Dear Moritz Laub,

you revised version of the manuscript: "A robust DayCent model calibration to assess the potential
impact of integrated soil fertility management on maize yields, soil carbon stocks and greenhouse gas
emissions in Kenya" has undergone a second round of reviews (3 reviewers). All reviewers are in
agreement that the manuscript has improved considerable, with two suggesting some minor
revisions including some clarifying questions and adjustments (revs 2 and 3) whereas the 3rd
reviewer remains still critical (see the comments from rev 1 this text). This is particularly the case for
the prior and posterior distribution which need to be addressed. This should be achievable relatively
straight forward. Similarly the individual minor suggestions for the manuscript provided by all three
reviewers can be incorporated right away. Following this, | am accepting the manuscript for
publication in BG with subject to minor revisions.

with kind regards

Lutz Merbold

Dear Lutz Merbold,

Thank you for acknowledging the changes we made to improve the manuscript from the previous
version. We have done our best to address the remaining concerns of the reviewers. We put specific
focus on addressing the concerns that reviewer 2 had regarding the new method of initialization with
measured SOC pools, the derivation of the coefficients of variation from the prior and the posterior,
where reviewer 2 rightly pointed out an oversight from our side. Based on the feedback from
reviewer 2 and reviewer 3, we also did calibration once more with wider priors (x1.5), which
improved the results even further and led to the results showing a clear distinction between the prior
and the posterior. We think that we have addressed all the important concerns of both reviewers
with these changes. We hope that with these changes implemented, you will consider the manuscript
to be acceptable for publication. Thank you very much for your efforts in handling the manuscript.

Kind regards on behalf of all coauthors,

Moritz Laub

Reviewer 1:

The paper describes the capability of DayCent model to simulate yield and SOC development of the
different ISFM practices in SSA and its improvement after cal-val.

After the revisions made, the paper has strongly improved. All the raised issues were solved, the flow
is now clear and figures were made more understundable for readers. Based on all these
considerations, the manuscript can be considerd acceptable for publication in its present form.

Thank you for your positive assessment of the revisions that we made.



Reviewer 2:

The revision has addressed many of the issues raised in the first review. There has been a significant
improvement in the content, flow, and structure, which has increased the readability of the
manuscript. In addition, authors have incorporated two significant changes in the methodology
section: (1) the selection of prior, and (2) the initialization of SOC pools. Reviews of this newly added
section are provided in the subsequent paragraphs. Another area of concern is in the newly updated
result section 3.2, which reported the posterior estimates from the inverse modeling using SIR
algorithms. Here, the marginal distribution for the posterior is similar to the marginal distribution
from the prior, indicating little or no influence of the dataset on the posterior suggesting nothing is
learned from the data assimilation exercise. This is contrary to the title’s claim of “robust DayCent
model calibration ...”. For these reasons, | recommend a major revision before recommendation for
publication. More details are provided below:

Thank you for your feedback. We agree that the original title was not fitting anymore. We were
actually using Bayesian calibration to derive model parameters which we can consider to be robust
and it is not the calibration that is robust. Therefore, we changed the title to “Modelling integrated
soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent
model.

\ robust Day€ tel ealibrati | ol "

Modelling integrated soil fertility management on-for maize yields;

soil-earbon stocks-and greenhouse gas-emissions production in

Kenya using a Bayesian calibration of the DayCent model.
Apart from that, we have increased the range of the prior, based on your comment. This improved
the simulation outcomes further and the change between prior and posterior is now obvious, making
it clear that the data informed the model parameters.
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SOC pool initialization: One of the major changes involved replacing the long historical simulation
with measured SOC, which was adjusted backward in time and initialized at the start of the
Experiment. With the update, the posterior parameter can be defined as p(6|D,M,MAOM) and now
conditions on data (D), model (M) and measured mineral associated organic matter (MAOM).
Therefore, any future simulation leveraging this study and aiming to understanding the regional or
national GHG balance within SSA, as represented by the four-experiment station, now also requires
measured or estimated value of MAOM. Therefore, the simulation approach, which requires MAOM
measurement, may limit broader use of the model in SSA region. Furthermore, the initialization of



SOC pools in the process-based ecosystem model may introduce significant bias in the model’s
estimates of SOC stock changes (Fallon and Smith, 2000, Zhou et. al., 2023). Both methods: (1) long
historical simulations to equilibrium and (2) initializing model pools with measurement—have been
extensively studied and used in literature. In my personal viewpoint, both methods are equally valid
given adequate testing and reasoning. Both methods have strengths and weaknesses. The strength
led to higher accuracy, while the weaknesses can introduce significant bias and contributing toward
higher uncertainty.

