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Abstract. Sustainable intensification schemes that increase crop production and soil fertility, such as integrated soil fertility

management (ISFM) , are a proposed strategy to close yield gaps
:
,
:::::::
increase

:::
soil

::::::::
fertility, and achieve food security in sub-

Saharan Africawhile maintaining soil fertility. However, field trials are insufficient to estimate the potential impact of such

technologies at the regional or national scale. Upscaling via biogeochemical models ,
:
.
:::::::::::::
Biogeochemical

:::::::
models such as Day-

Cent , from the field-scale to a larger region can be a suitable and powerful way to assess the potential of such agricultural5

management practices at scale
::
can

::::::
assess

::::
their

::::::::
potential

::
at

:::::
larger

::::::
scales, but they need to be calibrated to new environments

and their reliability needs to be assured
::::::::
rigorously

:::::
tested

:::
for

:::::::
accuracy. Here, we present a robust

:::::::
Bayesian calibration of Day-

Cent to simulate maize productivity
:::
and

::::
soil

::::::
organic

::::::
carbon

:::::
stock

:::::::
changes

:
under ISFM, using data from four long-term field

experiments
::
in

:::::
Kenya

::
in
::
a
:::::::::::::::
leave-one-site-out

:::::::::::::
cross-evaluation

::::::::
approach. The experimental treatments consisted of the addition

of low- to high-quality organic resourcesto the soil, with and without mineral N fertilizer. We assess
:::::::
assessed

:
the potential of10

DayCent to
::::::::
accurately represent the key aspects of sustainable intensification, including 1) yield, 2)

::
the changes in soil carbon,

and 3) global warming potential. The model was calibrated and cross-evaluated with the probabilistic Bayesian calibration

technique
::
the

::::::::::
greenhouse

:::
gas

::::::
(GHG)

:::::::
balance

::
of

::::
CO2:::

and
:::::
N2O

::::::::
combined.

The standard parameters of DayCent led to poor
:::::::::
calibration

::::
with

::::::::::::::
cross-evaluation

::::::::
improved

:::::::
DayCent

:
simulations of maize

yield(,
:::::::::
evaluated

:::::
across

:::
all

:::::
sites,

:::::
(from

::
a
:
Nash–Sutcliffe modeling efficiency ; EF0.33) and changes in SOC(EF -1.3)for15

different ISFM treatments. After calibration of the model, both
::::
(EF)

::
of
:::::

0.36
::
to

:::::
0.50)

:::
but

:::::::
slightly

:::::::::
worsened

:::::
those

::
of

::::
soil

::::::
organic

::::::
carbon

::::::
(SOC)

:::::
(from

:::
EF

:::
of

::::
0.36

::
to

:::::
0.34).

:::
By

::::
site,

:
the simulation of maize yield (EF 0.51) and the change in SOC

(EF 0.54)improved significantly compared to the model with the standard parameter values. A leave-one-site-out
::::::::
improved

::
(to

::::::::::
site-specific

:::
EF

::::::::
between

::::
0.16

::::
and

::::
0.39)

::::
and

::::
that

::
of

:::::
SOC

::::::
slightly

:::::::::
worsened

::
(to

:::::::::::
site-specific

:::
EF

:::::::
between

::::
-1.8

:::
and

::::::
0.39).

:::
The

::::::
model

::::::::::
performance

::::
and

:::
the

:::::
match

:::::::
between

:::
the

:
cross-evaluation

:::::::
posterior

:::::::::
credibility

::::::::
intervals

::
for

::::::::
different

::::
sites indicated20
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the robustness of the approach
:::::
model

::::::::::::::
parameterization

:::
and

::::
the

::::::::
reliability

::
of

:::
the

::::::::
Daycent

:::::
model

:
for spatial upscaling (i. e.,

the significant improvement, described before, was achieved by calibrating with data from 3 sites and evaluating with the

remaining
::
of

::::::::::
simulations.

::::::
While

::::
daily

:::::
N2O

::::::::
emissions

:::::
were

::::::
poorly

::::::::::
reproduced

::
by

::::::::
DayCent

::::
(all

:::
EF

::::::
values

::::
were

:::::::::
negative),

:::::::::
cumulative

:::::::
seasonal

:::::
N2O

::::::::
emissions

:::::
were

::::::::
simulated

:::::
more

:::::::::
accurately

:::
(EF

:::::::
ranging

:::::::
between

:::::
0.03

:::
and

::::
0.62

:::
by site). The SOC

decomposition parameters were altered most severely by the calibration. They were an order of magnitude higher compared25

to the default parameter set. This confirms that the decomposition of SOC in tropical maize cropping systems is much faster

than in temperate systems and that the DayCent temperature function is not suitable to capture this with a single parameter set.

Finally, the global warming potential simulated by DayCent
:::::::
simulated

:::::::::::
yield-scaled

:::::
GHG

::::::
balance

:
was highest in control -N

treatments (
::::::::
treatments

:::::::
without

::
N

:::::::
addition

::::::::
(between 0.5 -2.5

:::
and

:::
1.5 kg CO2 equivalent per kg grain yield , depending on the

site) and could be reduced by 14 to 72
:::::
across

:::::
sites)

:::
and

::::
was

:::::
lower

::
by

:::::
about

:::
10

::
to

:::
60% by combined application of mineral N30

and manure at a medium rate . In three of the four sites, the global warming potential was largely (> 75%) dominated by SOC

losses. In summary
::::::::
moderate

:::
rate

:::
of

:::
1.2t

::
C

::::
ha-1

::::
yr-1.

::
In

:::::::::
conclusion, our results indicate that DayCent is suitable for estimating

:::::::::
well-suited

::
to

:::::::
estimate the impact of ISFMfrom the site to the regional level, that trade-offs between yields and global warming

potential are ,
::::
that

:::
the

:::::::
trade-off

:::::::
between

:::::
maize

:::::
yield

:::
and

:::::
GHG

:::::::
balance

::
is stronger in low-fertility sites, and that the reduction

::::::
control of SOC losses is a priority for the sustainable intensification of maize production in Kenya.35

1 Introduction

Similar to many countries of
::
In

::::::
Kenya,

::
as
:::

in
:::::
many

:::::
other Sub-Saharan Africa (SSA)

:::::::
countries,

::::::
maize

:::::
yields

:::::
have

::::::::
remained

:::
low, the low maize yields in Kenya, on average 1.7 t ha-1 compared to the global average of 5.6 t ha-1 over the last decade

(2011-2021) (FAO, 2023), are in part responsible for
::::::::::::::::::::
(2011-2021; FAO, 2023)

:
.
::::
This

::::::::::
contributes

::
to

:::
the

:
low self-sufficiency

of food production. Consequently,
:
,
::::
with

:
around 20% of the Kenyan population lives with

:::::
facing severe food insecurity40

(World-Bank, 2021b). If yields are not improved, increased demand due to population growth will further deteriorate
::::
food

self-sufficiency and in general food security in
::::::
general

::
in
:

the coming decades (Zhai et al., 2021):
:
,
:::::::::
especially

::::::::::
considering

:::::::
expected

:
yield declines resulting from more frequent extreme weather events could further exacerbate this situation (Lobell

et al., 2011). One of the key limitations to sustainable maize production in SSA is the lack
:::::::::
insufficient

:::
use

:
of mineral fer-

tilizer and organic inputs
::::::::::::::::::
(Vanlauwe et al., 2010). Integrated soil fertility management (ISFM) is a sustainable intensification45

practice that can alleviate these limitations by combining the use of mineral fertilizers with organic inputs (Vanlauwe et al.,

2010). Different studies
:::::
Several

:::::::
studies

::::
have reported that ISFM has the potential to more than double maize yields in Kenya,

especially in currently unfertile
::
on

:::::::
infertile soils, due to the effects

::
its

::::::
positive

:::::::
impact on soil fertility, including soil organic

matter (SOM) content (Chivenge et al., 2009, 2011). However, in addition to the amount and quality of fertilizer and organic

inputs,
:::::::::::
Furthermore,

::::::::
increasing

:::::
SOM

::::
can

::::
help

:::::::
mitigate

:::::::
adverse

::::::
effects

::
of

::::::
climate

:::::::
change,

:::::::
offering

:::::::::::
considerable

::::::::
potential

::
in50

:::::::::::::
carbon-depleted

::::
soils

::::::
across

::::
SSA

::::::::::::::::::
(Corbeels et al., 2019).

:::::::::
However, the effectiveness of ISFM in increasing yields strongly de-

pends on local site conditions, such as soil and climate (Chivenge et al., 2011). Furthermore, increasing SOM also contributes

2



to minimizing the negative effects of climate change, and there may be considerable potential in carbon-depleted soils in SSA

(Corbeels et al., 2019).

Hence, to
:::
To close yield gaps in a resource-efficient way and to assess the climate change mitigation potential of ISFM,55

we need to understand the effects of long-term implementation of ISFM at larger scales
:::::::
long-term

::::::
effects

:::
of

:::::
ISFM

::::::::
practices

:
at
::

a
:::::
larger

:::::
scale. Ideally, this would be facilitated by implementing a large number of long-term experiments (LTE) across a

representative range of soil and climatic conditions. However, due to the high demands in terms of cost
:::
the

:::::::::
significant

::::
costs,

labor, and time associated with maintaining LTE,
:::::::
required

::
to

:::::::
maintain

:::::::::
long-term

::::::::::
experiments

:::::
limit the number of LTE that

evaluate variation in the
:::
sites

:::
for

:::::::::
evaluating

:::
the

:::::::
variable effects of ISFM practices due to

::::
under

:
site-specific conditionsis very60

limited. In addition, using
::::::
relying

::
on

:
statistical predictive techniques to upscale results obtained with a low

::::
from

:
a
:::::::

limited

number of sites could
::::
may lead to low predictive power and large predictive errors, because it is unlikely that the effects of

variation in soils and climate on yield and the development of soil organic matter (SOM )
:::::
SOM would be fully captured by

::
in

the statistical models.

Biogeochemical process-based ecosystem models, such as DayCent (Parton et al., 1998; Del Grosso et al., 2001), are able to65

simulate the influence of
:::::::
simulate

:
the

:::::
effects

::
of

:
important driving variables of

::
on

:::::
crop yield and SOM formation using semi-

mechanistic functions developed through decades of agronomic and soil research. Because they (partly) embed our current

understanding of the complex ecosystem processes, they are more robust for upscaling of
::::::
scaling

::
up

:
the yield potential (Saito

et al., 2021) and the SOM building capacity (Lee et al., 2020), compared to statistical predictive techniques. However, to

avoid bias in model output, it is best practice that models are calibrated and validated to local conditions (Necpálová et al.,70

2015)whenever they are applied outside the range of usual conditions, for example, in a new climate zone ,
:::::::::
especially

:::::
when

::::::
applied

::
in

:::::
novel

:::::::
contexts

::::
such

::
as

::::::::
different

::::::
climate

:::::
zones

:
with different soils.

Although DayCent has been used to estimate the development of SOM stock
:::::
SOM

:::::
stock

:::::::
changes in Kenya on a national

scale (Kamoni et al., 2007)and recently the efficiency ,
::::
and

:::::::
recently

::
to

:::::
assess

:::
the

::::::
impact of conservation agriculture

::
on

:::::
SOM in

Ethiopia (Lemma et al., 2021), DayCent’s
::
its

:
modules of SOM and maize crop growth have never been rigorously calibrated and75

validated for tropical agroecosystems in SSA. A recent test
::::::::
evaluation

:
of DayCent in Kenyan maize growing systems showed

that SOM turnover is underpredicted by DayCent
:::
the

:::::
model

:
(Nyawira et al., 2021). Because SOM in biogeochemical models

is coupled to nitrogen (N) mineralization
:
in

:::::::::::::
biogeochemical

:::::::
models, there is the potential that this translates into biased crop

responses to N
::::::
addition

:
and biased crop growth rates

:::::::::
productivity

::::::::::
predictions in any upscaling exercise. A potential solution

to this issue is the joint
::::::::::
simultaneous

:
calibration of soil and crop parameters in DayCent , using long-term

::::
using

:
data from80

local trials
::::::::
long-term

:::::::::::
experiments. Ideally, it

:::
this

:::::::::
calibration would include the uncertainty in the model parameters and

:::::
model

outputs (Clifford et al., 2014), so a propagation of errors is possible in upscaling exercises (Stella et al., 2019). This is especially

relevant because
::::
given

:
a recent study showed

:::::::
showing considerable uncertainty in DayCent

::
‘s SOM turnover rates, even when

::::::::
calibrated using a range of long-term experiments for calibration (Gurung et al., 2020).

In order to use DayCent to assess the potential of ISFM to contribute to closing the yield gap
:::::
reduce

:::::
yield

:::::
gaps while85

minimizing environmental impact in Kenya and other SSA countries, the aim of this study was to use
::
this

::::::
study

::::
used

::
a

Bayesian calibration to derive robust DayCent parameters of SOM cycling and maize growth in Kenya.
::::
With

:::::::
robust,

:::
we
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::::
mean

::::
that

:::
the

::::::
model

:::::::::
evaluation

::::::::
statistics

:::
are

::::::::::::
representative

::
of

::::::::
applying

:::
the

::::::
model

::
to

::::
new

::::
sites

::::
with

::::
the

::::
same

:::::::
climate

::::
and

::::
soils.

:
We used the experimental data of four long-term ISFM trials

::::::::::
experiments conducted in Kenya for almost two decades

(Laub et al., 2022a, 2023b)
:::
over

::::::
nearly

:::
two

:::::::
decades

:::::::::::::::::::
(Laub et al., 2023a, b). Of these, two sites were in humid western Kenya90

and two in subhumid to semi-arid central Kenya. Their treatments were different additions of organic resources (1.2 and 4

t C ha-1 yr-1 including farmyard manure, high-quality Tithonia diversifolia and Calliandra calothyrsus residues as well as

low-quality low quality stover of Zea mays and sawdust), combined with (+N) or without (-N) 120 kg mineral N fertilizer ha-1

season-1. They thus contain a range of experimental conditions and inputs. The goal

:::
The

::::
first

::::::::
objective

::
of

:::
our

:::::
study

:
was to evaluate to what extent DayCent can replicate

::::::::
reproduce

:
the differences in yields95

and SOM development in response to
:::
the

:::::::
addition

::
of

:
different qualities and rates of organic resources combined with different

rates of N fertilizer and between sites. Furthermore, because ISFM can simultaneously be a source of N2O to the atmosphere

(Leitner et al., 2020) and mitigate CO2 emissions from the soil (Laub et al., 2022a), the
::
for

:
a
:::::::
number

::
of

::::::::::
contrasting

::::
sites.

::::
The

second objective was to evaluate the total global warming potential of different
::::::::::
greenhouse

:::
gas

::::::
(GHG)

:::::::
balance

::
of

::::::::
different

:::::::
addition rates of organic material in ISFM to find the optimal balance between limiting greenhouse gas

::::
GHG emissions from100

the soil and optimizing the
:::
crop

:
yield (that is, sustainable intensification).

:::::
ISFM

:::
can

:::
be

:
a
::::::
source

::
of

:::::
N2O

::
to

:::
the

::::::::::
atmosphere

:::::::::::::::::
(Leitner et al., 2020)

:::
but

:
at
:::
the

:::::
same

::::
time

:::::::
mitigate

::::
CO2:::::::::

emissions
:::
due

::
to

:::
the

::::::::::::
mineralization

::
of

:::::
SOC

::::::::::::::::
(Laub et al., 2023a).

:

Thus, the specific
::::
The

::::::
specific

:::::
steps

::
to

::::
reach

:::
the

:
objectives of this study were (i) to test the capability of an uncalibrated ver-

sion of DayCent to simulate yield and SOC development of the different ISFM practices, (ii) to calibrate DayCent to represent

ISFM under Kenyan conditions using experimental data from the 4 LTE
:::
four

:::::::::
long-term

:::::::::::
experiments, displaying the confi-105

dence in model parameters by Bayesian calibration, and (iii) to use the calibrated model to gain an understanding of possible

trade-offs between yield and SOM increases under ISFM, and to understand the global warming potential
::::::::::::
understanding of the

::::
GHG

:::::::
balance

::
of

:::
the

:
different ISFM treatments.

2 Material and Methods

2.1 The experimental sites110

The present study used data pooled from four experimental sites. The experiments tested different organic resource treatments

::::
from

::::
four

::::::::
long-term

::::
field

:::::::::::
experiments

::
in

::::::
Kenya,

::
in

::::::
which

:::
the

:::::
effect

::
of

:::
the

:::::::
addition

::
of

::::::::
different

::::::
organic

::::::::
resources

:
at different

rates
:::
was

::::::
tested,

:::::
either

:::::
alone

::
or

:
in combination with the application of mineral N fertilizer,

:
in the context of ISFM. The

experimental setup was identical between the sites . The sites
::::
sites

:
are located in agriculturally important areas in western

and central Kenya.
:::::
central

::::
and

::::::
western

::::::
Kenya

::::
(Fig.

:::::
A1). The Embu and Machanga sites are both located in Embu County, in115

the central part of Kenya. The Aludeka site is located
::::::
situated

:
in Busia County in western Kenya, while Sidada is located in

the adjacent Siaya County, just south of Busia (Table A1). The experiments in Embu and Machanga were initiated
:::::
began in

early 2002and the experiments ,
:::::
while

:::::
those

:
in Aludeka and Sidada were initiated

::::
began

:
in early 2005. Therefore, 19 years

of data were available in central
::::::
Kenya and 16 years in western Kenya (2 sites x 16 years + 2 sites x 19 years = 70 site years

::::::::
site*years

:
= 140 site seasons

::::::::::
site*seasons). The sites cover a range of altitudes, temperatures, and precipitations. Embu, with a120
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mean annual temperature (MAT) of 20 °C and
::
an

::::::
annual

::::::::::
precipitation

:::
of 1200 mm annual precipitation

:::
mm, is the coolest of

all sites
:::
site, while Machanga has a MAT of 24°C and receives the lowest amounts of

:::
the

::::::
lowest annual precipitation (800 mm).

Sidada (23°C, 1700 mm) and Aludeka (24°C, 1700 mm) have a high MAT and receive significantly more precipitation than

the sites in central Kenya. There are two rainy seasons at each site, which corresponds
:::::::::::
corresponding

:
to two maize growing

seasons per year. The long rainy season runs
:::::
occurs

:
from March to August /September,

::
or

:::::::::
September,

:::::
while

:
the short rainy125

season runs
:::::
occurs

:
from October until January /

::
or

:
February. In terms of soil texture, Machanga and Aludeka have low clay

content (13% clay at both sites), while Sidada and Embu are rich in clay (56 and 60%, respectively).

All experiments were set up as a split plot design with three replicates, with different qualities and quantities of organic re-

sources as main plots and the presence or absence of N fertilizer as subplots. Maize was grown continuously in all experiments,

with two crops per year, one in the long rainy season and one in the short rainy season. The design was similar in
:::::::::::
experimental130

:::::
design

::::
was

:::::::
identical

::
at all four sites and has been described in detail for the Embu site (Chivenge et al., 2009; Gentile et al., 2011)

::
in

:::::
earlier

::::::::::
publications

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chivenge et al., 2009; Gentile et al., 2011; Laub et al., 2023a, b). Organic resource treatments consisted

of high quality Tithonia diversifolia (TD) green manure and Calliandra calothyrsus (CC) prunings, low quality stover of Zea

mays (MS) and sawdust from Grevillea robusta trees (SD), locally available farmyard manure (FYM) and a control treatment

(CT) without any organic resource additions. Organic resources differed in quality by the contents of N, lignin and polyphe-135

nols (Table A2). Each organic resource was applied
:::
once

::
a
::::
year at two rates, 1.2 and 4 t C ha-1 yr-1, while only one amount

of applied mineral fertilizer,
::::::
mineral

::
N
::::::::
fertilizer

:::
was

:::::::
applied

::
at

:
a
:::::
fixed

:::
rate

::
of

:
120 kg N ha-1 (CaNH4NO3) in each of the two

growing seasonswas tested. Of that
:
.
::
Of

::::
this, 40 kg N ha-1 were applied with

::
at planting, and the remaining 80 kg N ha-1 about

six weeks after planting
::::
later. Organic resources were applied only once a year, prior to planting for

::
in the long rainy season

:
,

:::
i.e.,

:
in January or February. They were incorporated to a depth of 15 cm with hand hoes. Furthermore, a blanket application140

of 60 kg P ha-1 as triple superphosphate and of 60 kg K ha-1 as muriate potash at planting was provided to all plots once

each season. The plots were kept weed free by hand weeding, between two and
:::
two

:::
to three times per season, and selective

application of pesticides was used when necessary to protect against
::::::
control armyworm, stemborer, and/or termites.

2.2 The DayCent model

The DayCent model (version 2020
:::::::
DayCent

::::::
(2017

::::::
version

:
of DD_EVI) is a terrestrial ecosystem model of intermediate com-145

plexity (Del Grosso et al., 2001). It simulates
::::
daily

:
C and N fluxes within the soil-plant-atmosphere continuum on a daily

basis and has been parameterized for many
::::::
several crops and ecosystems (Necpalova et al., 2018). It has submodules to

simulate plant growth, organic resource and soil organic matter (SOM) decomposition ,
::::::::
including

:
mineralization of N, soil

water and temperature, N gas fluxes, and CH4 oxidation. The net primary productivity of plants is a function of their ge-

netic potential, a simplified phenology, solar radiation, temperature, and stresses, such as reduced water or N availability.150

Here, we used the non-growing degree day version of the DayCent crop module, which
:::
that

:
does not simulate phenol-

ogy but has a seedling stage with reduced growth until a certain biomass (full canopy) is reached. SOC and soil N in the

upper 20 cm
:::::
topsoil

:
are represented by

::
an active, slow, and passive SOM pools

:::
pool, while litter and organic resources are

represented by
:
a
:
structural and metabolic litter pools

::::
pool (Parton et al., 1987). All soil

::::
SOM

:
pools are conceptual and

5



have no measurable counterparts, whereas the litter pools are semiquantitative, that is, their
::::::::::::::
semi-quantitative.

:::::
Their

:
divi-155

sion is based on the measurable ratio of lignin to N in
:::
the

:
organic resources and plant litter. For temperate conditions,

DayCent has been shown to
:::::::
DayCent

:::
can

:
adequately simulate crop yields, SOC and soil N dynamics,

:
and N2O emissions

(Del Grosso et al., 2005; Necpálová et al., 2015; Necpalova et al., 2018; Gurung et al., 2020, 2021). Yet, for tropical conditions

the performance has not been studied in similar detail. A
:
in

::::::::
temperate

:::::::::
conditions

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Del Grosso et al., 2005; Necpálová et al., 2015; Necpalova et al., 2018; Gurung et al., 2020, 2021)

:::
but

:
a
:
recent paper showed that the general model fit of the uncalibrated model was suboptimal

:::::::::
inadequate

:::::::::::
performance

:::
for160

::::::
tropical

:::::::::
conditions (Nyawira et al., 2021).

2.3 Data used for the DayCent model evaluation/calibration
:::
and

:::::::::
evaluation

In a process that was repeated four times, a large data set was used based on

::
To

:::::::
provide

::
an

::::::
overall

::::::::::
assessment

::
of

:::
the

:::::::::::
performance

::
of

::::::::
DayCent

::
for

:::
its

:::
use

::
in

::::::
Kenya

:
a
:::::::::::::::

leave-one-site-out
::::::::::::::
cross-validation

:::::::
approach

::::
was

:::::::
applied.

::::::::::
Specifically,

::::
this

:::::::
involved

:::::
using

:
a
::::
data

::::::
sub-set

:::::
from three of the four sites for the model calibrationand165

the validation was performed based on the
:::::
model

::::::::::
calibration,

::::
with

:::::::::
validation

:::::::::
performed

:::::
using

:::
the

::::
data

::::
from

:::
the

:
fourth site.

The plot-scale yield of maize grain
::::
This

::::::
process

::::
was

:::::::
repeated

::::
four

:::::
times,

:::::
every

::::
time

::::
with

:::::::
another

:::
site

::::::
serving

::
as

:::
the

:::::::::
validation

:::
site.

::::::::
Different

:::::
data,

::::
were

:::::
used

:::
for

::::
this:

:::::
Maize

:::::
grain

:::::
yield

:
and the aboveground biomass, both on a dry matter basis(t ha-1),

were available for each cropping season between 2002 and 2020 (further details in Laub et al., 2023b). In addition to that
:::
All

:::
this

::::
data

:::
was

:::::
used

::::
with

:::
one

:::::::::
exception

:
-
:::
the

:::::
short

::::
rainy

::::::
season

::
of

:::::
2019

::
at

:::::::
Sidada,

:::::
which

::::
had

::::::::::::
unrealistically

::::
high

:::::
maize

:::::
grain170

:::::
yields

::
of

:::
up

::
to

::
16

::
t
::::
ha-1.

