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Abstract. Sustainable intensification schemes such as integrated soil fertility management (ISFM) are a proposed strategy

to close yield gaps, increase soil fertility, and achieve food security in sub-Saharan Africa. Biogeochemical models such as

DayCent can assess their potential at larger scales, but these models need to be calibrated to new environments and rigorously

tested for accuracy. Here, we present a Bayesian calibration of DayCent, using data from four long-term field experiments in

Kenya in a leave-one-site-out cross-validation approach. The experimental treatments consisted of the addition of low- to high-5

quality organic resources, with and without mineral N fertilizer. We assessed the potential of DayCent to accurately simulate

the key elements of sustainable intensification, including 1) yield, 2) the changes in soil organic carbon (SOC), and 3) the

greenhouse gas (GHG) balance of CO2 and N2O combined.

Compared to the initial parameters, the cross-validation showed improved DayCent simulations of maize grain yield (with

the Nash–Sutcliffe model efficiency (EF) increasing from 0.36 to 0.50) and of SOC stock changes (with EF increasing from 0.3610

to 0.55). The simulations of maize yield and those of SOC stock changes also improved by site (with site-specific EF ranging

between 0.15 and 0.38 for maize yield and between -0.9 and 0.58 for SOC stock changes). The four cross-validation-derived

posterior parameter distributions (leaving out one site each) were similar in all but one parameter. Together with the model

performance for the different sites in cross-validation, this indicated the robustness of the DayCent model parameterization and

its reliability for the conditions in Kenya. While DayCent poorly reproduced daily N2O emissions (with EF ranging between15

-0.44 and -0.03 by site), cumulative seasonal N2O emissions were simulated more accurately (EF ranging between 0.06 and

0.69 by site). The simulated yield-scaled GHG balance was highest in control treatments without N addition (between 0.8

and 1.8 kg CO2 equivalent per kg grain yield across sites) and was about 30 to 40% lower in the treatment that combined the

application of mineral N and of manure at a rate of 1.2t C ha-1 yr-1. In conclusion, our results indicate that DayCent is well-

suited for estimating the impact of ISFM on maize yield and SOC changes. They also indicate that the trade-off between maize20

yield and GHG balance is stronger in low-fertility sites, and that controlling SOC losses, while difficult to achieve through the

addition of external organic resources, is a priority for the sustainable intensification of maize production in Kenya.
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1 Introduction

In Kenya, as in many other Sub-Saharan Africa (SSA) countries, maize yields have remained low, on average 1.7 t ha-1 com-

pared to the global average of 5.6 t ha-1 over the last decade (2011-2021; FAO, 2023). This contributes to the low self-sufficiency25

of food production, with around 20% of the Kenyan population facing severe food insecurity (World-Bank, 2021b). If yields

are not improved, increased population growth will further deteriorate food self-sufficiency and food security in general in

the coming decades (Zhai et al., 2021), especially considering expected yield declines resulting from more frequent extreme

weather events (Lobell et al., 2011). One of the key limitations to sustainable maize production in SSA is the insufficient use

of mineral fertilizer and organic inputs (Vanlauwe et al., 2010). Integrated soil fertility management (ISFM) is a sustainable30

intensification practice that can alleviate these limitations by combining the use of mineral fertilizers with organic inputs (Van-

lauwe et al., 2010). Several studies have reported that ISFM has the potential to more than double maize yields in Kenya,

especially on infertile soils, due to its positive impact on soil fertility, including soil organic matter (SOM) content (Chivenge

et al., 2009, 2011). Furthermore, increasing SOM can help mitigate adverse effects of climate change, offering considerable

potential in carbon-depleted soils across SSA (Corbeels et al., 2019). However, the effectiveness of ISFM in increasing yields35

strongly depends on local site conditions, such as soil and climate (Chivenge et al., 2011).

To close yield gaps in a resource-efficient way and to assess the climate change mitigation potential of ISFM, we need to

understand the long-term effects of ISFM practices at a larger scale. Ideally, this would be facilitated by implementing a large

number of long-term experiments across a representative range of soil and climatic conditions. However, the significant costs,

labor, and time required to maintain long-term experiments limit the number of sites for evaluating the variable effects of ISFM40

practices under site-specific conditions. In addition, relying on statistical predictive techniques to upscale results from a limited

number of sites may lead to low predictive power and large errors, because it is unlikely that the effects of soils and climate on

yield and SOM would be fully captured in the statistical models.

Biogeochemical process-based ecosystem models, such as DayCent (Parton et al., 1998; Del Grosso et al., 2001), simu-

late the effects of important driving variables on crop yield and SOM formation using semi-mechanistic functions developed45

through decades of agronomic and soil research. Because they (partly) embed our current understanding of the complex ecosys-

tem processes, they are more robust for scaling up the yield potential (Saito et al., 2021) and the SOM building capacity (Lee

et al., 2020), compared to statistical predictive techniques. However, to avoid bias in model output, it is best practice that mod-

els are calibrated and evaluated for local conditions (Necpálová et al., 2015), especially when applied in novel contexts such

as different climate zones with different soils.50

Although DayCent has been used to estimate SOM stock changes in Kenya on a national scale (Kamoni et al., 2007), and

recently to assess the impact of conservation agriculture on SOM in Ethiopia (Lemma et al., 2021), its modules of SOM and

maize crop growth have never been rigorously calibrated and evaluated for tropical agroecosystems in SSA. A recent evaluation

of DayCent in Kenyan maize systems showed that SOM turnover is underpredicted by the model (Nyawira et al., 2021).

Because SOM is coupled to nitrogen (N) mineralization in biogeochemical models, there is the potential that this translates55

into biased crop responses to N addition and biased crop productivity predictions in any upscaling exercise. A potential solution
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to this issue is the simultaneous calibration of soil and crop parameters in DayCent using data from local long-term experiments.

Ideally, this calibration would include the uncertainty in the model parameters and model outputs (Clifford et al., 2014), so

an estimation of uncertainties is possible in upscaling exercises (Stella et al., 2019). This is especially relevant given a recent

study showing considerable uncertainty in DayCent‘s SOM turnover rates, even when calibrated using a range of long-term60

experiments (Gurung et al., 2020).

In order to use DayCent to assess the potential of ISFM to reduce yield gaps while minimizing environmental impact in

Kenya and other SSA countries, this study used a Bayesian calibration to derive robust DayCent parameters of SOM cycling

and maize growth in Kenya. With robust, we mean that the model evaluation statistics are representative of applying the model

to new sites with the same climate and soils. We used the experimental data of four long-term ISFM experiments conducted in65

Kenya over nearly two decades (Laub et al., 2023a, b). Of these, two sites were in humid western Kenya and two in subhumid

to semi-arid central Kenya.

The first objective of our study was to evaluate to what extent DayCent can reproduce the differences in yields and SOM

development in response to the addition of different qualities and rates of organic resources combined with different rates

of N fertilizer for a number of contrasting sites. The second objective was to evaluate the greenhouse gas (GHG) balance of70

different addition rates of organic material in ISFM to find the optimal balance between limiting GHG emissions from the soil

and optimizing crop yield (that is, sustainable intensification). ISFM can be a source of N2O to the atmosphere (Leitner et al.,

2020) but compared to standard practices, it reduces SOC losses or even increases SOC (Laub et al., 2023a), thereby mitigating

CO2 emissions.

The specific steps to reach the objectives of this study were (i) to test the capability of an uncalibrated version of DayCent75

to simulate yield and SOC development of the different ISFM practices, (ii) to calibrate DayCent to represent ISFM under

Kenyan conditions using experimental data from four long-term experiments, displaying the uncertainty of model parameters

by Bayesian calibration, and (iii) to use the calibrated model to gain understanding of the GHG balance of the different ISFM

treatments.

2 Material and Methods80

2.1 The experimental sites

The present study used data from four long-term field experiments in Kenya, in which the effect of the addition of different

organic resources at different rates was tested, either alone or in combination with the application of mineral N fertilizer, in

the context of ISFM. The sites are located in agriculturally important areas in central and western Kenya (Fig. A1). The Embu

and Machanga sites are both located in Embu County, in the central part of Kenya. The Aludeka site is situated in Busia85

County in western Kenya, while Sidada is located in the adjacent Siaya County, south of Busia (Table A1). The experiments at

Embu and Machanga began in early 2002, while those at Aludeka and Sidada began in early 2005. Therefore, 19 years of data

were available in central Kenya and 16 years in western Kenya (2 sites x 16 years + 2 sites x 19 years = 70 site*years = 140

site*seasons). The sites cover a range of altitudes, temperatures, and precipitations. Embu, with a mean annual temperature
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(MAT) of 20 °C and an annual precipitation of 1200 mm, is the coolest site, while Machanga has a MAT of 24°C and the90

lowest annual precipitation (800 mm). Sidada (23°C, 1700 mm) and Aludeka (24°C, 1700 mm) have a high MAT and receive

significantly more precipitation than the sites in central Kenya. There are two rainy seasons at each site, corresponding to two

maize growing seasons per year. The long rainy season occurs from March to August or September, while the short rainy

season occurs from October until January or February. In terms of soil texture, Machanga and Aludeka have low clay content

(13% clay at both sites), while Sidada and Embu are rich in clay (56 and 60%, respectively).95

All experiments were set up as a split plot design with three replicates, with different qualities and quantities of organic re-

sources as main plots and the presence or absence of N fertilizer as subplots. Maize was grown continuously in all experiments,

with two crops per year, one in the long rainy season and one in the short rainy season. The experimental design was identi-

cal at all four sites and has been described in detail in earlier publications (Chivenge et al., 2009; Gentile et al., 2011; Laub

et al., 2023a, b). Organic resource treatments consisted of high quality Tithonia diversifolia (TD) green manure, high quality100

Calliandra calothyrsus (CC) prunings, low quality stover of Zea mays (MS), low quality sawdust from Grevillea robusta trees

(SD), locally available farmyard manure (FYM), and a control treatment (CT) without organic resource additions. Organic

resources differed in quality by the contents of N, lignin and polyphenols (Table A2). Each organic resource was applied once

a year at two rates, 1.2 and 4 t C ha-1 yr-1, while mineral N fertilizer was applied at a fixed rate of 120 kg N ha-1 (CaNH4NO3)

in each of the two growing seasons. Of this, 40 kg N ha-1 were applied at planting, and the remaining 80 kg N ha-1 about105

six weeks later. Organic resources were applied only once a year, prior to planting in the long rainy season, i.e., in January

or February. They were incorporated to a depth of 15 cm with hand hoes. Furthermore, a blanket application of 60 kg P ha-1

as triple superphosphate and of 60 kg K ha-1 as muriate potash at planting was provided to all plots each season. The plots

were kept weed free by hand weeding, two to three times per season, and selective application of pesticides was used when

necessary to control armyworm, stemborer, and/or termites.110

2.2 The DayCent model

DayCent (2017 version of DD_EVI) is a terrestrial ecosystem model of intermediate complexity (Del Grosso et al., 2001).

It simulates daily C and N fluxes within the soil-plant-atmosphere continuum and has been parameterized for several crops

and ecosystems (Necpalova et al., 2018). It has submodules to simulate plant growth, organic resource and soil organic matter

(SOM) decomposition including mineralization of N, soil water and temperature, N gas fluxes, and CH4 oxidation. The net115

primary productivity of plants is a function of their genetic potential, a simplified phenology, solar radiation, temperature,

and stresses, such as reduced water or N availability. Here, we used the non-growing degree day version of the DayCent crop

module, that does not simulate phenology but has a seedling stage with reduced growth until a certain biomass (full canopy)

is reached. SOC and soil N in the topsoil are represented by an active, slow, and passive SOM pool, while litter and organic

resources are represented by a structural and metabolic litter pool (Parton et al., 1987). All SOM pools are conceptual and have120

no measurable counterparts, whereas the litter pools are semi-quantitative. Their division is based on the measurable ratio of

lignin to N in the organic resources and plant litter. DayCent can adequately simulate crop yields, SOC and soil N dynamics,
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and N2O emissions in temperate conditions (Del Grosso et al., 2005; Necpálová et al., 2015; Necpalova et al., 2018; Gurung

et al., 2020, 2021) but a recent paper showed inadequate performance for tropical conditions (Nyawira et al., 2021).