We agree that both approaches have their pros and cons. If there is good knowledge available on the
land-use history, a model spin-up may be the better choice. While the model now relies on measured
or estimated MAOC, which may introduce its own level of uncertainty, global predictions of MAOC,
including for soils in Africa, are available (see Georgiou et al., 2022; specifically Supplementary Figure
16 of their article) and the ranges presented on their maps for the SSA region (i.e., that about 60-90%
of SOC is MOAC) agree with our measurements. These maps are produced based on observed MOAC
values, extrapolated based on measured gradients of precipitation, temperature, and vegetation. In
theory, one could argue that these factors include similar information as a model spin-up, which is
based on historical data about land use and includes local weather. In the context of SSA, and in
Kenya specifically, we consider that data on land-use history is subject to more uncertainty than the
currently available maps of MOAC (e.g, the soilgrids have more than 2000 profiles in Kenya, while a
documentation on historical land use is not readily available). This implies that several assumptions
have to be made about land-use history, for example by using expert opinion combined with a rules
based approach (see e.g., Kamoni et al., 2007). With maps, the only choice to make is which map to
use, making this approach more reproducible and favorable in our case. Nonetheless, we agree that it
comes with its own uncertainties, which we have addressed in the discussion. Based on the literature
you suggested, and our own observations at scale, we recommend to reduce this uncertainty by
working with a baseline scenario and an improved scenario instead.

610 Frthatsensethe Nevertheless, soil property maps are also subject to uncertainty. For example, differences between different

SOC maps used in model initialization propagate into differences in the changes in SOC stocks (Zhou et al., 2023). It was

shown_ that uncertainty of the simulated effect of a soil management practice on the difference of SOC stocks compared

to a counterfactual is lower than the uncertainty of the simulated temporal development of SOC stocks (Zhou et al., 2023).

Therefore, it may be best practice to work with a baseline and an improved scenario. Both spinup and SOC map initialization

615 have their shortcomings and in the end the model user must make an informed decision on which initialization method they

consider subject to less uncertainty, based on which data is locally available.

Prior distribution: Another significant change in the updated manuscript is the introducing of a new
prior distribution during the SIR step. As a result, the revised manuscript uses two sets of prior
distribution: a uniform prior for the global sensitivity analysis, and a Gaussian prior for the SIR step.
This is uncommon and generally not accepted in Bayesian inferences, as the prior is considered our
initial beliefs about an uncertain parameter before observing any data. Therefore, introducing two
beliefs for the same set of parameters in the model is unusual.

We would not call the distribution of the parameter values used in the global sensitivity analysis
(GSA) a “prior” in the Bayesian sense and acknowledge that this has been poorly formulated in the
previous version of the manuscript. For example, GSA is only constrained by a maximum and a
minimum value — and thus any other distribution than uniform is not possible (a poor use of prior
knowledge). For us, GSA was simply a preselection procedure to make the Bayesian calibration
computationally feasible. Many studies commonly use background knowledge to select which
parameters to calibrate and then use Gaussian priors in the calibration process (e.g., Menichetti et al.,
2020; Tupek et al., 2019). Therefore, if we consider the GSA solely as a preselection step, there



appears to be no impediment to subsequently conducting a Bayesian calibration using a Gaussian
prior, if knowledge about the model parameters exists. The text of the methods section has been
changed, accordingly.

distribttiofs—vere— L he ranges used for the global sensitivity analysis <

centered around the initial parameter value obtained as described above (section 2.3.2).

patameter—tanges-The upper and lower parameter boundaries were based on previous sensitivity analyses (e.g. Necpalova

300 etal., 2015; Gurung et al., 2020), plausible ranges reported in the DayCent manual and variations observed in different maize

Further, our GSA did not make use of the data. In contrast to Gurung et al. (2020), the sensitivity in
our study was calculated based on the mean yields and AGB, and end-of-simulation SOC stocks across
sites, and not on the mismatch between the simulated and observed values. Hence, we do not see
that performing a Bayesian calibration afterward violates the assumption that that Gaussian prior is
formulated before observing the simulations compared to the data. Our prior was mainly informed by
previous studies (see comments to your next point, below).