::
In

:::::::
addition, plot-scale SOC and total N contents in the top 15 cm were available for several points

over time
:::
soil

:::::
layer

::::
were

::::::::
available

::
at
:::::::

several
::::
time

::::::
points,

:::
and

:::
in

::::
2021

:::
for

:::
the

:::::
0-30

:::
cm

:::
soil

:::::
depth. In Embu and Machanga,

soil samples were taken every two to three years since initiation
::
the

::::
start

:::
of

:::
the

:::::::::
experiment

:
in 2002 until 2021, but

:::::
while in

Sidada and Aludeka,
:::
soil

::::::::
sampling

:::::::
occurred

:
only in 2005, 2018, 2019 and 2021 (further details in Laub et al., 2022a). Because

bulk density
::::::::::::::::::::::::::::::
(further details in Laub et al., 2023a).

:::::::
Because

:::
soil

::::
bulk

:::::::
density

:::
data

:
was not available for most soil samples and in175

2021
::::
time

:::::
points

::::
and there was no significant difference in topsoil bulk density between treatments at any site

:
in

:::::
2021, the mean

:::
soil bulk density per site was used to calculate SOC stocks of the top 15 cm of soil depth. All simulations were conducted at

the site scale, so the plot-scale (i.e. replicate)measurements were aggregated to the site scale, calculating means and variances.

DayCent calculates SOC to a depth of 20 cm , so we rescaled the SOC
::
We

::::
used

::
a
:::::::
DayCent

::::::::::::::
parameterization

::::
that

:::
was

:::::::::
developed

::
to

:::::::
simulate

::::
SOC

:::::
stocks

:::
of

::
the

:::::::::::::::::
IPCC-recommended

::::
0-30

:::
cm

::::::
topsoil

:::::
layer

:::::::::::::::::
(Gurung et al., 2020)

::::::
(further

::::::
details

::
in

::::::
section

::::::
2.3.2).180

:::::
Thus,

::
the

:::::
0-15

::
cm

:::::
SOC

:::::
stocks

:::::
were

:::::::
adjusted

::
to

::::
0-30

:::
cm

:::::
depth.

::::
This

::::
was

::::
done

:::
by

::::::
adding

:::
the

::::::::::
site-specific

::::
SOC

:::::
stocks

:::::
from

:::
the

:::::
15-30

:::
cm

::::
layer

:::::::::::
(specifically,

:::
the

:::::
15-30

:::
cm

::::::::::::::::::::::
equivalent-soil-mass-based

::::
ones

:::::::::::::::::::::::::::::::::::
(Wendt and Hauser, 2013; Lee et al., 2009)

:
)
::
to

:::
the

::::::::::::::
treatment-specific

:::::
SOC stocks for the top 15 cm to the top 20 cm , using the formula of Jobbágy and Jackson (2000):

SOC20(kg ha−1) =
1−β20

1−β15
∗SOC15

Here, SOC 20 and SOC15 are SOC stocks in kg ha-1 in the top 20 and 15
::::
from

::::
0-15

::::
cm.

::::
Due

::
to

::::::
limited

::::
data

::::::::::
availability

:::
for185

::
the

::::::
15-30 cm soil depth , respectively. The parameter β is the relative decrease of SOC stocks with depth, for which we took
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the mean values across sites (0.9725) , calculated from the
::::
(only

:
2021sampling, where samples from 0-15,

:
),
::::
this

::::::::
approach

:::
was

:::::::::
considered

:::
the

:::::
most

::::::::::
conservative

:::
and

::::::
robust;

:::::::
subsoil

::::::
carbon

::::::
usually

:::::::
changes

::::
very

::::::
slowly,

:::
and

::
a
::::::::
statistical

:::
test

:::::::
revealed

:::
no

:::::::::
differences

::
in

:::
the

:::::::::
equivalent

:::
soil

:::::
mass

:::::
based

:::::
SOC

:::::
stocks

:::
of

:::
the 15-30 , and 30-50 cm were available for all of the sites.

:::
cm

::::
layer

:::::::
(2.5-4.7

:
t
:::
soil

:::::
ha-1)

:::::::
between

:::::::::
treatments

::
at

::
the

:::::
same

:::
site

::
in
:::::
2021

:::::
(with

::::
only

:::
one

:::::
single

:::::::::
exception

::
in

::::::::
Aludeka;

:::
Fig.

::::
A2).

:
190

Data on N2O emissions were used in the model evaluation phase, but not for model calibration, because the data were

scarce and subject to high variability
:::
due

::
to

::::
their

:::::::
scarcity

::::
and

::::
high

::::::::::
uncertainty. The N2O measurements were conducted af-

ter N fertilization in 2005 (weekly measurements form March to June in Embu and Machanga and daily measurements in

Machanga in November), in 2013 and 2018 (weekly measurements form March to beginning of May in Sidada and Aludeka),

and in 2021 (weekly measurements form mid-March to mid-May in Sidada). They were conducted with
:::
The

::::::::::::
measurements195

::::::
applied

:
the static chamber method (Hutchinson and Mosier, 1981) . Measuring frames were permanently installed in the

plots
:::
with

::::
two

:::::::::
measuring

::::::
frames

:::
per

::::
plot

:::::::::::
permanently

::::::::
installed for a whole rainy season . The

:::
(one

:::::::
within,

:::
one

::::::::
between

:::::
maize

::::::
rows).

:::
The

:::::::::
sampling chambers (0.27 × 0.375 × 0.11 m) were made of polyvinylchloride and equipped with

:::
had

:
a

vent tube and a fan to homogenize gas inside them before gas sampling . The measured N2O emissions were evaluated at

two levels of aggregation. First, as site means per measurement day (from the three replicates, similar to all other data)
:::
fan200

::
for

:::
to

::::::::::
homogenize

:::
the

:::
gas

:::::::
sample

:::::
before

:::::::::
extraction

::::
with

::
a

::
60

::::
mL

::::::::::::
polypropylene

::::::
syringe

:::::::
through

::
a
::::::::::::
septum-sealed

::::::::
sampling

::::
port.

::::
Four

::::
gas

:::::::
samples

::::
were

::::::::
collected

:::
at

::
0,

:::
15,

:::
30

:
and second as cumulative emissions over the whole season, for which

we first
::
45

:::
min

:::
of

:::::::
chamber

:::::::
closure.

::::
Gas

:::::::
samples

::::
from

::::::
within

:::
and

::::::::
between

:::::
maize

:::::
rows

::::
were

::::::::
combined

::::
per

::::
time

:::::
point

::
in

:::
the

::::
same

:::::::
syringe

:::::::::::::::::::::::
(Arias-Navarro et al., 2017).

:::
All

::::::::
analyses

:::::
were

:::::::::
conducted

:::::
using

:
a
::::
SRI

::::::
8610C

::::
gas

:::::::::::::
chromatography

:::::::::
(456-GC,

:::::
Scion

::::::::::
Instruments,

::::::::::
Livingston,

::::::
United

:::::::::
Kingdom)

::::::::
equipped

:::::
with

::
an

:::::::
electron

:::::::
capture

:::::::
detector

:::
for

:::::
N2O

:::::::
analysis.

::::::
Fluxes

::::
per205

::::::
surface

::::
area

::::
were

::::::::::
determined

:::::
using

:::
the

:::::
linear

:::::
slope

::
of

:::
gas

::::::::::::
concentration

::::
over

::::
time

:::::::::::::::::::::::::::::::::
(Pelster et al., 2017; Barthel et al., 2022)

:
.

::::::::
Simulated

::::
N2O

:::::::::
emissions

::::
were

::::::::
evaluated

::::::
against

::::::::
measured

:::::
daily

:::
and

:::::::::
cumulative

:::::
N2O

::::::::
emissions.

:::
To

:::::::::
determine

::
the

::::::::::
cumulative

::::::::
emissions

::
at

:::
plot

::::::
scale,

::
we

:
used the trapezoid method at the plot scale (Levy et al., 2017), specifically, the trapz function of R

(Tuszynski, 2021). Site-scale
:::::::::::::
Treatment-scale means and variances were then computed for these

:
of

:::
the

:::::
daily

:::
and

:
cumulative

N2O emissions , similar to all
::::
were

::::
then

::::::::
computed

::
in
::
a
::::::
similar

::::
way

::
as

:::
for

:::
the other measurements.210

Furthermore, data on soil mineral N (Nmin), measured as NH4
+ and NO3

-, and measured moisture content at soil depths

of 0-15 cm, were available from several measurement campaigns in the years 2012, 2013, 2018, 2019 and 2020. Finally, in

the control and the 1.2 t C plots of the Calliandra, farmyard manure and maize stover treatments,
::::::
Finally, continuous soil

moisture measurements from
::::
were

:::::::::
conducted

:::::
using sensors placed in each replicate at 10 cm soil depth (EC-5 Soil Moisture

Sensor, Meter, Germany) , were available for
::
in

:::
the

::::::
control

::::
and

:::
the

:::
1.2

:
t
::
C
:::::

plots
::
of

:::
the

::::::::::
Calliandra,

::::::::
farmyard

:::::::
manure

::::
and215

:::::
maize

:::::
stover

:::::::::
treatments

::
at

:::
the

:
Sidada and Aludeka sites (March 2018 to December 2020). These soil moisture measurements

:::
data

:
were used to

:::::::
initially determine the optimal pedotransfer functions for soil hydraulic conductivity before the actual model

calibrationphase
:::
but

:::
not

::::
used

::
in

:::
the

:::::
model

:::::::::
calibration.
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2.3.1 Model driving variables and model assumptions

The site-specific crop management data used to run the DayCent model was obtained from field management operation records220

for each season at each site. This included specific dates for the yearly application of organic resources (in all but the control

plots)
::::::
season-

:::
and

::::::::::
site-specific

:::::::
records

::
of

::::
field

:::::::::::
management

:::::::::
operations.

::::::
These

:::::::
included

:::::
dates

::
of

::::::
organic

::::::::
resource

:::::::::
application,

manual plowing before planting, maize planting, split application of mineral Nat rates of 40 kg and 80 kg N ha-1 per season,

weeding and harvestdates. Pesticide application events
:
.
:::::
Dates

::
of

::::::::
pesticide

::::::::::
applications

:
and gap filling plus maize thinning

::
or

:::::
maize

:::::::
thinning

::::
were

::::
also

::::::::
available,

:::
but

:::::
these

:::::::::
operations are not part of standard DayCent management and were therefore not225

included in the DayCent schedule file. Our model runs therefore,
::::::::
modelling.

:::::::::
Therefore,

:::
our

::::::
model

::::
runs assumed no occurrence

of pests or diseases
:
, and an optimal plant density from the start, whichin practice

::
at

:::::::::
emergence,

::::::
which,

::
in

::::::::
practice, was ensured

by manual thinning and gap filling.

The climate data used to run DayCent consisted of recorded data at each of the sites. However, filling the
::::::::
Recorded

:::::::
weather

:::
data

:::::::
existed

:::
for

::
all

:::::
sites,

:::
but

::::::
filling

::
in data gaps was necessary due to unavailability and loss of recorded data. In

::
At

:
Embu230

and Machanga, manual recordings of daily minimum and maximum temperature and precipitation were available from 2002

until the end of 2007, but from 2008 until 2017, only measured precipitation was available. After 2017, high-quality data

from newly installed TAHMO stations (https://tahmo.org/climate-data/) were available near the Machanga and Embu sites,

with
::
for

:::::
these

::::
two

::::
sites,

:::::::::
providing daily values for temperature and precipitation. In Aludeka and Sidada, manual recordings

of daily minimum and maximum temperature and precipitation were available for all years from 2005 to 2017, during which235

high-quality weather stations were installed
:::::
2017.

:::::::::
Thereafter,

:::::::
weather

:::::::
stations

:
(Meter climate station, Meter Environment,

Munich, Germany)
::::
were

:::::::
installed

:::
and

::::::::
provided

::
the

::::
data. These data

::::
Data gaps were filled by using the NASA POWER product

(https://power.larc.nasa.gov/docs/methodology/). A bias correction for the minimum and maximum temperature of NASA

POWER data was performed, using a linear regression with measured data as dependent variable (y) and NASA POWER data

as independent variable (x). Specifically, the slope and intercept of the regression equation y =mx+ b, were used to produce240

a corrected estimate of these data. In our specific case, the slopes were not significantly different from 1, but intercepts (b)

were significantly different from 0. The specific intercepts for maximum temperature were -0.3°C, -0.4°C, +3°C and +6°C for

Embu, Machanga, Sidada and Aludeka, respectively. The intercepts for the minimum temperature were -0.25°C, -0.5°C, -3°C

and +1°C for Embu, Machanga, Sidada, and Aludeka, respectively. For precipitation, no bias correction was done.

The data on the hydraulic properties of the soil
:::
soil

::::::::
hydraulic

:::::::::
properties

:
needed in DayCent (volumetric

:::
soil

:::::
water

:::::::
content245

:
at
:

field capacity, wilting point, and saturated hydraulic conductivity Ks) were calculated based on the soil texture mea-

sured at each site. We tested two pedotransfer functions to see which one provided a better fit: (1) the widely applied

function of Saxton and Rawls (2006) and (2) the function of Hodnett and Tomasella (2002) , which
:::
The

:::::::::::
pedotransfer

::::::::
functions

::
of

:::::::::::::::::::::::::
Hodnett and Tomasella (2002)

:::
was

:::::
used,

::::::
because

::
it was specifically designed for tropical soils. Within the Hodnett and Tomasella (2002)

equation
:::
Its‘

:::
soil

::::::::
hydraulic

::::::::
properties

::::
also

::::::
showed

:::::
better

:::::::::
agreement

:::::::
between

:::
the

::::::::
measured

::::
and

::::::::
simulated

:::
soil

::::::::
moisture

:::::::
contents250

:::
than

:::::
when

:::
soil

::::::::
hydraulic

:::::::::
properties

::
of

:::::::::::::::::::::
Saxton and Rawls (2006)

::::
were

::::
used.

:::::::
Because

:::
the

:::::::::::::::::::::::::
Hodnett and Tomasella (2002)

:::::::
equation

::::
does

:::
not

::::::
provide

::
a
::::::
method

:::
to

:::::::
estimate

::
Ks, Ks was calculated using the Saxton and Rawls (2006) equation, with values of the
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water retention curve, α and n (van Genuchten, 1982), taken from Hodnett and Tomasella (2002), because their equation does

not provide a way to estimate Ks. In initial test simulations, we compared the observed versus soil moisture contents in the top

15 cm, for which continuous measurements were available from Sidada and Aludeka from 2018 to 2020. In this comparison,255

the pedotransfer functions of Hodnett and Tomasella (2002)showed better agreement between the measured and simulated soil

moisture contents than Saxton and Rawls (2006) and were consequently used in the application of the model at the four LTE

sites
::::::::
calculated

::::
with

:::
the

:::::::
equation

::::
from

:::::::::::::::::::::::::
Hodnett and Tomasella (2002).

2.3.2 Initial model parameterization and selection of potentially sensitive parameters for calibration

To parameterize the organic inputs, the mean lignin content and C/N ratio of the different organic materials across sites (Table260

A2) were used. This was justified
:::::::
approach

::::
was

::::
used

:
because measurements were not available for all sites and yearsand

because ,
::::
and

:::
was

:::::::
justified

::
as

:
an analysis of variance of data from the years 2002, 2003, 2004, 2005 and 2006 for

:
at

:
Embu and

Machangaand from the year ,
:::
and

:::::
from 2018 for all sites

::
at

::
all

:::::
sites, did not indicate any significant differences in lignin contents

and C/N ratios between the sites or years. The C content in
::
of maize grain was assumed to be 42.5% throughout the simulation

period. This was the mean value of measured grain C content across sites (standard deviation 1.8%) , which were available265

from
::
in the short rainy season 2018 and long rainy season 2019 (data not shown).

:::::
Given

:::
the

:::::
strong

:::::::::
correlation

:::::::
between

::::::
maize

::::
grain

:::::
yield

:::
and

:::::::::::
aboveground

:::::::
biomass

::
(r

::
=

:::::
0.87),

:::
the

:::::::::::
aboveground

:::::::
biomass

::::
data

:::
was

:::::::::::
transformed

::
to

::::::
harvest

:::::
index

::::
data

:::
for

:::
the

:::::
model

::::::::::
calibration

:::::::
process,

:::::::
because

::::::
harvest

:::::
index

:::
had

::
a
:::::
lower

:::::::::
correlation

::::
with

:::::
yield

:
(r
::
=
:::::
0.59)

::::
than

::::::::::
aboveground

::::::::
biomass.

:

The DayCent simulations were conducted at the site scale using averaged
:::::::
treatment

:::::
scale

:::::
using

::::::
average

:
values across all three

replicate plots for soil texture and
:::::::::
parameters

::::
(i.e.,

:::
soil

:::::::
texture,

::::
bulk

::::::
density,

::::
pH),

:
SOC and soil N stocks,

::::
maize

:::::
grain yield and270

aboveground biomass. This
:::::::
/harvest

:::::
index.

::::
This

::::::::::
aggregation was done to reduce the computation time of the sensitivity analysis

and calibration. Additionally, initial tests with the default DayCent parameterization showed that
::::::::::
simulations

:::
and

:::::::
because

:::::
initial

::::
tests

::::::
showed

::::::
similar

::::::
model

::::::::::
performance

::
as

:::::::::
compared

::
to applying the model to each experimental replicate individuallydid not

lead to better agreement between measured and simulated values than a single simulation of the average soil parameters of

the three replicates. Therefore, final model simulations were conducted with averaged values for soil parameters (i.e., texture,275

bulk density, soil pH) across the three replicates per site. For data used in model calibration and evaluation, the
:
.
::::
The site-

specific variance
:::::::
standard

::::::::
deviation for each type of measurement was used as a measure of uncertainty of the measured data

(specifically, the median variance per site and measurement type computed from the three replicates from
::
at each time point

of each treatment ). Site-specific variances were used because a statistical analysis of the data in earlier work had shown that

variance heterogeneity existed only between sites ,
::
for

:::::
each

::::::::
treatment

::
at

::::
each

:::::
site).

::::
This

::::::
choice

::::
was

:::::
based

::
on

::::
the

::::::::
statistical280

::::::
models

::
of

::::::::::::::::::
Laub et al. (2023a, b)

:
,
:::::::
showing

::::::::
variance

:::::::::::
heterogeneity

::::::::
between

::::
sites

:
but not between treatmentsat the same site

(Laub et al., 2022a, 2023b).

The standard parameter values of the DayCent 2020 version were taken as initial model parameters. The exceptionswere

the decomposition parameters
:
,
::::
with

:::::
three

::::::::::
exceptions.

:::::
First,

:::
we

::::
used

:::
the

::::::::
adjusted

::::::::::::
decomposition

:::::::::
parameter

::::::
values

:
of the

SOM pools . For these, we used updated estimates from a recent Bayesian calibration (Gurung et al., 2020) that included285

data from most of the well-known long-term experiments in Europe and the US (and textures from 15-50% clay). To our
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knowledge Gurung et al. (2020) provide the most up-to-date decomposition parameters, and hence, we assigned the median

of reported parameter values for each SOM pool as initial parameter values in our model simulations. Furthermore
::::
from

:::::::::::::::::
Gurung et al. (2020)

:
to
::::::

allow
:::
the

:::
use

:::
of

::::::::
DayCent

:::
for

:::::::::
simulating

:::::
SOC

::::::
stocks

:::
of

:::
the

::::
0-30

::::
cm

::::
soil

:::::
depth

:::::
layer

::::::
instead

:::
of

::
the

::::::::
standard

::::
0-20

:::
cm

:::::
layer.

:::::::
Second,

::::
we

:::::::
modified

:::
the

:::::::::
parameter

:::::
value

:::::::::::
representing

:::
the

:::::::
fraction

:::
lost

:::
as

::::
CO2 ::::

upon
:::::::::

structural290

::::
litter

:::
and

::::::
lignin

:::::::
turnover

::::::::::::::::::
(ps1co(1&2)&rsplig).

::::
The

::::::
default

:::::
value

:::
for

:::
this

:::::::::
parameter

::
is

:::
0.5

::::::::
assigning

::
a
::::::
carbon

:::
use

:::::::::
efficiency

:::::
(CUE)

:::::
value

::
of

:::::
50%

::
to

::::::::
structural

::::
litter,

::::::
based

::
on

:::::::
outdated

:::::::
theories

::::
that

:::::::::
lignin-rich

::::::::
materials

::::
form

:::::
stable

:::::
SOC

::::
most

:::::::::
efficiently

:::::::::::::::::::::::::
(Frimmel and Christman, 1988)

:
.
::::::
Newer

::::::
studies

:::::
have,

:::::::
however,

::::::
clearly

::::::
shown

::::
that

:::::::
minimal

::::::::
structural

::::
litter

::
is

:::::::::
conserved

::
in

:::
the

::::
long

::::
term,

:::::
while

::::::::
metabolic

::::
litter

:::::
forms

:::::
SOC

::::
more

:::::::::
efficiently

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cotrufo et al., 2013; Denef et al., 2009; Puttaso et al., 2013; Kallenbach et al., 2016)

:
.
::::
Thus,

:::
we

:::::
opted

:::
for

:
a
:::::
more

:::::::
realistic

::::
prior

:::::
value

::
of

::::
0.85

:::
for

:::::::::::::::::
ps1co(1&2)&rsplig,

::::::::::::
corresponding

::
to

:
a
:::::
more

:::::::
plausible

:::::
CUE

:::::
value295

::
of

::::
15%

:::
for

:::::::
structural

:::::
litter

:::::::::::::::::
(Mueller et al., 1997)

:
.
:::::
Third, for the parameters determining the minimum and maximum proportion

of nitrified N lost as N2O, we used the most
:::::
values

:::
that

::::
fell

:::::::
between

:::
the

:::::::
DayCent

::::::
default

::::::
values

:::
and recent values from Gurung

et al. (2021), who showed that older parameters overestimate N2O emissions. .
::::
This

::::::
choice

::::
was

::::::::
motivated

:::
by

:::
the

:::
fact

::::
that

:::
the

:::::::
DayCent

::::::
default

:::::::::
parameter

:::::
values

:::
led

::
to

::::::::::
excessively

::::
high

:::::::::
emissions,

:::::
while

:::
the

:::::::::::::::::
Gurung et al. (2021)

::::::::
parameter

::::::
values

:::::::
resulted

::
in

::::::::
emissions

::::
that

::::
were

:::
too

::::
low.

:::::::
Finally,

:::
we

:::::::
assumed

::::
that

:::
the

:::::
maize

::::::
growth

:::::::::
parameters

:::
of

:::
the

::::::
second

::::::
highest

:::::::::
production

:::::
level300

:::
(C5

:::
in

::::::::
DayCent)

::::::::
represent

::::
best

:::
the

:::::::::
production

:::::
levels

::::::::
observed

::
in

:::
the

::::::::::
experiment.

To identify which model parameters to include in the global sensitivity analysis (see section 2.4) and in the model calibra-

tion, we screened the
:::::::
reviewed literature for recently conducted sensitivity analyzes of the DayCent model (Necpálová et al.,

2015; Gurung et al., 2020)and additionally used
:
.
:::::::::::
Additionally,

:::
we

::::::::
consulted the DayCent manual to identify and add further

parameters of potential importance for the processes considered in our study (i.e., plant productivity and soil C and N cycle).305

:::::::
cycling). This resulted in a selection of 66 parameters (Table 1 and Table A3). Some of these parameters represented groups of

the same type of parameters that can each
:::::
belong

::
to

:::
the

::::
same

::::::::
category,

:::
but

:::
can

:
be individually calibrated in DayCent, e. g.

:
.
:::
For

:::::::
example, the "tillage multiplier" of SOM turnover can have different values for different SOM pools . However, because the

tillage multipliers are
::
but

::
is
:
usually the same for all SOM pools in the standard DayCent parameterization.

:::::
Thus, we decided

to have the same tillage multiplier value for active, slow,
::
all

:::::
SOM

:
and litter pools. In addition, some of the

::::
Some

:
parameters310

can have different values between the SOM pools of the surface and soil (for example
::::
SOM

:::::
pools

::::
(e.g., C/N ratios and turnover

::::
rates). For simplicity, we decided to assign

:::::::
assigned the same C/N ratios and a constant ratio to the turnover

::::
rates

:
of surface and

soil SOM pools . Because the turnover rates of the SOM pools are typically faster on the surface than in the soil, we defined

a new parameter that represents the value ratio of the surface to the soil parameters (i.e., decX(2)/decX(1)). This allowed us

to jointly evaluate the sensitivity and calibrate parameters related
::::::::
simplified

:::::::::
parameter

::::::::
sensitivity

:::::::
analysis

::::
and

:::::::::
calibration

::::
with315

:::::
regard

:
to surface and soil SOM poolswithout adding too much complexity. Finally, the parameters for

::::::::
governing

::
the

:
minimum

and maximum values of nitrification and loss of nitrified N as N2O, were reformulatedas maximum and the
:::
were

::::::::::::
reformulated.

