This is only modestly below the median KGE 662 

for the process models fit to the testing sites, which is quite impressive given that this represents the spatial 663 
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out-of-sample performance of the DL models. We even see that for approximately 1020% of testing sites 664 

during the training period, the DL models outperform the process models fit to those locations in that period.   665 

 666 

 667 

Figure 3. The distribution of Kling-Gupta efficiency (KGE) for streamflow estimates across sites from 668 

each model at the (a) the 141 training sites and (b) 71 testing sites for the training period. Similar results 669 

for the testing period are shown in panels (c) and (d), respectively. For the process models fit to the 670 

testing sites (denoted “-test”), no performance results are available at the training sites. All models are 671 

trained using Priestley-Taylor PET. 672 

 673 

Table 32 shows the median KGE, NSE, PBIAS, FHV, and FHL across testing sites for all models, excluding 674 

the process models fit to the testing sites. Similar to Figure 3, all three DL models outperform the donor-675 

based process models at the testing sites for all metrics, with the exception of PBIAS during the training 676 

period. The performance across the three different DL models is similar, although there are some notable 677 

differences. In particular, the LSTM outperforms the MC-LSTM and MC-LSTM-PET for KGE, NSE and, 678 
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and FLV (as well as KGE in the training period), the MC-LSTM-PET outperforms the LSTM and MC-679 

LSTM for PBIAS, and either the MC-LSTM or MC-LSTM-PET are the best performers for FHV. The fact 680 

that the MC-LSTM-PET performs best for PBIAS of all models suggests that the PET constraint imposed 681 

in that model improves the overall accounting of water entering and existing the watershed on a long-term 682 

basis. We also note that percent biases for FLV are high because the absolute magnitude of low flows is 683 

small, so small absolute biases still lead to large percent biases.   684 

 685 

Table 32. The median KGE, NSE, PBIAS, FHV, and FLV for streamflow across testing sites for the 686 

training and testing periods for all models (excluding the process models fit to the testing sites). The metric 687 

from the best performing model in each period is bolded. All models are trained using Priestley-Taylor PET. 688 
 Testing Sites: Training Period Testing Sites: Testing Period 

Model KGE NSE PBIAS FHV FLV KGE NSE PBIAS FHV FLV 

LSTM 0.76 0.77 9.66 17.58 30.98 0.72 0.68 12.15 26.01 27.32 

MC-LSTM 0.74 0.72 9.48 15.52 41.46 0.72 0.65 12.13 22.82 35.80 

MC-LSTM-PET 0.73 0.72 8.63 18.80 48.10 0.71 0.66 10.22 22.49 44.43 

HBV 0.58 0.50 9.99 32.22 63.96 0.55 0.50 12.68 34.76 57.20 

SAC-SMA 0.57 0.48 11.74 34.72 45.17 0.54 0.47 12.24 40.45 46.78 

HYMOD 0.58 0.48 10.07 33.68 58.06 0.54 0.48 12.52 36.07 60.32 

 689 

Figure 4 shows similar results as Figure 3, but for the KGE based on estimates of AET. Also, only donor 690 

process models are shown for the testing sites. Results for correlation and PBIAS are available in the 691 

Supplemental Information (Figures S2-S3). Here, the LSTM is not included because estimates of AET are 692 

unavailable, while AET from the MC-LSTM and MC-LSTM-PET is based on water relegated to the trash 693 

cell. Note that none of the models were trained for AET, and so results at training sites during the training 694 

period also provide a form of model validation. Figure 4 shows that SAC-SMA and HBV predict AET with 695 

relatively high degrees of accuracy for both training and testing sites in both periods (median KGE between 696 

0.799-0.80). Performance is slightly worse for HYMOD. Notably, the MC-LSTM-PET exhibits very 697 

similar, strong performance for all sites and periods as compared to SAC-SMA and HBV, except for one 698 
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testing site. In contrast, the MC-LSTM performs the worst of all models, with median KGE values ranging 699 

between 0.53-0.57.  700 

 701 

 702 

 703 

Figure 4. The Kling-Gupta efficiency (KGE) for AET estimated from each model at the (a) the 141 704 

training sites and (b) 71 testing sites for the training period. Similar results for the testing period are 705 

shown in panels (c) and (d), respectively. The LSTM is not included in this comparison. All models are 706 

trained using Priestley-Taylor PET. 707 

 708 

Further investigation reveals that the differences in KGE between the MC-LSTM and MC-LSTM-PET 709 

models for AET are largely driven by differences in correlation (see Figure S2). We examine this difference 710 

in more detail in Figure 5, which presents scatterplots of observed GLEAM AET versus water allocations 711 

to the trash cell for the two models from five randomly sampled testing sites across both training and testing 712 
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periods (see Table S1 for details on each siteFigure 1; also Table S3). Trash cell water from the MC-LSTM 713 

is not only more scattered around observed GLEAM AET compared to the MC-LSTM-PET, but it also 714 

exhibits many outlier values that are two to five times larger than observed GLEAM AET. The MC-LSTM-715 

PET follows the variability of GLEAM AET much more closely, with virtually no outliers that exceed 716 

GLEAM AET by large margins. This suggests that the PET constraint on the trash cell in the MC-LSTM-717 

PET helps water allocated to that cell more faithfully represent an ET sinkevaporative water loss in the DL 718 

model.  719 

 720 

Figure 5. Scatterplots of daily AET versus trash cell water for the (top) MC-LSTM and (bottom) MC-721 