The authors selected coefficients of variations ranging between 5% and 30% for DayCent parameters
based on the level of range provided in its manual. However, they did not provide details on how
these selection for coefficient of variation satisfy one of the requirements for SIR or similar method,
which is that the prior range should cover the entire range of the posterior (Galman, 2014). Also,
more detail should be provided on the choice for the coefficient of variation to convincing
demonstrate that the empirical data suggest that the prior range is adequate enough for the
theoretical understanding of these parameters.

Thanks for bringing this point to our attention. We agree that we had insufficiently described this in
the methods. In selecting the coefficients of variation, we considered prior knowledge from pervious
Bayesian calibration exercises performed on DayCent. Our aim was to choose a coefficient of variation
per range level in a way that our prior covered the range that previous Bayesian calibrations on
DayCent had as the posterior. Due to your comment, we have now increased the range of the prior to
account for the uncertainty of applying DayCent in tropical conditions by increasing the coefficient of
variation by a factor of 1.5. We now added a detailed explanation of all this to the text.

To ensure computational efficiency, we used informed Gaussian priors that were centered around the standard parame-

ter values of DayCent. with different coefficients of variation of-0:05:-0-1-based on different observed ranges in previous

studies. To make optimal use of existing knowledge about the parameters, the selected coefficients of variation per range were

365 initially based on previous studies that had performed Bayesian calibration of the DayCent model. The coefficients of variation

were chosen in a way that the prior from our study covered the whole range of the posterior from previous studies and then

370

to assure that the whole range of values (0.30-0.55, and 1.1-3.5: 1.7-2.5, respectively) was covered by the prior. The final

coefficients of variation were 0.08, 0.15, 825-=and-63-0.23, 0.38 and 0.45 for parameters with very small, small, moderate,
large and very large ranges (Table 1). For the newly introduced parameters, we used fargerlarge coeflicients of variation,
875 namely 0.38 for SLy and | for ICyapcand-035for-Sk, the reason for the latter being an initial test, in which IC; maoc was

set to -0.3 instead of -0.1. which proved to be too low, but the uncertainty range with a standard deviation of 0.1 proved to be

reasonable. Additionally, all parameters were constrained to remain within their physically sensible limits (i.e., not <0 for all

and not >1 for those representing fractions).



Posterior distribution: The manuscript calibrated 13 model parameters after conducting a parameter
screening using the GSA. In section 3.2 of the results, the posterior was presented in Figure 2.
Throughout the text, a single parameter estimate was provided, but it was not specified which
statistics (e.g., mean, mode, median, etc.) was presented. The posterior should be summarized with
sufficient statistics, such as the mean, standard deviation, and 95% credible intervals. If the single
parameter estimates the mean, mode, or median, there is a significant disagreement between the
text and the figure for parameters clteff(1,2,&4) and pmco2(1&2). The reported posterior estimates
of 19.1 and 0.82 fall well outside the curve region with higher density. | believe this could be a
miscalculation or misinterpretation, and should be thoroughly investigated.

Thanks for pointing this out. The presented parameter set is neither mean, mode, nor the median, it
is the parameter set from the posterior that had the highest likelihood, based on data from all four
sites combined (i.e., not leaving any site out — the final step after cross-validation). While we had
stated this in table 2, the description was very brief and did not appear in the main text. We see how
this information could be easily overlooked by the reader. Therefore, we now added a better
explanation to table 1. Further, we added the requested statistics to table 1:

Table 1. DayCent model parameters and the coefficient of variation used in the calibration. Displayed are parameters considered for calibra-
tion due to total sensitivity index > 2.5% (top) and with a total sensitivity index > 1% (bottom). The remainder of parameters (<1%) are not
arameter values correspond to the single

included in this table and can be found in the supplementary (Table A3). The presented calibrated

arameter set with the highest likelihood, which was derived by using the data from all four sites combined. The posterior was also derived

by using the data from all four sites combined. Abbreviations: CV, coefficient of variation; SD, standard deviation, 95% CI, 95% credibility