::::::
Instead

::
of

:::::::::
calibrating

::::
them

::
as

::
a

::::::::
maximum

:::
and

::
a
::::::::
minimum

:::::
value,

:::
we

:::::::::
considered

:::
the

::::::::
maximum

:::::
value

:::
and

:::
the

:
difference between

the minimum and maximum parameters
:::::
values (i.e., N2Oadjust_(max-min) and aneref(1)-anaref(2)). This was done to ensure

that the maximum was always higher than the minimum valuein order to avoid numerical problems
::::::
ensured

:::
that

:::
the

:::::::::
minimum320
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::::
value

::::
was

:::::::
smaller

::::
than

:::
the

:::::::::
maximum

:::::
value,

:::::::
thereby

:::::::
avoiding

:::::::::
numerical

:::::::::::::
problems(initial

::::::::::::::
N2Oadjust_max

::::
was

:::
set

::
to

::::::
0.015;

::::::::::::::::::
N2Oadjust_(max-min)

::
to

::::::
0.003).

2.3.3 Spin-up and site history simulation to initialize SOC and soil N contents
:::
Soil

:::::::
organic

:::::::
matter

:::::
pools

:::::::::::
initialization

:::::
based

:::
on

::::::::
measured

:::::
data

As is standard practice in DayCent, the initialization of SOM pools was conducted through a
:::::
Instead

:::
of

::::::
relying

:::
on

:
spin-325

up run, which was followed by a simulation of the history of the site before experiment establishment based on
:::::::::
simulation

:::::
based

::
on

::::::::
uncertain

::::::::
historical

::::
land

::::
use

:::
and

:::::::::::
management

::
of

:::
the

:::::::::
simulated

::::
sites,

:::
we

::::
used

:::::::::
measured

::::::
mineral

:::::::::
associated

:::::::
organic

:::::
carbon

::::::::
(MAOC)

::::::::
fractions

:::
as

:
a
::::::
proxy

:::
for

:::
the

:::::::::::
initialization

::
of

:
the knowledge of site managers. The spin-up has the aim to

initialize the SOM pools to equilibrium using the typical input of biomass of the native vegetation type. The type of native

vegetation for each site was determined from an available potential vegetation map (Kamoni et al., 2007) and confirmed by330

site managers as tropical evergreen forest in Embu, dry savanna in
::::::
passive

:::::
SOM

::::
pool

:::::::::::::::::::::::
(Zimmermann et al., 2007).

:::::::::
Replacing

::::
SOM

:::::::::::
initialization

::::::::::
assumptions

::::
with

:::::::::
measured

::::::
proxies

:::
can

:::::::
enhance

::::::
model

::::::::::
performance

:::::::::::::::::::::::::::::::
(Laub et al., 2020; Wang et al., 2023)

:
,
:::
and,

:::::
more

::::::::::
importantly,

::
is
::::

less
::::::::
sensitive

::
to

::::
user

:::::::::::
assumptions.

:
It
::::

also
::::::
aligns

::::
with

:::
the

::::::::
DayCent

:::::::
concepts

:::
on

:::::
SOM;

:::
the

:::::::
manual

::::::::::::::::::
(Hartman et al., 2020)

::::::
denotes

::::
that

:::::::::
particulate

::::::
organic

::::::
carbon

::::::
(POC)

:::
and

:::::::
MAOC

:::
are

::::::
related

::
to

:::
the

::::
slow

::::
and

:::
the

::::::
passive

:::::
SOM

::::
pool,

:::::::::::
respectively.

::::::
MAOC

::::
data

:::
for

:::::::
samples

::::
from

:::
the

::::
0-30

:::
cm

::::
soil

::::
layer

::::
was

::::::::
available

::::
from

:::
the

::::
year

:::::
2021

::::::::::
(specifically

:::
for

:::
the335

::::::
control

:::
-N,

::::::
control

:::
+N

::::
and

:::
the

::::::::
farmyard

:::::::
manure

::
-N

::::
and

:::::::
Tithonia

::::::::::
diversifolio

::
-N

:::::::::
treatments

::
at

:
4
:
t
::

C
::::

ha-1
::::
yr-1

::
at

:::
all

:::::
sites).

::
It

:::
was

:::::::
derived

::
by

::::::
density

:::::::::::
fractionation

:::::
using

::::::
sodium

::::::::::::
polytungstate

:::::::
solution

:::
(1.6

::
g

::::
cm-3

:::
for

:::::::
Aludeka

::::
and

:::
1.7

:
g
::::
cm-3

:::
for

:::
the

:::::
other

:::::
sites).

:::::::::
Aggregates

:::::
were

::::::::
dispersed

::::
with

::::::::::::
ultrasonication

::
at

:::
400

:
J
::::
ml-1

::::
(217

::
s

:
at
:::::::::::
200-240W),

::::
after

:::::
which

:::::::
samples

::::
were

::::::::::
centrifuged

::
for

:::
2h

::
at

::::
4700

::::
rpm

::
to

:::::::
separate

:::
the

:::::
heavy

::::
and

:::
the

::::
light

:::::::
fraction,

:::::
which

:::::
were

::::
then

::::::::
separated,

:::::::
washed

::::
with

::::::::
deionised

:::::
water,

:::::
dried

:
at
:::::

60°C
:::
for

::::
24h

:::
and

::::::::
analyzed

:::
for

::::::
weight

:::
and

::
C
:::::::

content.
:::

A
::::::::
statistical

:::::::
analysis

:::::::
revealed

:::
the

:::::::
absence

::
of

:::::::::
treatments

::::::::::
differences340

:::::
within

:::
the

:::::
same

::::
site,

::
so

:::
the

::::::::::
site-specific

:::::::
MAOC

:::::
values

:::
for

:::
the

:::::
0-30

:::
cm

:::
soil

:::::
depth

::::::
across

:::::::::
treatments

:::::
(0.91,

::::
0.88,

:::::
0.85,

::::
0.86

::
g

::::::
MAOC

:::
g-1

::::
SOC

:::
for

::::::::
Aludeka,

::::::
Embu, Machanga, and humid savanna in Sidada and Aludeka. A 2000-year spin-up simulation

was sufficient to reach a steady state of SOM pools. Site managers had a good knowledge of the type of historical cropping

systems, e. g., arable vs. grasslands, types of crop rotation (e.g., maize monoculture vs. crop rotation with legumes) , manure

inputs and management, but without detailed information on the duration of these systems. Therefore, the duration of cropping345

systems after native vegetation was adjusted at each site so that
:::::
Sidada

::
in

::::
0-30

::::
cm,

:::::::::::
respectively)

::::
were

:::::
used

::
to

::::::::
initialize

:::
the

::::
SOC

::
in

:::
the

::::::
passive

:::::
SOM

::::
pool

::
in

::::::::
DayCent

::::::::::
simulations.

:::::::
Further,

:::
3%

::
of

:::::
initial

::::
SOC

::::
was

:::::::
assigned

::
to

:::
the

:::::
active

:::::
SOM

::::
pool

::::::
(mean

::::
value

::::::::::::
recommended

::
in

:::
the

::::::::
DayCent

:::::::
manual)

:::
and

:::
the

:::::::::
remainder

::
of

::::
SOC

::::
was

:::::::
assigned

::
to

:::
the

::::
slow

:::::
SOM

:::::
pool.

:::
The

::::::::
DayCent

::::::
manual

::::::
further

:::::
states

::::
that,

::::::::
although

:::
the

::::
slow

:::::
SOM

::::
pool

::
is
:::::::
closely

::::::
related

::
to

:::
the

::::
POC

::::::::
fraction,

:
it
:::::
tends

::
to

:::
be

:::::
larger

::::::::::::::::::
(Hartman et al., 2020)

:
.
::::::::::::
Consequently,

:::
the

::::::
passive

:::::
SOM

:::::
pool

::::
must

:::
be

::::::
smaller

::::
than

::::
the

::::::
MAOC

::::::::
fraction.

:::::::::::
Additionally,350

::
the

:::::::::::
fractionation

::::
data

::::
was

::::
from

::::::
2021,

:::::
when

:::
the

::::::::::
experiments

::::
were

:::::::
already

:::
19

:::
and

:::
16

:::::
years

:::
old.

:::
To

:::::::
address

::::
these

::::::
issues,

::::
two

:::
new

::::::::::
parameters

::::
were

::::::::::
introduced

::
in

:::
the

:::::::::::
simulations:

::
1)

:::
an

::::::::
intercept

::::::::
(ICMAOC)

::
to

:::::::
account

:::
for

::::
the

::::::
passive

:::::
SOM

:::::
pool

:::::
being

::::::
smaller

::::
than

:::
the

:::::::
MAOC

:::::::
fraction,

::::
and

::
2)
::

a
:::::
slope

:::
for

:::
the

:::::
time

:::::
since

:::
the

::::
start

::
of

::::
the

:::::::::
experiment

:::::
(SLt):::

to
:::::::
account

:::
for

:::::
SOM

::::::
changes

:::::::
(mostly

::::::
losses)

:::::
since

:::
the

::::
start

::
of

:::
the

:::::::::::
experiments,

::::
with

:::
the

:::::::
passive

::::
SOM

:::::
pool

:::::::
typically

::::::::
changing

::
at

:::
the

:::::::
slowest

::::
rate.
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:::::
Given

:::
that

:::
all

::::
sites

::::
were

:::::::::
converted

::
to

:::::::::
agriculture

::::
only

::
a

:::
few

:::::::
decades

:::
ago

:::::::::::::::::
(Laub et al., 2023a),

:::
the

:::::::::
percentage

:::
of

::::
total

::
C

::
in

:::
the355

::::::
passive

:::::
SOM

::::
pool

::
at

:::
the

::::
start

::
of

:::
the

::::::::::
experiment

:::::
should

:::
be

::::::
higher

::::
than

:::
the

:::::
30-40

:::
%,

:::
that

:::
are

::::::::
common

::
at

:::::
steady

:::::
state

::
of

:::::
SOM

::::
pools

:::::::::::::::::::
(Hartman et al., 2020).

::::::::::
Considering

::::
this,

::
it
::::
was

:::::::
assumed

::::
that

::
the

:::::::::
intercepts

:::::
initial

:::::
value

:::
was

::::
-0.1

::
g

::::::
MAOC

:::
g-1

::::
SOC

::::
and

::
the

::::::
slopes

:::::
initial

:::::
value

:::::
value

::::
was

::::::
-0.005

::
g

::::::
MAOC

:::
g-1

:::::
SOC

:::
yr-1

:::::
since

:
the measured initial SOC stocks corresponded to the

simulated SOC stocks at the start of the experiment. Additionally, to achieve suitable levels of soil N stocks after the spin-up,

the maximum C/N ratio of ,
::::::
giving

::::
both

:::::
terms

::::::::::::
approximately

:::
the

:::::
same

::::::
weight.

:::::
Thus,

:::
the

:::::::
fraction

::
of

::::
SOC

:::
in

:::
the

::::::
passive

:::::
SOM360

::::
pool

::
at
:::

the
::::
start

:::
of

::
the

::::::::::
experiment

::::
was

SOCp(g g−1) =MAOC2021 + ICMAOC +SLt ∗ tdif
::::::::::::::::::::::::::::::::::::::::::::

(1)

::::
Here,

:::::
SOCp:::::::::

represents
:::
the

::::::
fraction

::
of
:::::
SOC

::
in the SOM pools had to be increased. It was increased from 14 to 20 for the active

SOM pool and from 8 to 13 for the passive SOM pool (parameters varat12&11(1, 1)and varat3(1
::
at

:::
the

::::
start

::
of

:::
the

::::::::::
experiment,

:::::::::
MAOC2021 :::

the
::::::
MAOC

:::::::
fraction

::
in

::::
2021

::
(g

:::::::
MAOC

::
g-1

::::::
SOC),

:::::::
ICMAOC ::

the
::::::::
intercept,

::::
and

:::
SLt:::

the
:::::
slope

::::
value

::::
that

::
is

::::::::
multiplied

:::
by365

::
the

:::::
time

::::::::
difference

:::::::
between

:::
the

::::::::::::
measurement

:::
and

:::
the

::::
start

::
of

:::
the

::::::::::
experiment

::
in

:::::
years

::::
(tdif).:::::

With
:::
the

:::::::
selected

:::::::
standard

::::::
values

::
for

:::::::
ICMAOC::::

and
::::
SLt, :::::::

between
::::
66%

::::::::::
(Machanga)

::::
and

::::
73%

:::::::::
(Aludeka)

::
of

::::
SOC

:::::
were

:::::::
assumed

:::
to

::
be

::
in

:::
the

:::::::
passive

:::::
SOM

::::
pool

::
at

::
the

::::
start

:::
of

:::
the

::::::::::
experiment.

::::
The

:::::::::
uncertainty

::::::
related

::
to

::::
this

:::::::::::
initialization

:::::::
approach

::::
was

:::::::::
accounted

:::
for

::
in

:::
the

::::::
model

:::::::::
calibration

::
by

:::::::
allowing

:::::
large

::::::
ranges

:::
for

::::
these

::::::::::
parameters.

::::::
Finally,

:::
to

:::::::
initialize

:::
the

:::
soil

::
N
::::::
pools,

::::
C/N

:::::
ratios

::
of

:::
the

:::::
active,

:::::
slow,

:::
and

:::::::
passive

::::
SOM

:::::
pools

:::::
were

::
set

:::
to

::
10, 1), respectively). Due to computational time constraints and to ensure a match between simulated370

and observed initial SOC and soil N levels, the spin-up and site history simulations were not included in the sensitivity analysis

and Bayesian calibration
::::
17.5,

:::
and

:::
8.5,

:::::::::::
respectively,

:::::
which

:::
are

:::
the

::::
best

:::::::
estimates

::::::::
provided

::
by

:::
the

:::::::
manual

::::::::::::::::::
(Hartman et al., 2020)

.

2.4 Global sensitivity analysis

To reduce the dimensionality of the calibration of the model
::::::
number

::
of
:::::::::

optimised
:::::::::
parameters

::::::
during

:::
the

:::::::::
calibration, we per-375

formed a parameter screening (van Oijen, 2020). For this purpose, a global sensitivity analysis was conducted to quantify the

relative importance of different model parameters to the relevant model outputs regarding our study
:
’s
:
focus on maize yield and

ISFM
:::
the greenhouse gas mitigation potential . The goal was to

:
of

::::::
ISFM.

::::
The

:::
aim

::::
was

::
to

::::::
identify

::::
and fix less influential model

parameters to their default
::::
initial

:
values, reducing the computational cost for performing the consecutive Bayesian

:::::
model

:
cal-

ibration (see section 2.5). Global
:::
The

::::::
global

:
sensitivity analysis was performed using the Sobol method (Saltelli, 2002a, b),380

which allows for the estimation of the proportion of variance in the model outputs that is explained by each model parameter,

::::
while

:
considering the interaction terms of first-order and higher-order (Gurung et al., 2020). The "sensitivity" package (func-

tion sobolSalt; Iooss et al., 2021) of R version 4.0 (R Core Team, 2020) was applied. This function implements a simultaneous

Monte Carlo estimation of first-order and total-effect Sobol indices. The computational cost is N(p+ 2) model runs, N being

the dimension of the two matrices to construct the Sobol sequence, p being the number of parameters (66 in our case). Our385

tests indicated similar results for N = 500/1000, so we chose a dimension of 1000. The preselection of
:::::::::
preselected

:
model
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parameters to include (
:::
are

::::::::
described

:::::
above

:::
and

::
in

:
Tables 1 and A3) is described above. Independent uniform prior distributions

were used for the global sensitivity analysis, with the upper and lower parameter boundaries centered around the default
:::::
initial

parameter value obtained as described below
:::::
above

:::::::
(section

:::::
2.3.2). We based the global sensitivity analysis parameter ranges

on previous sensitivity analyses (e.g. Necpálová et al., 2015; Gurung et al., 2020), on plausible ranges reported in the DayCent390

manual and on how the parameters varied between
::::::::
variations

:::::::
observed

:::
in different maize parameterizations

:
in
:::
the

::::::::
literature.

The parameters were then grouped by how large the ranges were. The parameters that had
::::::::
according

::
to

:::
the

:::::::::
magnitude

:::
of

::::
their

::::::
ranges.

:::::::::
Parameters

::::
with

:
very small, small and moderate ranges were varied by ±10, 25 and 50% from the default

:::::
initial

parameter value, respectively. For parameters with large and very large ranges, the upper/lower boundaries were the default

:::::
initial parameter values multiplied/divided by 3 and 10, respectively. Additionally, we assumed that the maize parameters of the395

second highest production level (C5 in DayCent) would best represent the production levels in the experiment. The parameter

sensitivity was independently determined for the mean maize grain yield ,
:::
and aboveground biomass,

:::::::
averaged

::::
over

::
all

:::::::
seasons

:
at
:::
all

::::
sites,

:
as well as for the SOC and soil N stocks at the end of the simulation period.

2.5 Combined Bayesian calibration of plant and soil model parameters

Joint Bayesian calibration of the sensitive DayCent parameters was performed using all available data on maize grain yield,400

aboveground biomass,and SOC stocks. The main reason for only using these data was that the yields, SOC stocks, and their

trade-offs were the focus of this study. A second, technical reason, was that the creation and readout of daily simulations

outputs, needed to match simulated and measured soil moisture content, mineral N content and

2.5
::::::::

Combined
:::::::::
Bayesian

:::::::::
calibration

:::
of

::::
plant

::::
and

::::
soil

:::::
model

:::::::::::
parameters

Bayesian calibration is a probabilistic inverse modeling /
::
or data assimilation technique, which is used to estimate the joint pos-405

terior distribution of model parameters (θ) given the measured data (D) and the model structure (M ), expressed as p(θ|D,M).

It uses the proportionality form of Bayes‘ theorem, where p(θ|D,M) is proportional to the prior belief about model parameters,

p(θ) times the likelihood function , p(D,M |θ):
::
of

:::
the

::::
data

:::::
given

:::
the

:::::
model

::::
and

::
the

::::::::::
parameters,

::::::::::
p(D|M,θ):

p(θ|D,M)∝ p(θ) ∗ p(D,M |M,
::
θ) (2)

While the prior, p(θ), is chosen based on previous knowledge of the model parameters, the likelihood function, p(D,M |θ)
:::::::::
p(D|M,θ),410

measures how well the model and the data match. In practice it is derived for a given set of parameter
::::::::
parameters

:
sampled

from the prior, by running and evaluating the model using the measured data, the simulated counterpart and the variance-

covariance matrix of the data. We used the median variances per site for each type of measurement (computed from the three

replicates) as the diagonal elements of the variance-covariance matrix. Due to the large number of observations and the mostly

balanced dataset, the off-diagonal elements were set to 0.
:::::
model

::::::::
residuals.

:::::::::
Following

:::::::::::::::::
Gurung et al. (2020),

:::
we

:::::::
applied

:::
the

::
R415

:::::::
software

::::::::::::::::::
(R Core Team, 2020)

:
to
::::::
create

:
a
::::::
mixed

:::::
model

::::
with

::::::::
restricted

:::::::::
maximum

::::::::
likelihood

:::::::::
estimation

::::
with

:::
the

:::::
lme4

:::::::
package
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Table 1.
:::::::
DayCent

:::::
model

::::::::
parameters

::::
and

:::
the

::::::::
coefficient

::
of
:::::::

variation
:::::

used
::
in

:::
the

:::::::::
calibration.

::::::::
Displayed

:::
are

::::::::
parameters

:::::::::
considered

:::
for

::::::::
calibration

:::
due

::
to

:::
total

::::::::
sensitivity

:::::
index

:
>
::::
2.5%

::::
(top)

::::
and

:::
with

::
a

:::
total

::::::::
sensitivity

:::::
index

:
>
:::
1%

:::::::
(bottom).

:::
The

::::::::
remainder

::
of

:::::::::
parameters

:::::
(<1%)

::
can

:::
be

::::
found

::
in

:::
the

:::::::::::
supplementary

:::::
(Table

::::
A3).

::::::
Possible

::::
ranges

: ::::
Initial

:::::::
Coefficient

:::::::
Calibrated

:::::::
Parameter

::::::::
Description

::
of

::::
values

::::
Units

::::
value

::
of

::::::
variation

::::
value+

Included in calibration (total sensitivity >2.5%)

::::
himax

: :::::::
Maximum

:::::
harvest

::::
index

::
for

::::
maize

: ::::::
moderate

: :
g
::
g-1

:::
(C)

:::
0.40

:::
0.15

:::
0.35

:::::
ppdf(1)

::::::
Optimum

::::::::
temperature

:::
for

:::::
growth

:
of
::::
maize

: :::
very

::::
small

::
°C

::::
30.00

:::
0.05

::::
28.74

:::::
ppdf(2)

:::::::
Maximum

::::::::
temperature

::
for

:::::
growth

::
of

::::
maize

:::
very

::::
small

::
°C

::::
45.00

:::
0.05

::::
47.00

:::::
prdx(1)

::::::
Potential

:::::::::
aboveground

:::::::
production

::
of

::::
maize

:::
large

: :
g
:
C
:::

m-2
::::::
langley-1

: :::
2.25

:::
0.25

:::
1.85

:::::::::
clteff(1,2&4)

:::::
Tillage

::::::
multiplier

:::
for

::::
SOM

:::::
turnover

: :::
large

: :::::
unitless

::::
10.00

:::
0.25

::::
19.10

::::::
aneref(3)

:::
Min.

:::::
impact

::
of

::
soil

:::::::::
anaerobiosis

::
on

::::
SOM

::::::
turnover

:::
large

: :::::
unitless

:::
0.95

:::
0.25

:::
0.67

:::
dec4

: ::::
Max.

:::::
turnover

:::
rate

::
of

:::::
passive

::::
SOM

:::
pool

:::
very

::::
large

:
g
::
g-1

:::
yr-1

: :::::
0.0035

::
0.3

:::::
0.0056

:::::
dec5(2)

::::
Max.

:::::
turnover

:::
rate

::
of

:::
slow

::::
SOM

:::
pool

: :::
large

: :
g
::
g-1

:::
yr-1

: :::
0.10

:::
0.25

::::
0.060

::::::
fwloss(4)

: :::::
Scaling

::::
factor

::::::
potential

::::::::::::
evapotranspiration

: ::::::
moderate

: :::::
unitless

:::
0.75

:::
0.15

:::
0.69

::::::::
pmco2(1&2)

: :
C
:::
lost

::
as

:::
CO2:::

with
:::::::
metabolic

:::
litter

:::::::
turnover*

:::
large

: :
g
::
g-1

:::
(C)

:::
0.54

:::
0.25

:::
0.82

:::::::::
ps1co2(1&2)

:
&
::::
rsplig

: :
C
:::
lost

::
as

:::
CO2:::

with
:::::::
structural

:::
litter

:::::::
turnover*

:::
large

: :
g
::
g-1

:::
(C)

:::
0.85

:::
0.25

:::
0.80

:::::
ICMAOC: ::::::

Intercept
::
to

::::
derive

:::::
fraction

::
in

:::
slow

::::
pool

:::
from

:::::
MAOC

: :::
very

::::
large

:
g
::
g-1

:::
(C)

:::
-0.1

:
1

:::
-0.21

:::
SLt ::::

Slope
::
for

:::
time

:::::::
difference

::
of

:::::
MAOC

:::::::::
measurement

:::
very

::::
large

:
g
::
g-1

:::
yr-1

:::
(C)

::::
-0.005

: ::
0.3

:::::
-0.0024

Not included in calibration (total sensitivity <2.5% & > 1% )

::::
frtc(1)

: :
C
::::::
allocated

::
to
::::
roots

:
at
::::::
planting,

::::::
without

::::
stress

::::
small

:::::
fraction

::
of

:::
NPP

: :::
0.50

::
0.1

:
-

::::
frtc(3)

: ::::
Time

:::
after

:::::
planting

::
at
::::
which

::::::
maturity

::
is

:::::
reached

::::
small

:::::
number

::
of

:::
days

: ::::
90.00

::
0.1

:
-

:::::::
pramn(1,2)

: :::
Min.

:::::::::
aboveground

:
C/

:
N
:::
ratio

::
at

::::::
maturity

::::
small

:::
C/N

:::
ratio

: ::::
62.50

::
0.1

:
-

::::
hiwsf

::::
Max.

:::::
harvest

:::
index

:::::::
reduction

:::
with

::::
water

::::
stress

::::::
moderate

: :
g
::
g-1

:::
(C)

:::
0.60

:::
0.15

:
-

::::
teff(1)

: ::::::::
Temperature

:::::::
inflection

:::
point

:::::
(effect

::
on

::::
SOM

::::::
turnover)

: ::::::
moderate

: :::::
unitless

::::
17.05

:::
0.15

:
-

:::::::::::
varat21&22(2,1)

:::
Min.