2.3 Data used for the DayCent model calibration and evaluation125

To provide an overall assessment of the performance of DayCent for its use in Kenya a leave-one-site-out cross-validation

approach was applied to evaluate the model performance. Specifically, this involved using a data sub-set from three of the

four sites for model calibration, with evaluation performed using the data from the fourth site. This process was repeated four

times, every time with another site serving as the evaluation site. Different data, were used for this: Maize grain yield and the

aboveground biomass, both on a dry matter basis, were available for each cropping season between 2002 and 2020 (further130

details in Laub et al., 2023b). All this data was used with one exception - the short rainy season of 2019 at Sidada, which had

unrealistically high maize grain yields of up to 16 t ha-1. In addition, plot-scale SOC and total N contents in the top 15 cm soil

layer were available at several time points, and in 2021 for the 0-30 cm soil depth. At Embu and Machanga, soil samples were

taken every two to three years since the start of the experiment in 2002 until 2021, while at Sidada and Aludeka, soil sampling

occurred only in 2005, 2018, 2019 and 2021 (further details in Laub et al., 2023a). Because soil bulk density data was not135

available for most time points and there was no significant difference in topsoil bulk density between treatments at any site in

2021, the mean soil bulk density per site was used to calculate SOC stocks of the top 15 cm of soil depth. We used a DayCent

parameterization that was developed to simulate SOC stocks of the IPCC-recommended 0-30 cm topsoil layer (Gurung et al.,

2020) (further details in section 2.3.2). Thus, the 0-15 cm SOC stocks were adjusted to 0-30 cm depth. This was done by adding

the site-specific SOC stocks from the 15-30 cm layer (specifically, the 15-30 cm equivalent-soil-mass-based ones (Wendt and140

Hauser, 2013; Lee et al., 2009)) to the treatment-specific SOC stocks from 0-15 cm. Due to limited data availability for the 15-

30 cm soil depth (only 2021), this approach was considered the most conservative and robust; subsoil carbon usually changes

very slowly, and a statistical test revealed no differences in the equivalent soil mass based SOC stocks of the 15-30 cm layer

(2.5-4.7 t soil ha-1) between treatments at the same site in 2021 (with only one single exception at Aludeka; Fig. A2).

Data on N2O emissions were used in the model evaluation phase, but not for model calibration, due to their scarcity and145

high uncertainty. The N2O measurements were conducted after N fertilization in 2005 (weekly measurements form March to

June at Embu and Machanga and daily measurements at Machanga in November), in 2013 and 2018 (weekly measurements

form March to beginning of May at Sidada and Aludeka), and in 2021 (weekly measurements form mid-March to mid-May

at Sidada). The measurements applied the static chamber method (Hutchinson and Mosier, 1981) with two measuring frames

per plot permanently installed for a whole rainy season (one within, one between maize rows). The sampling chambers (0.27150

× 0.375 × 0.11 m) had a vent tube and fan for to homogenize the gas sample before extraction with a 60 mL polypropylene

syringe through a septum-sealed sampling port. Four gas samples were collected at 0, 15, 30 and 45 min of chamber closure.

Gas samples from within and between maize rows were combined per time point in the same syringe (Arias-Navarro et al.,

2017). All analyses were conducted using a SRI 8610C gas chromatography (456-GC, Scion Instruments, Livingston, United

Kingdom) equipped with an electron capture detector for N2O analysis. Fluxes per surface area were determined using the155

linear slope of gas concentration over time (Pelster et al., 2017; Barthel et al., 2022). Simulated N2O emissions were evaluated
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against measured daily and cumulative N2O emissions. To determine the cumulative emissions at plot scale, we used the

trapezoid method (Levy et al., 2017), specifically, the trapz function of R (Tuszynski, 2021). Treatment-scale means and

variances of the daily and cumulative N2O emissions were then computed in a similar way as for the other measurements.

Finally, continuous soil moisture measurements were conducted using sensors placed in each replicate at 10 cm soil depth160

(EC-5 Soil Moisture Sensor, Meter, Germany) in the control and the 1.2 t C plots of the Calliandra, farmyard manure and

maize stover treatments at the Sidada and Aludeka sites (March 2018 to December 2020). These soil moisture data were used

to initially determine the optimal pedotransfer functions for soil hydraulic conductivity but not used in the model calibration.

2.3.1 Model driving variables and model assumptions

The site-specific crop management data was obtained from season- and site-specific records of field management operations.165

These included dates of organic resource application, manual plowing before planting, maize planting, split application of

mineral N, weeding and harvest. Dates of pesticide applications and gap filling or maize thinning were also available, but these

operations are not part of standard DayCent management and were therefore not included in modelling. Therefore, our model

runs assumed no occurrence of pests or diseases, and an optimal plant density at emergence, which, in practice, was ensured

by manual thinning and gap filling.170

Recorded weather data existed for all sites, but filling in data gaps was necessary due to unavailability and loss of recorded

data. At Embu and Machanga, manual recordings of daily minimum and maximum temperature and precipitation were avail-

able from 2002 until the end of 2007, but from 2008 until 2017, only measured precipitation was available. After 2017, newly

installed TAHMO stations (https://tahmo.org/climate-data/) were available for these two sites, providing daily values for tem-

perature and precipitation. At Aludeka and Sidada, manual recordings of daily minimum and maximum temperature and175

precipitation were available for all years from 2005 to 2017. Thereafter, weather stations (Meter climate station, Meter Envi-

ronment, Munich, Germany) were installed and provided the data. Data gaps were filled by using the NASA POWER product

(https://power.larc.nasa.gov/docs/methodology/). A bias correction for the minimum and maximum temperature of NASA

POWER data was performed, using a linear regression with measured data as dependent variable (y) and NASA POWER data

as independent variable (x). Specifically, the slope and intercept of the regression equation y =mx+ b, were used to produce180

a corrected estimate of these data. In our specific case, the slopes were not significantly different from 1, but intercepts (b)

were significantly different from 0. The specific intercepts for maximum temperature were -0.3°C, -0.4°C, +3°C and +6°C for

Embu, Machanga, Sidada and Aludeka, respectively. The intercepts for the minimum temperature were -0.25°C, -0.5°C, -3°C

and +1°C for Embu, Machanga, Sidada, and Aludeka, respectively. For precipitation, no bias correction was done.

The data on the soil hydraulic properties needed in DayCent (volumetric soil water content at field capacity, wilting point,185

and saturated hydraulic conductivity KS) were calculated based on the soil texture measured at each site. The pedotransfer

functions of Hodnett and Tomasella (2002) was used, because it was specifically designed for tropical soils. Its‘ soil hydraulic

properties also showed better agreement between the measured and simulated soil moisture contents than when soil hydraulic

properties of Saxton and Rawls (2006) were used. Because the Hodnett and Tomasella (2002) equation does not provide a

method to estimate KS, KS was calculated using the Saxton and Rawls (2006) equation, with values of the water retention190
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curve, α and n (van Genuchten, 1982), calculated with the equation from Hodnett and Tomasella (2002). The equations can be

found in the supplementary material (A1).

2.3.2 Initial model parameterization and selection of potentially sensitive parameters for calibration

It was assumed that the organic resource inputs had the same properties across all sites (i.e., mean values of lignin contents and

C/N ratios per organic resource were assumed; Table A2). This approach was used because measurements were not available195

for all sites and years, and was justified as an analysis of variance of data from the years 2002, 2003, 2004, 2005 and 2006 at

Embu and Machanga, and from 2018 at all sites, did not indicate any significant differences in lignin contents and C/N ratios

between the sites or years. The C content of maize grain was assumed to be 42.5% throughout the simulation period. This

was the mean value of measured grain C content across sites (standard deviation 1.8%) in the short rainy season 2018 and

long rainy season 2019 (data not shown). Given the strong correlation between maize grain yield and aboveground biomass in200

the measured data (r = 0.87), the aboveground biomass data was transformed to harvest index data for the model calibration

process, because harvest index had a lower correlation with yield (r = 0.59) than aboveground biomass.

The DayCent simulations were conducted at the treatment scale using average values across all three replicate plots for soil

parameters (i.e., soil texture, bulk density, pH), SOC and soil N stocks, maize grain yield and aboveground biomass/harvest

index. This aggregation was done to reduce the computation time of the simulations and because initial tests showed similar205

model performance as compared to applying the model to each experimental replicate individually. The site-specific standard

deviation for each type of measurement was used as a measure of uncertainty of the measured data (computed from the three

replicates at each time point for each treatment at each site). This choice was based on the statistical models of Laub et al.

(2023a, b), showing variance heterogeneity between sites but not between treatments.

The standard parameter values of the DayCent 2020 version were taken as initial model parameters, with three exceptions.210

First, we used the adjusted decomposition parameter values of the SOM pools from Gurung et al. (2020) to allow the use of

DayCent for simulating SOC stocks of the 0-30 cm soil depth layer instead of the standard 0-20 cm layer. Second, we modified

the parameter value representing the fraction lost as CO2 upon structural litter and lignin turnover (ps1co(1&2)&rsplig). The

default value for this parameter is 0.5 assigning a carbon use efficiency (CUE) value of 50% to structural litter, based on

outdated theories that lignin-rich materials form stable SOC most efficiently (Frimmel and Christman, 1988). Newer studies215

have, however, clearly shown that minimal structural litter is conserved in the long term, while metabolic litter forms SOC

more efficiently (Cotrufo et al., 2013; Denef et al., 2009; Puttaso et al., 2013; Kallenbach et al., 2016). Thus, we opted for a

more realistic prior value of 0.85 for ps1co(1&2)&rsplig, corresponding to a more plausible CUE value of 15% for structural

litter (Mueller et al., 1997). Third, for the parameters determining the minimum and maximum proportion of nitrified N lost

as N2O, we used values that fell between the DayCent default values and recent values from Gurung et al. (2021). This choice220

was motivated by the fact that the DayCent default parameter values led to excessively high emissions, while the Gurung et al.

(2021) parameter values resulted in emissions that were too low. Finally, we assumed that the maize growth parameters of the

second highest production level (C5 in DayCent) represent best the production levels observed in the experiment.
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To identify which model parameters to include in the global sensitivity analysis (see section 2.4) and model calibration, we

reviewed literature for recently conducted sensitivity analyzes of the DayCent model (Necpálová et al., 2015; Gurung et al.,225

2020). Additionally, we consulted the DayCent manual to identify and add further parameters of potential importance for the

processes considered in our study (i.e., plant productivity and soil C and N cycling). This resulted in a selection of 66 parameters

(Table 1 and Table A3). Some of these parameters belong to the same category, but can be individually calibrated in DayCent.

For example, the "tillage multiplier" of SOM turnover can have different values for different SOM pools but is usually the same

for all SOM pools in the standard DayCent parameterization. Thus, we decided to have the same tillage multiplier value for all230

SOM and litter pools. Some parameters can have different values between the surface and soil SOM pools (e.g., C/N ratios and

turnover rates). For simplicity, we assigned the same C/N ratios and a constant ratio to the turnover rates of surface and soil

SOM pools (i.e., decX(2)/decX(1)). This simplified parameter sensitivity analysis and calibration with regard to surface and

soil SOM pools. Finally, the parameters governing the minimum and maximum values were reformulated. Instead of calibrating

them as a maximum and a minimum value, we considered the maximum value and the difference between the minimum and235

maximum values (i.e., N2Oadjust_(max-min) and aneref(1)-anaref(2)). This ensured that the minimum value was smaller than

the maximum value, thereby avoiding numerical problems(initial N2Oadjust_max was set to 0.015; N2Oadjust_(max-min) to

0.003).