Possible ranges Initial Calibrated Posterior
Parameter Description of values Units value CV  value mean SD 95% Cl1
Included in calibration (total sensitivity >2.5%)
himax Maximum harvest index for maize moderate 2 g'J (©) 0.40 0.23 043 046 0.06 0.36-0.59
ppdf(1) Optimum temperature for growth of maize very small °C 30.00 0.08  28.63 28.5 1.67 25.44-31.57
ppdf(2) Maximum temperature for growth of maize very small °C 45.00 0.08 47.1 46.48 3.03 40.01-52.19
prdx(1) Potential aboveground production of maize large gCm?Ly! 2.25 038 262 245 0.39 1.86-3.37
cleff(1,2&4) Tillage multiplier for SOM turnover large unitless 10.00 038 493 9.02 335 2.91-15.78
aneref(3) Min. impact of soil anaerobiosis on SOM turnover large unitless 0.95 038 079 0.82 0.13 0.55-0.99
decd Max. turnover rate of passive SOM pool very large eglyr! 0.0035 045  0.0060 0.004 0.001 0.001-0.007
dec5(2) Max. turnover rate of slow SOM pool large g g'J yr’l 0.10 038 013 0.12 0.03 0.06-0.17
fwloss(4) Scaling factor potential evapotranspiration moderate unitless 0.75 023 094 0.9 0.05 0.81-0.99
pmco2(1&2) C lost as CO» with metabolic litter turnover” large g g'J © 0.54 0.38 091 071 0.11 0.48-0.91
pslco2(1&2)&rsplig € lost as CO, with structural litter turnover” large el (O) 0.85 038 077 0.86 0.11 0.61-0.99
ICymaoc Intercept for fraction of MAOC in slow pool very large g (©) -0.1 1 -0.02 -0.1 0.08 -0.25-0.06
SL; Slope for time difference of MAOC measurement large el yr! (C) -0.005 0.38  -0.006 -0.005  0.002  ~(0.001-0.008)
Not included in calibration (total sensitivity <2.5% & > 1% )
frie(1) C allocated to roots at planting, without stress small fraction of NPP 0.50 0.15
frte(3) Time after planting at which maturity is reached small number of days ~ 90.00 0.15
pramn(1,2) Min. aboveground C/N ratio at maturity small C/N ratio 62.50 0.15
hiwsf Max. harvest index reduction with water stress moderate 2 g'J ) 0.60 0.23
teff(1) Temperature inflection point (SOM turnover) moderate unitless 17.05 0.23
varat21&22(2,1) Min. C/N ratio for material entering slow SOM pool  small C/N 12.00 0.15
basef Soil water of bottom layer lost via base flow moderate fraction HO 0.30 0.23
N2Oadjust_max Proportion of nitrified N that is lost as N,O large g g'J (N) 0.015 0.38
MaxNitAmt Maximum daily nitrification amount large eNm? 0.40 0.38

W . - -
(1 - microbial carbon use efficiency)

And we added text on how the calibrated parameter set was derived into the results section 3.2:

Following the global sensitivity analysis, 13 selected model parameters were calibrated using Gaussian priors which were
centered around the initial parameter value, with standard deviations according to the uncertainty ranges (Table 1). Fheranges

425

f—

t should be noted that the presented calibrated parameter values in Table |

correspond to the single best parameter set for all four sites combined (i.e., the parameter set that had the highest likelihood in

the case of no cross-validation).



Additionally, we thank the reviewer for bringing to our attention the mismatch between the
calibrated values that we reported in Table 2 (& results) and the distributions in the figures. The
calibrated parameter set reported in the previous version of the manuscript was in fact a mistake
from our side. Due to an oversight, we had taken a wrong parameter set from a pre-test of the new
calibration, rather than the one of the final calibration. Hence, the reported values were incorrect.
This has now been corrected. We updated this information in the table and the main text, using the
values from the newest calibration (see above).

Following the global sensitivity analysis. 13 selected model parameters were calibrated using Gaussian priors which were

centered around the initial parameter value, with standard deviations according to the uncertainty ranges (Table 1). Theranges

425 eIt should be noted that the presented calibrated parameter values in Table |
correspond to the single best parameter set for all four sites combined (i.e., the parameter set that had the highest likelihood in
the case of no cross-validation).

Compared to the range of the prior parameter sets, the ranges of the posterior parameter sets calibrated with data from all

430
parameter sets of the leave-one-site-out cross-validations were largely stmiarto—each-other{in agreement with each other
and with_the posterior parameter sets calibrated with data from all four sites. The exception was the parameter pmco2(1&2).
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B T s B e

440

445

450

455

\Cprd*ﬂwas the scaling factor for potential evapotranspiration (fwloss(4); from

95% posterior credibilit
pmco2(l-&2
rate-of the); from 0.10 t0 0.13 g ¢! yrr") and the passive SOM pool (decd; from 0.0035 to 0:6656-0.0060 g g™ yrywas partly
. which was however counterbalanced by a deerease-in-the-turnever rate-of the slow-SOM-peol-(deeS{reduction of the effect