LSTM-PET at five randomly selected testing sites across both training and testing periods. All models are 722 

trained using Priestley-Taylor PET. 723 

 724 

4.2. Evaluating Hydrologic Response under Warming 725 

Next, we evaluate streamflow projections responses under a 4 C warming scenario. We focus on training 726 

sites during the training period, so that any differences that emerge between DL and process models are 727 

only related to model structure and not spatiotemporal regionalization. However, our results are largely 728 

unchanged if based on responses for testing sites in the testing period (see Figure S4). First, we show the 729 

differences in historic and warming-projected adjusted PET when using the Hamon and Priestley-Taylor 730 

methods (Figure 6). For the training period without any temperature change, PET estimated from the two 731 

methods is very similar (Figure 6a; shown at one sample location for demonstration, see Table S1Figure 1 732 
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and Table S3; Figure 6a). However, under the scenario with 4 C of warming, Hamon-based PET is 733 

significantly substantially larger than Priestley-Taylor based PET (Figure 6b). On average, this difference 734 

reaches ~16% across all training sites and exhibits very little variability across locations (Figure 6c). The 735 

primary reason for the difference in projected the estimated change in PET is that the Hamon method 736 

attributes PET entirely to temperature, while only a portion of PET is based on temperature in the Priestley-737 

Taylor method, with the rest based on Rn. It is worthwhile to note that Rn does change increase with 738 

temperature through its effects on net outgoing longwave radiation, but these changes are smallare generally 739 

less than 5% across all sites (Allen et al. 1998).  740 

 741 

 742 

Figure 6. (a) Daily PET estimated using the Hamon and Priestley-Taylor method for one sample 743 

watershed, under historic climate conditions in the training period. (b) Same as (a), but under the climate 744 
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change scenario with 4 C of warming. (c) Percent change in average PET with 4 C of warming across 745 

all training sites using the Hamon and Priestley-Taylor methods. 746 

 747 

Figure 7 shows how these differences in PET under warming propagate into changes in different attributes 748 

of streamflow across training sites in the training period. The left and right columns of Figure 7 show 749 

projections streamflow responses using Hamon and Priestley-Taylor PET, respectively, while the rows of 750 

Figure 7 show the distribution of changes (as a percentage) in different streamflow attributes (AVG.Q, FLV, 751 

FHV, COM) across models. Figure 7 shows results for DL models where only the dynamic inputs are 752 

changed under warming., while Figure S4 show the same results when both the dynamic and the static 753 

climate properties are updated with warming.  754 

 755 

Starting with changes in AVG.Q, Figure 7a,b shows that under the Hamon method for PET, the DL models 756 

exhibit similar changes in average long-term mean streamflow to the process-based models, with the 757 

median AVG.Q across sites ranging between -17% and -2325% across all models. However, when using 758 

Priestley-Taylor PET, larger differences in the distribution of AVG.Q emerge. Across all three process 759 

models, the median AVG.Q is between -56% to -109%, and very few locations exhibit AVG.Q less than 760 

-20%. Conversely, the LSTM shows a median water loss of -20% under Priestley-Taylor PET and a very 761 

similar distribution of water losses regardless of whether Hamon or Priestley-Taylor PET was used. The 762 

MC-LSTM is also relatively insensitive to PET, and as compared to the process models, the MC-LSTM 763 

tends to predict smaller absolute changes to AVG.Q for Hamon PET and larger changes under Priestley-764 

Taylor PET. Only the MC-LSTM-PET model achieves water loss that is significantly considerably smaller 765 

under Priestley-Taylor PET than Hamon PET and closely follows the process models in both cases.  766 

 767 

The overall pattern of change in low flows (FLV) is very similar across all three DL models, with median 768 

declines between -15% to -25% and little variability across sites (Figure 7c,d). The process models disagree 769 

significantly on the sign of changes to for FLV, and also bound the changes predicted by the DL models. 770 
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HBV and HYMOD show mostly increases to FLV under warming and Priestley-Taylor PET, and a mix of 771 

increases and decreases across sites for Hamon PET. SAC-SMA exhibits large declines in FLV under 772 

warming and Hamon PET, and shows a median change that is similar to the DL models under Priestley-773 

Taylor PET. The percent changes in FLV across models tend to be large because the absolute magnitude 774 

of FLV is small, and so small changes in millimeters of flow lead to large percent changes. This can be 775 

seen in sample daily hydrographs for two sites (see Figure S5), where visually the changes in low flows are 776 

difficult to discern because they are all near zero for all models, but the change in the FLV statistic varies 777 

significantly across the six models and two sites (-56% to +40%).  778 

 779 

The differences between process-based and DL simulated changes for high flows (FHV; Figure 7e,f) and 780 

streamflow seasonal timing (COM; Figure 7g,h) are relatively consistent, with the process models 781 

exhibiting larger more substantial declines in high flows and earlier shifts in streamflow seasonal timing 782 

compared to the DL models. The choice of PET method has an moderate impact on process-model based 783 

changes in FHV, with larger declines under Hamon PET. A similar signal is also seen for the MC-LSTM-784 