2.3.3 Soil organic matter pools initialization based on measured data

Instead of relying on spin-up simulation based on uncertain historical land use and management of the simulated sites, we240

used measured mineral associated organic carbon (MAOC) fractions as a proxy for the initialization of the passive SOM pool

(Zimmermann et al., 2007). Replacing SOM initialization assumptions with measured proxies can enhance model performance

(Laub et al., 2020; Wang et al., 2023), and, more importantly, is less sensitive to user assumptions. It also aligns with the

DayCent concepts on SOM; the manual (Hartman et al., 2020) denotes that particulate organic carbon (POC) and MAOC

are related to the slow and the passive SOM pool, respectively. MAOC data for samples from the 0-30 cm soil layer was245

available from the year 2021 (specifically for the control -N, control +N and the farmyard manure -N and Tithonia diversifolio

-N treatments at 4 t C ha-1 yr-1 at all sites). It was derived by density fractionation using sodium polytungstate solution (1.6

g cm-3 for Aludeka and 1.7 g cm-3 for the other sites). Aggregates were dispersed with ultrasonication at 400 J ml-1 (217 s

at 200-240W), after which samples were centrifuged for 2h at 4700 rpm to separate the heavy and the light fraction, which

were then separated, washed with deionised water, dried at 60°C for 24h and analyzed for weight and C content. A statistical250

analysis revealed the absence of treatments differences within the same site, so the site-specific MAOC values for the 0-30 cm

soil depth across treatments (0.91, 0.88, 0.85, 0.86 g MAOC g-1 SOC for Aludeka, Embu, Machanga, and Sidada in 0-30 cm,

respectively) were used to initialize the SOC in the passive SOM pool in DayCent simulations. Further, 3% of initial SOC was

assigned to the active SOM pool (mean value recommended in the DayCent manual) and the remainder of SOC was assigned

to the slow SOM pool.255

The DayCent manual further states that, although the slow SOM pool is closely related to the POC fraction, it tends to be

larger (Hartman et al., 2020). Consequently, the passive SOM pool must be smaller than the MAOC fraction. Additionally, the
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fractionation data was from 2021, when the experiments were already 19 and 16 years old. To address these issues, two new

parameters were introduced in the simulations: 1) an intercept (ICMAOC) to account for the passive SOM pool being smaller

than the MAOC fraction, and 2) a slope for the time since the start of the experiment (SLt) to account for SOM changes (mostly260

losses) since the start of the experiments, with the passive SOM pool typically changing at the slowest rate. Given that all sites

were converted to agriculture only a few decades ago (Laub et al., 2023a), the percentage of total C in the passive SOM pool at

the start of the experiment should be higher than the 30-40 %, that are common at steady state of SOM pools (Hartman et al.,

2020). Considering this, it was assumed that the intercepts initial value was -0.1 g MAOC g-1 SOC and the slopes initial value

value was -0.005 g MAOC g-1 SOC yr-1 since the start of the experiment, giving both terms approximately the same weight.265

Thus, the fraction of SOC in the passive SOM pool at the start of the experiment was

SOCp(g g
−1) =MAOC2021 + ICMAOC +SLt ∗ tdif (1)

Here, SOCp represents the fraction of SOC in the passive SOM pool at the start of the experiment, MAOC2021 the MAOC

fraction in 2021 (g MAOC g-1 SOC), ICMAOC the intercept, and SLt the slope value that is multiplied by the time difference

between the measurement and the start of the experiment in years (tdif). With the selected standard values for ICMAOC and270

SLt, between 66% (Machanga) and 73% (Aludeka) of SOC were assumed to be in the passive SOM pool at the start of the

experiment. The uncertainty related to this initialization approach was accounted for in the model calibration by allowing large

ranges for these parameters. Finally, to initialize the soil N pools, C/N ratios of the active, slow, and passive SOM pools were

set to 10, 17.5, and 8.5, respectively, which are the best estimates provided by the manual (Hartman et al., 2020).

2.4 Global sensitivity analysis275

To reduce the number of optimised parameters during the calibration, we performed a parameter screening (van Oijen, 2020).

For this purpose, a global sensitivity analysis was conducted to quantify the relative importance of different model parameters

to the relevant model outputs regarding our study’s focus on maize yield and the greenhouse gas mitigation potential of ISFM.

The aim was to identify and fix less influential model parameters to their initial values, reducing the computational cost for

performing the consecutive Bayesian model calibration (see section 2.5). The global sensitivity analysis was performed using280

the Sobol method (Saltelli, 2002a, b), which allows for the estimation of the proportion of variance in the model outputs that

is explained by each model parameter, while considering the interaction terms of first-order and higher-order (Gurung et al.,

2020). The "sensitivity" package (function sobolSalt; Iooss et al., 2021) of R version 4.0 (R Core Team, 2020) was applied. This

function implements a simultaneous Monte Carlo estimation of first-order and total-effect Sobol indices. The computational

cost is N(p+ 2) model runs, N being the dimension of the two matrices to construct the Sobol sequence, p being the number285

of parameters (66 in our case). Our tests indicated similar results for N = 500/1000, so we chose a dimension of 1000. The

preselected model parameters to include are described above and in Tables 1 and A3. The ranges used for the global sensitivity

analysis were centered around the initial parameter value obtained as described above (section 2.3.2). The upper and lower

parameter boundaries were based on previous sensitivity analyses (e.g. Necpálová et al., 2015; Gurung et al., 2020), plausible
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ranges reported in the DayCent manual and variations observed in different maize parameterizations in the literature. The290

parameters were then grouped according to the magnitude of their ranges. Parameters with very small, small and moderate

ranges were varied by±10, 25 and 50% from the initial parameter value, respectively. For parameters with large and very large

ranges, the upper boundaries were the initial parameter values multiplied by 3 and 10, respectively, the lower boundaries were

the initial parameter values divided by 3 and 10, respectively. The parameter sensitivity was independently determined for the

mean maize grain yield and aboveground biomass, averaged over all seasons at all sites, as well as for the SOC and soil N295

stocks at the end of the simulation period (equations presented in the supplement A2).

Table 1. DayCent model parameters and the coefficient of variation used in the calibration. Displayed are parameters considered for calibra-

tion due to total sensitivity index > 2.5% (top) and with a total sensitivity index > 1% (bottom). The remainder of parameters (<1%) are not

included in this table and can be found in the supplementary (Table A3). The presented calibrated parameter values correspond to the single

parameter set with the highest likelihood, which was derived by using the data from all four sites combined. The posterior was also derived

by using the data from all four sites combined. Abbreviations: CV, coefficient of variation; SD, standard deviation, 95% CI, 95% credibility

interval; Ly, langley.

Possible ranges Initial Calibrated Posterior

Parameter Description of values Units value CV value mean SD 95% CI

Included in calibration (total sensitivity >2.5%)
himax Maximum harvest index for maize moderate g g-1 (C) 0.40 0.23 0.43 0.46 0.06 0.36-0.59

ppdf(1) Optimum temperature for growth of maize very small °C 30.00 0.08 28.63 28.5 1.67 25.44-31.57

ppdf(2) Maximum temperature for growth of maize very small °C 45.00 0.08 47.1 46.48 3.03 40.01-52.19

prdx(1) Potential aboveground production of maize large g C m-2 Ly-1 2.25 0.38 2.62 2.45 0.39 1.86-3.37

clteff(1,2&4) Tillage multiplier for SOM turnover large unitless 10.00 0.38 4.93 9.02 3.35 2.91-15.78

aneref(3) Min. impact of soil anaerobiosis on SOM turnover large unitless 0.95 0.38 0.79 0.82 0.13 0.55-0.99

dec4 Max. turnover rate of passive SOM pool very large g g-1 yr-1 0.0035 0.45 0.0060 0.004 0.001 0.001-0.007

dec5(2) Max. turnover rate of slow SOM pool large g g-1 yr-1 0.10 0.38 0.13 0.12 0.03 0.06-0.17

fwloss(4) Scaling factor potential evapotranspiration moderate unitless 0.75 0.23 0.94 0.9 0.05 0.81-0.99

pmco2(1&2) C lost as CO2 with metabolic litter turnover* large g g-1 (C) 0.54 0.38 0.91 0.71 0.11 0.48-0.91

ps1co2(1&2)&rsplig C lost as CO2 with structural litter turnover* large g g-1 (C) 0.85 0.38 0.77 0.86 0.11 0.61-0.99

ICMAOC Intercept for fraction of MAOC in slow pool very large g g-1 (C) -0.1 1 -0.02 -0.1 0.08 -0.25-0.06

SLt Slope for time difference of MAOC measurement large g g-1 yr-1 (C) -0.005 0.38 -0.006 -0.005 0.002 -(0.001-0.008)

Not included in calibration (total sensitivity <2.5% & > 1% )
frtc(1) C allocated to roots at planting, without stress small fraction of NPP 0.50 0.15 - - - -

frtc(3) Time after planting at which maturity is reached small number of days 90.00 0.15 - - - -

pramn(1,2) Min. aboveground C/N ratio at maturity small C/N ratio 62.50 0.15 - - - -

hiwsf Max. harvest index reduction with water stress moderate g g-1 (C) 0.60 0.23 - - - -

teff(1) Temperature inflection point (SOM turnover) moderate unitless 17.05 0.23 - - - -

varat21&22(2,1) Min. C/N ratio for material entering slow SOM pool small C/N 12.00 0.15 - - - -

basef Soil water of bottom layer lost via base flow moderate fraction H2O 0.30 0.23 - - - -

N2Oadjust_max Proportion of nitrified N that is lost as N2O large g g-1 (N) 0.015 0.38 - - - -

MaxNitAmt Maximum daily nitrification amount large g N m-2 0.40 0.38 - - - -
*(1 - microbial carbon use efficiency)
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2.5 Combined Bayesian calibration of plant and soil model parameters

Bayesian calibration is a probabilistic inverse modeling or data assimilation technique, which is used to estimate the joint pos-

terior distribution of model parameters (θ) given the measured data (D) and the model structure (M ), expressed as p(θ|D,M).

It uses the proportionality form of Bayes‘ theorem, where p(θ|D,M) is proportional to the prior belief about model parameters,300

p(θ) times the likelihood function of the data given the model and the parameters, p(D|M,θ):

p(θ|D,M)∝ p(θ) ∗ p(D|M,θ) (2)

While the prior, p(θ), is chosen based on previous knowledge of the model parameters, the likelihood function, p(D|M,θ),

measures how well the model and the data match. In practice it is derived for a given set of parameters sampled from the prior,

by running and evaluating the model using the measured data, the simulated counterpart and the variance-covariance matrix of305

the model residuals. Following Gurung et al. (2020), we applied the R software (R Core Team, 2020) to create a mixed model

with restricted maximum likelihood estimation with the lme4 package (Bates et al., 2015), which automatically constructed

the variance covariance matrix based on the nested design of observations to account for autocorrelation of residuals. The

likelihood was a function of the following form:

p(D|M,θz) =
1√
2πΣ

exp

(
−1

2
(M(θz)−D)TΣ−1(M(θz)−D)

)
(3)310

Here, Σ is the variance covariance matrix, M(θz) is the vector of simulated values using the z-th parameter set θz and D

the vector of observed data. In the R software, this can be constructed by setting the residual (modelled value - measured) as

the dependent variable of a zero intercept model with nested random effects (i.e., sampling date within site), and assigning

the inverse of the median standard deviation (of each type of measurement at each site) as weight. By using the inverse of

the standard deviation of each type of measurement as weight of the zero-intercept model, it is possible to include different315

types of measurements into the same likelihood function. This is similar to what is done in weighted analyses commonly

performed in meta-analyses (Möhring and Piepho, 2009). The logLik() function is then used to extract the log-likelihood,

which is transformed to the likelihood by raising e to the power of the log-likelihood.