The parameter that changed most strongly in the parameter sets calibrated with data from all four sites —Thestrongest

.75 to 0.94) thereby not including the initial value in the
interval (0.81 to 0.99; Table 1). Also the CUE of metabolic litter was reduced (by an increase of

from 0.54 to 0.91 interval (0.48 to 0.91

&

&

-1y but the initial value was still within the 95% posterior credibilit

of tillage on decomposition (clteff(1.2.&4); from H46-+6-0:06-10 to 5) and all three of these parameters contained their initial
values in the 95% posterior credibility intervals. The maximum harvest index slightly increased (himax; from 0.40 to 0.43
1); from2.25t02.62 g Cm”

Finally,

the optimum temperature for maize growth decreased (ppdf(1&); from 30 to 28.6 OC) while the maximum temperature for

maize growth increased (ppdf(2); from 9%%&&%@&6—)—?1—1&45 to 47.1 °C). Of the two parameters that translated measured
MAOC into SOC in the passive SOM poolwer s 5
624002 g '

— only IC was altered (from -0.1 to
but the initial value was still in the 95%

osterior credibility intervals(-0.25

10 0.06 g g”lvrh). Overall, the parameter correlations in the posterior parameter set across the four sites were minimal-and-in

2-tlow for soil carbon related parameters (around 0.4 at maximum), but stronger correlations existed

between

Fig. A3).

lant productivity-related parameters (e.g.. -0.7 between himax and prdx(1) and 0.58 between ppdf(1) and ppdf(2):

Some minor comments and corrections:

Line 20-23: The author claim that: “The model performance and the match between the cross-
evaluation posterior credibility intervals for different sites indicated the robustness of the model



parameterization and the reliability of the DayCent model for spatial upscaling of simulation.”
However, the manuscript did not perform a large-scale simulation, and the claim for “spatial
upscaling” should be removed or justified.

We agree that this was misleading, and thus refined the sentence to “for the conditions in Kenya”.

parameter. Together with the model performance for the different sites in cross-validation, this indicated the robustness

of the DayCent model parameterization and the—rehability-of-the Dayeent-med

20 its reliability for the conditions in Kenya. While DayCent poorly reproduced daily N,O emissions

Line 23: provide quantitative values (i.e., EF for daily N20) instead of just mentioning negative value.

Thanks, we did so.

20 its reliability for the conditions in Kenya. While DayCent poorly reproduced daily NoO emissions were-poorty+

ay G alties-ver eative(with EF ranging between -0.44 and -0.03 by site), cumulative seasonal N;O emissions
were simulated more accurately (EF ranging between 6:03-1d-6:62-0.06 and 0.69 by site). The simulated yield-scaled GHG

Line 70: The terms “validated” and “evaluated” were used interchangeably throughout the
manuscript. For instance, in line 9, “cross-evaluation” is used but in line 164, “cross-validation” is

used.

Thanks for pointing this out. We changed this to “evaluation of the model” throughout the text, with
the method of evaluation being named “cross-validation”. Any “cross-evaluation” was removed.

term “C sequestration” instead of “mineralization of SOC”

The ambiguity of this statement was also pointed out by other reviewers and we changed it
accordingly:

soil and optimizing crop yield (that is, sustainable intensification). ISFM can be a source of N»O to the atmosphere (Leitner

ractices, it reduces SOC losses or even increases SOC

compared to standard

80 et al., 2020) but =

(Laub et al., 2023a), thereby mitigating CO,

ST

aemissions.

Line 134: Should this

“Tithonia diversifolia (TD) green manure and Calliandra calothyrsus (CC) prunings, low quality stover
of Zea mays (MS) and sawdust from Grevillea robusta trees (SD), locally available farmyard manure
(FYM) and a control treatment”

be written as following.



“Tithonia diversifolia (TD) green manure, Calliandra calothyrsus (CC) prunings, low quality stover of
Zea mays (MS), sawdust from Grevillea robusta trees (SD), locally available farmyard manure (FYM)
and a control treatment”

Thanks! This was in fact not very clear and has been revised:

105 ments, with two crops per year, one in the long rainy season and one in the short rainy season. The experimental design was
identical at all four sites and has been described in detail in earlier publications (Chivenge et al., 2009; Gentile et al., 2011:
Laub et al.. 2023a, b). Organic resource treatments consisted of high quality Tithonia diversifolia (TD) green manuresne-, high
quality Calliandra calothyrsus (CC) prunings, low quality stover of Zea mays (MS yanet, low quality sawdust from Grevillea

robusta trees (SD). locally available farmyard manure (FYM), and a control treatment (CT) without organic resource additions.