PET but not the MC-LSTM or LSTM, although the LSTM predicts changes in FHV closest to the process 785 

models.  786 

 787 

For COM, the process models show a wide range of variability in projected change across sites, from no 788 

change to 60 days earlier. For the DL models the range of change is much narrower, and the median change 789 

in COM is almost approximately a week less than the median change across the process models. The earlier 790 

shift in COM across all models is consistent with anticipated changes to snow accumulation and melt 791 

dynamics under warming, with more water entering the stream during the winter and early spring as 792 

precipitation shifts more towards rainfall and existing snowpack melts off earlier in the year (Byun and 793 

Hamlet, 2018; Mote et al., 2018; Kayastha  et al., 2022REFERENCES). However, this effect is seen more 794 

dramatically in the process models, as evidenced by more prominent changes to their daily and monthly 795 

hydrographs under warming during the winter and early spring as compared to the DL models (see see 796 



36 

 

Figures S5 and S6X). The method of PET estimation has relatively little impact on both process model and 797 

DL based estimates of change in COM.  798 

 799 

 800 

 801 

We note that the results above do not change even when considering the parametric uncertainty in the 802 

process models, although for some metrics (FLV), uncertainty in process model estimated changes due to 803 

parametric uncertainty is large (see Figure S7). We also note that if the static watershed properties 804 

(pet_mean, aridity, t_mean, frac_snow; see Table 1) are also changed to reflect warmer temperatures and 805 

higher PET, all three DL models exhibit unrealistic water gains for between 15%-40% of locations 806 

depending on the model and PET method, with the most water gains occurring under the LSTM (Figure 807 

S84). These results suggest that changing the static watershed properties associated with long-term climate 808 

characteristics can degrade the quality of the projectionsestimated responses, at least when the climate 809 

temperature changes shifts are large and the range of average temperature and PET in the training set is 810 

limited. We also note that the results in Figure 7 are largely unchanged if based on projections for testing 811 

sites in the testing period (Figure S5).  812 

 813 
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 814 

Figure 7. The distribution of change in (a,b) long term mean daily flow (AVG.Q), (c,d) low flows (FLV), 815 

(e,f) high flows (FHV), and (g,h) seasonal streamflow timing (COM) across the 141 training sites and all 816 

models under a scenario of 4C warming using (a,c,e,g) Hamon PET and (b,d,f,h) Priestley-Taylor PET. 817 

For the DL deep learning models, changes were only made to the dynamic inputs (i.e., no changes to 818 

static inputs). 819 

 820 

One reason why the Great Lakes LSTM exhibits excessive hydrologic water losses under warming could 821 

be that the model was trained using sites that are confined to a limited range of temperature and PET values 822 
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found in the Great Lakes basin (spanning approximately 40.5-50N), and so is ill-suited to extrapolate 823 

hydrologic response under warming conditions that extend beyond  this rangetemperature and PET range. 824 

To evaluate this hypothesis, we examine changes to AVG.Q, FLV, FHV, and COM under 4C warming at 825 

the 29 CAMELS watersheds within the Great Lakes basin using the National LSTM (Figure 8). For 826 

comparison, we also examine similar changes under all six Great Lakes DL and process models at 17 of 827 

those 29 CAMELS basins that were used in the training and testing sets for the Great Lakes models. , 828 

andWe also separate outhighlight the National LSTM projections predictions for those 17 sites. Note that 829 

in Figure 8, the National LSTM projections predictions do not differ between Hamon and Priestley Taylor 830 

PET, because PET is not an input to that model.  831 

 832 

The National LSTM was trained to watersheds across the CONUS (spanning approximately 26-49N), 833 

and so was exposed to watersheds with much warmer conditions and higher PET during training. However, 834 

we find that the National LSTM still projects predicts very large declines in AVG.Q. For the 29 CAMELS 835 

watersheds in the Great Lakes basin, the median decline in AVG.Q under the National LSTM is 836 

approximately 25%, which is only 0-6moderately XX% larger than the median projections predictions of 837 

loss under the process models using Hamon PET and but much XX16-19% larger than the process model 838 

losses under Priestley-Taylor PET (Figure 8a,b). We also see larger declines in FLV under the National 839 

LSTM as compared to the other Great Lakes DL models (Figure 8c,d). The National LSTM projects predicts 840 

changes in FHV (Figure 8e,f) and COM (Figure 8g,h) that are relatively similar to the process models., and 841 

fFor COM, the projections predictions of change are closer still smaller thanto the process models but closer 842 

to the process models than for any Great Lakes DL model,. suggesting that the National LSTM predicts 843 

shifting snow accumulation and melt dynamics more consistently with the process models than regionally 844 

fit DL models. In addition, the hydrologic projections predictions are stable under the National LSTM 845 

regardless of whether only dynamic inputs or both dynamic and static inputs are changed under warming 846 

(see Figure S96), in contrast to the Great Lakes DL models. Therefore, the use of more watersheds in 847 
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training than span a more diverse set of climate conditions likely benefit the model when inputs are shifted 848 

significantly to reflect new climate conditions. However, as shown in Figure 8a,b, this benefit does not 849 

mitigate the tendency for the National LSTM to overestimate water loss under warming.  850 

 851 

Figure 8. The distribution of change in (a,b) long term mean daily flow (AVG.Q), (c,d) low flows (FLV), 852 

(e,f) high flows (FHV), and (g,h) seasonal streamflow timing (COM) across 29 CAMELS sites within the 853 

Great Lakes basin under the National LSTM (solid pink), as well as for 17 of those 29 sites from the 854 