The sampling importance resampling method, which was used in this study, is a direct form of Bayesian calibration, which

has recently been used by Gurung et al. (2020), to calibrate the parameters of the SOM module of DayCent using a large320

collection of temperate long-term experiments. It samples the prior by running the model for a large sample of parameter sets

of size I from the prior, computing the likelihood for each sample, and filtering the prior based on importance weights w(θz)

w(θz) =
p(D|M,θz)∑I
i=1 p(D|M,θz)

(4)

where p(D|M,θz) is the likelihood function of the zth parameter set and w(θz) is the corresponding importance weight. It

is consistent with the proportionality form of Bayes‘ theorem in that it uses the importance weights w(θz) as probabilities for325

sampling from the prior, without replacement, to derive the posterior.

11



Combined Bayesian calibration of the sensitive DayCent parameters was performed using all available data on maize grain

yield, harvest index (calculated from aboveground biomass), and SOC stocks. A notable exception was that SOC stocks from

the Machanga site were not used in the calibration process, because this site was severely affected by soil erosion (Laub et al.,

2023a) that is not represented by DayCent. The main reason for only using grain yield, harvest index and SOC data was that330

the yields, SOC stocks, and their trade-offs were the focus of this study. Technical constraints also influenced the decision; the

creation and readout of daily simulation outputs to match simulated and measured soil moisture content, mineral N content and

N2O fluxes would slow down the whole Bayesian calibration process by a factor of 5. The Bayesian calibration would have

taken more than three months on the virtual machine with 64 cores. Following Gurung et al. (2020), model parameters that had

a total sensitivity index of at least 2.5% for either yield, aboveground biomass, or SOC were considered influential and thus335

were subjected to calibration (11 parameters). Additionally, the new parameters associated with the initialization, ICMAOC and

SLt had to be calibrated, resulting in a total of 13 parameters for calibration (Table 1).

Overall, a total of 200000 simulations were performed, from which 0.1% (200) of the parameter sets were sampled to

derive the posterior distribution through resampling (Gurung et al., 2020). It was assured that this number of simulations

was sufficient by splitting the simulations into two halves and visually assessing the similarity of derived posteriors for these340

subsets. In our experience, the sampling importance resampling algorithm is highly suitable for DayCent, that is prone to

crashing with inappropriate parameter combinations. Unlike chain-dependent methods such as Markov Chain Monte Carlo,

this method relies on model runs that are independent of each other, ensuring that an erroneous run does not stop the algorithm.

In addition, this method allows for an efficient cross-validation of the posterior parameter set, such as the leave-one-site-out

cross-validation employed in this study. Notably, the sampling importance resampling algorithm’s advantage lies in its ability345

to store model results for each parameter set by site, allowing for straightforward cross-validation by site, without the need for

rerunning the model for each iteration. The posterior parameter distributions of this study are displayed for both the leave-one-

site-out cross-validation and the combined dataset from all four sites (Fig. 2). The former shows the importance of individual

sites in the calibration process, while the latter provides the most representative posterior distribution for model upscaling,

making efficient use of all available data.350

To ensure computational efficiency, we used informed Gaussian priors that were centered around the standard parameter

values of DayCent, with different coefficients of variation based on different observed ranges in previous studies. To make

optimal use of existing knowledge about the parameters, the selected coefficients of variation per range were initially based on

previous studies that had performed Bayesian calibration of the DayCent model. The coefficients of variation were chosen in

a way that the prior from our study covered the whole range of the posterior from previous studies and then multiplied by a355

factor of 1.5 to account for the additional uncertainty that arose from applying DayCent at tropical sites. The studies of Gurung

et al. (2020) and Mathers et al. (2023) were the basis to derive the coefficient of variation for the parameters dec4, dec5(2),

clteff(1,2,&4), ps1co2(1&2) & rsplig, and pmco2(1&2). The study of Yang et al. (2021) was the basis for the parameters

ppdf(1) and ppdf(2), and the study of (Necpálová et al., 2015, though not being Bayesian) was the basis for the parameters

aneref(3) and fwloss(4). For himax and prdx(1), we looked into the default parameters of annual crops in DayCent, to assure360

that the whole range of values (0.30-0.55, and 1.1-3.5: 1.7-2.5, respectively) was covered by the prior. The final coefficients
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of variation were 0.08, 0.15, 0.23, 0.38 and 0.45 for parameters with very small, small, moderate, large and very large ranges

(Table 1). For the newly introduced parameters, we used large coefficients of variation, namely 0.38 for SLt and 1 for ICMAOC,

the reason for the latter being an initial test, in which ICMAOC was set to -0.3 instead of -0.1, which proved to be too low, but

the uncertainty range with a standard deviation of 0.1 proved to be reasonable. Additionally, all parameters were constrained365

to remain within their physically sensible limits (i.e., not <0 for all and not >1 for those representing fractions).

2.6 Model evaluation

We used the following standard model evaluation statistics (Loague and Green, 1991):

MSEy =
1

n

n∑
z=1

(Oyz −Pyz)2 (5)

RMSEy =
√
MSEy (6)370

EFy = 1−
∑n
z=1(Oyz −Pyz)2∑n
z=1(Oyz − Ōy)2

(7)

The MSEy is the mean-squared-error and RMSE is its root. EFy is the Nash-Sutcliffe model efficiency. We further divided

MSEy into squared bias (SB), nonunity slope (NU) and lack of correlation (LC), as suggested by Gauch et al. (2003). We

expressed them as a percentage of the MSEy:

SBy(%) =
(Ōy − P̄y)2

MSEy
∗ 100 (8)375

NUy(%) =
(1− by)2 ∗ (

∑n
z=1(O

2
yz)

n )

MSEy
∗ 100 (9)

LCy(%) =
(1− ry)2 ∗ (

∑n
z=1(P

2
yz)

n )

MSEy
∗ 100 (10)

Here, Oyz is the measured value of the z-th measurement of the y-th type of measurement, Ōy the mean of the y-th type of

measurement and Pyz the simulated value corresponding to Oyz. P̄ y is the mean predicted value of the y-th measurement type,

b the slope of the regression of P on O and r the correlation coefficient between O and P. The indicators LC, SB and NU show380

the nature of model errors, that is, a high LC shows that it is mostly random, a high SB a systematic bias, while a high NU

shows issues of model sensitivity.
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2.7 Greenhouse gas balance

To compare different ISFM treatments in terms of their greenhouse gas (GHG) emissions, their net GHG balance was computed

on a yearly basis (kg CO2eq ha-1 yr-1) over the whole simulation period. This calculation was based changes in the SOC content385

and cumulative emissions of N2O using a 100-year time horizon of global warming potentials (Necpalova et al., 2018):

GHG balance =
44

12
∗∆SOC + 265 ∗N2O (11)

Here, ∆SOC is the change in SOC content (kg C ha-1 yr-1), N2O the cumulative N2O flux (kg N2O ha-1 yr-1). The CH4

oxidation capacity was not considered, because it usually makes a very limited contribution to GHG balance in rainfed cropping

systems (Lee et al., 2020) and we did not have data to evaluate the reliability of this simulated flux. In addition to the net annual390

GHG balance (in t CO2eq ha-1 yr-1), we calculated the yield-scaled GHG balance (in CO2eq kg-1 maize grain yield) by dividing

the cumulative GHG balance over the entire simulation period by cumulative simulated yields (dry matter base).

3 Results

3.1 Most sensitive DayCent parameters

The results of the global sensitivity analysis showed that of the 66 model parameters analyzed, only 20 parameters had a Sobol395

total sensitivity index >1% for either maize grain yield, aboveground biomass, SOC or soil N stocks (Fig. 1). Of these, only 11

parameters had a Sobol total sensitivity index >2.5%, a threshold that captures the most influential parameters and represents

a suitable selection of parameters for model calibration (Gurung et al., 2020). The parameters that turned out to be the most

sensitive, with a Sobol total sensitivity index >10% for at least one type of measurement, were radiation use efficiency (prdx(1);

for all measurement types); the optimal and maximum temperature for maize growth (ppdf(1) and ppdf(2), respectively; only400

for grain yield and aboveground biomass), and maximum harvest index (himax; only for grain yield). Further, the turnover rate

of the slow and passive SOM pools (dec5(2) and dec4, respectively; only for SOC and soil N), the decomposition multiplier for

soil tillage (clteff(1,2&4); only for SOC and soil N) and the fraction lost as CO2 of the metabolic litter pool (pmco2(1&2), i.e.,

1 - CUE); only for SOC and soil N) belonged to the most sensitive model parameters. The parameters of further importance,

with a Sobol total sensitivity index >2.5% and <10%, were the minimum value for the impact factor of anaerobic soil conditions405

(aneref(3); only for SOC and soil N), the scaling factor for potential evapotranspiration (fwloss(4); only for maize grain yield),

and the fraction lost as CO2 of the structural litter and lignin pools (ps1co(1&2)&rsplig, i.e., 1-CUE; only for SOC and soil

N). The fact that the Sobol 1st order and total sensitivity indexes were similar for most parameters suggested only a limited

number of interactions between the parameters identified by the global sensitivity analysis.
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Figure 1. Results of the global sensitivity analysis of the most relevant DayCent model parameters. Parameter sensitivity was independently

determined for the mean maize aboveground biomass, grain yield, and SOC and soil N stocks at the end of the simulation period. Only

parameters with a Sobol sensitivity index >1% are displayed.

3.2 Posterior parameter distributions from the Bayesian model calibration410

Following the global sensitivity analysis, 13 selected model parameters were calibrated using Gaussian priors which were

centered around the initial parameter value, with standard deviations according to the uncertainty ranges (Table 1). It should

be noted that the presented calibrated parameter values in Table 1 correspond to the single best parameter set for all four sites

combined (i.e., the parameter set that had the highest likelihood in the case of no cross-validation).

Compared to the range of the prior parameter sets, the ranges of the posterior parameter sets calibrated with data from all415

four sites changed significantly for the parameters fwloss(4) and pmco2(1&2), had a similar mean value but a more narrow dis-

tribution for the parameters ICMAOC, prdx(1), and ps1co2(1&2)&rsplig, and changed slightly for the parameters dec4, dec5(2),

ppdf(1), ppdf(2), and himax (Fig. 2). The posterior parameter sets of the leave-one-site-out cross-validations were largely in

agreement with each other and with the posterior parameter sets calibrated with data from all four sites. The exception was the
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parameter pmco2(1&2), which was centered around 0.55 for the case that the Aludeka site was left out and around 0.70 for all420

other cases (Fig. 2).

The parameter that changed most strongly in the parameter sets calibrated with data from all four sites was the scaling factor

for potential evapotranspiration (fwloss(4); from 0.75 to 0.94) thereby not including the initial value in the 95% posterior

credibility interval (0.81 to 0.99; Table 1). Also the CUE of metabolic litter was reduced (by an increase of pmco2(1&2) from

0.54 to 0.91 g g-1) but the initial value was still within the 95% posterior credibility interval (0.48 to 0.91 g g-1). The turnover425

rates increased for both the slow SOM pool (dec5(2); from 0.10 to 0.13 g g-1 yr-1) and the passive SOM pool (dec4; from

0.0035 to 0.0060 g g-1 yr-1), which was however counterbalanced by a reduction of the effect of tillage on decomposition

(clteff(1,2,&4); from 10 to 5) and all three of these parameters contained their initial values in the 95% posterior credibility

intervals. The maximum harvest index slightly increased (himax; from 0.40 to 0.43 g g-1) and so did the potential production

of maize per unit of light interception (prdx(1); from 2.25 to 2.62 g C m-2 langley-1). Finally, the optimum temperature for430

maize growth decreased (ppdf(1); from 30 to 28.6 °C), while the maximum temperature for maize growth increased (ppdf(2);

from 45 to 47.1 °C). Of the two parameters that translated measured MAOC into SOC in the passive SOM pool, only ICMAOC

was altered (from -0.1 to -0.02 g g-1) but the initial value was still in the 95% posterior credibility intervals(-0.25 to 0.06 g

g-1). Overall, the parameter correlations in the posterior parameter set across the four sites were low for soil carbon related

parameters (around 0.4 at maximum), but stronger correlations existed between plant productivity-related parameters (e.g.,435

-0.7 between himax and prdx(1) and 0.58 between ppdf(1) and ppdf(2); Fig. A3).