:::
C/N

::::
ratio

::
for

::::::
material

:::::
entering

::::
slow

:::
SOM

::::
pool

::::
small

::
C/N

::::
12.00

::
0.1

:
-

::::
basef

:::
Soil

::::
water

:
of
:::::

bottom
::::
layer

:::
lost

::
via

:::
base

:::
flow

: ::::::
moderate

: :::::
fraction

::
H2O fluxes, slowed down the whole calibration by a factor of 5, which made Bayesian calibration unfeasible (one iteration would have taken more than three months on our virtual machine with 64 cores) . Following (Gurung et al., 2020), model parameters that had a total sensitivity index of at least 2.5% for either yield,aboveground biomass, or SOC were considered influential and thus were altered in Bayesian calibration. This resulted in 11 parameters to be calibrated (Table 1) .

:
O
: :::

0.30
:::
0.15

:
-

:::::::::::
N2Oadjust_max

:::::::
Proportion

::
of

:::::
nitrified

::
N

:::
that

:
is
:::
lost

::
as

:::
N2O

:::
large

: :
g
::
g-1

:::
(N)

::::
0.015

:::
0.25

:
-

::::::::
MaxNitAmt

:::::::
Maximum

:::
daily

::::::::
nitrification

::::::
amount

:::
large

: :
g
::
N

::
m-2

: :::
0.40

:::
0.25 -

::

*(1
:
-
::::::::
microbial

:::::
carbon

:::
use

:::::::::
efficiency);

::::::

+highest
::::::::
likelihood

:::::::
parameter

:::
set

:::::
across

::
all

:::
four

::::
sites

:

:::::::::::::::
(Bates et al., 2015)

:
,
:::::
which

:::::::::::
automatically

::::::::::
constructed

:::
the

:::::::
variance

:::::::::
covariance

::::::
matrix

:::::
based

::
on

:::
the

:::::
nested

::::::
design

::
of

:::::::::::
observations

::
to

::::::
account

:::
for

:::::::::::::
autocorrelation

::
of

::::::::
residuals.

::::
The

::::::::
likelihood

::::
was

:
a
:::::::
function

:::
of

::
the

:::::::::
following

:::::
form:

p(D|M,θz) =
1√
2πΣ

exp

(
−1

2
(M(θz)−D)T Σ−1(M(θz)−D)

)
::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)

::::
Here,

::
Σ
::

is
:::
the

::::::::
variance

:::::::::
covariance

::::::
matrix,

::::::
M(θz)

::
is
:::
the

::::::
vector

::
of

:::::::::
simulated

:::::
values

:::::
using

:::
the

::::
z-th

:::::::::
parameter

::
set

:::
θz:::

and
:::
D420

::
the

::::::
vector

::
of

::::::::
observed

::::
data.

:::
In

:::
the

::
R

:::::::
software,

::::
this

:::
can

:::
be

:::::::::
constructed

:::
by

::::::
setting

:::
the

:::::::
residual

:::::::::
(modelled

::::
value

::
-
::::::::
measured)

:::
as

::
the

:::::::::
dependent

:::::::
variable

::
of

::
a

::::
zero

:::::::
intercept

::::::
model

::::
with

:::::
nested

:::::::
random

::::::
effects

::::
(i.e.,

:::::::
sampling

::::
date

::::::
within

::::
site),

::::
and

::::::::
assigning

:::
the
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::::::
inverse

::
of

:::
the

::::::
median

::::::::
standard

::::::::
deviation

:::
(of

::::
each

::::
type

::
of

:::::::::::
measurement

:::
at

::::
each

::::
site)

::
as

:::::::
weight.

:::
The

::::::::
logLik()

:::::::
function

::
is

::::
then

::::
used

::
to

::::::
extract

:::
the

::::::::::::
log-likelihood,

:::::
which

::
is

::::::::::
transformed

::
to

:::
the

:::::::::
likelihood

::
by

::::::
raising

::
e
::
to

:::
the

:::::
power

::
of

:::
the

:::::::::::::
log-likelihood.

The sampling importance resampling method, which was used in this study, is a direct form of Bayesian calibration, which425

has recently been used by Gurung et al. (2020), to calibrate the parameters of the SOM module of DayCent using a large

collection of temperate long-term experiments. It samples the prior by running the model for a large sample of parameter sets

of size I from the prior, computing the likelihood for each sample, and filtering the prior based on importance weights w(θz)

w(θz) =
p(D,M |θz)∑I
i=1 p(D,M |θi)

p(D|M,θz)∑I
i=1 p(D|M,θz)

:::::::::::::::

(4)

where p(D,M |θz)
::::::::::
p(D|M,θz) is the likelihood function of the zth parameter set and w(θz) is the corresponding importance430

weight. It is consistent with the proportionality form of Bayes‘ theorem in that it uses the importance weights w(θz) as

probabilities for sampling from the prior, without replacement, to derive the posterior.

::::::::
Combined

::::::::
Bayesian

:::::::::
calibration

::
of
:::

the
::::::::
sensitive

::::::::
DayCent

:::::::::
parameters

:::
was

:::::::::
performed

:::::
using

:::
all

:::::::
available

::::
data

:::
on

:::::
maize

:::::
grain

:::::
yield,

:::::::
harvest

:::::
index

::::::::::
(calculated

:::::
from

:::::::::::
aboveground

::::::::
biomass),

::::
and

:::::
SOC

::::::
stocks.

::
A

:::::::
notable

::::::::
exception

::::
was

::::
that

:::::
SOC

::::::
stocks

::::
from

:::
the

:::::::::
Machanga

::::
site

:::::
were

:::
not

::::
used

:::
in

:::
the

:::::::::
calibration

::::::::
process,

:::::::
because

:::
this

::::
site

::::
was

:::::::
severely

::::::::
affected

::
by

::::
soil

:::::::
erosion435

::::::::::::::::
(Laub et al., 2023a)

:::
that

::
is
:::
not

::::::::::
represented

:::
by

::::::::
DayCent.

::::
The

::::
main

::::::
reason

:::
for

::::
only

:::::
using

:::::
grain

:::::
yield,

:::::::
harvest

:::::
index

:::
and

:::::
SOC

:::
data

::::
was

::::
that

:::
the

::::::
yields,

::::
SOC

::::::
stocks,

::::
and

::::
their

:::::::::
trade-offs

::::
were

:::
the

:::::
focus

::
of

::::
this

:::::
study.

:::::::::
Technical

:::::::::
constraints

::::
also

:::::::::
influenced

::
the

::::::::
decision;

::::
the

:::::::
creation

:::
and

:::::::
readout

::
of

:::::
daily

:::::::::
simulation

:::::::
outputs

::
to

::::::
match

::::::::
simulated

::::
and

::::::::
measured

::::
soil

::::::::
moisture

:::::::
content,

::::::
mineral

::
N

:::::::
content

:::
and

:::::
N2O

:::::
fluxes

:::::
would

:::::
slow

:::::
down

:::
the

:::::
whole

::::::::
Bayesian

::::::::::
calibration

::::::
process

:::
by

:
a
::::::
factor

::
of

::
5.

::::
The

::::::::
Bayesian

:::::::::
calibration

:::::
would

:::::
have

:::::
taken

::::
more

::::
than

:::::
three

:::::::
months

::
on

:::
the

::::::
virtual

::::::::
machine

::::
with

:::
64

:::::
cores.

:::::::::
Following

:::::::::::::::::
Gurung et al. (2020)440

:
,
:::::
model

::::::::::
parameters

:::
that

::::
had

::
a

::::
total

:::::::::
sensitivity

:::::
index

::
of

::
at
:::::

least
:::::
2.5%

:::
for

:::::
either

:::::
yield,

:::::::::::
aboveground

::::::::
biomass,

:::
or

::::
SOC

:::::
were

:::::::::
considered

::::::::
influential

::::
and

:::
thus

:::::
were

::::::::
subjected

::
to

:::::::::
calibration

:::
(11

::::::::::
parameters).

:::::::::::
Additionally,

:::
the

::::
new

:::::::::
parameters

:::::::::
associated

::::
with

::
the

::::::::::::
initialization,

::::::
ICMAOC::::

and
:::
SLt:::

had
::
to
:::
be

:::::::::
calibrated,

:::::::
resulting

::
in

::
a

::::
total

::
of

::
13

::::::::::
parameters

::
for

::::::::::
calibration

:::::
(Table

:::
1).

Overall, a total of 200000 simulations were performed, from which , as in 0.1% (200) of the parameter sets were sampled

to derive the posterior distribution through resampling (Gurung et al., 2020). It was assured that this number of simulations445

was sufficient by splitting the simulations into two halves and visually assessing the similarity of derived posteriors for these

subsets. In our experience, the sampling importance resampling algorithm is ideal
:::::
highly

:::::::
suitable

:
for DayCent, which

:::
that

is prone to model crash when using
:::::::
crashing

::::
with

:
inappropriate parameter combinations. This method does not depend on

chains, but rather on
::::::
Unlike

:::::::::::::
chain-dependent

::::::::
methods

::::
such

::
as

:::::::
Markov

:::::
Chain

::::::
Monte

::::::
Carlo,

:::
this

:::::::
method

:::::
relies

::
on

:
model runs

that are independent of each other. This means
:
,
:::::::
ensuring

:
that an erroneous run does not stop the algorithm, as would be the450

case in chain-dependent methods such as Markov chain Monte Carlo. In addition, this strategy
::::::
method allows for an efficient

cross-validation of the posterior parameter set.

To evaluate the model by comparing measured vs. modeled data, we conducted a ,
:::::

such
::
as

:::
the

:
leave-one-site-out cross-

validation . This means that each of the sites is left out one by one for an independent evaluation, while the other three

sites were used to compute the resampling weights and derive the posterior parameter distributions. Hence, the evaluation455
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is representative of up-scaling exercises of the DayCent model to other sites, because it involves evaluation of the model

performance across different sites. Here, the SIR algorithm was also advantageous. We stored the model
::::::::
employed

::
in

::::
this

:::::
study.

:::::::
Notably,

:::
the

::::::::
sampling

::::::::::
importance

::::::::::
resampling

:::::::::
algorithm’s

:::::::::
advantage

:::
lies

:::
in

::
its

::::::
ability

::
to

:::::
store

:::::
model

:
results for each

parameter set by site, which meant that the
:::::::
allowing

:::
for

:::::::::::::
straightforward cross-evaluation could be done by a simple filter by

::
by

site, without
:::
the

::::
need

:::
for

:
rerunning the model for each iteration. In contrast to model

:::
The

::::::::
posterior

::::::::
parameter

:::::::::::
distributions

::
of460

:::
this

:::::
study

:::
are

::::::::
displayed

::
for

::::
both

:::
the

:::::::::::::::
leave-one-site-out

:
cross-validation , the parameter posterior distributions are not displayed

by site. They are displayed for all four combined sites ; hence the full dataset without leaving any site out was used to derive

them. This was done to present the
::
and

:::
the

:::::::::
combined

::::::
dataset

::::
from

:::
all

::::
four

::::
sites

::::
(Fig.

:::
2).

::::
The

::::::
former

:::::
shows

:::
the

::::::::::
importance

::
of

::::::::
individual

::::
sites

::
in

:::
the

:::::::::
calibration

:::::::
process,

:::::
while

:::
the

:::::
latter

:::::::
provides

:::
the

:
most representative posterior distributions and to make

:::::::::
distribution

:::
for

::::::
model

::::::::
upscaling,

:::::::
making efficient use of all available data.465

::
To

::::::
ensure

::::::::::::
computational

:::::::::
efficiency,

:::
we

::::
used

::::::::
informed

::::::::
Gaussian

::::::
priors

:::
that

:::::
were

:::::::
centered

::::::
around

::::
the

:::::::
standard

:::::::::
parameter

:::::
values

:::
of

::::::::
DayCent,

::::
with

::::::::::
coefficients

:::
of

::::::::
variation

::
of

:::::
0.05,

::::
0.1,

:::::
0.15,

::::
0.25

::::
and

:::
0.3

:::
for

::::::::::
parameters

::::
with

::::
very

::::::
small,

::::::
small,

::::::::
moderate,

::::
large

::::
and

::::
very

::::
large

::::::
ranges

::::::
(Table

::
1).

::::
For

::
the

::::::
newly

:::::::::
introduced

::::::::::
parameters,

:::
we

::::
used

:::::
larger

:::::::::
coefficients

:::
of

::::::::
variation,

::::::
namely

:
1
:::
for

:::::::
ICMAOC:::

and
::::
0.35

:::
for

::::::::::::::
SLt.Additionally,

:::
all

:::::::::
parameters

:::::
were

:::::::::
constrained

::
to

::::::
remain

::::::
within

::::
their

:::::::::
physically

:::::::
sensible

:::::
limits

::::
(i.e.,

:::
not

::
<0

:::
for

:::
all

:::
and

:::
not

:::
>1

:::
for

::::
those

:::::::::::
representing

::::::::
fractions).

:
470

2.6 Model evaluation

We used the following standard model evaluation statistics (Loague and Green, 1991):

MSEy =
1

n

n∑
z=1

(Oyz −Pyz)2 (5)

RMSEy =
√
MSEy (6)

EFy = 1−
∑n

z=1(Oyz −Pyz)2∑n
z=1(Oyz − Ōy)2

(7)475

Here,
:::
The

:
MSEy is the mean-squared-error and RMSE is its root. EFy is the Nash-Sutcliffe modeling efficiency. Oyz is the

measured value of the z-th measurement of the y-th type of measurement, Ōy the mean of the y-th type of measurement and

Pyz the simulated value corresponding to Oyz. We further divided MSEy into squared bias (SB), nonunity slope (NU) and lack

of correlation (LC), as suggested by Gauch et al. (2003). We expressed them as a percentage of the MSEy:

SBy(%) =
(Ōy − P̄y)2

MSEy
∗ 100 (8)480
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NUy(%) =
(1− by)2 ∗ (

∑n
z=1(O

2
yz)

n )

MSEy
∗ 100 (9)

LCy(%) =
(1− ry)2 ∗ (

∑n
z=1(P

2
yz)

n )

MSEy
∗ 100 (10)

Here,
:::
Oyz ::

is
:::
the

::::::::
measured

:::::
value

::
of

:::
the

::::
z-th

:::::::::::
measurement

::
of

:::
the

::::
y-th

::::
type

::
of

::::::::::::
measurement,

:::
Ōy :::

the
:::::
mean

::
of

:::
the

:::
y-th

:::
type

:::
of

:::::::::::
measurement

:::
and

:::
Pyz ::

the
::::::::
simulated

:::::
value

::::::::::::
corresponding

::
to

:::
Oyz:. P̄ y is the mean predicted value of the y-th measurement type,

b the slope of the regression of P on O and r the correlation coefficient between O and P. The indicators LC, SB and NU show485

the nature of model errors, that is, a high LC shows that it is mostly random, a high SB a systematic bias, while a high NU

shows issues of model sensitivity.

2.7 Net global warming potential
:::::::::::
Greenhouse

:::
gas

:::::::
balance

To compare different ISFM treatments in terms of their greenhouse gas
::::::
(GHG) emissions, their net global warming potential

(GWP)
::::
GHG

:::::::
balance

::::
was

::::::::
computed

:
on a yearly basis (

::
kg

:
CO2eq ha-1 yr-1) was derived from the outputs over the whole490

simulation period. It was calculated from
::::
This

:::::::::
calculation

::::
was

:::::
based changes in the SOC content and cumulative emissions of

N2O using
:
a 100-year time horizon of global warming potentials (Necpalova et al., 2018):

GWPGHGbalance
:::::::::::

=
44

12
∗∆SOC + 265 ∗N2O (11)

Here, ∆SOC is the change in SOC content (kg C ha-1 yr-1), N2O the cumulative N2O flux (kg N2O ha-1 yr-1). The CH4

oxidation capacity was not considered, because it usually makes a very limited contribution to GWP in rainfed maize cropping495

systems
::::
GHG

:::::::
balance

::
in

::::::
rainfed

::::::::
cropping

::::::
systems

:::::::::::::::
(Lee et al., 2020) and we did not have data to evaluate the reliability of this

simulated flux. In addition to GWP we calculated
:::
the

:::
net

::::::
annual

:::::
GHG

:::::::
balance,

:::
we

:::::::::
calculated

:::
the

:
yield-scaled GWP

:::::
GHG

::::::
balance

:
(in CO2eq kg-1 maize grain yield) by dividing the cumulative GWP

::::
GHG

:::::::
balance over the entire simulation period by

cumulative simulated yields (dry matter base).

3 Results500

3.1 Most sensitive DayCent parameters

The results of the global sensitivity analysis showed that of the 66 model parameters included
:::::::
analyzed, only 20 parameters

had a Sobol total sensitivity index >1% for either maize grain yield, aboveground biomass, SOC or soil N stocks (Fig. 1). Of

these, only 11 parameters had a Sobol total sensitivity index >2.5%, a threshold that captures the most influential parameters

and represents a suitable selection of parameters for model calibration (Gurung et al., 2020). The parameters that turned out505
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Figure 1. Results of the uncertainty-based global sensitivity analysis of the most relevant DayCent model parameters. Parameter sensitivity

was independently determined for the mean maize aboveground biomass, grain yield, and SOC and soil N stocks at the end of the simulation

period. Only parameters with a Sobol sensitivity index >1% are displayed.

to be the most sensitive, with a Sobol total sensitivity index >10% for at least one type of measurement,
:
were radiation use

efficiency (prdx(1); for all measurement types); the optimal and maximum temperature for maize growth (ppdf(1) and ppdf(2),

respectively; only for grain yield of maize and aboveground biomass), and maximum harvest index (himax; only for crop
::::
grain

yield). Further, the turnover rate of the slow and passive SOM pools (dec5(2) and dec4, respectively; only for SOC and soil N),

the decomposition multiplier after tillage events
::
for

:::
soil

::::::
tillage (clteff(1,2&4); only for SOC and soil N) and the fraction lost as510

CO2 upon
::
of

:::
the metabolic litter pool turnover (pmco2(1&2), i.e., 1 - microbial carbon use efficiency (CUE); only for SOC and

soil N) belonged to the most sensitive model parameters. The parameters of further importance, with a Sobol total sensitivity

index <10% and >2.5%
:::
and

:::::
<10%, were the minimum value for the impact

:::::
factor

:
of anaerobic soil conditions (aneref(3); only

for SOC and soil N), the scaling factor for potential evapotranspiration (fwloss(4); only for maize grain yield), and the fraction

lost as CO2 upon
::
of

:::
the

:
structural litter and lignin turnover

:::::
pools (ps1co(1&2)&resplig

:::::
rsplig, i.e., 1-CUE; only for SOC and515

soil N). The fact that the Sobol 1st order and total sensitivity indexes were similar for most parameters suggested only a limited

number of interactions between the parameters identified by the global sensitivity analysis.
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3.2 Posterior parameter distributions from the Bayesian model calibration

Following the global sensitivity analysis, 11 selected
::
13

::::::::
selected

:::::
model

:
parameters were calibrated using

:::::::
Gaussian

::::::
priors

:::::::
centered

::::::
around

:::
the

:::::
initial

::::::::
parameter

::::::
value,

::::
with

:::::::
standard

:::::::::
deviations

::::::::
according

::
to

:::
the

:::::::::
uncertainty

::::::
ranges

::::::
(Table

::
1).

::::
The

::::::
ranges520

::
of the same ranges of possible values as defined for the sensitivity analysis. Four parameters were fully constrained by the

Bayesian calibration, one was partly constrained and tended towards the upper boundary. Four showed a tendency, but values

from the whole prior range were present in the posterior distribution. Finally, two showed almost no difference to the uniform

prior distribution
::::
prior-

::::
and

:::
the

::::::::
posterior

:::::::::::
distributions,

:::::
using

::::
data

:::::
from

::
all

::::
four

:::::
sites,

:::::
were

::::::
similar.

:::::
Also

:::
the

::::
four

::::::::
different

:::::::
posterior

:::::::::::
distributions

::::
from

:::
the

:::::::::::::::
leave-one-site-out

:::::::::::::::
cross-validations

::::
were

::::::
largely

:::::::
similar

::
to

::::
each

:::::
other

:
(Fig. 2). Very clearly525

constrained were the potential maximum maize production and the maximum maize harvest index (2.5
:::::::
However,

:::::::
several

:::::::::
parameters

::::::
slightly

::::::
shifted

:::::
from

::::
their

:::::
initial

::::::
values

::
to

:::
the

:::
best

:::::::::
parameter

::::::
values

:::::
across

:::
all

:::
four

:::::
sites.

::::
The

:::::::
strongest

::::::::::
differences

:::::::
between

:::
the

:::::
initial

:::
and

::::::::
calibrated

::::::
values

::::::
existed

::
for

:::
the

::::::::
potential

::::::::
maximum

:::::
maize

::::::::::
productivity

:::
per

::::::::
radiation

::::::::
(prdx(1);

::::
from

::::
2.25

::
to

:::
1.85

:
g C m-2 langley-1for prdx(1)and 0.48 g g-1 for himax), with values slightly higher than the default values and somewhere

in between the maize with the highest and second highest production levels (default DayCent maize parameters,named C6 and530

C5). Furthermore,the scaling factor for potential evapotranspiration was clearly constrained and slightly higher than the default

value (fwloss(4), 0.9 vs 0.75). The
:::
the

::::::::
parameter

:::::::::::
representing

::
the

::::::::
increase

::
of

:::::
SOM

:::::::
turnover

::::
after

::::::
tillage

::::::::::::
(clteff(1,2,&4);

:::::
from

::
10

::
to

:::::
19.1).

::::
An

:::::::
increase

::
of

:::
the

:
turnover rate of the slow SOM pool was also clearly constrained, but was centered around a

value twice the default (0.2 vs 0.1
::::::
passive

:::::
SOM

::::
pool

::::::
(dec4;

::::
from

:::::::
0.0035

::
to

::::::
0.0056 g g-1 yr-1for dec5(2) ). The

:
)
:::
was

::::::
partly

:::::::::::::
counterbalanced

:::
by

:
a
:::::::
decrease

::
in

:::
the turnover rate of the passive SOM pool was clearly constrained at the lower end of possible535

values, it was centered around a much higher value than the default value (0.03 vs 0.0035 g g-1 yr-1 for dec4) and tended towards

the upper boundary. A test with even broader ranges (up to 0.1
::::
slow

:::::
SOM

::::
pool

::::::::
(dec5(2);

::::
from

::::
0.10

::
to

::::
0.06

:
g g-1 yr-1)showed

that the value around 0.03 g g-1 yr-1 was in fact the center of the posterior distribution of this parameter (Fig. ??), but allowing

the parameters to vary that much reduced the model performance to unfeasible levels (model output not shown). The optimal

production temperature for maize (ppdf(1)) tended to have values lower than the default value, while the opposite was true540

for the maximum production temperature (ppdf(2)). Also the parameters representing CO2 loss upon turnover of metabolic

and structural litter pools
:
.
::::::::::
Furthermore

:::
the

::::
loss

::
of

::::::
carbon

::::
from

:::
the

:::::::::
metabolic

::::
litter

::::
pool

:::::
upon

::::::::::::
decomposition

:::
was

:::::::::::
significantly

::::::::
increased (pmco2(1&2)and ps1co2(1&2)&rsplig) tended towards higher values than the default values of these parameters (i.

e., lower carbon use efficiencies, because the parameters represent 1-CUE), but they were not clearly constrained. Finally, the

parameters representing the increase of the SOM pools turnover after tillage (clteff(1, 2,&4)) and the maximum rate limitation545

of soil under anaerobic conditions (aneref(3)), were poorly constrained.

Only a few strong correlations existed between the parameters of the
:
;
::::
from

::::
0.54

::
to
:::::

0.82
:
g
::::
g-1).

::::
The

::::
two

:::::::::
parameters

::::
that

::::::::
translated

::::::::
measured

::::::
MAOC

::::
into

::::
SOC

::
in

:::
the

::::::
passive

:::::
SOM

::::
pool

:::::
were

::::::
altered

::
in

:::::::
opposite

::::::::
directions

::::::::
(ICMAOC,

::::
from

::::
-0.1

::
to

:::::
-0.21

:
g
:::
g-1;

::::
and

::::
SLt, ::::

from
::::::
-0.005

::
to

:::::::
-0.0024

:
g
:::
g-1

:::::
yr-1).

:::::::
Overall,

:::
the

::::::::
parameter

::::::::::
correlations

::
in

:::
the

:
posterior parameter set (Fig. A3).

Namely, there was a strong positive correlation (r = 0.63) between the potential maximum production of maize (prdx(1)) and550

the optimal temperature for maize growth (ppdf(1)), the latter also being positively correlated with the maximum temperature
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Figure 2. Prior compared to the posterior model parameter distribution resulting from the uncertainty-based Bayesian model calibration of

DayCent
::::
using

:::
data

::::
from

:::
all

::::
sites

:::::::
combined

::::
(top)

:::
and

:::
the

::::::::::::::
leave-one-site-out

::::::::::::
cross-validation

:::::::
(bottom). Dashed vertical lines represent the

values of the default
:::::
initially

:::::::
selected parameter set. The posterior distributions are based on all four study sites combined. For the description

of the parameters see Table 1.

for maize growth (ppdf(2); r = 0.45). Furthermore, there was a negative correlation (r = -0.43) between the effect of tillage on

SOM turnover and the amount of CO2 loss upon turnover of the metabolic litter pool (pmco2(1&2)). The other correlations of

the parameters were weak (i.e., below ± 0.4)and therefore were of low importance
:::::
across

:::
the

::::
four

::::
sites

::::
were

::::::::
minimal,

::::
and

::
in

::
no

::::
case

:::::::
stronger

::::
than

:::
0.2

::::
(Fig.