Great Lakes DL deep learning and process models, under a scenario of 4C warming. Results from the 855 
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National LSTM for those 17 sites are also highlighted (dashed pink). For the Great Lakes models only, 856 

results differ when using (a,c,e,f) Hamon PET and (b,d,f,h) Priestley-Taylor PET. For the National 857 

LSTM, changes were made only to the dynamic inputs. 858 

 859 

To better understand why the National LSTM predicts large water losses under warming, it is instructive 860 

to examine how average long-term mean streamflow, (Priestly-Taylor estimated) PET, and Rs vary across 861 

all 531 CAMELS watersheds of different average temperatures, and compare this variability to projected 862 

predicted changes in PET at each site under warming. Specifically, we compare calculate the difference in 863 

long-term (1980-2014) average mean streamflow (Figure 9a), PET (Figure 9b), and Rs (Figure 9c) across 864 

all pairs of basins in the CAMELS dataset with average long-term precipitation within 1% of each other 865 

(i.e., we only examine pairs of basins with very similar long-term mean precipitation). Then, for each basin 866 

pair, we , and plot these differences in long-term mean streamflow, PET, and Rs against the differences in 867 

long-term average temperature across for each that pair. The results show that the difference in average 868 

long-term mean streamflow across watersheds with similar precipitation becomes negative when the 869 

difference in temperature is positive (i.e., warmer watersheds have less flow on average), and that when the 870 

difference in average temperature reaches 4°C, flows differ by about 20% on average (Figure 9a). This is 871 

very similar to the projected predicted median decline in average long-term mean streamflow seen for the 872 

National LSTM in Figure 8. We also note that average PET increases by approximately 20% between 873 

watersheds that differ in average temperature by 4°C (Figure 9b). However, higher PET in warmer 874 

watersheds is related both to the direct effect of temperature on vapor pressure deficit, as well as to the fact 875 

that higher incoming solar radiation co-occurs in warmer watersheds (Rs is approximately 9% higher across 876 

watershed pairs that differ by 4°C; Figure 9c). Using the Priestley-Taylor method, we estimate that average 877 

PET would only increase by between 9-14% (median of 11.5%) if temperatures warm by 4°C and Rs is held 878 

at historic values, while Rn is increased slightly due to declines in net outgoing longwave radiation with 879 

warming (Figure 9d). However, the National LSTM appears to convolute the effects of temperature and Rs 880 

and cannot separate out their effects on ET-basedevaporative water loss, leading to larger projected 881 

predicted streamflow losses under 4°C warming than changes in PET would warrant. This is possibly 882 
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because of the very strong correlation between at-site daily temperature and Rs historically (median 883 

correlation of 0.85 across all CAMELS watersheds).  884 

 885 

 886 

 887 

Figure 9. The percent difference in long-term (1980-2014) average mean (a) streamflow, (b) Priestley-888 

Taylor based PET, and (c) downward shortwave radiation (Rs) for all pairs of CAMELS basins with 889 

average precipitation within 1% of each other, plotted against differences in average temperature for each 890 

pair. A loess smooth is provided for each scatter (blue), along with the changes in variable estimated at a 891 

4°C temperature difference between pairs of sites (red). (d) The projected change in Priestley-Taylor 892 

based PET (as a percentage) for each CAMELS basin under 4°C warming, assuming no change in Rs. 893 

 894 

5. Discussion and Conclusion 895 

In this study, we contribute a sensitivityn analysis that evaluates the physical plausibility of future 896 

streamflow projections responses under climate changewarming using DL rainfall-runoff models. The basis 897 

for this evaluation is anchored to the assumption that differences in estimated streamflow projections 898 

responses should emerge under very different projections scenarios of future PET under warming, and that 899 

realistic projections predictions of future PET and water loss under warming tend to be much lower than 900 

those estimated by temperature-based PET methods. Accordingly, we assume that physically plausible 901 
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future streamflow projections predictions should be able to respond to lower energy-budget based PET 902 

projections under warming and, all else equal, project estimate smaller streamflow losses.  903 

 904 

The results of this study show that a standard LSTM is not able to predict physically realistic differences in 905 

streamflow response across substantially different projections estimates of future PET under warming. This 906 

discrepancy in future projections emerged despite the fact that the standard LSTM was a far better model 907 

for streamflow estimation in ungauged basins compared to three process-based models under historic 908 

climate conditions. In addition, the National LSTM trained to a much larger set of watersheds (531 basins 909 

across 23° of latitude) using temperature, vapor pressure, and Rs directly (rather than PET) also estimated 910 

water loss under warming that far exceeded the losses estimated with process models forced with energy 911 

budget-based PET. Since water losses estimated using energy budget-based PET are generally considered 912 

more realistic (Lofgren et al., 2011; Shaw and Riha, 2011; Lofgren and Rouhana, 2016; Milly and Dunne, 913 

2017; Lemaitre-Basset et al. 2022), this result casts doubt over the physical plausibility of the LSTM 914 

projectionpredictions.   915 

 916 

Results from this work also suggest that PIML-based DL models can capture physically plausible 917 

streamflow responses under climate changewarming while still maintaining superior prediction skill 918 

compared to process models, at least in some cases. In particular, a mass conserving LSTM that also 919 

respected the limits of water loss due to ET evapotranspiration (the MC-LSTM-PET) was able to project 920 

predict changes in average long-term mean streamflow that much more closely aligned with process-model 921 

based estimates, while also providing competitive out-of-sample performance across all models considered 922 