3.3 Simulation of maize grain yields and aboveground biomass at harvest

While the overall variation of maize grain yields across sites and treatments could be captured to some extent with the ini-

tial model parameter set, for two sites a negative model efficiency was obtained (Fig. 3). With the leave-one-site-out cross-

validation approach, the model efficiency for maize grain yields at the left-out site improved ubiquitously (i.e., from 0.32 to440

0.38 at Aludeka; from -0.04 to 0.15 at Embu; from 0.32 to 0.38 at Machanga, from -0.16 to 0.31 at Sidada, and from 0.36 to

0.50 across all sites) and so did RSME and bias. The same was true for the simulation of aboveground biomass (e.g., from 0.03

to 0.23 across sites; Fig. 4), with the exception of Machanga. Overall, biases in simulated grain yields were mostly eliminated

through the model calibration, and biases in simulated aboveground biomass were eliminated at Sidada, reduced at Embu, but

increased at Machanga.445

While DayCent could not capture the full season-to-season variability of grain yields and aboveground biomass, the mean

yields and aboveground biomass throughout the simulation period were simulated well for most treatments without the addition

of mineral N (Fig. A4). The exception to this was the Embu site, where there was a systematic underestimation of yields in

the +N treatments. Nonetheless, DayCent was able to acceptably simulate the variability of grain yields across sites by organic

resource and mineral N treatment (model efficiencies between 0.30 and 0.54; with values for control -N (0.08) and sawdust -N450

(0.18) being the exception; Fig A7). Interestingly, DayCent poorly distinguished the mean yields and aboveground biomass of

treatments with high compared to very high rates of N inputs (i.e., the differences between the different organic resources and

the control within the +N treatment). An additional test of the model sensitivity of mean yields to different levels of mineral
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Figure 2. Prior compared to the posterior model parameter distribution resulting from the Bayesian model calibration of DayCent using

data from all sites combined (top) and the leave-one-site-out cross-validation (bottom). The uncertainty ranges of the priors were based on

the range of parameter values found in the literature and increased by a factor of 1.5, because DayCent was applied to tropical site, while

historically, it was mostly calibrated based on temperate sites. Dashed vertical lines represent the values of the initially selected parameter

set. The posterior distributions are based on all four study sites combined. For the description of the parameters see Table 1.
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Figure 3. Simulated compared to measured maize grain yields at the four study sites for the initial DayCent parameter set (top) versus

the calibrated parameter set by leave-one-site-out cross-validation (bottom). The 2985 data points correspond to the observations from the

experimental treatments over 32 to 38 seasons, depending on the site. Symbols represent the different organic resource and chemical nitrogen

fertilizer treatments. Grey bands show the 95% confidence intervals of measured (horizontal) values and the 95% credibility intervals of

posterior distribution (vertical). Abbreviations: EF, Nash-Sutcliffe model efficiency; RMSE, root mean squared error; SB, squared bias; NU,

non-unity slope; LC, lack of correlation. Across all sites model statistics: EF, 0.358; RSME, 1.757 t ha-1; SB, 21%; NU, 1%; LC, 77% before

and EF, 0.503; RSME, 1.545 t ha-1; SB, 4%; NU, 2%; LC, 94% after calibration, with 27% of measurements being in the 95% credibility

interval of the posterior.
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Figure 4. Simulated compared to measured maize aboveground biomass (AGB) at the four study sites for the initial DayCent parameter set

(top) versus the calibrated parameter set by leave-one-site-out cross-validation (bottom). The 2985 data points correspond to the observations

from the experimental treatments over 32 to 38 seasons, depending on the site. Symbols represent the different organic resource and chemical

nitrogen fertilizer treatments. Grey bands show the 95% confidence intervals of measured (horizontal) values and the 95% credibility intervals

of posterior distribution (vertical). Abbreviations: EF, Nash-Sutcliffe model efficiency; RMSE, root mean squared error; SB, squared bias;

NU, non-unity slope; LC, lack of correlation. Across all sites model statistics: EF, 0.033; RSME, 4.392 t ha-1; SB, 27%; NU, 1%; LC,

72% before and EF, 0.231; RSME, 3.915 t ha-1; SB, 7%; NU, 8%; LC, 85% after calibration, with 36% of measurements being in the 95%

credibility interval of the posterior.
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N fertilizer in the control provided further insights into this (Fig. A5). In this test, the yields plateaued at mineral N rates that

were lower than the maximum N rates provided in the organic resource +N treatments by mineral N and organic resources455

combined (up to >500 kg N per year or > 250kg N per growing season). At Machanga and Embu, simulated mean yields

stopped increasing at around 100 kg N ha-1 per growing season, which is less the 120 kg N ha-1 per growing season in the

control +N. At Aludeka and Sidada, simulated mean yields stopped increasing at 200 to 250 kg N ha-1 per growing season, but

most of the response to N was below 120 kg N ha-1 per growing season (Fig. A5). Although the mean yields in -N treatments

with the high-quality inputs were well simulated, some of the low-quality input treatments at Aludeka and Sidada, namely460

maize stover and sawdust at 1.2 and 4 t C ha-1 yr-1, had lower simulated than observed mean yields in their -N treatments (Fig.

5). The same was true for the control -N at Aludeka, Embu, and Machanga.

3.4 Simulated SOC stocks in response to integrated soil fertility management

Similar to the simulation of maize grain yields, the simulations of changes in SOC stocks following the application of organic

resources at different rates (1.2 and 4 t ha-1 yr-1) generally improved across sites by the leave-one-site-out cross-validation465

approach compared to using the initial model parameter set (Fig. 6). The improvement was even stronger when compared to

DayCent simulations with the default CUE value for the structural pool (these had a negative model efficiency at all four sites;

Fig. A6). While Aludeka experienced an improved but negative model efficiency for simulated changes in SOC stocks with

the leave-one-site-out cross-validation (from -4.17 to -0.90), the model efficiencies at Embu and Sidada were positive in the

initial parameter set and improved with calibration (from 0.53 to 0.54 at Embu and from 0.47 to 0.58 at Sidada). Also across470

sites, the model efficiency (computed without Machanga) improved considerably from 0.36 to 0.55 following calibration. As

expected, Machanga, for which the SOC stock data had been removed from the calibration dataset due to soil erosion at this

site, still exhibited a poor model efficiency after calibration (-1.9 compared to -4.8 before calibration). DayCent performed

well in simulating the variability of the changes in SOC stocks across sites, evaluated by organic resource and mineral N

treatment (also computed without Machanga). With the exception of the treatments farmyard manure ±N, maize stover ±N,475

and sawdust -N model efficiencies were between 0.51 and 0.79 (with RSME between 3.2 and 4.3 t ha-1; Fig A8) with the

highest performance for the control +N (0.79) and control -N (0.69) treatments. The other treatments still had positive model

efficiencies (0.15 to 0.42), but the SOC losses of the farmyard manure treatments were overestimated (EF of 0.15 for -N, 0.29

for +N, RSME of 5.1 and 5.3).

While SOC changes were well captured in the control treatments across all sites, it should be noted that the increases in480

SOC stocks in the treatment receiving 4 t C ha-1 yr-1 were overestimated at Aludeka (Fig. A9). As a result, the posterior

credibility intervals of simulated SOC stocks matched well with measured SOC stocks of Embu and Sidada, but not with those

of Aludeka (Fig. 7). The difference between the 4 t C ha-1 yr-1 input and the control treatments were generally well simulated,

but the fact that Machanga, the other sandy site, could not be used in the calibration due to erosion, likely contributed to the

poorer performance of the sandy site in Aludeka.485
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Figure 5. Barplots of mean simulated and mean measured maize grain yield and aboveground biomass (AGB) from cross-validation. Error

bars represent standard deviation.
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Figure 6. Simulated compared to measured changes in SOC stocks since the start of the experiment at the four study sites for the initial Day-

Cent parameter set (top) versus the calibrated parameter set by leave-one-site-out cross-validation (bottom). The 724 data points correspond

to the observations from the experimental treatments over 32 to 38 seasons, depending on the site. Symbols represent the different organic

resource and chemical nitrogen fertilizer treatments. Grey bands show the 95% confidence intervals of measured (horizontal) values and the

95% credibility intervals of posterior distribution (vertical). Abbreviations: EF, Nash-Sutcliffe model efficiency; RMSE, root mean squared

error; SB, squared bias; NU, non-unity slope; LC, lack of correlation. Across all sites model statistics without Machanga (from which SOC

data was excluded in the calibration process due to strong erosion): EF, 0.364; RSME, 5.199 t ha-1; SB, 1%; NU, 22%; LC, 77% before

and EF, 0.548; RSME, 4.22 t C ha-1; SB, 1%; NU, 11%; LC, 89% after calibration, with 45% of measurements being in the 95% credibility

interval of the posterior.
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Figure 7. Measured (dots) versus simulated SOC stocks over time at the four study sites for the different organic resource and chemical

nitrogen fertilizer treatments. Error bars represent 95% confidence intervals for measured data, the black solid line the simulation by the

best parameter set. Grey bands represent the 95% credibility intervals of the model posterior simulations, calibrated by leave-one-site-out

cross-validation. Note that due to intense soil erosion, data from Machanga was not used in the calibration process.
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Figure 8. Simulated compared to measured N2O emissions at the four study sites for the different organic resource and chemical nitrogen

fertilizer treatments, based on the calibrated parameter set using leave-one-site-out cross-validation. Displayed are the measured versus

modelled per treatment for the days where measurements were conducted (top) and for the mean of cumulative flux measurements per season

using the trapeziod method (bottom). The 808 data points (top) correspond to the daily measurements from the experimental treatments over

one to two seasons, depending on the site. Symbols represent the different organic resource and chemical nitrogen fertilizer treatments. Error

bars represent 95% confidence intervals (measurements) and credibility intervals (simulations). Note that the credibility intervals are only

informed by yield, SOC and harvest index data and therefore do not represent the full uncertainty of N2O emissions. Abbreviations: EF,

Nash-Sutcliffe model efficiency; RMSE, root mean squared error; SB, squared bias; NU, non-unity slope; LC, lack of correlation.

3.5 Simulated N2O emissions and GHG balance

The negative model efficiencies and the absence of correlation between observed and simulated daily N2O values indicated that

model performance for daily N2O emissions was poor (Fig. 8). While treatments with higher N loads had both higher simulated

and measured N2O fluxes compared to those with lower loads, the peaks of N2O emissions were often simulated on different

dates than the measurements. This was most noticeable in +N treatments (Fig. A10). Conversely, the simulated cumulative N2O490
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emissions per season were in a better agreement with the measured values. All sites, except Machanga, showed positive model

efficiencies (highest at Embu, 0.69; lowest at Sidada, 0.06), but generally underestimated the uncertainty around cumulative

N2O emissions (Fig. 8). Additionally, the correlation between simulated and measured N2O emissions was notably higher for

the cumulative emission fluxes than for daily fluxes (R2 of 0.74 for Aludeka, 0.7 for Embu, and 0.36 for Sidada, compared

to R2 close to 0 for daily fluxes). Furthermore, despite some bias at Aludeka and Sidada, most of the error in seasonal N2O495

emissions was not systematic (i.e., LC of 51 - 96%).