::::
A3).555

3.3 Simulation of maize grain yields and aboveground biomass at harvest

Although
:::::
While

:
the overall variation of maize grain yields between

:::::
across

:
sites and treatments could be captured with the

set of default model parameters, the comparison of model results obtained with the default parameters compared to the set of

parameters chosen for each site by
:
to

:::::
some

:::::
extent

::::
with

:::
the

:::::
initial

::::::
model

::::::::
parameter

:::
set,

:::
for

::::
two

::::
sites

:
a
:::::::
negative

:::::
model

:::::::::
efficiency
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Figure 3.
:::::::
Simulated

::::::::
compared

::
to

:::::::
measured

:::::
maize

:::::
grain

:::::
yields

::
at

::
the

::::
four

:::::
study

:::
sites

:::
for

:::
the

:::::
initial

:::::::
DayCent

::::::::
parameter

::
set

:::::
(top)

:::::
versus

::
the

::::::::
calibrated

::::::::
parameter

::
set

::
by

::::::::::::::
leave-one-site-out

::::::::::::
cross-validation

:::::::
(bottom).

::::
The

::::
2985

:::
data

:::::
points

:::::::::
correspond

::
to

::
the

::::::::::
observations

::::
from

:::
the

:::::::::
experimental

::::::::
treatments

::::
over

::
32

::
to

::
38

::::::
seasons,

::::::::
depending

::
on

:::
the

:::
site.

:::::::
Symbols

:::::::
represent

:::
the

::::::
different

::::::
organic

::::::
resource

:::
and

:::::::
chemical

:::::::
nitrogen

::::::
fertilizer

:::::::::
treatments.

::::
Grey

:::::
bands

::::
show

:::
the

::::
95%

::::::::
confidence

:::::::
intervals

::
of

::::::::
measured

:::::::::
(horizontal)

:::::
values

:::
and

:::
the

::::
95%

::::::::
credibility

:::::::
intervals

::
of

::::::
posterior

:::::::::
distribution

::::::::
(vertical).

:::::::::::
Abbreviations:

:::
EF,

:::::::::::
Nash-Sutcliffe

:::::::
modeling

::::::::
efficiency;

::::::
RMSE,

:::
root

:::::
mean

::::::
squared

:::::
error;

:::
SB,

::::::
squared

::::
bias;

:::
NU,

::::::::
non-unity

:::::
slope;

:::
LC,

::::
lack

::
of

:::::::::
correlation.

:::::
Across

:::
all

::::
sites

:::::
model

:::::::
statistics:

:::
EF,

:::::
0.358;

::::::
RSME,

:::::
1.757

:
t
::::

ha-1;
::::

SB,
::::
21%;

::::
NU,

:::
1%;

::::
LC,

:::
77%

:::::
before

:::
and

:::
EF,

:::::
0.495;

::::::
RSME,

:::::
1.558

:
t
::::
ha-1;

:::
SB,

:::
2%;

::::
NU,

:::
5%;

:::
LC,

::::
93%

::::
after

:::::::::
calibration,

:::
with

::::
54%

::
of

:::::::::::
measurements

::::
being

::
in
:::
the

::::
95%

:::::::
credibility

::::::
interval

::
of

:::
the

:::::::
posterior.
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Figure 4. Simulated compared to measured maize grain yields
:::::::::
aboveground

:::::::
biomass

:::::
(AGB)

:
at the four study sites for the default

::::
initial

DayCent parameter set (top-left
::
top) versus the calibrated parameter set by leave-one-site-out cross-validation (top-right

:::::
bottom). The same is

displayed for maize aboveground biomass (AGB), showing the default DayCent parameter set (bottom-left) versus the calibrated parameter

set (bottom-right). The 2985 data points correspond to the observations from the experimental treatments over 32 to 38 seasons, depending on

the site. Symbols represent the different organic resource and chemical nitrogen fertilizer treatments. Grey bands show the 95% confidence

intervals of measured (horizontal) values and the 95% credibility intervals of posterior distribution (vertical). Abbreviations: EF, Nash-

Sutcliffe modeling efficiency; RMSE, root mean squared error; SB, squared bias; NU, non-unity slope; LC, lack of correlation.
:::::
Across

:::
all

:::
sites

:::::
model

:::::::
statistics:

:::
EF,

:::::
0.033;

::::::
RSME,

:::::
4.392

:
t
:::
ha-1;

:::
SB,

:::::
27%;

:::
NU,

::::
1%;

:::
LC,

::::
72%

:::::
before

:::
and

:::
EF,

:::::
0.254;

:::::
RSME,

:::::
3.856

:
t
::::
ha-1;

:::
SB,

:::
3%;

::::
NU,

::::
12%;

:::
LC,

::::
85%

:::
after

:::::::::
calibration,

::::
with

:::
51%

::
of
:::::::::::
measurements

:::::
being

:
in
:::

the
::::
95%

::::::::
credibility

::::::
interval

::
of

::
the

:::::::
posterior.
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:::
was

:::::::
obtained

:::::
(Fig.

::
3).

:::::
With

:::
the leave-one-site-out cross-validation showed that the Bayesian calibration significantly improved560

the fit of the model for both maize grain yield and aboveground biomass (Fig.3) . The calibration improved
::::::::
approach,

:::
the

:::::
model

::::::::
efficiency

:::
for

::::::
maize

:::::
grain

:::::
yields

::
at
:::

the
:::::::

left-out
:::
site

:::::::::
improved

::::::::::
ubiquitously

:::::
(i.e.,

::::
from

::::
0.32

:::
to

::::
0.39

::
in

::::::::
Aludeka;

:::::
from

::::
-0.04

::
to

::::
0.16

:::
in

::::::
Embu;

::::
from

::::
0.32

::
to

::::
0.36

:::
in

:::::::::
Machanga,

:::::
from

::::
-0.16

::
to
:::::

0.27
::
in

::::::
Sidada,

::::
and

::::
from

::::
0.36

:::
to

::::
0.50

:::::
across

:::
all

:::::
sites)

:::
and

::
so

:::
did

::::::
RSME

::::
and

::::
bias.

::::
The

::::
same

::::
was

::::
true

:::
for the simulation of grain yield for all sites and for aboveground biomass for

all sites except Machanga (Fig. ??). It should be noted that despite excluding the evaluation site in the calibration step, the565

calibrated model was unbiased and errors mostly random for both yield (i.e., lack of correlation (LC) increased from 90% to

97%) and aboveground biomass (LC increased from 71%
::::
(e.g.,

::::
from

::::
0.03 to 91% ).

::::
0.25

:::::
across

:::::
sites;

:::
Fig.

:::
4),

::::
with

:::
the

::::::::
exception

::
of

:::::::::
Machanga.

:::::::
Overall,

::::::
biases

::
in

::::::::
simulated

:::::
grain

::::::
yields

::::
were

::::::
mostly

:::::::::
eliminated

:::::::
through

:::
the

::::::
model

:::::::::
calibration,

::::
and

::::::
biases

::
in

::::::::
simulated

:::::::::::
aboveground

:::::::
biomass

::::
were

:::::::::
eliminated

::
in

:::::::
Aludeka

::::
and

:::::::
Siadada,

:::::::
reduced

::
in

::::::
Embu,

:::
but

::::::::
increased

::
in

:::::::::
Machanga.

:

Furthermore, while DayCent was inclined to overestimate the lowest and underestimate the highest values of
:::
The

:::::::::
simulated570

:::::::
posterior

:::::::::
credibility

:::::::
intervals

::
of

::::::::
simulated

:::::
yields

::::
and

::::::::::
aboveground

:::::::
biomass

::::::::
contained

::::
50%

::::
and

::::
51%

::
of

:::::::
observed

:::::
data,

::::::::::
respectively,

:::::::
showing

:
a
:::
that

::
it

:::::
could

:::
not

::::::
capture

:::
the

:::
full

:::::::::
uncertainty

::
of

:::::::::::::
measurements.

:::::
While

:::::::
DayCent

:::::
could

:::
not

::::::
capture

:::
the

:::
full

::::::::::::::
season-to-season

::::::::
variability

::
of

:::::
grain

:
yields and aboveground biomass, the mean yields and aboveground biomass per treatment throughout the

simulation period were simulated well for most treatments
::::::
without

:::
the

:::::::
addition

::
of

:::::::
mineral

::
N (Fig. A3). The exception to this

was that
:::
the

:::::
Embu

::::
site,

:::::
where

:::::
there

::::
was

:
a
:::::::::
systematic

::::::::::::::
underestimation

::
of

::::::
yields

::
in

:::
the

::
-N

::::::::::
treatments.

:::::::::::
Interestingly,

:
DayCent575

poorly distinguished the mean yields and aboveground biomass of treatments with high compared to very high rates of N inputs

(i.e.,
:::
the differences between the different organic resources and the control within the +N treatment). An additional test of

the model sensitivity of mean yields to different levels of mineral N fertilizer in the control provided further insights into this

(Fig. A5). In this test, the yields stopped increasing
::::::::
plateaued

:
at mineral N rates that were lower than the maximum N rates

provided in the organic resource +N treatments by mineral N and organic resources combined (up to >500 kg N per year or580

> 250kg N per
:::::::
growing

:
season). In Machanga and Embu, simulated mean yields stopped increasing at around 100 kg N ha-1

per
:::::::
growing season, which is less the 120 kg N ha-1 per season that

:::::::
growing

::::::
season

::
in the control +Nreceived. In Aludeka and

Sidada, simulated mean yields stopped increasing at 200 to 250 kg N ha-1 per
:::::::
growing season, but most of the response to N

was below 120 kg N ha-1 per
::::::
growing

:
season (Fig. A5).

Although the mean yields of the high-quality inputs in the
::
in -N treatments

:::
with

:::
the

::::::::::
high-quality

::::::
inputs were well simulated,585

some of the low-quality input treatments in Aludeka and Sidada, namely maize stover at 1.2 t C ha-1 yr-1 , and sawdust at

1.2 and 4 t C ha-1 yr-1, had lower simulated yields than the
::::
than

:
observed mean yields in their -N treatments (Fig. 5). The

same was true for the control -N in Aludeka , but the yields for sawdust -N at 4 t C ha-1 yr-1 in Machangawere overpredicted

compared to measurements. Interestingly, the 95% credibility intervals for yield and aboveground biomass produced by the

leave-one-site-out cross-validation contained only about 30% of measured data and also tended to be considerably smaller than590

variance-based 95% confidence intervals for the measured data.
:::
and

::::::::::
Machanga.
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Figure 5. Barplots of mean simulated and mean measured
::::
maize

::::
grain

:
yield and aboveground biomass (AGB) from cross-validation. Error

bars represent standard deviation.
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3.4 Simulated SOC stocks in response to integrated soil fertility management

In contrast to the simulation of maize
::::
grain yields, the

:::::::::
simulations

::
of

:
change in SOC stocks following the application of organic

resources at different rates (1.2 and 4 t ha-1 yr-1) was poorly simulated by DayCent with the set of default parameters. The

simulated SOC losses were too low compared to
::::
were

:::
not

::::::::
generally

::::::::
improved

:::::
across

::::
sites

:::
by the observations

:::::::::::::::
leave-one-site-out595

:::::::::::::
cross-validation

::::::::
approach

::::::::
compared

:::
to

:::::
using

:::
the

:::::
initial

::::::
model

:::::::::
parameter

::
set

:
(Fig. 6). The posterior parameter set obtained

through Bayesian calibration with strongly increased SOM turnover rates showed a tendency for a higher loss of CO2 from the

turnover of metabolic and structural litter pools. With the posterior parameter set ,
::::
Both

:::
the

:::::
initial

:::::::::
parameter

:::
set

:::
and the model,

in
::::::::
calibrated

::::::::
parameter

:::
set

:::::::
resulted,

::::::::
however,

::
in

:
a
:::::
better

::::::
model

::::::::::
performance

:::::::::
compared

::
to

:::::::
DayCent

::::::::::
simulations

::::
with

:::
the

::::::
default

::::
CUE

:::::
value

:::
for

::
the

:::::::::
structural

::::
pool

:::::
(these

:::
had

::
a

:::::::
negative

:::::
model

::::::::
efficiency

::
at
:::
all

::::
four

::::
sites;

::::
Fig.

::::
A6).

:::::
While

::::::::
Aludeka

::::::::::
experienced600

::::::::
improved

:::::
model

:::::::::
efficiency

:::
for

::::::::
simulated

:::::::
changes

::
in

:::::
SOC

:::::
stocks

:::::
with the leave-one-site-out cross-validation , simulated the

change in SOC much more accurately than with the default parameter set (EF of
:::::
(from

:::::
-4.17

::
to

::::::
-1.84),

:::
the

:::::
model

::::::::::
efficiencies

::
for

::::::
Embu

:::
and

::::::
Sidada

:::::::
slightly

::::::::
worsened

:::::
(from

:
0.54 vs -1.3; LC of 88% vs 42%; Fig. 6). The 95% credibility intervals of the

simulated values contained 47% of the measured data. It
:
to
::::
0.33

:::
in

:::::
Embu

:::
and

:::::
from

::::
0.47

::
to

::::
0.39

::
in

:::::::
Sidada).

:::::
Even

:::::
across

:::::
sites,

::
the

::::::
model

::::::::
efficiency

::::::::::
(computed

::::::
without

::::::::::
Machanga)

::::::
slightly

:::::::::
decreased

::::
from

:::::
0.36

::
to

::::
0.34

::::::::
following

::::::::::
calibration.

:::
As

::::::::
expected,605

:::::::::
Machanga,

:::
for

:::::
which

:::
the

::::
SOC

:::::
stock

:::
data

::::
had

::::
been

:::::::
removed

::::
from

:::
the

:::::::::
calibration

::::::
dataset

::::
due

:
to
::::
soil

::::::
erosion

::
at

:::
this

::::
site,

::::::::
exhibited

::::
poor

:::::
model

::::::::
efficiency

:::::
(-3.6

::::
after

::::::::::
calibration).

:

::::::
Despite

:::
the

:::::::::
reduction

::
in

::::::
model

:::::::::::
performance,

:::
the

::::::::
Bayesian

:::::::::
calibration

:::::::::
effectively

::::::::
captured

:::
the

::::::::::
uncertainty

::
in

:::::
SOC

:::::
stock

::::::
changes

:::
in

::::::::
Aludeka,

:::::
Embu

:::
and

:::::::
Sidada.

:::::::
Overall,

::::
84%

:::
of

::::::::::::
measurements

:::
fell

::::::
within

:::
the

::::::::
posterior

:::::::::
credibility

::::::::
intervals,

::::::
though

::
the

:::::::::
evaluation

::::
was

::::
done

:::::
with

:::
the

:::
site

::::
that

:::
was

:::
not

:::::
used

::
in

:::::::::
calibration.

::::::
While

::::
SOC

:::::::
changes

:::::
were

::::
well

:::::::
captured

::
in
:::

the
:::::::

control610

::::::::
treatments

::::::
across

:::
all

::::
sites,

::
it should be noted that under- or overestimation of the change in SOC stocks from the start to the

last year of the experiment was rather related to site than to treatment . In Embu
:::
was

::::
most

:::::::::
prominent

::
in

:::
the

::::::::
treatment

::::::::
receiving

:
4
:
t
::
C

::::
ha-1

:::
yr-1

::::
and

:::
this

::::::::::
discrepancy

::::::
varied

::
by

::::
site.

::
In

::::::
Sidada, for example, all treatments except the control +N treatment

:::
that

:::::::
received

:
4
:
t
::
C
::::
ha-1

:::
yr-1

:
tended to have lower observed than simulated

::::::::
simulated

::::
than

::::::::
observed

:
SOC losses, while in Aludeka

most treatments except the control -N treatment showed weaker predicted than observed SOC losses
:::
that

:::::::
received

:
4
:
t
::
C

:::
ha-1

::::
yr-1615

::::::
showed

:
a
::::::::
stronger

::::::::
simulated

::::
SOC

::::
gain

::::
than

:::::
what

:::
was

::::::::
observed (Fig. A7). These tendencies are

:::
The

:::::
large

::::::::
credibility

::::::::
intervals

::
of

:::
the

:::::::
Bayesian

:::::::::
calibration

:::::
were also evident when comparing the temporal dynamics of measured versus

:::
with

:
simulated SOC

stocks (Fig. 7). Most of the treatments were
:::
The

:::::::::
difference

:::::::
between

:::
the

::
4

:
t
::
C

:::
ha-1

::::
yr-1

:::::
input

:::
and

:::
the

::::::
control

:::::::::
treatments

:::::
were

:::::::
generally

:
well simulated, but it is noteworthy that there is

::
the

:
considerable variability in the measured SOC stocks between

different time points
::::
likely

::::::::::
contributed

::
to

:::
the

::::
large

::::::::
posterior

:::::::
intervals.620

3.5 Simulated N2O emissions and global warming potential
::::
GHG

:::::::
balance

The simulations and measurements of N2O emissions on a daily basis were not well aligned. This is clear from the negative

modeling
:::::::
negative

:::::
model

:
efficiencies and the absence of a clear correlation between observed and measured values

::::::::
simulated

::::
N2O

:::::
values

::::::::
indicated

:::
that

::::::
model

::::::::::
performance

:::
for

::::
daily

:::::
N2O

::::::::
emissions

:::
was

::::
poor

:
(Fig. 8). Peaks

:::::
While

::::::::
treatments

::::
with

::::::
higher

::
N
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Figure 6. Simulated compared to measured changes in SOC stocks since the start of the experiment at the four study sites for the default

::::
initial

:
DayCent parameter set (left

::
top) versus the calibrated parameter set by leave-one-site-out cross-validation (right

:::::
bottom). The 724 data

points correspond to the observations from the experimental treatments over 32 to 38 seasons, depending on the site. Symbols represent the

different organic resource and chemical nitrogen fertilizer treatments. Grey bands show the 95% confidence intervals of measured (horizontal)

values and the 95% credibility intervals of posterior distribution (vertical). Abbreviations: EF, Nash-Sutcliffe modeling efficiency; RMSE,

root mean squared error; SB, squared bias; NU, non-unity slope; LC, lack of correlation.
:::::
Across

:::
all

:::
sites

:::::
model

:::::::
statistics

::::::
without

::::::::
Machanga

::::
(from

:::::
which

::::
SOC

::::
data

:::
was

:::::::
excluded

::
in

:::
the

::::::::
calibration

::::::
process

:::
due

::
to

:::::
strong

:::::::
erosion):

:::
EF,

:::::
0.364;

::::::
RSME,

::::
5.199

:
t
::::
ha-1;

:::
SB,

::::
1%;

:::
NU,

:::::
22%;

:::
LC,

:::
77%

::::::
before

:::
and

::
EF,

:::::
0.339;

::::::
RSME,

::::
5.11

:
t
:
C
::::
ha-1;

:::
SB,

::::
9%;

:::
NU,

::::
29%;

::::
LC,

:::
62%

::::
after

:::::::::
calibration,

:::
with

::::
84%

::
of

:::::::::::
measurements

::::
being

::
in

:::
the

:::
95%

::::::::
credibility

::::::
interval

::
of

:::
the

:::::::
posterior.
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Figure 7. Measured (dots) versus simulated SOC stocks over time at the four study sites for the different organic resource and chemical

nitrogen fertilizer treatments. Error bars represent 95% confidence intervals for measured data, the black solid line the simulation by the best

parameter set for each site. Grey bands represent the 95% credibility intervals of the model posterior simulations, calibrated by leave-one-

site-out cross-validation.
::::
Note

:::
that

:::
due

::
to

:::::
intense

:::
soil

:::::::
erosion,

:::
data

::::
from

::::::::
Machanga

:::
was

:::
not

::::
used

:
in
:::

the
::::::::
calibration

:::::::
process.
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Figure 8. Simulated compared to measured N2O emissions at the four study sites for the different organic resource and chemical nitrogen fer-

tilizer treatments, based on the calibrated parameter set using leave-one-site-out cross-validation. Displayed are the measured versus modelled

per treatment for the days where measurements were conducted (top) and for the mean of cumulative flux measurements per season using

the trapeziod method (bottom). The 808 data points (top) correspond to the daily measurements from the experimental treatments over one to

two seasons, depending on the site. Symbols represent the different organic resource and chemical nitrogen fertilizer treatments. Error bars

represent 95% confidence intervals based on BC (simulations
::::::::::
measurements) and variance

:::::::
credibility

:::::::
intervals (measurements

:::::::::
simulations).

Abbreviations: EF, Nash-Sutcliffe modeling efficiency; RMSE, root mean squared error; SB, squared bias; NU, non-unity slope; LC, lack of

correlation.
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::::
loads

:::
had

::::
both

::::::
higher

::::::::
simulated

:::
and

::::::::
measured

::::
N2O

::::::
fluxes

::::::::
compared

::
to

::::
those

::::
with

:::::
lower

:::::
loads,

:::
the

:::::
peaks of N2O emissions were625

often simulated on different dates than the measurements, but treatments with higher N loads tended to have higher simulated

and higher measured N2O fluxes. This was most noticeable in +N compared to -N treatments (Fig. A8). For
::::::::::
Conversely,

:::
for

cumulative N2O emissions per seasonon the other hand, there was a much better alignment
::::
better

:::::::::
agreement

:
between the

simulated and measured values. All sitesshowed positive modeling efficiency (highest EF 0.34 for Aludeka, lowest EF 0.21

for Machanga
:
,
:::::
except

::::::::::
Machanga,

:::::::
showed

::::::
positive

::::::
model

::::::::::
efficiencies

:::::::
(highest

::
in

::::::
Embu,

::::
0.62;

::::::
lowest

::
in

:::::::
Sidada,

::::
0.03; Fig. 8).630

Additionally, the correlation between cumulative simulated and measured N2O emissions was much higher
::::::
notably

::::::
higher

::
for

:::
the

::::::::::
cumulative

::::::::
emission

:::::
fluxes than for daily emission fluxes (R2 between 0.26 for Sidada and 0.81 for Aludeka

::::
0.72

:::
for

:::::::
Aludeka

:::
and

::::
0.30

:::
for

::::::
Sidada, compared to R2 close to 0 ).

::
for

:::::
daily

:::::::
fluxes).

:::::::::::
Furthermore,

::::::
despite

:::::
some

::::
bias

::
in

:::::::
Aludeka

::::
and

::::::
Sidada,

::::
most

::
of
:::

the
:::::
error

::
in

:::::::
seasonal

::::
N2O

:::::::::
emissions

:::
was

:::
not

:::::::::
systematic

::::
(i.e.,

:::
LC

:::
of

::
63

:
-
::::::
95%).

The simulated changes in SOC and simulated cumulative
:::::::
seasonal N2O emissions , showed positive global warming potentials635

(GWP)
:::::::
revealed

:
a
:::::::

positive
:::::
GHG

:::::::
balance for all treatments

:
at

:::
all

::::
sites (Fig. ??). No treatment acted as a greenhouse gas sink,

but the amount
:::
9).

:::
Yet,

:::
the

:::::::::
magnitude

:
of emissions, as well as the contribution

::::::
relative

:::::::::::
contributions of N2O and CO2:, differed

strongly between sites and treatments. In
::
For

::::::::
instance,

::
in

:
the control -N treatment, it ranged from 1.4

::::::::
emissions

::::::
ranged

:::::
from

:
2
:
t CO2 equivalent ha-1 yr-1 in Aludeka to 5.1

::
at

:::::::
Aludeka

::
to
::
6 t CO2 equivalent ha-1 yr-1 in Sidada and

::
at Embu. The relative

contribution of N2O from site to site also differed strongly by site. In
::
At Aludeka, for example, between 32 (CT+N) and 82%640

(FYM4+N) of the simulated GWP in the +N treatments
::
all

:::::::
positive

:::::
GHG

:::::::
balance

::::::
values

::
in

:::
the

::
4

:
t
::
C
::::
ha-1

::::
yr-1

:::::::::
treatments

:::::::
receiving

::::::::
farmyard

:::::::
manure,

:::::::
Tithonia

:
,
:::
and

:::::::::
Calliandra came from N2O, while at all other sites, none of the treatments had more

than 25% of GWP
::::
SOC

::::
acted

::
as
::
a
::::
sink

::
of

:::::
GHG.