(including the other DL models). A more conventional MC-LSTM that did not limit water losses by PET 923 

was less consistent with process-based estimates of change in average long-term mean streamflow. These 924 

results highlight the potential for PIML-based DL models to help achieve similar performance 925 

improvements over process-based models as documented in recent work on DL rainfall-runoff models 926 
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(Kratzert et al., 2019a,b; Feng et al., 2020; Nearing et al., 2021) while also producing projections under 927 

climate change that are more consistent with theory than non-PIML DL models.  928 

 929 

An interesting result from this study was the disagreement in the change in high flows and streamflow 930 

seasonal streamflow timing between all Great Lakes DL models and process models, the latter which 931 

estimated greater reductions in high flows and larger shifts of water towards earlier in the year. Projections 932 

Predictions from the Great Lakes DL models were also unstable if static climate properties of each 933 

watershed were changed under warming. In contrast, the National LSTM was more stable if static properties 934 

were changed, and it predicted changes to high flows and streamflow seasonal timing that were more like 935 

the process models than projections predictions from the Great Lakes DL models. The results for COM in 936 

particular suggest that the National LSTM ismay be more consistent with the process models in terms of 937 

its representation of warming effects on snow accumulation and melt processes and the resulting shifts in 938 

the seasonal hydrograph, although differences with the process model predictions were still notable. Still, 939 

these results are consistent with past work showing that large-sample LSTMs can learn to represent snow 940 

processes internally from meteorological and streamflow data (Lees et al., 2022). While its challenging to 941 

know which set of projections predictions are correct for these streamflow properties, these results overall 942 

favor projections predictions from the National LSTM over the regional LSTMs and highlight the benefits 943 

of DL rainfall-runoff models trained to a larger set of diverse watersheds for climate change analysis.  944 

 945 

To properly interpret the results of this work, there are several limitations of this study that require 946 

discussion. First there were differences in the inputs and data sources between the National LSTM and all 947 

other Great Lakes models, including the source of meteorological data and the lack of PET as an input into 948 

the National LSTM.  While this latter discrepancy might be less impactful (i.e., the National LSTM was 949 

provided meteorological inputs that together completely determine Hamon and Priestley-Taylor PET), the 950 

difference in meteorological data across the two sets of models is a substantial source of uncertainty and 951 

could lead to non-trivial differences in hydrologic response estimation, complicating a direct comparison 952 
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of the National LSTM to the other models. Future work for the Great Lakes Intercomparison Project should 953 

consider developing consistent datasets with other (and larger) benchmark datasets like CAMELS to 954 

address this issue.   955 

The MC-LSTM-PET model proposed in this work represents one (relatively simple) PIML-based 956 

architectural change to an existing DL model in the hydrologic literature that can help better capture 957 

physical constraints on water loss from hydrologic systems. However, other possibilities exist. For example, 958 

the hard constraint in the MC-LSTM-PET could instead be imposed as a soft constraint through adjustments 959 

to the loss function, where water losses in the trash cell that exceed PET are penalized. The MC-LSTM-960 

PET model could also be adjusted further to allow additional water losses in the trash cell related to human 961 

water extractions from the watershed or other terminal sinks. A different approach would be to use learnable, 962 

differentiable, process-based models with embedded neural networks (Jiang et al., 2020; Feng et al., 2022; 963 

Feng et al., 2023), which can achieve similar performance to LSTMs but can also represent and output 964 

different internal hydrologic fluxes. Further work is needed to evaluate the benefits and drawbacks of these 965 

different PIML-based approaches, preferably on large benchmarking datasets such as CAMELS.  966 

 967 

 968 

OneAnother important limitation of this study is how we constructed the climate changewarming scenarios, 969 

with 4°C warming and shifts to PET but but no changes to net incoming shortwave radiation and slight 970 

decreases in net outgoing longwave radiation with warming (i.e., slight increases in Rn)to other 971 

meteorological variables (net incoming shortwave radiation, precipitation, humidity, air pressure, wind 972 

speeds). These scenarios and associated sensitivity analyses were constructed in the style of other 973 

metamorphic tests for hydrologic models (Yang and Chui, 2021; Razavi, 2021; Reichert et al., 2023), where 974 

we define input changes with expected responses and test whether model behavior is consistent with these 975 

expectations. However, for DL and other machine learning (ML) models, the results of such sensitivity 976 

analyses may be unreliable because of distributional shifts between the training and testing data and poor 977 

out-of-distribution generalization (see Shen et al., 2021, Wang et al., 2023, and references within). When 978 



45 

 

trained, conventional machine learning ML models try to leverage all of the correlations within the training 979 

set to minimize training errors, which is effective in out-of-sample performance only if those same patterns 980 

of correlation persistent into the testing data (Liu et al., 2021). In our experimental design, we impose a 981 

distinct shift in the joint distribution of the inputs (i.e., a covariate shift) by increasing temperatures and 982 

PET but leaving unchanged other meteorological inputs, thereby altering the correlation among inputs. 983 