The simulated changes in SOC and seasonal N2O emissions revealed a positive GHG balance for all treatments at all sites

(Fig. 9 a). Yet, the magnitude of emissions, as well as the relative contributions of N2O and CO2, differed strongly between sites

and treatments. For instance, in the control -N treatment, emissions ranged from 1.5 t CO2 equivalent ha-1 yr-1 at Aludeka to 5

t CO2 equivalent ha-1 yr-1 at Sidada. The relative contribution of N2O also differed strongly by site. At Aludeka, for example,500

all positive GHG balance values in the 4 t C ha-1 yr-1 treatments receiving farmyard manure, Tithonia, and Calliandra came

from N2O, while SOC acted as a sink of GHG. In contrast, at Sidada and Embu, most treatments had between a third and half

of their GHG balance associated with N2O emissions, with the remainder attributed to SOC losses. Compared to the control -N

treatment, all organic resource treatments in the -N treatments were simulated to have lower emissions at inputs of 1.2 t C ha-1

yr-1 (Fig. 9 b). Yet, when including the 4 t C ha-1 yr-1 and the +N treatments, the changes ranged from an increase of around505

1.5 t CO2 equivalent ha-1 yr-1 to a reduction of 2 t CO2 equivalent ha-1 yr-1. Embu was the site where the addition of mineral N

(+N treatment) led to the strongest increase in simulated GHG balance compared to the control -N treatment.

Finally, there were site- and treatment-specific differences in the yield-scaled GHG balance. The treatments control -N,

maize stover -N and sawdust -N had the highest simulated emissions per kg of maize grain yield across sites (0.8 to 1.8 kg CO2

equivalent per kg of yield). In contrast, the farmyard manure, Callianda and Tithonia treatments at inputs of 1.2 t C ha-1 yr-1 in510

the +N treatment and at 4 t C ha-1 yr-1 in both -N and +N treatments tended to have the lowest simulated emissions at all sites

(around 0.3, 1 and 0.6 kg CO2 equivalent per kg of yield at Aludeka, Embu, and Sidada, respectively).

4 Discussion

4.1 Robustness of the Bayesian calibration shown by cross-validation

As shown by the leave-one-site-out cross-validation (Figs. 3 and 4), the Bayesian calibration considerably improved the pre-515

dictive capability of DayCent for maize grain yield, aboveground biomass and changes in SOC stocks across sites. The model

evaluation statistics from this calibration were comparable to those reported in recent publications that also combined the pre-

dictions of crop yield and SOC (Necpalova et al., 2018; Levavasseur et al., 2021; Nyawira et al., 2021). However, while these

studies generally showed a better simulation of crop yield than SOC, our study diverged. We found that while better yield

simulations compared to SOC simulations were evident at the Aludeka and Machanga sites with soils of low clay content,520

the results were different at the Embu and Sidada sites with clay-rich soils. Here, SOC stock changes were more accurately

simulated than maize grain yield. This, together with the fact that the simulation of aboveground biomass worsened at two sites

as a result of the calibration (Fig. ??), suggests that no single best parameter set exists for the current version of DayCent to
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Figure 9. Cumulative simulated greenhouse gas (GHG) balance of N2O emissions and CO2 emissions due to loss of SOC at the four

study sites for different organic resource and chemical nitrogen fertilizer treatments combined throughout the simulated period (16 years

for Aludeka/Sidada; 19 years for Embu/Machanga). Displayed are the GHG balance a) per area of land and year, b) the difference of GHG

balance per area of land and year to a no-input treatment, and c) the yield-scaled GHG balance. The GHG balance is expressed in CO2

equivalent over a 100-year horizon.
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accurately represent the conditions at all four sites. In that regard, the discrepancy between the sites with clay-rich and clay-

poor soils could indicate that DayCent insufficiently includes soil textures effects on nutrient availability and SOC formation.525

Yet, drawing definitive conclusions from just four sites is probably not warranted. In the absence of data from more sites, it

is preferable to apply the full range of possible parameter sets that are supported by the available data (Mathers et al., 2023),

rather than using only the single best parameter set.

Because our calibration shows a good model fit with observed mean yields and changes in SOC stocks across sites, with no

overall major bias (positive EF and errors mostly consisting of LC), the parameter set, especially the full posterior, appears suit-530

able for upscaling of model simulations. Specifically, the yields of the ISFM treatments applying farmyard manure, Calliandra,

and Tithonia were simulated well, both with and without the addition of mineral N fertilizer (Fig A7). The changes in SOC

stocks for the control, Calliandra, and Tithonia treatments were also simulated well across sites, while DayCent underestimates

the SOC buildup from farmyard manure treatments (Fig A8). However, on should keep in mind that the season-to-season yield

variability is captured less accurately than the mean yields (lower RMSE) and that changes in SOC are better represented at535

sites with clay-rich soils than those with clay-poor soils. Because the model calibration and evaluation were performed at sites

with diverse characteristics, it is reasonable to assume that DayCent, when applied to sites with similar climate and soil condi-

tions, will provide satisfactory results with similar model uncertainties and errors. In that respect, while the leave-one-site-out

cross-validation made efficient use of data for model evaluation, further model upscaling should apply the full posterior model

parameter set including all sites (Fig. 2) should be used. In that case, a computationally inexpensive exercise would use only540

the single best parameter set (Table 1), while the full posterior parameter set should be used to get estimates of the posterior

credibility intervals for changes in SOC stocks.

4.2 Bayesian calibration shows uncertainty of model parameters

To estimate the potential yield and long-term sustainability of cropping systems without major bias using biogeochemical

models, region-specific model calibrations are needed (Rattalino Edreira et al., 2021; Yang et al., 2021). Therefore, while545

previous studies have simulated crop productivity under ISFM and similar practices with the default parameter values (e.g.

Nezomba et al., 2018; Nyawira et al., 2021), the results of our study underscore the importance of a local calibration, especially

when simulations are done with a single parameter set. On the one hand, the similar ranges of the prior and posterior model

parameter sets for SOC-decomposition-related parameters (i.e., clteff(1,2&4), dec4, dec5(2)) indicate that the included prior

knowledge about DayCent parameters from recent Bayesian calibration studies (Gurung et al., 2020; Yang et al., 2021; Mathers550

et al., 2023) represent good parameter estimates for a tropical setting. On the other hand, the CUE values of both metabolic litter

(centered around 25% with pmco2(1&2) around 0.75) and structural litter (centered around 10% with ps1co2(1&2)&rsplig

around 0.9) are low compared to the default values. This indicates the difficulty in stabilizing the organic resource additions into

SOM at the tropical soils of these four long-term experiments. Both parameters (pmco2(1&2) and ps1co2(1&2)&rsplig) are

even higher than in a recent study by Mathers et al. (2023). However, because these values had reached their predefined upper555

boundary limit in the study by Mathers et al. (2023), our CUE values might even be representative for temperate and not just

for the tropical conditions of Kenya. In general, including prior knowledge about model parameter values from similar studies
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substantially improves model performance compared to using default parameter values (e.g., see the poor model performance

without including prior knowledge on ps1co(1&2)&rsplig; Fig. A6). In fact, the aligning turnover rates of the slow and passive

SOM pools with those derived for temperate conditions (Gurung et al., 2020), indicate that the DayCent temperature function560

is well suited to handle the faster SOM turnover under tropical conditions.

It is important to note that our sites were under natural vegetation (i.e. forest) or fallow until relatively shortly before the

establishment of the experiments (Laub et al., 2023a). Consequently, upon the start of cultivation, erosion and potentially

accelerated decomposition (due to soil disturbance) occurred, and SOC has likely not yet reached a new equilibrium with

C inputs from maize cultivation. Therefore, C loss is the dominant process occurring at the sites. The good simulations of565

the strong SOC changes in the control treatments when using MAOC initialized SOM pools, a method not commonly used

with DayCent, further supports suggestions to move away from purely conceptual SOM pools (Abramoff et al., 2018; Laub

et al., 2024). Such conceptual pools require many assumptions about the initial vegetation and soil conditions (e.g., in the

spin-up modelling or estimation of SOM pool distribution). In fact, the high uncertainty about initial vegetation, and time and

management since site conversion, was a major reason to move away from the model spin-up and site history run usually570

typically done with DayCent. Thus, our study provides additional support to modify DayCent, incorporating measurable SOM

pools (e.g. Dangal et al., 2022).

Nevertheless, soil property maps are also subject to uncertainty. For example, differences between different SOC maps used

in model initialization propagate into differences in the changes in SOC stocks (Zhou et al., 2023). It was shown that uncertainty

of the simulated effect of a soil management practice on the difference of SOC stocks compared to a counterfactual is lower575

than the uncertainty of the simulated temporal development of SOC stocks (Zhou et al., 2023). Therefore, it may be best

practice to work with a baseline and an improved scenario. Both spinup and SOC map initialization have their shortcomings

and in the end the model user must make an informed decision on which initialization method they consider subject to less

uncertainty, based on which data is locally available.

The similarity of our DayCent model calibration with that of Gurung et al. (2020) and earlier studies, despite using different580

model initialization approaches, indicates the broad applicability of DayCent. It suggests that the SOM turnover and maize

traits in DayCent are representative for temperate to tropical conditions. The adjustments made to the values of optimal and

maximum temperature for maize growth (ppdf(1) and ppdf(2)) could be attributed to the local maize varieties that are adapted

to the higher temperatures in Kenya. For example, Yang et al. (2021) conducted a region-specific Bayesian model calibration

of the DayCent maize growing parameters and found ppdf(1) to vary between 26 and 32 °C, a range similar to our posterior.585

However, the differences in model performance by site shows that the broad representativeness of DayCent comes at the cost

of model simplification and site-specific model performance. A main reason for this may be that DayCent model formalisms

do not include the latest mechanistic understandings of the role of microbes in SOM decomposition (Laub et al., 2024), and

the sorption kinetics of carbon to minerals for SOM protection (Abramoff et al., 2018; Ahrens et al., 2020). Additionally,

Daycent does not fully consider that a lot of stabilized SOC is formed by microbes from metabolic and not structural litter590

(Cotrufo et al., 2013; Kallenbach et al., 2016). For example, it was recently demonstrated that the Millenial model, which

includes measurable SOM pools and improved kinetics of carbon sorption better predicts SOC stocks at the global scale than
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the CENTURY model, which has conceptual SOM pools (Abramoff et al., 2022). While model calibration can compensate for

deficiencies in mechanistic accuracy at a single site (Laub et al., 2024), this is likely not possible across sites with different

conditions.595

An interesting observation is that while the model bias for the mean maize yield was treatment specific (i.e., the mean yields

of +N treatments of farmyard manure at 4 t C ha-1 yr-1 at all sites and of Tithonia at the same rate in all but Sidada, were

underpredicted by DayCent), the bias for SOC stocks was mostly site specific (i.e., SOC formation at Aludeka at 4 t C ha-1 yr-1

was overpredicted). A potential explanation for this site-specific bias for SOC is the fact that DayCent was developed under the

paradigm of SOM formation occurring mainly from recalcitrant humic compounds in the soil. Alternatively, it might indicate600

that soil texture alone is insufficient to explain the mineralogy-driven storage potential of SOC (e.g. Reichenbach et al., 2021;

Mainka et al., 2022) or that, because Machanga SOC stocks were not used in the calibration due to erosion, SOC changes at

clay-rich sites cannot inform SOC changes at sandy sites like Aludeka. Finally, our model sensitivity test to mineral N inputs

suggests that the maize yield bias at high N is due to DayCent’s inability to capture yield increases above 100-150 kg N per ha

and season at the four sites (Fig. A5); the +N treatments of Tithonia, Calliandra and farmyard manure at 4 t C ha-1 yr-1 supplied605

on average >250 kg N per ha and season. Here, it should be noted that DayCent does not include other potential beneficial

effects of organic resource treatments, such as increased pH from farmyard manure application (Xiao et al., 2021; Mtangadura

et al., 2017), or improved water infiltration of treatments that maintain SOC stocks compared to those that reduce them.