In Table 1. values for model parameters and coefficient of variation seems truncated given the table
description (i.e., parameter values and coefficient of variations were missing)

The table description has been updated to specify that not all parameters considered in the GSA are
shown in Table 1.

Table 1. DayCent model paramelters and the coefficient of variation used in the calibration. Displayed are parameters considered for calibra-
tion due to total sensitivity index > 2.5% (top) and with a total sensitivity index > 1% (bottom). The remainder of parameters (<1%) are not

included in this table and can be found in the supplementary (Table A3). The presented calibrated parameter values correspond to the single

arameter set with the highest likelihood, which was derived by using the data from all four sites combined. The posterior was also derived

by using the data from all four sites combined. Abbreviations: CV, coefficient of variation; SD, standard deviation, 95% CI, 95% credibility

Equation before line 185, if SOC stock estimates are for 0-30 cm as IPCC-recommended, it should be:

[soc] 30(kg [ha] ~(-1))=(1- B~30)/(1-B~15)* [soc] _15

Provide the value used for beta”15 and beta”30 used in the equation. The equation number is also
missing.

The comment likely refers to the track change version of the article, in which the equation was still
visible (in red, indicating that it had been removed in this version).

Because we have removed the equation and went for a different approach to calculate SOC stocks in
the first 30 cm of soil, it is not longer necessary to provide beta. This new approach is described in
lines 146ff (track-change version) or 139ff (clean version).

Line-261, it is a little confusing and not clear what the author wants to convey. Specifically, data
availability and which model parameters and value used for initialization.

The sentences were overhauled:



To-parameterizethe-orsantenputs—themeantienineontent]t was assumed that the organic resource inputs had the same

T

Table A2)were—wused. This approach was used because measurements were not

fratios per organic resource were assumed

205 available for all sites and years, and was justified as an analysis of variance of data from the years 2002, 2003, 2004, 2005 and

Line-266: It was not clear whether the author’s discussion about aboveground biomass (AGB), yield

(Y), and harvest index (HI) is based on the measured data or modeled values. In DayCent Y = HI*AGB
(for grain crops). However, the parameter HIMAX (maximum harvest index) is adjusted due to stress
to (HI <= HIMAX).

This was about the measured data. We added this to the sentence, as follows:

This was the mean value of measured grain C content across sites (standard deviation 1.8%) in the short rainy season 2018 and
long rainy season 2019 (data not shown). Given the strong correlation between maize grain yield and aboveground biomass in

210  the measured data (r = 0.87), the aboveground biomass data was transformed to harvest index data for the model calibration

Line-395: Please clarify what multiply/divided by 3 and 10 means. Maybe it is self-explanatory when
full view of Table-1 is available.

This sentence was reformulated to remove any ambiguity.

For parameters with large and very large ranges, the upper Aewerboundaries were the initial parameter values multiplied /by

3 and 10, respectively. the lower boundaries were the initial parameter values divided by 3 and 10, respectively. The parameter

Equaton-3: The Likelihood function provided in Equation-3 is applicable to only one type of
measurement, such as Yield or SOC. Please provide details on how multiple likelihoods—for SOC,
Yield, and Harvest Index were combined, if at all, for the final Bayesian calibration. If they were not
combined, please provide an explanation.

In fact, we did combine all types of measurements in the same likelihood function. This was possible
by supplying a weighting factor (the inverse of the standard deviation; SD) to the mixed effects
model. The formula we used in R for the loglikelihood was:

logLik(Imer(resid~-1+(1|Site/date),weights = (1/SD),data=EC_HI_SOC))
We have further clarified this in the text.

325 the inverse of the median standard deviation (of each type of measurement at each site) as weight. By using the inverse of

the standard deviation of each type of measurement as weight of the zero-intercept model. it is possible to include different

types of measurements into_the same likelihood function. This is similar to what is done in weighted analyses commonly

performed in meta-analyses (Mohring and Piepho. 2009). The logLik() function is then used to extract the log-likelihood.

e R

which is transformed to the likelihood by raising e to the power of the log-likelihood.