Therefore, one might expect some degradation in the DL model-based predictions of streamflow under 984 

these scenarios. 985 

 986 

While outside the scope of the present study, weThe challenge of out-of-distribution generalization and its 987 

application to DL rainfall-runoff model testing under climate change highlights several important avenues 988 

for future work. First, additional efforts are needed to evaluate the  argue more work is needed to further 989 

explore the physical plausibility of DL-based hydrologic projections under climate changewith more 990 

standard  while ensuring that LSTMs, with greater attention paid to the joint distribution of all 991 

meteorologicmeteorological inputs used in future scenarios is realistic. For example, there are physical 992 

relationships between changes in temperature and net radiation (Nordling et al., 2021), as well as 993 

temperature, humidity, and extreme precipitation (Ali et al., 2018; Najibi et al., 2022), that should all be 994 

preserved in future climate scenarios. The use of climate model output may be well suited for such tests, 995 

although care is needed to avoid significant statistical bias correction and downscaling (i.e., post-processing) 996 

of multiple climate fields that could cause shifts in the joint distribution across inputs (Maraun, 2016). High-997 

resolution convective-permitting models may be helpful in this regard, given their improved accuracy for 998 

key climate fields like precipitation ((Kendon et al. 2017).  999 

 1000 

 1001 

the model under historical and future climate conditions. We did not consider any changes in net incoming 1002 

shortwave radiation because there is significant uncertainty in this term at local scales and its relationship 1003 

to local temperature change. Projections of net incoming shortwave radiation are highly variable across 1004 
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space and can even differ in the direction of change, largely because of uncertainty in the representation of 1005 

clouds in climate models, future projections of aerosols, and the representation of cloud-aerosol interactions 1006 

(Chen, 2021; Coppola et al., 2021; Taranu et al., 2023). The relationship between local net radiation change 1007 

and local temperature change further depends on horizontal energy transport from other regions (Nordling 1008 

et al., 2021). In addition, the approximation we used for changes to net outgoing longwave radiation was 1009 

not designed to resolve all land-atmosphere energy balance feedbacks with changing atmospheric 1010 

composition under climate change. These uncertainties, along with uncertainties in energy-budget based 1011 

methods used to estimate PET (Greve et al. 2019; Liu et al., 2022), complicate future projections of 1012 

atmospheric drying power under warming. Regardless, the main finding of this work remains, namely that 1013 

DL models struggle to propagate different hypotheses of future PET scenarios into hydrologic projections 1014 

unless explicitly directed to do so.  1015 

There are also several emerging techniques in machine learning ML to address out-of-distribution 1016 

generalization directly (Shen et al., 2021). One familyset of promising methods for the challenge of DL 1017 

hydrologic modeling under climate change is causal learning, defined broadly as methods that aimed toat 1018 

identifying input variables that have a causal relationship with the target variable and to leverage those 1019 

inputs for prediction (Shen et al., 2021). PIML One approach for this is toapproaches, such as the MC-1020 

LSTM-PET model proposed in this work, fall into this category (Vasudevan et al., 2021). Here, prior 1021 

scientific knowledge on casual structures can be embedded into the DL model through tailored loss 1022 

functions or, as in the case of the MC-LSTM-PET model, through  The MC-LSTM-PET model proposed 1023 

in this work represents one (relatively simple) PIML-based architectural adjustments or constraints (for 1024 

other examples outside of hydrology, see Lin et al., 2017; Ma et al., 2018)change to an existing DL model 1025 

in the hydrologic literature that can help better capture physical constraints on water loss from hydrologic 1026 

systems. The MC-LSTM-PET model can be viewed as a specific, limited case of a broader class of However, 1027 

other possibilities exist. For example, the hard constraint in the MC-LSTM-PET could instead be imposed 1028 

as a soft constraint through adjustments to the loss function, where water losses in the trash cell that exceed 1029 

PET are penalized. The MC-LSTM-PET model could also be adjusted further to allow additional water 1030 
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losses in the trash cell related to human water extractions from the watershed or other terminal sinks. A 1031 

different approach would be to use learnable, differentiable, process-based models with embedded neural 1032 

networks (also referred to as hybrid differentiable models; Jiang et al., 2020; Feng et al., 2022; Feng et al., 1033 

2023a). These models use process model architectures as a backbone for model structure, which is then 1034 

enhanced through flexible, data-driven learning for a subset of processes. Recent work has shown that these 1035 

models , which can achieve similar performance to LSTMs but can also represent and output different 1036 

internal hydrologic fluxes (Feng et al., 2022; Feng et al., 2023a).  1037 

 1038 

However, challenges can arise when imposing architectural constraints in PIML models. For example, the 1039 

MC-LSTM-PET model makes the assumption that all water loss in the system is due to evapotranspiration, 1040 

and therefore cannot exceed PET. However, other terminal sinks are possible, such as human water 1041 

extractions and inter-basin transfers (Siddik et al. 2023) or water lost to aquifer recharge and inter-basin 1042 

groundwater fluxes (Safeeq et al., 2021; Jasechko et al., 2021). It is difficult to know the magnitude of these 1043 

alternative sinks given unknown systematic errors in other inputs (e.g., underestimation of precipitation 1044 

from under-catch) that confound water balance closure analyses. Still, recent techniques and datasets to 1045 

help quantify these sinks (Gordon et al., 2022; Siddik et al. 2023) provide an avenue to integrate them into 1046 

the MC-LSTM-PET model constraints to improve generalizability. However,Yet as constraints are added 1047 

to the model architecture (i.e., more assumptions are inherited from a process model backbone), the 1048 

potential grows for inductive bias that negatively impacts generalizability. For instance, a recent evaluation 1049 

of hybrid differentiable models showed that they underperformed relative to a standard LSTM due to 1050 

structural deficiencies in cold regions, arid regions, and basins with considerable anthropogenic impacts 1051 