4.3 N2O emissions and GHG balance

In general, the poor match between observed and measured daily N2O emissions (Fig. A10) illustrates the difficulty of sim-610

ulating the timing of microbial processes, through which nitrate (NO3
-) is converted to N2 and N2O gasses, with models of

intermediate complexity such as DayCent. One reason is the poor representation of soil moisture dynamics by the ’tipping

bucket’ soil water balance approach and that soil gas diffusivity is not explicitly simulated (Zhang and Yu, 2021; Wang et al.,

2020). However, the fact that cumulative N2O emissions were better simulated than daily emissions, there was no systematic

under- or over-prediction of cumulative N2O emissions, and simulated N2O emissions were within the uncertainty range of615

measured N2O emissions, demonstrates the suitability of DayCent to represent average N2O emissions with the current cali-

bration. Nonetheless, the fact that the uncertainty around predicted cumulative N2O emissions was lower than the uncertainties

of the measurements indicates that the posterior, which was only calibrated with yield, SOC, and harvest index data, underesti-

mates the uncertainty around N2O emission predictions. Thus, although DayCent’s simulations of N2O emissions are superior

to using emission factor approaches (dos Reis Martins et al., 2022), simulating N2O emissions remains challenging and highly620

uncertain due to the complexity of the processes involved and their high temporal and spatial variability. Given the limited bias

in simulating SOC changes and cumulative N2O emissions showed, the DayCent simulations provide a reasonable first esti-

mate of the GHG balance. Nevertheless, the contributions of N2O emissions to the GHG balance of up to 100% (at Aludeka)

and between 10 to 60% (at the other sites; Fig. 9), are subject to high uncertainty, as evident from the measurements.

Despite this unresolved uncertainty, our modeling results show that all ISFM options in a maize monocropping system have625

a net positive GHG balance, aligning with the prevalent trend of SOC losses in recently established (< 50 years) maize systems
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in SSA (Sommer et al., 2018; Laub et al., 2023a). The findings also support the postulate that closing yield gaps in SSA

will increase N2O emissions per area of land (Leitner et al., 2020). However, the large differences in the yield-scaled GHG

balance between treatments, such as the 30 to 60% lower yield-scaled GHG balance in the FYM 1.2+N treatment compared

to the control-N treatment across the sites, indicate that ISFM has the potential to produce crops with relatively lower GHG630

emissions than no- or low-input input systems, and that the calculation of emissions per unit of food is preferable to the

calculation per land area (Clark and Tilman, 2017). Specifically, the ISFM treatments with low-emissions and high yields, such

as FYM 1.2+N, that produces between 2 and 4 t of yield per season at emissions of between 0.3 and 1 kg CO2 equivalent per kg

of yield, are a suitable mitigation practice compared to the control treatment with little or no inputs of organic and/or chemical

fertilizer. Consequently, sustainable intensification and mitigation of greenhouse gases can go hand in hand.635

4.4 DayCent is suitable to upscale simulations of "real" ISFM, but has a limited sensitivity to high N inputs

Because mean maize yields across sites were reasonably well represented by the calibrated version of DayCent, it can be used

for upscaling to predict the potential impact of ISFM in lowering yield gaps at national levels. However, the plateauing of mean

yields at high N loads (Fig. A5) indicates that DayCent may not be suitable for estimating maximum achievable yields (e.g.,

Ittersum et al., 2016), and should thus be restricted to yield predictions for medium N input levels. Given that the historical rates640

of N fertilizer application in Kenya are less than 50 kg of N ha-1 (World-Bank, 2021a), the model seems suitable to simulate

the effect of implementing ’realistic’ ISFM practices, which target maximum N use efficiency (Vanlauwe et al., 2010), with

N input rates considerably below the maximum N rates used in the field experiments of this study (e.g., 80 kg N per season;

Mutuku et al., 2020). At all sites, the prediction of mean maize yields was reasonably well for Calliandra, Tithonia, and

farmyard manure treatments at 1.2 and 4 t C ha-1 in the -N treatment, as well as for CT+N, i.e., all treatments that supply N at645

the desired rate for ISFM. Also, the variability of yields and SOC stock changes per treatment across sites was simulated well

for Calliandra, Tithonia, and farmyard manure in both +N and -N treatments (with changes in SOC being simulated a bit worse

in farmyard manure treatments; Figs. A7 and A8). While this shows the general capability of DayCent to simulate differences

in yields and SOC changes between sites as a function of organic resource composition, it also shows that DayCent cannot

capture the better performance of farmyard manure compared to Calliandra and Tithonia treatments when only considering650

C, N and lignin contents. Overall, simulated mean maize yields at medium N-levels are likely representative of the achievable

yield through ISFM. In summary, the model calibration seems suitable for assessing the long-term effects of relevant ISFM

practices on soil fertility, maize yield, and GHG emissions as well as their trade-offs, given the good representation of mean

yield potential and SOC changes by the model. Nevertheless, since year-to-year yield variations were not captured well by

DayCent, it remains uncertain how effectively the current model calibration can simulate scenarios of climate change, where655

temperature and precipitation patterns will become more erratic. In the absence of major pests (which in the experiments were

controlled), the variations in seasonal precipitation and temperature are responsible for these differences, and if these are not

well represented, the applicability of DayCent beyond the climatic range that it was calibrated for is questionable.
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5 Conclusions

In this study, we demonstrated the effectiveness of simultaneously calibrating the SOM and plant modules of DayCent to660

simulate maize productivity and changes in SOC stocks under integrated soil fertility management (ISFM) in Kenya. Using a

Bayesian calibration approach, our study shows the importance of using a local calibration and of choosing correct prior values

for model parameters. Although the initial DayCent parameterization represented the tropical conditions in Kenya acceptably,

the overall model performance for maize grain yield, aboveground biomass, and SOC stock changes was improved after cali-

bration using local data. Furthermore, while parameters related to SOM turnover were comparable to previous studies, a lower665

carbon use efficiency of applied organic resources (higher values of CO2-loss related parameters) compared to previous stud-

ies highlighted the difficulty in building new SOC stocks in the studied tropical soils. Our leave-one-site out cross-validation

showed that the calibration-derived parameter set is robust for upscaling the model simulations to larger areas in Kenya, par-

ticularly when applying the full posterior parameter set. At the same time, while mean maize grain yields were well simulated,

the year-to-year yield variability raised concerns about the model’s ability to capture the short-term effects of climate change670

adequately. Finally, while no ISFM treatment was predicted to act as a net sink of greenhouse gases, treatments with high and

intermediate yields exhibited the lowest yield-scaled emissions.
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10.25502/wdh5-6c13/d. For yields and biomass: https://doi.org/10.25502/be9y-xh75/d.

Author contributions. JS, MN and ML designed the modeling exercise. ML summarized the data, conducted the modeling exercise and

prepared the original draft. MWMM, DM, RY, SMN and WW managed and maintained the long-term experiments. ML, SMN, MN, WW,

MvdB, MC and JS were involved in the various sampling campaigns. MC, MN, BV and JS acquired funding for the long-term experiments.

All co-authors contributed in writing and editing of the final submitted article.680

Competing interests. All authors declare that they have no conflict of interest.

Acknowledgements. We want to thank Silas Kiragu, who is responsible for maintaining the experiments at Embu and Machanga site, and

John Mukalama, who implemented and maintained the experiments at Aludeka and Sidada. Also, we want to thank John Waruingi for helping

31

https://doi.org/10.25502/wdh5-6c13/d
https://doi.org/10.25502/wdh5-6c13/d
https://doi.org/10.25502/wdh5-6c13/d
https://doi.org/10.25502/be9y-xh75/d


with sample processing over the years, and Dr. Moses Thuita for coordinating the experiments for many years, and Britta Jahn-Humphrey for

organizing and overseeing the measurement of most SOC and TN in recent years. Further, we thank Matti Barthel and Maryam Cissé, who685

measured N2O emissions, and Fiona Stewart Smith, who conducted the measurements of MAOC fractions. This study was supported by funds

from the European Union‘s Horizon2020 framework (LANDMARC; Grant agreement ID 869367) the Swiss National Science Foundation

(SNSF; grant number 172940) and by the DSCATT project “Agricultural Intensification and Dynamics of Soil Carbon Sequestration in

Tropical and Temperate Farming Systems” (N° AF 1802-001, N° FT C002181), supported by the Agropolis Foundation (“Programme

d’Investissement d’Avenir” Labex Agro, ANR-10-LABX-0001-01) and by the TOTAL Foundation within a patronage agreement. We further690

acknowledge funding and technical support from the Tropical Soil Biology and Fertility Institute of CIAT (TSBF-CIAT), the International

Institute of Tropical Agriculture (ITTA), and ETH Zurich in maintaining the experiments throughout many years. The AI language model

"Writefull for Overleaf" has been used to improve the grammar of the manuscript.

32



Appendix A: Appendix

A1 Pedotranfer functions to derive the hydraulic parameters695

The equations used to calculate the soil hydraulic properties were based on the pedotransfer functions of Hodnett and Tomasella

(2002):

θr = 0.22733− 0.00164×Sa+ 0.00235×CEC − 0.00831× pH + 1.8× 10−5×Cl2 + 2.6× 10−5×Sa×Cl (A1)

θs = 0.81799 + 9.9× 10−4×Cl− 0.3142×BD+ 1.8× 10−4×CEC + 0.00451× pH − 5× 10−6×Sa×Cl (A2)

ln(α) =−0.02294− 0.03526×Si+ 0.024×SOC − 7.6× 10−3×CEC − 0.11331× pH (A3)700

ln(n) = 0.62986− 0.00833×Cl− 0.00529×SOC + 0.00593× pH + 7× 10−5×Cl2− 1.4× 10−4×Sa×Si (A4)

Here, θr, θs, α, and n are the soil water retention parameters of van Genuchten (1982), Sa, Si and Cl are Sand, Silt, and Clay

content (in %), BD is the bulk density (t m-3) CEC is the cation exchange capacity (cmol kg-1), pH is the soil pH measured in

H2O, and SOC is the SOC content (g kg-1).

The wilting point (WP) and field capacity (FC) values were then calculated as705

WP = θr +
(θs− θr)

(1 + (α× |−15000|)n)
1− 1

n

(A5)

FC = θr +
(θs− θr)

(1 + (α× |−330|)n)
1− 1

n

(A6)

KS was calculated using the Saxton and Rawls (2006) equation, with values of the water retention curve, α and n (van

Genuchten, 1982), calculated with the equation from Hodnett and Tomasella (2002):

λ=
ln(FC)− ln(WP )

ln(1500)− ln(33)
(A7)710

KS =
1930× (θs−FC)(3−λ)

10× 60× 60
(A8)

Here, λ is the slope of logarithmic tension-moisture curve and KS is the saturated water conductivity (cm s-1).
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A2 Equations for the global sensitivity analysis

The means across all sites, which were used in the GSA were calculated as follows:

Mean=
1

n

n∑
j=1

∑N
i=1Modij
N

(A9)715

Here n is the number of sites (4), N is the number of modelled values per site, and Modij are the individually modelled

values. For aboveground biomass and grain yield, N corresponded to the total number of modelled yields and biomass at all

treatments and seasons. For SOC and soil N stock N corresponded to the total number of treatments per site. The reason is that

because changes in SOC and soil N stocks are expected to be stronger the longer a simulation lasts, only the stocks from the

end of the simulation were used.720

A3 Site and organic resource characteristics

Table A1. Locations, soil properties and climatic conditions of the study sites. Soil properties are given for the 0 - 15 cm depth layer.

Coordinates are given in the WGS 84 reference system. The table is adopted from Laub et al. (2022) under the creative common license 4:

http://creativecommons.org/licenses/by/4.0/.

Soil characteristics Embu Machanga Sidada Aludeka

Latitude -0.517 -0.793 0.143 0.574

Longitude 37.459 37.664 34.422 34.191

Initial soil C (%) 3.1 0.8 2.6 0.7

Initial N (%) 0.3 0.05 0.21 0.06

Initail bulk density (g cm-3) 1.26 1.51 1.3 1.45

pH (H2O) 5.43 5.27 5.4 5.49

Sand (%) 0 31.1 0.1 31

Clay (%) 59.8 13.2 55.7 13.4

Soil type (FAO, 1998) Humic Nitisol Ferric Alisol Humic Ferralsol Acrisol

Altitude (m)* 1380 1022 1420 1180

Annual rainfall (mm)* 1175 795 1730 1660

Mean annual temperature (◦C) 20.1 23.7 22.6 24.4

Months of long rainy season 3 - 8 3 - 8 3 - 9 3 - 9

Months of short rainy season 10 - 01 10 - 01 10 - 01 10 - 01
*Means calculated based on measured data from 2005 to 2020
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Table A2. Mean measured chemical characteristics (and 95% confidence intervals) of organic resources applied at all sites. Measurements

were available from Embu and Machanga from 2002 to 2004, all sites from 2005 to 2007 and in 2018. Significant differences in residue

properties were found between the different organic resources, but not between sites and years. Mean values in a row not sharing any

lowercase letter are significantly different from each other (p < 0.05). Abbreviations: n.c. = not classified * according to Palm et al. (2001).