::
In

:::::::
contrast,

::
at

::::::
Sidada

:::
and

::::::
Embu,

::::
most

:::::::::
treatments

:::
had

::::::
around

::::::::
one-third

::
of

:::::
GHG

::::::
balance

:
associated with N2O emissions,

:::::
with

:::
the

::::::::
remainder

::::::::
attributed

:::
to

::::
SOC

:::::
losses. Compared to the control -N treatment,

which is closest to the low-input agriculture practiced by most smallholder farmers, all organic resource input treatments in the645

-N treatments were projected
:::::::
simulated

:
to have lower emissions (Fig. ??). The reductions ranged from -0.2 t

::
9).

::::
Yet,

::::::::
including

::
the

::::
+N

:::::::::
treatments,

:::
the

:::::::
changes

::::::
ranged

:::::
from

::
an

:::::::
increase

:::
of CO2 equivalent ha-1 yr-1 to 1

:
a
::::::::
reduction

::
of
::::

2.5 t CO2 equivalent

ha-1 yr-1. Apart from that, the only
::::
Embu

::::
was

:::
the

:
site where the addition of mineral N (+N treatment) could lead to a higher

simulated GWP per ha than
::
led

::
to
:::
the

::::::::
strongest

:::::::
increase

::
in

:::::::::
simulated

:::::
GHG

::::::
balance

:::::::::
compared

::
to the control -N treatmentwas

Embu, and this was only the case for the treatments of Calliandra, Tithonia and farmyard manure in both 1.2 and 4 t of C input650

ha-1 yr-1. Furthermore, Embu and Machanga tended to have high
:
.

::::::
Finally,

:::::
there

::::
were

::::
site-

:::
and

:::::::::::::::
treatment-specific

::::::::::
differences

::
in

:::
the

::::::::::
yield-scaled

:::::
GHG

:::::::
balance.

::::
The

:::::::
control,

:::::
maize

:::::
stover

::::
and

::::::
sawdust

:::::::::
treatments

:::
-N

:::
had

:::
the

:::::::
highest simulated emissions per kg of maize yields (0.9 to 1.6 and 0.8 to 2.5

::::
grain

::::
yield

::::::
across

::::
sites

::
(1

::
to

:::
1.5

:
kg CO2 equivalent per kg of yield, respectively, due to lower yield). On the contrary, the simulated emissions

ranged between 0.1 and 0.7 kg CO2 equivalent per kg of yield in Aludeka and between 0.4 and 0.9 kg CO2 equivalent per kg655

of yield in Sidada. Notably, none of
:
).

::
In

:::::::
contrast,

::::
the

:::::::
farmyard

:::::::
manure,

:::::::::
Callianda

:::
and

:::::::
Tithonia

:::::::::
treatments

::
at

:::::
inputs

::
of
::::

1.2
:
t

:
C
::::
ha-1

::::
yr-1

::
in the +N treatments in Sidada and Aludeka had higher emissions than

:::::::
treatment

::::
and

::
at

::
4

:
t
::
C

:::
ha-1

::::
yr-1

::
in

::::
both

:::
-N

:::
and

:::
+N

:::::::::
treatments

::::::
tended

::
to

::::
have

:::
the

::::::
lowest

::::::::
simulated

:::::::::
emissions

::
at

::
all

::::
sites

:::::::
(around

:
0.5

:
,
:
1
::::
and

:::
0.6 kg CO2 equivalent per kg

of yield
:
at

::::::::
Aludeka,

::::::
Embu,

:::
and

::::::
Sidada,

:::::::::::
respectively).
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Figure 9. Cumulative simulated global warming potential
::::::::
greenhouse

:::
gas

::::::
(GHG)

::::::
balance of N2O emissions and CO2 emissions due to loss

of SOC at the four study sites for different organic resource and chemical nitrogen fertilizer treatments, combined throughout the simulated

period (16 years for Aludeka/Sidada; 19 years for Embu/Machanga). The global warming potential
::::
GHG

::::::
balance

:
is expressed in CO2

equivalent over a 100-year horizon.
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4 Discussion660

4.1 Robustness of the Bayesian calibration shown by cross evaluation
::::::::::::::
cross-validation

As shown by our
::
the

:
leave-one-site-out cross-validation (Figs. 3 and ??

:
4), the Bayesian calibration considerably improved the

::::::::
predictive

:
capability of DayCent to predict

::
for

:
maize grain yield , aboveground biomass and changes in SOC stocks at the

four long-term ISFM experimental
:::
and

:::::::::::
aboveground

:::::::
biomass

:::::
across

:
sites. The model evaluation statistics from this calibration

exercise were comparable to those of other
::::::
reported

::
in

:
recent publications that

:::
also

:
combined the predictions of

::::
crop yield and665

SOC (Necpalova et al., 2018; Levavasseur et al., 2021; Nyawira et al., 2021). However,
::::
while

:
these studies generally showed a

better simulation of crop yield than SOC, which is in contrast to our results, where crop yield and SOC were simulated equally

well. Of the three types of measurements, simulated changes in SOC stocks related to different treatments were most improved

after model calibration, reducing the strong bias towards simulated gains in SOC, where instead losses were measured. In

general,
:::
our

:::::
study

::::::::
diverged.

:::
We

:::::
found

::::
that

:::::
while

:::::
better

:::::
yield

::::::::::
simulations

::::::::
compared

::
to

:::::
SOC

::::::::::
simulations

::::
were

:::::::
evident

::
at

:::
the670

:::::::
Aludeka

:::
and

::::::::::
Machanga

::::
sites

::::
with

:::::
soils

::
of

::::
low

::::
clay

:::::::
content,

:::
the

::::::
results

:::::
were

:::::::
different

:::
at

:::
the

:::::
Embu

::::
and

::::::
Sidada

::::
sites

:::::
with

:::::::
clay-rich

:::::
soils.

:::::
Here,

:::::
SOC

:::::
stock

:::::::
changes

:::::
were

:::::
more

:::::::::
accurately

::::::::
simulated

::::
than

::::::
maize

:::::
grain

:::::
yield.

:::::
This,

:::::::
together

:::::
with

:::
the

:::
fact

::::
that

::::::::
improved

:::::::::
simulation

::
of

::::::
maize

::::
grain

:::::
yield

::::
and

:::::::::::
aboveground

:::::::
biomass

::::
was

::::::::
coincided

:::
by

:
a
:::::
lower

::::::
model

:::::::::::
performance

::
in

:::::::::
simulating

::::
SOC

::::::::
changes

:::::
(Figs.

:::
6),

:::::::
suggests

::::
that

:::
no

:::::
single

::::
best

:::::::::
parameter

:::
set

:::::
exists

:::
for

:::
the

:::::::
current

::::::
version

:::
of

::::::::
DayCent

::
to

::::::::
accurately

::::::::
represent

:::
the

:::::::::
conditions

:::
at

::
all

::::
four

:::::
sites.

::
In

::::
that

::::::
regard,

:
the screening of the model parameters with the global675

sensitivity analysis proved valuable in reducing the complexity of the calibration problem. The most sensitive parameters

(Table 1)were well constrained, while the least sensitive parameters (aneref(3), ppdf(2) and ps1co2) were difficult to constrain.

This suggests that a reasonable threshold for including a parameter in model calibration may even be greater than a total Sobol

sensitivity index of 2.5%. This result is similar to
:::::::::
discrepancy

::::::::
between

::
the

::::
sites

::::
with

::::::::
clay-rich

:::
and

::::::::
clay-poor

::::
soils

:::::
could

:::::::
indicate

:::
that

::::::::
DayCent

:::::::::::
insufficiently

:::::::
includes

::::
soil

:::::::
textures

::::::
effects

::
on

:::::::
nutrient

::::::::::
availability

:::
and

:::::
SOC

:::::::::
formation.

:::
Yet,

::::::::
drawing

::::::::
definitive680

:::::::::
conclusions

:::::
from

:::
just

::::
four

::::
sites

::
is

::::::::
probably

:::
not

:::::::::
warranted.

::
In

:::
the

:::::::
absence

::
of

::::
data

::::
from

:::::
more

:::::
sites,

:
it
::
is

:::::::::
preferable

::
to

:::::
apply

:::
the

:::
full

:::::
range

::
of

:::::::
possible

::::::::
parameter

::::
sets

:::
that

:::
are

:::::::::
supported

::
by

:
the study of Gurung et al. (2020), where the parameters with a total

sensitivity index <10% were also poorly constrained. In our study, it was possible to constrain the most sensitive parameters

(prdx(1), himax, dec(5)); exceptions were the two parameters pmco2(1&2) and clteff(1,2&4), but their correlation (r = -0.43)

is a reasonable explanation of why they could not be well constrained despite high sensitivity. Possibly, the algorithm cannot685

distinguish whether organic resources are poorly stabilized due to tillage disturbance, a fast turnover rate of the slow SOM

pool, or a low carbon use efficiency of metabolic and /or structural litter pools. Such a correlation between SOM stabilization

and turnover parameters is common in soil models (e.g. Ahrens et al., 2014; Laub et al., 2021), especially if the SOM pools do

not represent measurable fractions (Laub et al., 2020).
::::::::
available

:::
data

::::::::::::::::::
(Mathers et al., 2023)

:
,
:::::
rather

::::
than

:::::
using

::::
only

:::
the

::::::
single

:::
best

:::::::::
parameter

:::
set.690

Robust predictions of crop yields and changes in SOC stocks, as achieved by our cross-validation, are an important basis for

potential future upscaling exercises of crop yield and SOC model predictions to national scales. While many model calibration

exercises often display an overly optimistic picture of the capacity of models to represent SOC dynamics, by displaying how
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well the models represent absolute levels of SOC (e.g., in Nyawira et al., 2021; Ma et al., 2022; Levavasseur et al., 2021), the

changes in SOC since the start of an experiment, shown in this study, are much more robust evaluation. Since models are695

typically parameterized to fit the observed SOC stock at the start of the experiment, absolute SOC will always closely resemble

measurements, with the possible exception of experiments that run for many decades. The fallacy of this approach was shown

by Necpalova et al. (2018); Gurung et al. (2020), where the absolute SOC overoptimistically masks the bias of change in SOC

stocks. This is also the case for the present study, as is clear from the results of the model simulations for the absolute SOC

stocks compared to the changes in the SOC stocks (Fig. ??). Since700

:::::::
Because our calibration shows a good fit and is free from serious bias even for

:::::
model

:::
fit

::::
with

::::::::
observed

:::::
mean

:::::
yields

::::
and

changes in SOC stocks (that is, 88% of the errors are LCand not systematic; EF is 0.55
:::::
across

::::
sites,

::::
with

:::
no

::::::
overall

:::::
major

::::
bias

:::::::
(positive

:::
EF

:::
and

:::::
errors

::::::
mostly

:::::::::
consisting

::
of

:::
LC), the calibrated DayCent model can be used in a robust manner to estimate the

change of SOC stocks under different ISFM management in Kenya. Furthermore, because the model evaluation and calibration

::::::::
parameter

:::
set,

:::::::::
especially

:::
the

:::
full

::::::::
posterior,

:::::::
appears

:::::::
suitable

:::
for

::::::::
upscaling

:::
of

:::::
model

::::::::::
simulations.

:::::::::
However,

::
on

::::::
should

:::::
keep

::
in705

::::
mind

::::
that

::
the

::::::::::::::
season-to-season

:::::
yield

::::::::
variability

::
is

:::::::
captured

::::
less

::::::::
accurately

::::
than

:::
the

:::::
mean

:::::
yields

::::::
(lower

::::::
RMSE)

:::
and

::::
that

:::::::
changes

::
in

::::
SOC

:::
are

:::::
better

::::::::::
represented

::
at

::::
sites

::::
with

::::::::
clay-rich

::::
soils

::::
than

:::::
those

::::
with

::::::::
clay-poor

:::::
soils.

:::::::
Because

::::
the

:::::
model

:::::::::
calibration

::::
and

::::::::
evaluation

:
were performed at different sites , it seems reasonable to use DayCentfor other sites

:::
with

:::::::
diverse

::::::::::::
characteristics,

::
it

:
is
:::::::::
reasonable

:::
to

::::::
assume

::::
that

::::::::
DayCent,

:::::
when

::::::
applied

::
to

::::
sites

:
with similar climate and soil conditions, even beyond Kenya

:::
will

::::::
provide

::::::::::
satisfactory

::::::
results

::::
with

:::::::
similar

:::::
model

:::::::::::
uncertainties

::::
and

:::::
errors. In that respect,

:::::
while

:
the leave-one-site-out cross-710

validation is using the data most efficiently: for evaluation, we leave one site out, but for
::::
made

:::::::
efficient

:::
use

::
of

::::
data

:::
for

::::::
model

:::::::::
evaluation, further model upscaling exercises, ideally

:::::
should

:::::
apply

:
the full posterior model parameter set including all sites

(Fig. 2) should be used. A computationally less expensive alternative is to
::
In

::::
that

::::
case,

:
a
::::::::::::::
computationally

::::::::::
inexpensive

:::::::
exercise

:::::
would

:
use only the single parameter set with the highest likelihood

:::
best

:::::::::
parameter

:::
set

:
(Table 1)

:
,
:::::
while

:::
the

::::
full

::::::::
posterior

::::::::
parameter

:::
set

::::::
should

::
be

::::
used

::
to

:::
get

::::::::
estimates

::
of

:::
the

::::::::
posterior

::::::::
credibility

::::::::
intervals

:::
for

:::::::
changes

::
in

::::
SOC

::::::
stocks.715

4.2 Bayesian calibration suggests that SOC is lost at higher rates in tropical than in temperate soils
:::::
shows

:::::::::::
uncertainty

::
of

:::::
model

:::::::::::
parameters

To estimate the potential yield and long-term sustainability of cropping systems without major bias using biogeochemi-

cal models, regionalized
::::::::::::
region-specific model calibrations are needed (Rattalino Edreira et al., 2021; Yang et al., 2021).

Therefore, while previous studies have simulated crop productivity under ISFM and similar practices with default parameter720

sets
::
the

:::::::
default

::::::::
parameter

::::::
values

:
(e.g. Nezomba et al., 2018; Nyawira et al., 2021), the results of our study indicate that

especially to estimate the effect on SOC, local calibration is very much needed (Fig. 6).
:::::::::
underscore

:::
the

::::::::::
importance

::
of

:
a
:::::
local

:::::::::
calibration,

:::::::::
especially

:::::
when

::::::::::
simulations

:::
are

::::
done

:::::
with

:
a
::::::
single

::::::::
parameter

::::
set.

:::
On

:::
the

:::::
other

:::::
hand,

:::
the

::::::
similar

::::::
ranges

:::
of

:::
the

::::
prior

:::
and

::::::::
posterior

:::::
model

:::::::::
parameter

:::
sets

:::::::
indicate

:::
that

::::::::
including

:::::
prior

:::::::::
knowledge

::::
into

:::::
model

:::::::::
parameters

:::::::::::
substantially

::::::::
improves

:::::
model

:::::::::::
performance

::::::::
compared

::
to

:::::
using

::::::
default

::::::::
parameter

::::::
values

::::
(e.g.,

::::
see

::
the

:::::
poor

:::::
model

:::::::::::
performance

::::::
without

::::::::
including

:::::
prior725

:::::::::
knowledge

::
on

:::::::::::::::::
ps1co(1&2)&rsplig;

::::
Fig.

::::
A6).

:
In fact, the turnover

:::::
values

::
of

:::
the

::::::::
turnover

::::
rates

:
of the slow and passive SOM

pools was approximately two and eight times higher than in
:::
for

:::
our

:::::
study

::::
sites

:::::
were

::
in

:::::::::
alignment

::::
with

:::::
those

:::::::
derived

::
in

:
a
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recent Bayesian calibration of DayCent for temperate systems
:::::::::
conditions (Gurung et al., 2020), indicating a

:::
that

:::
the

::::::::
DayCent

::::::::::
temperature

:::::::
function

::
is

::::
well

:::::
suited

::
to

::::::
handle

:::
the

:
faster SOM turnover under tropical conditions, as expected. However, since

the SOM pools in DayCent do not correspond to measurable fractions and we did not have additional data (e.g., 14 C) ,730

constraining the related parameters is expected to be subject to high uncertainty (e.g. Ahrens et al., 2014). Nevertheless, our

results of high SOM turnover in Kenya are in line with the results of two recent studies, which also found that the default

parameterizations of the DayCent (Nyawira et al., 2021) and the LPJGUESS model (Ma et al., 2022) underestimated the loss

of SOC in two other long-term experiments in Kenya. In our study,
:
it
::
is

::::::::
important

:::
to

::::
note

:::
that

::::
our

::::
sites

::::
were

::::::
under

::::::
natural

::::::::
vegetation

::::
(i.e.

::::::
forest)

:::
or

:::::
fallow

:::::
until

::::::::
relatively

::::::
shortly

::::::
before

:::
the

::::::::::::
establishment

:::
of the low Sobol total sensitivity indices735

of the maize productivity parameters for the SOC stocks suggest a limited importance of root input in the soil system for

the storage of SOC. These results align with a statistical analysis of SOC stocks across depth at the same experimental

sites (Laub et al., 2022a), which found limited differences between cropped and bare plots, and with another recent tropical

long-term experiment (Cardinael et al., 2022), which estimated that less than 1 t of carbon input ha-1 per year came from maize

roots.740

Overall,
::::::::::
experiments

::::::::::::::::
(Laub et al., 2023a)

:
.
::::::::::::
Consequently,

::::
upon

::::
the

::::
start

::
of

::::::::::
cultivation,

::::::
erosion

::::
and

:::::::::
potentially

::::::::::
accelerated

::::::::::::
decomposition

::::
(due

::
to

::::
soil

::::::::::
disturbance)

::::::::
occurred,

::::
and

::::
SOC

:::
has

:::::
likely

::::
not

:::
yet

::::::
reached

::
a
::::
new

::::::::::
equilibrium

::::
with

::
C

:::::
inputs

:::::
from

:::::
maize

:::::::::
cultivation.

:::::::::
Therefore,

::
C

::::
loss

::
is

:::
the

::::::::
dominant

::::::
process

::::::::
occurring

::
at
:::
the

:::::
sites.

::::
The

::::
good

::::::::::
simulations

::
of

:::::
these

:::::
strong

:::::
SOC

::::::
changes

:::::
using

:::::::
MAOC

:::::::::
initialized

:::::
SOM

:::::
pools,

::
a
:::::::
method

:::
not

:::::::::
commonly

::::
used

:::::
with

::::::::
DayCent,

::::::
further

:::::::
supports

::::::::::
suggestions

:::
to

::::
move

:::::
away

::::
from

::::::
purely

:::::::::
conceptual

:::::
SOM

::::
pools

::::::::::::::::::::::::::::::::::
(Abramoff et al., 2018; Laub et al., 2024)

:
.
::::
Such

:::::::::
conceptual

:::::
pools

::::::
require

:::::
many745

::::::::::
assumptions

:::::
about

:::
the

:::::
initial

:::::::::
vegetation

:::
and

::::
soil

:::::::::
conditions

::::
(e.g.,

::
in
:
the considerably higher simulated SOM turnover rates in

this study compared to those in temperate regions (Gurung et al., 2020) suggest that the lower SOM stabilization potential

of highly weathered minerals in tropical soils (Doetterl et al., 2015) is not adequately accounted for in DayCent. DayCent

only includes an effect of clay content. Possibly, the effect of weathered minerals is large for both slow and passive SOM

pools(increased turnover by 21
::
the

:::::::
spin-up

:::::::::
modelling

::
or

:::::::::
estimation

::
of

:::::
SOM

::::
pool

:::::::::::
distribution).

:::
In

::::
fact,

:::
the

::::
high

::::::::::
uncertainty750

::::
about

::::::
initial

:::::::::
vegetation,

:
and 23 in this study, respectively) and is not adequately represented by texture alone. It was recently

shown that the Millenial model, which has measurable pools , could better simulate the global SOC distribution than the

CENTURY model, which has conceptual pools (Abramoff et al., 2022).Recent attempts to move DayCent in that direction

have also shown some promising results (e.g. Dangal et al., 2022).Furthermore, it is possible that hand tillage twice a year and

potential erosion also played a role in the high SOC losses that informed these fast turnover rates. Because DayCent does755

not include erosion and erosion was not measured in the experiments, the exact role of these processes is hard to determine.

Therefore, the different calibrations of the DayCent model in our study and in Gurung et al. (2020), suggest that the calibration

developed in this study should only be used for soils of similar mineralogy and under a similar climate and for a similar maize

cropping system.

4.3 Maize crop module is more universally applicable than soil carbon module760
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Although the mean yields per treatment were well represented and the provisioning of N via organic resource mineralization

was well captured, as demonstrated by a good agreement between the mean simulated and measured yields in the -N treatments

(Fig. 5), the improvement in the simulated maize grain yield through the joint Bayesian model calibration of SOM pools and

the maize crop highlights the interconnectedness of both
::::
time

:::
and

:::::::::::
management

:::::
since

::::
site

::::::::::
conversion,

::::
was

:
a
::::::

major
::::::
reason

::
to

:::::
move

:::::
away

::::
from

::::
the

:::::
model

:::::::
spin-up

::::
and

::::
site

::::::
history

:::
run

:::::::
usually

::::::::
typically

::::
done

:::::
with

::::::::
DayCent. Thus, even if the crop765

parameterization is correct, as indicated by the low difference between initial and calibrated maize parameters, too low SOM

pool turnover rates, by underestimating mineralization of N from soil, results in too high demand of maize for mineral N

addition to produce a suitable yield. This can be seen in the poor simulation of the low input treatments of Sidada before

calibration and their improvement after calibration (Fig ??). Interestingly, in contrast to SOC turnover rates, the values of the

maize crop parameters in this study were close to the set of default parameter values of DayCent, especially the maximum770

production capacity (prdx(1)). This
::
our

:::::
study

::::::::
provides

::::::::
additional

:::::::
support

::
to

::::::
modify

::::::::
DayCent,

:::::::::::
incorporating

::::::::::
measurable

:::::
SOM

::::
pools

:::::::::::::::::::::
(e.g. Dangal et al., 2022).

:

::
In

:::
that

::::::
sense,

:::
the

::::::::
similarity

::
of

:::
our

::::::::
DayCent

::::::
model

:::::::::
calibration

::::
with

::::
that

::
of

:::::::::::::::::
Gurung et al. (2020)

:::
and

::::::
earlier

::::::
studies,

:::::::
despite

::::
using

::::::::
different

:::::
model

:::::::::::
initialization

::::::::::
approaches,

::::::::
indicates

:::
the

:::::
broad

:::::::::::
applicability

::
of

::::::::
DayCent.

::
It suggests that the traits of the

maize are universally represented in DayCent , whereas the turnover of the SOM is not. In this context, the changes in the values775

for
::::
SOM

:::::::
turnover

::::
and

:::::
maize

::::
traits

::
in

::::::::
DayCent

:::
are

:::::::::::
representative

:::
for

::::::::
temperate

:::
to

::::::
tropical

:::::::::
conditions.

::::
The

::::::::::
adjustments

:::::
made

::
to

::
the

::::::
values

::
of

:
optimal and maximum temperature for maize growth (ppdf(1) and ppdf(2)) could be attributed to the adaptation

of local maize species
::::
local

:::::
maize

::::::::
varieties

:::
that

:::
are

:::::::
adapted

:
to the higher temperatures in Kenya. For example, Yang et al.

(2021) conducted
:
a region-specific Bayesian model calibration of

:::
the DayCent maize growing parameters and found ppdf(1)

to very
::::
vary between 26 and 32 °C. Therefore, the different optimal temperatures (33° C) and highest temperatures (40° C) for780

the calibration of maize to US conditions by Necpálová et al. (2015) do not contradict the range of parameters of our study.

::::::::
However,

:::
the

:::::::::
differences

::
in

::::::
model

::::::::::
performance

:::
by

:::
site

::::::
shows

:::
that

:::
the

:::::
broad

:::::::::::::::
representativeness

:::
of

:::::::
DayCent

::::::
comes

::
at

:::
the

::::
cost

::
of

:::::
model

::::::::::::
simplification

:::
and

::::::::::
site-specific

::::::
model

:::::::::::
performance.

::
A

:::::
main

::::::
reason

::
for

::::
this

::::
may

::
be

::::
that

::::::::
DayCent

:::::
model

::::::::::
formalisms

::
do

:::
not

:::::::
include

:::
the

:::::
latest

::::::::::
mechanistic

::::::::::::
understandings

:::
of

:::
the

::::
role

::
of

::::::::
microbes

::
in

:::::
SOM

::::::::::::
decomposition

::::::::::::::::
(Laub et al., 2024),

::::
and

::
the

::::::::
sorption

:::::::
kinetics

::
of

:::::::
carbon

::
to

::::::::
minerals

:::
for

:::::
SOM

:::::::::
protection

::::::::::::::::::::::::::::::::::::
(Abramoff et al., 2018; Ahrens et al., 2020).