(Feng et al., 2023b). Some of these challenges may be difficult to address because only differentiable 1052 

process models can be considered in this hybrid framework, limiting the process model structures that could 1053 

be adapted with this approach. FurtherAdditional work is needed to evaluate the benefits and drawbacks of 1054 

these different PIML-based approaches, preferably on large benchmarking datasets such as CAMELS or 1055 

CAVARAN (Kratzert et al., 2023).  1056 
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 1057 

Given some of the potential challenges above,  1058 

other DL methods that advance causality while making fewer assumptions on watershed-scale process 1059 

controls are also worth pursuing. For example, a series of techniques have emerged that embed the concept 1060 

and constraints of directed acyclic graphs within deep neural networks in such a way that the architecture 1061 

of the neural network is inferred from the data to encode causality among variables (see Luo et al., 2020 1062 

and references within). That is, frameworks to optimize the architecture of the model can be designed not 1063 

only to maximize out-of-sample predictive performance, but also to promote causality. Alternatively, 1064 

domain-invariant learning attempts to promote the identification of features that are domain-specific versus 1065 

domain invariant, by separating and labeling training data from different ‘domains’ or ‘environments’ (Ilse 1066 

et al., 2021). In the case of DL rainfall-runoff models, this strategy could be implemented, for instance, by 1067 

pairing observed climate and streamflow (one domain) with land surface model-based streamflow estimated 1068 

using future projected climate model output (another domain), with the goal to learn invariant relationships 1069 

between key climate inputs (e.g., net radiation or PET) and streamflow across the two domains. Here, there 1070 

may be a benefit from including data from the land surface and climate models, where the correlation 1071 

between temperature, net radiation, and PET may be weaker under projected climate change. These 1072 

techniques offer an intriguing alternative for the next generation of DL hydrologic models that can 1073 

generalize well under climate change, and should be the focus of further exploration. identify inputs where 1074 

the conditional distribution of the target variable (streamflow) given that input is invariant across 1075 

heterogeneous datasets. A large focus on  1076 

 1077 

 1078 

 1079 

Finally, we note that the results of this study do not entirely preclude the possibility that a standard LSTM, 1080 

fit to a sufficiently large set of diverse watersheds, could ultimately learn more physically realistic 1081 

projections under climate change. Our results with the National LSTM suggest that the signals between 1082 
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temperature change and Rs on water loss may be entangled, making it difficult for the model to estimate the 1083 

individual effects of changes to one of those terms (temperature) on water loss. However, it is possible that 1084 

the model would produce hydrologic projections that were more in line with theory if it was given 1) high 1085 

quality data on all terms related to water loss; and 2) future projections of these terms that were co-1086 

developed in physically consistent ways (e.g., from physical climate models). The Rs used in the National 1087 

LSTM was based on reanalysis and so may have had meaningful errors that drove the model to attribute 1088 

more water loss to warmer temperatures, and the scenario of warming given to the National LSTM (4°C 1089 

warming with no change in Rs) may violate the physical relationship between temperatures and Rs. While 1090 

outside the scope of the present study, we argue more work is needed to further explore the physical 1091 

plausibility of hydrologic projections with more standard LSTMs, with greater attention paid to the 1092 

meteorologic inputs used in the model under historical and future climate conditions.  1093 
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Text S1: Adjustments to Static Attributes 

 

In the primary article, we describe two sets of scenarios for the deep learning models used in this work: 1) 

one in which changes are only made to the dynamic inputs features of each model, and 2) one with 

changes to both dynamic features and to static features that depend on those dynamic features. Here we 

describe in more detail the adjustments made to the static features for each site, which include: pet_mean, 

aridity, t_mean, frac_snow (see Table S1 below for the definition of these features). Importantly, these are 

the static features that are dependent on temperature and PET, the two dynamic inputs adjusted in our 

analysis.  

 

To adjust t_mean, we use the full time series of daily maximum and minimum temperature (on which 

t_mean was originally based), and shift those time series upward by 4C. Using those adjusted series, we 

calculate daily average temperature as the mean of maximum and minimum temperature on each day, and 

then calculate the long-term mean of daily average temperature to develop an updated estimate of t_mean.  

 

To adjust frac_snow, we first calculate the adjusted time series of daily average temperature based on the 

time series of daily maximum and minimum temperature shifted upward by 4C. Then, we count all days 

in the record when precipitation occurs and this adjusted time series of daily average temperature is below 

0C, and divide this number by the total number of days of non-zero precipitation in the record. The 

resulting value is the updated value for frac_snow.  

 

We develop two versions of adjusted pet_mean, one based on Hamon PET and the other for Priestley-

Taylor PET. The adjusted Hamon PET is based entirely on the series of daily maximum and minimum 

temperature shifted by 4C. We use Eqs. 7-8 in the main article to calculate daily Hamon PET under 

warming. We then take the long-term mean of this time series to develop an updated estimate of 

pet_mean. Similarly, for Priestley-Taylor PET, we couple the warmed temperature time series with the 

unadjusted time series of net shortwave radiation, and then use the approach in Eq. 9 in the main article to 

calculate a daily time series of Priestley-Taylor PET. We again take the long-term mean of this time series 

to develop an updated estimate of pet_mean. 