The table is adopted from Laub et al. (2023a) under the creative common license 4: http://creativecommons.org/licenses/by/4.0/.

Measured property Tithonia Calliandra Maize stover Sawdust Farmyard manure

C (g kg-1) 345b (333-357) 396c (383-409) 397c (386-408) 433d (416-449) 234a (213-255)

N (g kg-1) 33.2d (28.9-38.2) 32.5d (28.3-37.3) 7.2b (6.5-8) 2.5a (2.1-2.8) 18.1c (15-21.8)

C/N ratio 12.4a (10.8-14.1) 13.6a (11.9-15.5) 58.7b (52.8-65.2) 199.1c (174.1-227.7) 12.3a (9.9-15.4)

P (g kg-1) 2.3d (1.8-2.9) 1.1c (0.8-1.5) 0.4b (0.3-0.6) 0.1a (0-0.2) 3.1d (2.3-3.9)

K (g kg-1) 37.2c (21.2-65.2) 8.7b (5-15.3) 9b (6-13.5) 2.8a (1.6-4.9) 19.4bc (7.8-48.6)

Lignin (g kg-1) 90ab (62-117) 105b (77-133) 48a (37-60) 172c (144-199) 198c (154-242)

Polyphenols (g kg-1) 19c (14.9-24.3) 108.7d (85.3-138.6) 11.3b (9.5-13.6) 4.9a (3.8-6.2) 7.8ab (5.2-11.5)

Lignin/N ratio 2.6a (1.8-3.7) 3.1ab (2.2-4.3) 6.2c (4.8-8) 58.3d (41.1-82.8) 6.9bc (3.9-12.3)

Quality / turnover rate* High / fast High / slow Low / fast Low / slow n.c.

Class* 1 2 3 4 n.c.

kg N in 4.0 t C ha-1 yr-1, -N [+N] 323 [563] 295 [535] 68 [308] 20 [260] 324 [564]

kg N in 1.2 t C ha-1 yr-1, -N [+N] 97 [337] 88 [328] 20 [260] 6 [246] 97 [337]
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Table A3. DayCent model parameters (and feasible ranges) of parameters which were not included in the Bayesian model calibration due to

a Sobol total sensitivity index < 1%.

Range Initial Coefficient Model

Parameter Description width Units value of variation file

frtc(2) C allocated to roots at time frtc(3) without stress small fraction of NPP 0.20 0.15 crop.100

frtc(4) Max. increase in C going to roots under stress small fraction of NPP 0.10 0.15 crop.100

frtc(5) Max. increase in C going to roots under stress (maturity) small fraction of NPP 0.10 0.15 crop.100

biomax AGB at which min.and max. C/E ratios of plant increases small g biomass m-2 700.00 0.15 crop.100

pramx(1,2) Max. aboveground C/N ratio with biomass > biomax small C/N ratio 125.00 0.15 crop.100

prbmn(1,1) For computing min. C/N ratio for belowground matter small C/N ratio 45.00 0.15 crop.100

efrgrn(1) Fraction of above ground N which goes to grain. small fraction 0.75 0.15 crop.100

flig(1,1) Intercept for annual rainfall effect on lignin content small fraction of lignin 0.12 0.15 crop.100

ppdf(3) Right curve shape for temperature effect on growth curve very small unitless 1.00 0.08 crop.100

ppdf(4) Right curve shape for temperature effect on growth curve very small unitless 2.50 0.08 crop.100

favail(1) Fraction of N available per day to plants moderate fraction of N 0.15 0.23 crop.100

(aneref(1)-anaref(2)) Rain/ET ratio below which, no effect of anaerobiosis small unitless 1.00 0.15 fix.100

aneref(2) Rain/ET ratio with max. anaerobiosis effect moderate unitless 3.00 0.23 fix.100

damr(1,1)&(2,1) Fraction of surface N and soil N absorbed by residue large fraction of N 0.02 0.38 fix.100

damrmn(1) Min. C/N ratio allowed in residue after direct absorption moderate C/N 15.00 0.23 fix.100

dec1(2) Max. structural litter turnover small g g-1 yr-1 4.90 0.15 fix.100

dec2(2) Max. metabolic litter turnover small g g-1 yr-1 18.50 0.15 fix.100

dec3(2) Max. active pool turnover small g g-1 yr-1 7.30 0.15 fix.100

(decX(2)/decX(1)) Ratio soil to surface turnover (newly defined parameter) small unitless 1.25 0.15 fix.100

fwloss(1) Scaling factor; interception & evaporation by biomass moderate unitless 1.00 0.23 fix.100

fwloss(2) Scaling factor; bare soil precipitation evaporation moderate unitless 1.00 0.23 fix.100

fwloss(3) Scaling factor; transpiration water loss moderate unitless 1.00 0.23 fix.100

pabres Residue amount which results in max. direct N absorption moderate g C m-2 100.00 0.23 fix.100

teff(2) Y location of temperature inflection point (decomposition) large unitless 11.75 0.38 fix.100

teff(3) Step size of temperature effect on decomposition moderate unitless 29.70 0.23 fix.100

teff(4) Inflection point slope of temperature effect (decomposition) very large unitless 0.25 0.45 fix.100

varat11&12(1,1) Max. C/N ratio for material entering active pool small C/N 20.00 0.15 fix.100

varat11&12(2,1) Min. C/N ratio for material entering active pool small C/N 3.00 0.15 fix.100

varat21&22(1,1) Max. C/N ratio for material entering slow pool small C/N 20.00 0.15 fix.100

varat3(1,1) Max. C/N ratio for material entering passive pool small C/N 13.00 0.15 fix.100

varat3(2,1) Min. C/N ratio for material entering passive pool small C/N 6.00 0.15 fix.100

drain Fraction of excess water lost by drainage moderate fraction of H2O 0.80 0.23 site.100

dmp_st Damping factor for calculating soil temperature by layer large unitless 0.01 0.38 sitepar.in

N2Oadjust_(max-min) Proportion of nitrified N that is lost as N2O (difference) large fraction of N 0.003 0.38 sitepar.in

Ncoeff Min water/temperature limitation coefficient (nitrification) large unitless 0.03 0.38 sitepar.in

dmpflux The damping factor for soil water flux large unitless 0.00 0.38 sitepar.in

astlig_TD lignin fraction content of organic matter small g g-1 biomass 0.09 0.15 omad.100

astrec(1)_TD C/N ratio of added organic matter very small C/N ratio 12.40 0.08 omad.100

astlig_CC lignin fraction content of organic matter small g g-1 biomass 0.10 0.15 omad.100

astrec(1)_CC C/N ratio of added organic matter very small C/N ratio 13.60 0.08 omad.100

astlig_MS lignin fraction content of organic matter small g g-1 biomass 0.05 0.15 omad.100

astrec(1)_MS C/N ratio of added organic matter very small C/N ratio 58.70 0.08 omad.100

astlig_SD lignin fraction content of organic matter small g g-1 biomass 0.17 0.15 omad.100

astrec(1)_SD C/N ratio of added organic matter very small C/N ratio 199.10 0.08 omad.100

astlig_FYM lignin fraction content of organic matter small g g-1 biomass 0.20 0.15 omad.100

astrec(1)_FYM C/N ratio of added organic matter small C/N ratio 12.30 0.15 omad.100
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A1 Map of the four study sites

Figure A1. Map displaying the location of the four study sites. The background map is based on OpenStreetMap under the Open Database

License.
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A2 Subsoil SOC stocks for scaling SOC
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Figure A2. Subsoil SOC stocks for the 2.5-4.7 kt ha-1 equivalent soil mass layer, corresponding to an approximate soil depth of 15-30 cm.

Displayed are the least square means estimated by the linear mixed model described in (Laub et al., 2023a) for planted plots by treatment (left)

and site (right). Error bars display the 95% confidence intervals. Mean values at each site not sharing any lowercase letter are significantly

different from each other (left figure). In the right figure, mean values per site not sharing any lowercase letter are significantly different from

each other (all p < 0.05). Abbreviations: CC, Calliandra; CT, control; FYM, farmyard manure; MS, maize stover; SD, sawdust; TD, Tithonia

Diversifolia. 0, 1.2 and 4 correspond to C additions of 0, 1.2 and 4 t C ha-1 yr-1.
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Figure A3. Correlation of parameters from the posterior parameter sets. The posterior distributions are based on all four sites combined.

39



Figure A4. Mean simulated versus measured yield and aboveground biomass (AGB) from the leave-one-site-out cross-validation. Error bars

represent the standard deviation of measured and simulated values over all years. Abbreviations: EF, Nash-Sutcliffe model efficiency; RMSE,

root mean squared error; SB, squared bias; NU, non-unity slope; LC, lack of correlation. Across all sites model statistics: EF, 0.760; RSME,

0.699 t ha-1; SB, 28%; NU, 8%; LC, 64% for yield; EF, 0.513; RSME, 2.17 t ha-1; SB, 10%; NU, 9%; LC, 81% for AGB.

A3 Comparing measured and simulated mean yield
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A4 Site specific sensitivities of yield to N fertilizer725

Aludeka Embu Machanga Sidada

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

2

4

6

Added mineral N in kg/ha/season

M
ea

n 
yi

el
d 

in
 t/

ha

Figure A5. Yield response curve of DayCent to varying levels of mineral N application (control + N treatment, without organic resources)

using the calibrated DayCent parameters. Displayed are the simulated mean yields across all simulated seasons (32 at Sidada and Aludeka,

38 seasons at Embu and Machanga). The amount of mineral N applied per season in the simulations was evenly split between the actual

application dates of mineral N in each season at each site.
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Figure A6. Simulated compared to measured maize grain yields, abovoground biomass and change in SOC stocks at the four study sites for

the default DayCent parameter set before adjusting ps1co(1&2)&rsplig from 0.5 to 0.85. Grey bands show the 95% confidence intervals of

measured (horizontal) values and the 95% credibility intervals of posterior distribution (vertical). Abbreviations: EF, Nash-Sutcliffe model

efficiency; RMSE, root mean squared error; SB, squared bias; NU, non-unity slope; LC, lack of correlation.
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Figure A7. Treatment-specific simulated compared to measured maize grain yields at the four study sites for the calibrated parameter set by

leave-one-site-out cross-validation. Abbreviations: EF, Nash-Sutcliffe model efficiency; RMSE, root mean squared error; SB, squared bias;

NU, non-unity slope; LC, lack of correlation.
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Figure A8. Treatment-specific simulated compared to measured changes in SOC stocks (without the Machanga site) since the start of the

experiment at the four study sites for the calibrated parameter set by leave-one-site-out cross-validation. Abbreviations: EF, Nash-Sutcliffe

model efficiency; RMSE, root mean squared error; SB, squared bias; NU, non-unity slope; LC, lack of correlation.
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A5 Barplots of SOC

Figure A9. Barplots of simulated and measured change of SOC stocks (0-30 cm depth) until 2021 from cross-validation, at the four study

sites for the different organic resource and chemical nitrogen fertilizer treatments. Error bars represent 95% confidence intervals based on

BC (simulations) and variance (measurements).
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A6 N2O emissions

Figure A10. Example of the temporal development of measured (black) vs simulated (red) N2O emissions by site. The black error bars

represent the 95% confidence intervals due to spatial replication error, the red error bars represent the 95% credibility intervals of simulated

N2O emissions resulting from parameter distribution of the posterior parameter set.
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