::::::::::::
Additionally,785

:::::::
Daycent

::::
does

:::
not

:::::
fully

:::::::
consider

::::
that

:
a
:::
lot

::
of

:::::::::
stabilized

::::
SOC

::
is
:::::::
formed

::
by

::::::::
microbes

:::::
from

::::::::
metabolic

::::
and

:::
not

::::::::
structural

:::::
litter

::::::::::::::::::::::::::::::::::::
(Cotrufo et al., 2013; Kallenbach et al., 2016)

:
.
::::
For

::::::::
example,

::
it

::::
was

:::::::
recently

:::::::::::
demonstrated

::::
that

::::
the

::::::::
Millenial

::::::
model,

::::::
which

:::::::
includes

:::::::::
measurable

:::::
SOM

:::::
pools

::::
and

::::::::
improved

::::::
kinetics

:::
of

::::::
carbon

:::::::
sorption

:::::
better

:::::::
predicts

::::
SOC

::::::
stocks

::
at

:::
the

:::::
global

:::::
scale

::::
than

::
the

::::::::::
CENTURY

::::::
model,

::::::
which

:::
has

:::::::::
conceptual

:::::
SOM

::::
pools

:::::::::::::::::::
(Abramoff et al., 2022)

:
.
:::::
While

::::::
model

:::::::::
calibration

:::
can

::::::::::
compensate

:::
for

:::::::::
deficiencies

:::
in

::::::::::
mechanistic

::::::::
accuracy

::
at

:
a
::::::
single

:::
site

::::::::::::::::
(Laub et al., 2024),

::::
this

::
is

:::::
likely

:::
not

:::::::
possible

::::::
across

::::
sites

::::
with

::::::::
different790

:::::::::
conditions.

An interesting observation is that
::::
while

:
the model bias for the mean yield of maize appears to be

:::::
maize

::::
yield

::::
was treatment

specific (i.e., the mean yields of +N treatments of farmyard manure at 4 t C ha-1 yr-1 at all sites and of Tithonia at the same rate

in all but Sidada, were underpredicted by DayCent), while the bias for SOC stocks was mostly site specific (i.e., SOC loss in

Aludeka was underpredicted, while overpredictedin Embu). As discussed above, the site bias of SOC is likely due to
::::::::
formation795
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::
in

:::::::
Aludeka

::
at

:
4
:
t
::
C
::::
ha-1

:::
yr-1

::::
was

:::::::::::::
overpredicted).

::
A

:::::::
potential

::::::::::
explanation

:::
for

:::
this

::::::::::
site-specific

::::
bias

:::
for

::::
SOC

::
is
:
the fact that soil

:::::::
DayCent

::::
was

:::::::::
developed

:::::
under

:::
the

::::::::
paradigm

::
of

:::::
SOM

:::::::::
formation

::::::::
occurring

::::::
mainly

::::
from

::::::::::
recalcitrant

::::::
humic

::::::::::
compounds

::
in

:::
the

:::
soil.

::::::::::::
Alternatively,

:
it
::::::
might

:::::::
indicate

:::
that

:::
soil

:
texture alone is insufficient to explain the mineralogy-driven storage potential of

SOC (e.g. Reichenbach et al., 2021; Mainka et al., 2022). On the other hand, our
::::::
Finally,

:::
our

:::::
model

:
sensitivity test to mineral N

input
::::
inputs

:
suggests that the

::::
maize

:
yield bias at high N is due to DayCent’s inability to capture yield increases above 100-150800

kg N per ha and season
:
at
:::
the

::::
four

::::
sites

:
(Fig. A5); the +N treatments of Tithonia, Calliandra and farmyard manure at 4 t C

ha-1 yr-1 supplied on average >250 kg N per ha and season. Another reason may be
:::::
Here,

::
it

::::::
should

::
be

:::::
noted

:
that DayCent

does not include other potential beneficial effects of
::::::
organic

:::::::
resource

:
treatments, such as increased pH from farmyard manure

application (Xiao et al., 2021; Mtangadura et al., 2017)and higher nutrient retention and
:
,
::
or

::::::::
improved

:
water infiltration of

treatments that maintained
:::::::
maintain SOC stocks compared to those that showed a decline of SOC

:::::
reduce

:::::
them.805

4.3 N2O emissions and global warming potential
::::
GHG

:::::::
balance

In general, the poor match between daily observed and measured
::::
daily

:
N2O emissions (Fig. A8) illustrates the difficulty

of simulating the timing of microbial processes, in
:::::::
through which nitrate (NO3

-) is converted to N2 and N2O gasses, with

intermediate complexity models
:::::
models

:::
of

::::::::::
intermediate

::::::::::
complexity

:
such as DayCent. Several recent studies show that poor

simulation of N2O emissions by process models is common (Zhang and Yu, 2021; Wang et al., 2020), which is attributed,810

among other factors, to a
:::
One

::::::
reason

::
is
:::
the

:
poor representation of soil hydraulics. For example, Sommer et al. (2016) found

mainly overestimated N2O emissions in Kenya. Gaillard et al. (2018) reported that there is a bias in simulated N2O emissions

by most models, postulating an underestimation of strong N2O flushes. This also seems to be the case in our study, at least for

treatments with high N inputs such as farmyard manure +N. Without resorting to more intricate water flow equations, it could

be difficult to make further improvements to the simulation of soil water content and N2O emissions, particularly in terms of815

accurately predicting daily and hourly events. DayCent is driven by inputs that are only resolved at daily time steps and fed

with pedotransfer functions that are poorly represented in the tropics (Van Looy et al., 2017).
:::::::
moisture

::::::::
dynamics

::
by

:::
the

:::::::
’tipping

::::::
bucket’

:::
soil

:::::
water

::::::
balance

::::::::
approach

:::
and

::::
that

:::
soil

:::
gas

:::::::::
diffusivity

:
is
:::
not

::::::::
explicitly

::::::::
simulated

:::::::::::::::::::::::::::::::::
(Zhang and Yu, 2021; Wang et al., 2020)

:
. However, the fact that cumulative N2O emissions were better captured

::::::::
simulated than daily emissionsand that ,

:
there was no

systematic under- or over-prediction of cumulative N2O emissions, does suggest that
:::
and

:
simulated N2O emissions were820

generally reasonably well predicted with this current DayCent calibration. This is important for the predictions of the GWP.

Because the simulation of SOC change showedlow bias, we can conclude that this part of the GWP is well represented.

Depending on the site and treatment,
:::::
within

:::
the

::::::::::
uncertainty

:::::
range

::
of

::::::::
measured

::::
N2O

:::::::::
emissions,

:::::::::::
demonstrates

:::
the

:::::::::
suitability

::
of

:::::::
DayCent

::
to

::::::::
represent

:::::::
average

::::
N2O

:::::::::
emissions

::::
with

:::
the

::::::
current

::::::::::
calibration.

:::::
Given

:::
the

::::::
limited

::::
bias

::
in

:::::::::
simulating

:::::
SOC

:::::::
changes

:::
and

:::::::::
cumulative

:::::
N2O

::::::::
emissions

::::::::
showed,

:::
the

::::::::
DayCent

::::::::::
simulations

:::::::
provide

:
a
:::::::::
reasonable

::::
first

::::::::
estimate

::
of

:::
the

:::::
GHG

::::::::
balance.825

:::::::::::
Nevertheless,

:::
the

:::::::::::
contributions

::
of

:
N2O emissions contributed between 80% (

:
to
:::

the
:::::

GHG
:::::::
balance

::
of

:::
up

::
to

:::::
100%

:::
(at Aludeka)

and up to 20% of the GWP (
:::::::
between

:::
10

::
to

::::
50%

:::
(at

:::
the other sites; Fig. ??). However, the

::
9),

:::
are

:::::::
subject

::
to

::::
high

::::::::::
uncertainty,

::
as

::::::
evident

:::::
from

:::
the

:::::::::::::
measurements.

:::
The

:
larger confidence intervals of the measured compared to the simulated cumulative

N2O emissions suggest that the DayCent model cannot fully represent the variability. Although
:::::
Thus,

::::::::
although DayCent’s
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simulation
:::::::::
simulations

:
of N2O emissions is

::
are

:
superior to using emission factors

::::
factor

::::::::::
approaches (dos Reis Martins et al.,830

2022), simulating N2O emissions remains challenging
::
and

::::::
highly

::::::::
uncertain

:
due to the complexity of the processes involved

and the high temporal and spatial variability
:
of

:::::
N2O

::::::::
emissions.

Despite this uncertainty, which has not yet been resolved, our analysis of yield-scaled and area-based GWP showed the

importance of the unit of reference. Our
::::::::
unresolved

::::::::::
uncertainty,

:::
our

:
modeling results show that ISFM with maize monocropping

cannot be seen as a negative emission technology. All treatments had a positive absolute GWP, which is consistent with the835

reported losses of SOC in long-term maize cultivation in SSA (Sommer et al., 2018; Laub et al., 2022a). It is also consistent

with
::
all

:::::
ISFM

:::::::
options

::
in

:
a
:::::
maize

:::::::::::::
monocropping

::::::
system

::::
have

:
a
:::
net

:::::::
positive

:::::
GHG

:::::::
balance,

:::::::
aligning

::::
with

:::
the

::::::::
prevalent

:::::
trend

::
of

::::
SOC

:::::
losses

::
in

:::::::
recently

::::::::::
established

::
(<

::
50

::::::
years)

:::::
maize

:::::::
systems

::
in

::::
SSA

::::::::::::::::::::::::::::::::::
(Sommer et al., 2018; Laub et al., 2023a).

::::
The

:::::::
findings

:::
also

:::::::
support the postulate that closing SSA yield gaps will boost absolute

::::
yield

:::::
gaps

::
in

::::
SSA

:::
will

:::::::
increase

:
N2O emissions (Leit-

ner et al., 2020). However, the strong
::::
large differences in the yield-scaled GWP

::::
GHG

:::::::
balance

:
between treatments, such as a840

72, 32, 63 and 14
::
the

:::
30

::
to

::
60% lower yield-scaled GWP

:::::
GHG

::::::
balance

:
in the FYM 1.2+N treatment compared to the control-N

treatment
:::::
across

:::
the

:::::
sites,

::::::
indicate

::::
that

:::::
ISFM

:::
has

:::
the

::::::::
potential

::
to

:::::::
produce

::::
crops

::::
with

::::::::
relatively

:::::
lower

:::::
GHG

:::::::::
emissions

::::
than

:::
no-

::
or

::::::::
low-input

:::::
input

:::::::
systems.

::::::::::
Specifically,

:::
the

::::::
ISFM

:::::::::
treatments

::::
with

::::::::::::
low-emissions

:::
and

::::
high

::::::
yields, show that the yield-scaled

GWP is highly relevant in practical terms. Low-emission and high-yield ISFM treatments , such as FYM 1.2+N, producing
:::
that

:::::::
produces

:
between 2 and 4 t of yield per season at emissions

::
of between 0.2 and 1 kg CO2 equivalent per kg of yield, are a suit-845

able mitigation practice compared to standard practice, control
::
the

:::::::
control

::::::::
treatment with little or no inputs of organic

:::
and/or

chemical fertilizer. The difference in the yield-scaled GWP ranges of +N treatments that existed between western Kenyan sites

(Aludeka and Sidada; 0.1 to 0.5 kg CO2 equivalent per kg of yield) compared to central Kenyan sites (Embu and Machanga;

0.8 to 1.1 kg CO2 equivalent per kg of yield), furthermore, show that N fertilizer should only be applied to responsive soils

(Sileshi et al., 2022) to avoid high N2O emissions at minimal yield. Consequently, sustainable intensification and mitigation of850

greenhouse gases can go hand in hand.

4.4 DayCent
:
is suitable to upscale simulations of "real" ISFM, but not sensitive for very

::::::
limited

:::::::::
sensitivity

::
to high N

inputs

Because mean yields were represented well
:::::
maize

:::::
yields

:::::
across

::::
sites

::::
were

:::::::::
reasonably

::::
well

::::::::::
represented by the calibrated version

of DayCent, it can be used to upscale to national levels and
:::
for

::::::::
upscaling

::
to predict the potential of ISFM to lower yield gaps855

:::::
impact

:::
of

:::::
ISFM

::
in

::::::::
lowering

::::
yield

::::
gaps

::
at
:::::::
national

:::::
levels. However, the levelling off

::::::::
plateauing

:
of mean yields at very high N

loads (Fig. A5) indicates that it
:::::::
DayCent may not be suitable to estimate the

::
for

:::::::::
estimating

:
maximum achievable yields (e.g.,

Ittersum et al., 2016)and it should
:
,
:::
and

::::::
should

:::
thus

:
be restricted to

::::
yield predictions for medium input levels of N

::
N

::::
input

:::::
levels.

Given that the historical rates of N fertilizer application in Kenya were
::
are

:
less than 50 kg of N ha-1 (World-Bank, 2021a), the

model seems suitable to simulate the effect of applying real ISFM , which aims at
:::::::::::
implementing

::::::::
’realistic’

:::::
ISFM

:::::::::
practices,860

:::::
which

:::::
target

:
maximum N use efficiency (Vanlauwe et al., 2010), with N

::::
input

:
rates considerably below the maximum N

rates of the simulated field trials
::::
used

::
in

:::
the

::::
field

::::::::::
experiments

::
of

:::
this

:::::
study

:
(e.g., 80 kg N per season; Mutuku et al., 2020). The

prediction of mean yields worked well
:::::
maize

:::::
yields

:::
was

:::::::::
reasonably

:::::
good for Calliandra and farmyard manure treatments at 1.2
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and 4 t C ha-1 in the -N treatmentand was also acceptable
:
,
::
as

::::
well

::
as for CT+N, i.e.,

:
all treatments that supply N at the desired

rate for ISFM. Hence, at these N-levels, simulated mean
:::::
maize yields are likely representative of the ISFM yield potential.865

The poorer performance of sawdust is less relevant for upscaling, because this is a treatment for scientific understanding

(testing if SOC really forms more efficient from lignin rich materials; Palm et al., 2001b).
:::::::::
achievable

:::::
yield

::::::
through

::::::
ISFM.

:
In

summary, the mean yield potential and the change in the SOC stocks were well represented, so the
:::::
model

:
calibration seems

suitable for assessing the long-term effect
::::::
effects of relevant ISFM treatments

:::::::
practices on soil fertility,

:::::
maize

:
yield, and

greenhouse gas
::::
GHG

:
emissions as well as their trade-offs. Since ,

:::::
given

:::
the

:::::
good

::::::::::::
representation

::
of

:::::
mean

:::::
yield

:::::::
potential

::::
and870

::::
SOC

:::::::
changes

::
by

:::
the

::::::
model.

::::::::::::
Nevertheless,

::::
since

:
year-to-year variations of yield

::::
yield

:::::::::
variations were not captured very well ,

it is questionable how well the current calibration could represent
:::
well

:::
by

::::::::
DayCent,

::
it

:::::::
remains

::::::::
uncertain

::::
how

:::::::::
effectively

:::
the

::::::
current

:::::
model

:::::::::
calibration

::::
can

:::::::
simulate scenarios of climate change, where temperature and precipitation patterns will become

more erratic. In the absence of major pests (which in the trials
::::::::::
experiments

:
were controlled), the yearly variation in

::::::::
variations

::
in

:::::::
seasonal

:
precipitation and temperature should be responsible for the

::
are

::::::::::
responsible

:::
for

:::::
these differences, and if these are875

not well represented, we cannot trust that we can apply DayCent outside of
:::
the

::::::::::
applicability

:::
of

:::::::
DayCent

:::::::
beyond the climatic

range that it was calibrated for
:
is
:::::::::::
questionable.

5 Conclusions

In this study, we demonstrated the effectiveness of jointly
::::::::::::
simultaneously calibrating the SOM and plant modules of DayCent

to simulate maize productivity
:::
and

::::::
changes

::
in
:::::
SOC

:::::
stocks

:
under integrated soil fertility management (ISFM) in Kenya, using a880

Bayesian calibration . The calibration successfully constrained the most sensitive
::::::::
approach.

::::
Our

:::::
study

::::::
showed

:::
the

::::::::::
importance

::
of

::::::::
choosing

::::::
correct

::::::
values

:::
for

:
model parameters, which were identified by a global sensitivity analysis

:::
and

:::::
using

:::
the

::::
full

:::::::
posterior

:::::::::
parameter

:::
set

::
is

:::
the

::::
best

:::::::
solution

::
to

:::::
assess

::::
the

:::::::::
uncertainty

::
of
::::::

model
:::::::
outputs. Although the default

:::::
initial

:
DayCent

maize plant parameterization represented the tropical conditions in Kenya well
:::::::::
acceptably (i.e., the highest probability posterior

parameter values were close to the default
:::::
initial parameterization), the highest probability posterior SOM turnover rates were885

two and eight times faster than the default for the passive and slow SOM pool, respectively. This indicates that there is the

potential for large losses of SOC in highly weathered tropical soils. However
:::::
overall

::::::
model

::::::::::
performance

:::
for

::::::
maize

::::
grain

:::::
yield

:::
and

:::::::::::
aboveground

:::::::
biomass

:::
was

:::::::::
improved

::::
after

:::::::::
calibration

:::::
using

::::
local

::::
data.

:::::::::
However,

:::::
better

::::
yield

::::::::::
simulations

:::::::
partially

:::::
came

::
at

::
the

::::
cost

::
of
::::::

poorer
:::::
SOC

::::::::::
simulations

::
at

::::
some

:::::
sites.

:::::::::::
Furthermore, SOM turnover was subject to high uncertainty , showing

:::
and

:::::
biased

:::
for

::::::::
clay-poor

:::::
sites,

::::::::
indicating

:
that the current module structure suboptimally

::::::::::
inadequately

:
captures SOM dynamics in890

highly weathered tropical soils. Nevertheless, our
:::
Our leave-one-site out cross validation showed that the calibration-derived

parameter set is robust for upscaling of the model
::
the

::::::
model

:::::::::
simulations

:
to larger areas in Kenya

:
,
:::::::::
particularly

:::::
when

::::::::
applying

::
the

::::
full

::::::::
posterior

::::::::
parameter

:::
set. At the same time,

:::::
while mean maize grain yields were much better represented than

::::
well

::::::::
simulated,

:
the year-to-year variability of yields, posing the question whether the

::::
yield

:::::::::
variability

::::::
raised

:::::::
concerns

::::::
about

:::
the

::::::
model’s

::::::
ability

::
to

::::::
capture

:::
the

:::::::::
short-term

:
effects of climate change can be adequatelycaptured by DayCent

:::::::::
adequately. Finally,895

37



while no ISFM treatment was predicted to act as an absolute
:
a
:::
net sink of greenhouse gases, yield-scaled emissions were lowest

in treatments with high and intermediate yields
::::::::
exhibited

:::
the

:::::
lowest

::::::::::
yield-scaled

:::::::::
emissions.
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Appendix A: Appendix

A1 Site and organic resource characteristics920

Table A1.
::::::::
Locations,

:::
soil

::::::::
properties

:::
and

:::::::
climatic

::::::::
conditions

::
of

:::
the

::::
study

:::::
sites.

:::
Soil

::::::::
properties

:::
are

:::::
given

::
for

:::
the

::
0
:
-
:::
15

::
cm

:::::
depth

:::::
layer.

:::::::::
Coordinates

::
are

:::::
given

::
in

::
the

:::::
WGS

::
84

:::::::
reference

::::::
system.

:::
The

::::
table

::
is

::::::
adopted

::::
from

:::::::::::::::
Laub et al. (2022b)

::::
under

:::
the

::::::
creative

::::::
common

::::::
license

::
4:

http://creativecommons.org/licenses/by/4.0/
:
.

:::
Soil

::::::::::
characteristics

: ::::
Embu

::::::::
Machanga

:::::
Sidada

::::::
Aludeka

::::::
Latitude

: :::::
-0.517

:::::
-0.793

::::
0.143

: ::::
0.574

:

:::::::
Longitude

: :::::
37.459

: :::::
37.664

: :::::
34.422

: :::::
34.191

:

::::
Initial

::::
soil

:
C
:::
(%)

: ::
3.1

: ::
0.8

: ::
2.6

: ::
0.7

:

::::
Initial

::
N
:::
(%)

: ::
0.3

: :::
0.05

: :::
0.21

: :::
0.06

:

:::::
Initail

:::
bulk

::::::
density

::
(g

::::
cm-3)

: :::
1.26

: :::
1.51

: ::
1.3

: :::
1.45

:

::
pH

:::::
(H2O)

: :::
5.43

: :::
5.27

: ::
5.4

: :::
5.49

:

:::
Sand

:::
(%)

: :
0
: :::

31.1
: ::

0.1
: ::

31

:::
Clay

:::
(%)

: :::
59.8

: :::
13.2

: :::
55.7

: :::
13.4

:

:::
Soil

::::
type

::::::::::
(FAO, 1998)

:::::
Humic

:::::
Nitisol

: ::::
Ferric

:::::
Alisol

: :::::
Humic

:::::::
Ferralsol

:::::
Acrisol

:

::::::
Altitude

:::
(m)*

: ::::
1380

::::
1022

::::
1420

::::
1180

::::::
Annual

:::::
rainfall

:::::
(mm)*

: ::::
1175

:::
795

::::
1730

::::
1660

::::
Mean

::::::
annual

:::::::::
temperature

:::
(◦C)

: :::
20.1

: :::
23.7

: :::
22.6

: :::
24.4

:

:::::
Months

::
of

::::
long

::::
rainy

:::::
season

: :
3
:
-
:
8
: :

3
:
-
:
8
: :

3
:
-
:
9
: :

3
:
-
:
9
:

::::::
Months

::
of

::::
short

::::
rainy

:::::
season

: ::
10

:
-
::
01

: ::
10

:
-
::
01

: ::
10

:
-
::
01

: ::
10

:
-
::
01

:

:::::
*Means

:::::::
calculated

::::
based

::
on

:::::::
measured

:::
data

:::
from

::::
2005

:
to
::::

2020
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Table A2.
::::
Mean

:::::::
measured

:::::::
chemical

:::::::::::
characteristics

::::
(and

::::
95%

::::::::
confidence

:::::::
intervals)

::
of
::::::

organic
::::::::
resources

:::::
applied

::
at
:::
all

::::
sites.

:::::::::::
Measurements

:::
were

::::::::
available

::::
from

::::
Embu

::::
and

::::::::
Machanga

::::
from

::::
2002

::
to

:::::
2004,

::
all

::::
sites

::::
from

::::
2005

::
to

::::
2007

:::
and

::
in
:::::

2018.
::::::::
Significant

:::::::::
differences

::
in

::::::
residue

:::::::
properties

::::
were

:::::
found

:::::::
between

::
the

:::::::
different

::::::
organic

::::::::
resources,

::
but

:::
not

:::::::
between

::::
sites

:::
and

:::::
years.

::::
Same

:::::
letters

:::::
within

:::
the

::::
same

:::
row

:::::::
indicate

::
the

::::::
absence

::
of

::::::::
significant

:::::::::
differences

::
for

:::
that

:::::::
property

::
(p

:
<
:::::
0.05).

:::::::::::
Abbreviations:

:::
n.c.

:
=
:::
not

:::::::
classified

::
*

:::::::
according

::
to

::::::::::::::
Palm et al. (2001a).

::::
The

:::
table

::
is
::::::
adopted

::::
from

:::::::::::::::
Laub et al. (2023a)

::::
under

:::
the

::::::
creative

::::::
common

::::::
license

::
4: http://creativecommons.org/licenses/by/4.0/.

:::::::
Measured

:::::::
property

::::::
Tithonia

::::::::
Calliandra

:::::
Maize

::::
stover

: ::::::
Sawdust

: :::::::
Farmyard

::::::
manure

:
C
::
(g
::::
kg-1)

: ::::
345b

:::::::
(333-357)

: ::::
396c

:::::::
(383-409)

: ::::
397c

:::::::
(386-408)

: ::::
433d

:::::::
(416-449)

: ::::
234a

:::::::
(213-255)

:

:
N
::

(g
::::
kg-1)

: ::::
33.2d

:::::::::
(28.9-38.2)

::::
32.5d

:::::::::
(28.3-37.3)

:::
7.2b

::::::
(6.5-8)

:::
2.5a

:::::::
(2.1-2.8)

::::
18.1c

:::::::
(15-21.8)

:

:::
C/N

::::
ratio

::::
12.4a

:::::::::
(10.8-14.1)

::::
13.6a

:::::::::
(11.9-15.5)

::::
58.7b

:::::::::
(52.8-65.2)

:::::
199.1c

::::::::::
(174.1-227.7)

: ::::
12.3a

::::::::
(9.9-15.4)

:
P
::
(g

::::
kg-1)

: :::
2.3d

:::::::
(1.8-2.9)

:::
1.1c

:::::::
(0.8-1.5)

:::
0.4b

:::::::
(0.3-0.6)

:::
0.1a

:::::
(0-0.2)

: :::
3.1d

:::::::
(2.3-3.9)

:
K
::

(g
::::
kg-1)

: ::::
37.2c

:::::::::
(21.2-65.2)

:::
8.7b

::::::
(5-15.3)

: ::
9b

::::::
(6-13.5)

: :::
2.8a

:::::::
(1.6-4.9)

:::::
19.4bc

:::::::
(7.8-48.6)

:

:::::
Lignin

::
(g

::::
kg-1)

:::
90ab

:::::::
(62-117)

::::
105b

::::::
(77-133)

: :::
48a

:::::
(37-60)

: ::::
172c

:::::::
(144-199)

: ::::
198c

:::::::
(154-242)

:

:::::::::
Polyphenols

::
(g

::::
kg-1)

:::
19c

::::::::
(14.9-24.3)

: :::::
108.7d

:::::::::
(85.3-138.6)

: ::::
11.3b

::::::::
(9.5-13.6)

:::
4.9a

:::::::
(3.8-6.2)

::::
7.8ab

:::::::
(5.2-11.5)

:

:::::::
Lignin/N

::::
ratio

:::
2.6a

:::::::
(1.8-3.7)

::::
3.1ab

::::::
(2.2-4.3)

: :::
6.2c

:::::
(4.8-8)

: ::::
58.3d

:::::::::
(41.1-82.8)

::::
6.9bc

:::::::
(3.9-12.3)

:

::::::
Quality

:
/
::::::
turnover

::::
rate*

: ::::
High

:
/
:::
fast

::::
High

:
/
::::
slow

:::
Low

:
/
:::
fast

: :::
Low

:
/
::::
slow

: :::
n.c.