Line 571: The posterior credibility intervals in analog to confidence intervals in frequentist statistics
and posterior prediction interval analog to prediction intervals. The coverage probability (i.e., 95% of
observed) within the 95% Posterior prediction interval is only valid comparison but not with posterior
credibility intervals (note that posterior credibility interval < posterior prediction interval).



We agree that these sections were a bit misleading and have removed these comparisons from the
text.

465 were eliminated in-Ahideka-and Siadada-redueed-in-at Sidada, reduced at Embu, but increased in-at Machanga.

Prove all the missing equations used in the analysis, (one such example is the equation for aggregated
model output for the GSA) in the supplementary section.

Thanks for this suggestion. We went through the whole manuscript with a focus on this issue and
added several equations to the supplementary section.



A1 Pedotranfer functions to derive the hvdraulic parameters

The equations used to calculate the soil hydraulic properties were based on the pedotransfer functions of Hodnett and Tomasella (2

745
750 Here, 6,.., f/.. v, and n are the soil water retention parameters of van Genuchten (1982), Sa, Si and Cl are Sand, Silt, and Clay

content (in %), BD is the bulk density (t m’3) CEC is the cation exchange capacity (cmol ke . pH is the soil pH measured in

H>0. and SOC is the SOC content (g ke™).

The wilting point (WP) and field capacity

FC) values were then calculated as

s —10,
WP =g+ O, =0) (A3)
(14 (o % |—15000])m) ==
755 FC =0, + (6 ) (A6)

(14 (a x |—330[)n) !~ %

was calculated using the Saxton and Rawls (2006) equation, with values of the w

. calculated with the equation from Hodnett and Tomasella (2002):

ater retention curve, «v and n (van Genuchten, 1982)

_ In(FC)—In(WP)

= Tn(1500) — (). A7)

1030 x (0, — FC)BN

Rs 10 % 60 % 60

(A8)

760 Here, A is the slope of logarithmic tension-moisture curve and /g is the saturated water conductivity (cm s!).
A2 Equations for the global sensitivity analysis
The means across all sites, which were used in the GSA were calculated as follows:
N
I Yo Mod,;
Mean = — =l W A9
n Z N (49)
J=1
Here n is the number of sites (4). N is the number of modelled values per site. and Mod,;; are the individually modelled
765 values. For aboveground biomass and grain vield, N corresponded to the total number of modelled vields and biomass at all

treatments and seasons. For SOC and soil N stock N corresponded to the total number of treatments per site. The reason is that
because changes in SOC and soil N stocks are expected to be stronger the longer a simulation lasts, only the stocks from the
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Reviewer 3:

The study uses a Bayesian calibration approach (sampling importance resampling) with leave -one-
site-out cross-validation to calibrate the biogeochemical model Daycent to yields, biomass and SOC at
four sites in Kenya. The authors addressed adequately the suggestions of previous reviewers and the
community comment and improved the quality of the manuscript. Overall, the manuscript is well-
written, methods are sound and described sufficiently, Results are well described and followed by a
sensible Discussion. | have some suggestions and comments (see below), and suggest to publish the
manuscript after these minor revisions.

Thank you for your overall positive assessment of our manuscript and for the constructive feedback
that you provided. We have incorporated the necessary changes, based on your feedback. See the
details below.

| refer to the track changes version with my line numbers.

Abstract L33: Daycent is well-suited to estimate the impact of ISFM The impact of ISFM on what? ->
Please add

Thanks for spotting this unclear formulation. We added “on maize yields and SOC changes” to the
sentence.

25 application of mineral N and of manure at a moderatetate of 1.2t C ha'! yr'!. In conclusion, our results indicate that DayCent

is well-suited to-estimatefor estimating the impact of ISFM —on maize yield and SOC changes. They also indicate that the

Introduction

L82: so a propagation of errors is possible in upscaling exercises

We can be sure the errors propagate in upscaling exercises even if you don’t track them, you probably
mean: So an estimation of uncertainties is possible in upscaling exercises

You are right, this was not formulated well. Your suggestion was incorporated.

65 long-term experiments. Ideally, this calibration would include the uncertainty in the model parameters and model outputs

(Clifford et al., 2014), so spropagationoterrors-an estimation of uncertainties is possible in upscaling exercises (Stella et al.,

2019). This is especially relevant given a recent study showing considerable uncertainty in DayCent‘s SOM turnover rates,

L103: ISFM can.... but at the same time mitigate CO2 emissions due to the mineralization of SOC
That’s an ambiguous formulation, please rephrase to an unmistakable sentence.