 

Finally, we develop two versions of adjusted aridity, one based on Hamon PET and the other for 

Priestley-Taylor PET. In both cases, we calculate adjusted aridity as the ratio of the updated values for 

pet_mean under warming and the unadjusted value for long-term mean precipitation (another static input 

to the models). 

 

Table S1. Static watershed attributes that are adjusted in a subset of scenarios used in this analysis.  

Attribute Description 

pet_mean  Mean daily potential evapotranspiration 

aridity  Ratio of mean PET to mean precipitation 

t_mean  

Mean of daily maximum and daily minimum 

temperature 



frac_snow  

Fraction of precipitation falling on days with 

mean daily temperatures below 0°C 

 

 

Additional Supporting Tables 

 

Table S2. Range of values considered in the grid search during hyper-parameter tuning.  

 

Hyper-parameter Values Tested 

Number of Hidden Layer Nodes 64, 96, 128, 256 

Mini-Batch Size 64, 128, 256, 512 

Learning Rate 0.0001, 0.0005, 0.001, 0.005 

Number of Epochs 30, 50 

Dropout Rate* 0, 0.2, 0.4 

 

 

Table S3. Additional details for gauges highlighted in Figures 5 and 6 of main article.  

Gauge ID Country Site Name Drainage Area (km2) 

02ED032 

Canada Willow Creek near 
Minesing 231 

02GG013 

Canada Black Creek near 
Bradshaw 213 

02HJ003 

Canada Ouse River near 
Westwook 283 

04126740 United States Platte River at Honor, MI 324 

04220045 

United States Oak Orchard Creek near 
Shelby NY 378 

04168400 

United States Lower River Rouge at 
Dearborn, MI 236 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Additional Supporting Figures 

 

 
Figure S1. The distribution of Kling-Gupta efficiency (KGE) for streamflow estimates across sites from 

each model at the (a) the 141 training sites and (b) 71 testing sites for the training period. Similar results 

for the testing period are shown in panels (c) and (d), respectively. For the process models fit to the testing 

sites (denoted “-test”), no performance results are available at the training sites. All models are trained using 

Hamon PET.  

 

 



 
Figure S2. The correlation between model estimated and observed GLEAM AET from each model at the 

(a) the 141 training sites and (b) 71 testing sites for the training period. Similar results for the testing 

period are shown in panels (c) and (d), respectively. The LSTM is not included in this comparison. All 

models are trained using Priestley-Taylor PET. 

 



 
Figure S3. The PBIAS between model estimated and GLEAM observed AET from each model at the (a) 

the 141 training sites and (b) 71 testing sites for the training period. Similar results for the testing period 

are shown in panels (c) and (d), respectively. The LSTM is not included in this comparison. All models 

are trained using Priestley-Taylor PET. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure S45. The distribution of change in (a,b) AVG.Q, (c,d) FLV, (e,f) FHV, and (g,h) COM across the 

71 testing sites and all models under a scenario of 4C warming using (a,c,e,g) Hamon PET and (b,d,f,h) 

Priestley-Taylor PET. For the DL models, changes were only made to the dynamic inputs (i.e., no 

changes to static inputs). 



 

 

Figure S5. Daily streamflow hydrograph for one water year (2002 October- 2003 September) across the 

three different process-based models (HBV, HYMOD, SAC-SMA) and deep-learning models (LSTM, 

MC-LSTM, MC-LSTM-PET) under 0C warming (black) and 4C warming (red). Results are shown for 

two sites (highlighted in Figure 1 of the main article), and are constructed with models using Priestley-

Taylor PET.  

 



 

 

Figure S6. Mean monthly streamflow averaged across the entire record, shown throughout the water year 

(October-September) acrossfor the three different process-based models (HBV, HYMOD, SAC-SMA) 

and deep-learning models (LSTM, MC-LSTM, MC-LSTM-PET) under 0C warming (black) and 4C 

warming (red). Results are shown on a water year basis (October-September) for four sites (highlighted in 

Figure 1 of the main article), and are constructed with models using Priestley-Taylor PET.  

 



 

Figure S7. The distribution of change in (a,b) long term mean daily flow (AVG.Q), (c,d) low flows 

(FLV), (e,f) high flows (FHV), and (g,h) seasonal streamflow timing (COM) across the 141 training sites 

and all models under a scenario of 4C warming using (a,c,e,g) Hamon PET and (b,d,f,h) Priestley-Taylor 

PET. For the deep learning models, changes were only made to the dynamic inputs (i.e., no changes to 

static inputs). For the process models, the uncertainty in the change in each streamflow attribute across 10 

different training trails is shown as translucent shading.  



 

Figure S84. The distribution of change in (a,b) AVG.Q, (c,d) FLV, (e,f) FHV, and (g,h) COM across the 

141 training sites and all models under a scenario of 4C warming using (a,c,e,g) Hamon PET and 

(b,d,f,h) Priestley-Taylor PET. For the DL models, changes were made to both the dynamic and static 

inputs. 



 

 
 

Figure S96. The distribution of change in (a,b) AVG.Q, (c,d) FLV, (e,f) FHV, and (g,h) COM across 29 

CAMELS sites within the Great Lakes basin under the National LSTM, as well as for 17 of those 29 sites 

from the Great Lakes process models, under a scenario of 4C warming. For the process models only, 

results differ when using (a,c,e,f) Hamon PET and (b,d,f,h) Priestley-Taylor PET. For the National 

LSTM, changes were made to both the dynamic and static inputs. 