:::::
Class*

:
1
: :

2
: :

3
: :

4
: :::

n.c.

::
kg

::
N

::
in

::
4.0

:
t
::
C

:::
ha-1

::::
yr-1,

::
-N [

::
+N]

:::
323 [

:::
563]

:::
295 [

:::
535]

::
68 [

:::
308]

::
20 [

:::
260]

:::
324 [

:::
564]

::
kg

::
N

::
in

::
1.2

:
t
::
C

:::
ha-1

::::
yr-1,

::
-N [

::
+N]

::
97 [

:::
337]

::
88 [

:::
328]

::
20 [

:::
260]

:
6
:
[
:::
246]

::
97 [

:::
337]
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Table A3.
::::::
DayCent

:::::
model

::::::::
parameters

::::
(and

::::::
feasible

::::::
ranges)

::
of

::::::::
parameters

:::::
which

::::
were

:::
not

::::::
included

::
in

:::
the

:::::::
Bayesian

:::::
model

::::::::
calibration

:::
due

::
to

:
a
::::
Sobol

::::
total

::::::::
sensitivity

::::
index

::
<

:::
1%.

::::
Range

:::
Initial

:::::::
Coefficient

::::
Model

::::::
Parameter

:::::::
Description

:::
width

: :::
Units

: :::
value

:
of
::::::

variation
::
file

::::
frtc(2)

:
C
::::::
allocated

:
to
:::
roots

:
at
:::

time
::::
frtc(3)

:::::
without

:::
stress

: :::
small

: :::::
fraction

:
of
:::
NPP

::
0.20

::
0.1

:::::
crop.100

::::
frtc(4)

:::
Max.

:::::
increase

:
in
::

C
:::
going

::
to

:::
roots

:::
under

::::
stress

:::
small

: :::::
fraction

:
of
:::
NPP

::
0.10

::
0.1

:::::
crop.100

::::
frtc(5)

:::
Max.

:::::
increase

:
in
::

C
:::
going

::
to

:::
roots

:::
under

::::
stress

::::::
(maturity)

:::
small

: :::::
fraction

:
of
:::
NPP

::
0.10

::
0.1

:::::
crop.100

::::
biomax

: :::
AGB

:
at
::::

which
:::::
min.and

:::
max.

:::
C/E

:::
ratios

::
of

:::
plant

:::::
increases

: :::
small

: :
g
:::::
biomass

::
m-2

::::
700.00

::
0.1

:::::
crop.100

::::::
pramx(1,2)

: :::
Max.

::::::::
aboveground

::
C/N

:::
ratio

:::
with

:::::
biomass

:
>
:::::
biomax

:::
small

: :::
C/N

::
ratio

: ::::
125.00

::
0.1

:::::
crop.100

:::::::
prbmn(1,1)

::
For

::::::
computing

:::
min.

:::
C/N

:::
ratio

::
for

::::::::
belowground

::::
matter

:::
small

: :::
C/N

::
ratio

: :::
45.00

::
0.1

:::::
crop.100

:::::
efrgrn(1)

: :::::
Fraction

:
of
::::

above
::::
ground

::
N

:::
which

:::
goes

::
to

:::
grain.

: :::
small

: :::::
fraction

::
0.75

::
0.1

:::::
crop.100

:::::
flig(1,1)

:::::
Intercept

::
for

::::
annual

:::::
rainfall

:::
effect

::
on

:::
lignin

:::::
content

:::
small

: :::::
fraction

:
of
::::
lignin

::
0.12

::
0.1

:::::
crop.100

::::
ppdf(3)

: :::
Right

::::
curve

:::
shape

::
for

:::::::
temperature

::::
effect

::
on

::::
growth

:::
curve

: :::
very

:::
small

::::
unitless

: ::
1.00

:::
0.05

:::::
crop.100

::::
ppdf(4)

: :::
Right

::::
curve

:::
shape

::
for

:::::::
temperature

::::
effect

::
on

::::
growth

:::
curve

: :::
very

:::
small

::::
unitless

: ::
2.50

:::
0.05

:::::
crop.100

:::::
favail(1)

:::::
Fraction

:
of
::

N
:::::
available

::
per

:::
day

:
to
::::
plants

:::::
moderate

: :::::
fraction

:
of
:
N
: ::

0.15
:::
0.15

:::::
crop.100

::::::::::::
(aneref(1)-anaref(2))

:::::
Rain/ET

:::
ratio

::::
below

::::
which,

:
no
::::

effect
:
of
::::::::

anaerobiosis
:::
small

: ::::
unitless

: ::
1.00

::
0.1

::::
fix.100

:::::
aneref(2)

: :::::
Rain/ET

:::
ratio

:::
with

:::
max.

:::::::
anaerobiosis

::::
effect

:::::
moderate

: ::::
unitless

: ::
3.00

:::
0.15

::::
fix.100

::::::::::
damr(1,1)&(2,1)

:::::
Fraction

:
of
:::::

surface
:
N
::
and

:::
soil

:
N
::::::
absorbed

:
by
:::::

residue
:::
large

:::::
fraction

:
of
:
N
: ::

0.02
:::
0.25

::::
fix.100

::::::
damrmn(1)

: :::
Min.

:::
C/N

::
ratio

:::::
allowed

::
in

::::
residue

:::
after

::::
direct

::::::
absorption

:::::
moderate

: :::
C/N

:::
15.00

:::
0.15

::::
fix.100

::::
dec1(2)

: :::
Max.

::::::
structural

:::
litter

:::::
turnover

:::
small

: :
g
::
g-1

::
yr-1

: ::
4.90

::
0.1

::::
fix.100

::::
dec2(2)

: :::
Max.

::::::
metabolic

:::
litter

:::::
turnover

:::
small

: :
g
::
g-1

::
yr-1

: :::
18.50

::
0.1

::::
fix.100

::::
dec3(2)

: :::
Max.

::::
active

:::
pool

:::::
turnover

:::
small

: :
g
::
g-1

::
yr-1

: ::
7.30

::
0.1

::::
fix.100

:::::::::::
(decX(2)/decX(1))

:::
Ratio

:::
soil

:
to
::::
surface

:::::
turnover

:::::
(newly

::::
defined

:::::::
parameter)

:::
small

: ::::
unitless

: ::
1.25

::
0.1

::::
fix.100

:::::
fwloss(1)

: ::::
Scaling

::::
factor;

:::::::
interception

::
&

:::::::
evaporation

::
by

::::
biomass

: :::::
moderate

: ::::
unitless

: ::
1.00

:::
0.15

::::
fix.100

:::::
fwloss(2)

: ::::
Scaling

::::
factor;

:::
bare

:::
soil

:::::::
precipitation

:::::::
evaporation

:::::
moderate

: ::::
unitless

: ::
1.00

:::
0.15

::::
fix.100

:::::
fwloss(3)

: ::::
Scaling

::::
factor;

::::::::
transpiration

:::
water

:::
loss

:::::
moderate

: ::::
unitless

: ::
1.00

:::
0.15

::::
fix.100

::::
pabres

:::::
Residue

::::
amount

::::
which

::::
results

:
in
::::

max.
:::
direct

:
N
:::::::

absorption
:::::
moderate

: :
g
:
C
:::
m-2

::::
100.00

:::
0.15

::::
fix.100

::::
teff(2)

:
Y
:::::
location

::
of

:::::::
temperature

:::::
inflection

:::
point

::::::::::
(decomposition)

:::
large

::::
unitless

: :::
11.75

:::
0.25

::::
fix.100

::::
teff(3)

:::
Step

::
size

::
of

:::::::
temperature

:::
effect

::
on

:::::::::
decomposition

:::::
moderate

: ::::
unitless

: :::
29.70

:::
0.15

::::
fix.100

::::
teff(4)

::::::
Inflection

:::
point

:::
slope

::
of

:::::::
temperature

:::
effect

::::::::::
(decomposition)

:::
very

:::
large

::::
unitless

: ::
0.25

::
0.3

::::
fix.100

::::::::::
varat11&12(1,1)

:::
Max.

:::
C/N

:::
ratio

::
for

:::::
material

:::::
entering

:::
active

:::
pool

:::
small

: :::
C/N

:::
20.00

::
0.1

::::
fix.100

::::::::::
varat11&12(2,1)

:::
Min.

:::
C/N

::
ratio

::
for
:::::

material
:::::

entering
::::
active

:::
pool

:::
small

: :::
C/N

::
3.00

::
0.1

::::
fix.100

::::::::::
varat21&22(1,1)

:::
Max.

:::
C/N

:::
ratio

::
for

:::::
material

:::::
entering

:::
slow

::
pool

: :::
small

: :::
C/N

:::
20.00

::
0.1

::::
fix.100

::::::
varat3(1,1)

: :::
Max.

:::
C/N

:::
ratio

::
for

:::::
material

:::::
entering

::::
passive

:::
pool

:::
small

: :::
C/N

:::
13.00

::
0.1

::::
fix.100

::::::
varat3(2,1)

: :::
Min.

:::
C/N

::
ratio

::
for
:::::

material
:::::

entering
:::::
passive

:::
pool

:::
small

: :::
C/N

::
6.00

::
0.1

::::
fix.100

:::
drain

:::::
Fraction

:
of
::::

excess
::::

water
::
lost

::
by

:::::
drainage

:::::
moderate

: :::::
fraction

:
of
:::
H2O

::
0.80

:::
0.15

:::::
site.100

::::
dmp_st

: :::::
Damping

::::
factor

::
for

::::::
calculating

:::
soil

:::::::
temperature

::
by

:::
layer

:::
large

::::
unitless

: ::
0.01

:::
0.25

:::::
sitepar.in

:

:::::::::::::
N2Oadjust_(max-min)

::::::
Proportion

::
of

::::
nitrified

::
N
::
that

::
is

::
lost

:
as
:::

N2O
:::::::

(difference)
: :::

large
:::::
fraction

:
of
:
N
: :::

0.003
:::
0.25

:::::
sitepar.in

:

::::
Ncoeff

:::
Min

::::::::::
water/temperature

::::::
limitation

::::::
coefficient

::::::::
(nitrification)

:::
large

::::
unitless

: ::
0.03

:::
0.25

:::::
sitepar.in

:

:::::
dmpflux

::
The

::::::
damping

:::
factor

::
for

:::
soil

:::
water

:::
flux

:::
large

::::
unitless

: ::
0.00

:::
0.25

:::::
sitepar.in

:

::::::
astlig_TD

:::
lignin

:::::
fraction

:::::
content

:
of
:::::
organic

::::
matter

:::
small

: :
g
::
g-1

:::::
biomass

::
0.09

::
0.1

::::::
omad.100

::::::::
astrec(1)_TD

:::
C/N

::
ratio

::
of
::::
added

::::
organic

::::
matter

:::
very

:::
small

:::
C/N

::
ratio

: :::
12.40

:::
0.05

::::::
omad.100

::::::
astlig_CC

:::
lignin

:::::
fraction

:::::
content

:
of
:::::
organic

::::
matter

:::
small

: :
g
::
g-1

:::::
biomass

::
0.10

::
0.1

::::::
omad.100

::::::::
astrec(1)_CC

:::
C/N

::
ratio

::
of
::::
added

::::
organic

::::
matter

:::
very

:::
small

:::
C/N

::
ratio

: :::
13.60

:::
0.05

::::::
omad.100

::::::
astlig_MS

:::
lignin

:::::
fraction

:::::
content

:
of
:::::
organic

::::
matter

:::
small

: :
g
::
g-1

:::::
biomass

::
0.05

::
0.1

::::::
omad.100

::::::::
astrec(1)_MS

:::
C/N

::
ratio

::
of
::::
added

::::
organic

::::
matter

:::
very

:::
small

:::
C/N

::
ratio

: :::
58.70

:::
0.05

::::::
omad.100

::::::
astlig_SD

:::
lignin

:::::
fraction

:::::
content

:
of
:::::
organic

::::
matter

:::
small

: :
g
::
g-1

:::::
biomass

::
0.17

::
0.1

::::::
omad.100

::::::::
astrec(1)_SD

:::
C/N

::
ratio

::
of
::::
added

::::
organic

::::
matter

:::
very

:::
small

:::
C/N

::
ratio

: ::::
199.10

:::
0.05

::::::
omad.100

:::::::
astlig_FYM

:::
lignin

:::::
fraction

:::::
content

:
of
:::::
organic

::::
matter

:::
small

: :
g
::
g-1

:::::
biomass

::
0.20

::
0.1

::::::
omad.100

:::::::::
astrec(1)_FYM

:::
C/N

::
ratio

::
of
::::
added

::::
organic

::::
matter

:::
small

: :::
C/N

::
ratio

: :::
12.30

::
0.1

::::::
omad.100
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A1 Posterior, when allowing even larger ranges
::::
Map

::
of

:::
the

::::
four

:::::
study

::::
sites

Figure A1. Prior compared to posterior parameter distribution resulting from increasing
:::
Map

::::::::
displaying

:
the ranges

::::::
location of the uncertainty

based Bayesian calibration. Dashed vertical lines represent the default parameter sets. The posterior distributions are based on all four
::::
study

sitescombined.
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Correlation of parameters from the posterior parameter sets. The posterior distributions are based on all four sites combined.

A2
:::::::
Subsoil

::::
SOC

::::::
stocks

:::
for

::::::
scaling

:::::
SOC

A3 Barplots of SOC and comparing measured and simulated mean yield
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Figure A2. Barplots of simulated and measured change of
::::::
Subsoil SOC stocks until 2021 from cross-validation

:::
for

::
the

::::::
2.5-4.7

::
kt
::::

ha-1

:::::::
equivalent

::::
soil

::::
mass

::::
layer, at

::::::::::
corresponding

::
to

::
an

::::::::::
approximate

:::
soil

:::::
depth

::
of

::::
15-30

::::
cm.

::::::::
Displayed

::
are

:
the four study sites for

:::
least

::::::
square

:::::
means

:::::::
estimated

::
by

:
the different organic resource

::::
linear

:::::
mixed

:::::
model

:::::::
described

::
in

:::::::::::::::
(Laub et al., 2023a)

::
for

::::::
planted

::::
plots

::
by

::::::::
treatment

::::
(left)

and chemical nitrogen fertilizer treatments
:::
site

:::::
(right). Error bars represent

:::::
display

:::
the 95% confidence intervalsbased on BC

:
.
::::
Same

::::::::
lowercase

::::
letters

:::::::
indicate

::
the

::::::
absence

::
of

:
a
::::::::
significant

::::::::
difference

::
in

::::
SOC

:::::
stocks

::::::
between

::::::::
treatments

::
at

::
the

::::
same

:::
site

:
(simulations

::
left

:::::
figure) and variance

:
or
:::::::

between
::::
sites (measurements

:::
right

::::::
figure;

::
all

:
p
::
<
:::
0.05).

:::::::::::
Abbreviations:

:::
CC,

::::::::
Calliandra

:
;
:::
CT,

::::::
control;

:::::
FYM,

:::::::
farmyard

::::::
manure;

::::
MS,

:::::
maize

:::::
stover;

:::
SD,

:::::::
sawdust;

:::
TD,

:::::::
Tithonia

:::::::::
Diversifolia.

::
0,

:::
1.2

:::
and

:
4
::::::::
correspond

::
to
::
C

:::::::
additions

::
of

::
0,

::
1.2

:::
and

::
4
:
t
:
C
::::
ha-1

:::
yr-1.

:
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Figure A3.
::::::::
Correlation

::
of

::::::::
parameters

::::
from

:::
the

:::::::
posterior

:::::::
parameter

::::
sets.

:::
The

:::::::
posterior

:::::::::
distributions

:::
are

:::::
based

::
on

::
all

:::
four

::::
sites

::::::::
combined.
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Measured and simulated maize grain yields over time
:::::::::::
Abbreviations:

::
EF, at the four study

:::::::::::
Nash-Sutcliffe

:::::::
modeling

::::::::
efficiency;

::::::
RMSE,

:::
root

::::
mean

::::::
squared

::::
error;

:::
SB,

::::::
squared

::::
bias;

::::
NU,

:::::::
non-unity

:::::
slope;

:::
LC,

:::
lack

::
of
:::::::::
correlation.

:::::
Across

:::
all sites

::::
model

:::::::
statistics:

:::
EF,

:::::
0.755;

::::::
RSME,

::::
0.707

:
t
::::
ha-1;

:::
SB,

::::
12%;

::::
NU,

::::
25%;

:::
LC,

::::
63% for the different organic resource and chemical nitrogen fertilizer treatments

::::
yield;

:::
EF,

:::::
0.583;

:::::
RSME,

::::
2.01

:
t
::::
ha-1;

:::
SB,

:::
5%;

::::
NU,

::::
18%;

:::
LC,

::::
77% for the uncalibrated (top) and calibrated DayCent model (bottom)

::::
AGB.

Measured and simulated maize grain yields over time
::::::::::::
Abbreviations:

:::
EF, at the four study

::::::::::::
Nash-Sutcliffe

::::::::
modeling

:::::::::
efficiency;

::::::
RMSE,

::::
root

:::::
mean

:::::::
squared

:::::
error;

::::
SB,

:::::::
squared

:::::
bias;

::::
NU,

::::::::
non-unity

::::::
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::::
LC,

::::
lack

::
of

::::::::::
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:::::::
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:::
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:::::
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:::::::
statistics:
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EF,

::::::
0.755;

::::::
RSME,

::::::
0.707

:
t
:::::
ha-1;

:::
SB,

:::::
12%;

::::
NU,

::::::
25%;

:::
LC,

:::::
63%

:
for the different organic resource and chemical

nitrogen fertilizer treatments
::::
yield;

:::
EF,

::::::
0.583;

::::::
RSME,

::::
2.01

::
t
::::
ha-1;

:::
SB,

::::
5%;

::::
NU,

:::::
18%;

:::
LC,

:::::
77% for the uncalibrated (top) and

calibrated DayCent model (bottom)
:::::
AGB.

Figure A4. Mean simulated versus mean measured yield and aboveground biomass (AGB) from the leave-one-site-out cross-validation.

Error bars represent the standard deviation of measured and simulated values over all years.

Measured and simulated maize grain yields over time
:::::::::::
Abbreviations:

::
EF, at the four study

::::::::::
Nash-Sutcliffe

:::::::
modeling

::::::::
efficiency;

::::::
RMSE,

::::
root

::::
mean

::::::
squared

::::
error;

:::
SB,

::::::
squared

::::
bias;

::::
NU,

:::::::
non-unity

:::::
slope;

:::
LC,

:::
lack

::
of

:::::::::
correlation.

:::::
Across

::
all

:
sites

:::::
model

:::::::
statistics:

:::
EF,

:::::
0.755;

:::::
RSME,

:::::
0.707

:
t
:::
ha-1;

:::
SB,

:::::
12%;

:::
NU,

:::::
25%;

:::
LC,

::::
63% for the different organic resource and chemical nitrogen fertilizer treatments

::::
yield;

:::
EF,

:::::
0.583;

::::::
RSME,

:::
2.01

:
t
::::
ha-1;

:::
SB,

:::
5%;

::::
NU,

::::
18%;

:::
LC,

::::
77% for the uncalibrated (top) and calibrated DayCent model (bottom)

:::
AGB.

A3
::::::::::
Comparing

:::::::::
measured

::::
and

:::::::::
simulated

:::::
mean

::::
yield925

45



A4 Site specific sensitivities of yield to N fertilizer

Aludeka Embu Machanga Sidada

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

2

4

6

Added mineral N in kg/ha/season

M
ea

n 
yi

el
d 

in
 t/

ha

Figure A5. N
::::
Yield response curve by site

:
of
:::::::
DayCent

::
to
::::::
varying

:::::
levels

::
of

::::::
mineral

::
N

::::::::
application

:::::::
(control

:
+
::
N

::::::::
treatment,

::::::
without

::::::
organic

:::::::
resources)

:
using the calibrated DayCent parameters. This was done to explain why DayCent insensitive at high N levels

:::::::
Displayed

:::
are

:::
the

:::::::
simulated

::::
mean

:::::
yields

:::::
across

::
all

::::::::
simulated

::::::
seasons

:::
(32

:
in
::::::

Sidada
:::
and

:::::::
Aludeka,

::
38

::::::
seasons

::
in

:::::
Embu

:::
and

::::::::
Machanga).

:::
The

::::::
amount

::
of

::::::
mineral

N was given
:::::
applied

:::
per

:::::
season

:
in 50/50

::
the

:::::::::
simulations

:::
was

:::::
evenly

:
split application, at

::::::
between the two real

:::::
actual

::::::::
application

:
dates

::
of

:::::
mineral

::
N
::
in

::::
each

:::::
season

::
at

::::
each

:::
site.
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A5 SOC stocks
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Figure A6.
:::::::

Simulated
:::::::
compared

::
to

:::::::
measured

:::::
maize

::::
grain

:::::
yields,

::::::::::
abovoground

:::::::
biomass

:::
and

:::::
change

::
in SOC : 1st

::::
stocks

::
at

::
the

::::
four

::::
study

::::
sites

::
for

:::
the

::::::
default DayCent outputs initial

:::::::
parameter

:::
set

:::::
before

::::::::
adjusting

::::
ps1co(left

::::
1&2)vs calibrated by leave-one-site-out cross-validation

(right)
:::::
&rsplig

::::
from

:::
0.5

:::
to

:::
0.85. Grey bands denote

:::
show

:
the 95% confidence intervals of measured (horizontal)

::::
values

:
and

:::
the

::::
95%

:::::::
credibility

:::::::
intervals

::
of

:
posterior simulated

::::::::
distribution

:
(vertical)values.

::::::::::
Abbreviations:

:::
EF,

:::::::::::
Nash-Sutcliffe

:::::::
modeling

::::::::
efficiency;

::::::
RMSE,

::::
root

::::
mean

::::::
squared

::::
error;

:::
SB,

:::::::
squared

:::
bias;

::::
NU,

:::::::
non-unity

:::::
slope;

:::
LC,

::::
lack

::
of

::::::::
correlation.

:
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A5 Calibration improvement by Site
:::::::
Barplots

::
of

:::::
SOC

Figure A7. Simulated compared to
::::::
Barplots

::
of

::::::::
simulated

:::
and

:
measured changes in

:::::
change

::
of
:

SOC stocks since experiment start for

the default DayCent parameter set (top
:::
0-30

:::
cm

:::::
depth) vs the calibrated parameter set by leave-one-site-out

::::
until

::::
2021

:::::
from cross-

validation(bottom). Grey bands denote
:
,
::
at the

:::
four

::::
study

::::
sites

::
for

:::
the

:::::::
different

::::::
organic

::::::
resource

:::
and

:::::::
chemical

:::::::
nitrogen

::::::
fertilizer

:::::::::
treatments.

::::
Error

:::
bars

:::::::
represent

:
95% confidence intervals of measured

::::
based

::
on

:::
BC

:
(horizontal

::::::::
simulations) values and the 95% credibility intervals of

posterior distribution
::::::
variance (vertical

::::::::::
measurements).
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Simulated compared to measured yield for the default DayCent parameter set (top) vs the calibrated parameter set by

leave-one-site-out cross-validation (bottom). Grey bands denote the 95% confidence intervals of measured (horizontal) values930

and the 95% credibility intervals of posterior distribution (vertical).

A6 N2O emissions

50



Figure A8. Temporal
::::::
Example

::
of
:::
the

:::::::
temporal development of measured (black) vs simulated (red) N2O emissions by site. The black error

bars represent the 95% confidence intervals due to spatial replication error, the red error bars represent the 95% credibility intervals of

simulated N2O emissions resulting from parameter distribution of the posterior parameter set.
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