Thanks. We rephrased as follows:

soil and optimizing crop yield (that is, sustainable intensification). ISFM can be a source of N,O to the atmosphere (Leitner
80 et al., 2020) but at-the same time mitigate- COcompared to standard practices, it reduces SOC losses or even increases SOC
(Laub et al., 2023a), thereby mitigating CO, emissions due-te heralization-of SOC (Laubetalk-2023a)emissions.

L105: displaying the confidence in model parameters by Bayesian calibration



Not clear what you mean by that

We reformulated this as follows:

Kenyan conditions using experimental data from four long-term experiments, displaying the eonfidence—in-uncertainty of
85 model parameters by Bayesian calibration, and (iii) to use the calibrated model to gain understanding of the GHG balance of

the different ISFM treatments.

Methods

L253:,. taken calculated with the equation
- Typo, remove ‘taken’

Removed, thanks for spotting this.
method to estimate Kis. K. was calculated using the Saxton and Rawls (2006) equation, with values of the water retention

curve, cv and n (van Genuchten, 1982), taken-calculated with the equation from Hodnett and Tomasella (2002). The equations
200 can be found in the supplementary material (Al).

L495: in CO2 eq kg-1 maize grain yield
- in kg CO2 eq kg-1 maize grain yield

We interpreted this comment as a hint to missing units and added also the unit of the annual GHG
balance.

400 Here, ASOC is the change in SOC content (kg C ha! yr’l}, N>O the cumulative N>O flux (kg N,O ha'! yr")‘ The CHy4
oxidation capacity was not considered, because it usually makes a very limited contribution to GHG balance in rainfed cropping
systems (Lee et al., 2020) and we did not have data to evaluate the reliability of this simulated flux. In addition to the net annual
GHG balance (in { COzeq ha'! yrr!), we calculated the yield-scaled GHG balance (in COseq kg™ maize grain yield) by dividing

the cumulative GHG balance over the entire simulation period by cumulative simulated yields (dry matter base).

Results
Figure 2
My visual impression is that prior and posterior distributions are quite similar.

Why is the posterior less narrow in Figure 2 compared to the prior? Wouldn’t one expect the
calibration to constrain the parameters and give a narrower posterior compared to the prior?

We agree that they were very similar. Based on your comment and a comment from reviewer 2, we
therefore increased the range of the prior to by increasing the coefficient of variation by a factor of
1.5. This led to the data clearly constraining the posterior. We have updated the results accordingly.
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Following the global sensitivity analysis, 13 selected model parameters were calibrated using Gaussian priors which were

centered around the initial parameter value, with standard deviations according to the uncertainty ranges (Table 1). The-ranges

425 &It should be noted that the presented calibrated parameter values in Table |
correspond to the single best parameter set for all four sites combined (i.e., the parameter set that had the highest likelihood in
430

arameter sets of the leave-one-site-out cross-validations were largely similarte—eaeh-ether+in agreement with each other

and with the posterior parameter sets calibrated with data from all four sites. The exception was the parameter

mco2(1&2),

435

{pfd%kwas the scaling factor for potential evapotranspiration (fwloss(4); from 2

o .75 to 0.94) thereby not including the initial value in the
440 95% posterior credibility interval (0.81 to 0.99; Table 1). Also the CUE of metabolic litter was reduced (by an increase of

pmco2(1:&2) from 0.54 to0 0.91

1) but the initial value was still within the 95%

osterior credibility interval (0.48 to 0.91

1), The turnover rates increased for both the slow SOM pool (decS(Z&%'—ﬁfﬁm—F@%ﬁ—HrH.—Aﬁﬂ'ﬁefe&&&ef—ﬂi&mfﬁwef
rate-ofthe-); from 0.10 t0 0.13 and the passive SOM pool (dec4: from 0.0035 to 0:0656-0.0060 g ¢! yr! ywas parthy

. which was however counterbalanced by a e : : stow Streduction of the effect

445 of tillage on decomposition (clteff(1.2.&4); from 6:46-to-0:06-10 to 5) and all three of these parameters contained their initial
rdx(1) )
Finally,

MWEWWI&MMMMWM
450 maize growth increased (ppdf(2): from : - 'Mwo parameters that translated measured

and so did the potential production of maize per unit of light interception - from 2.25 10 2.62 ¢ C m™2 langle

MAOC into SOC in the passive SOM pool et - only IC was altered (from -0.1 to
=-0:2+-0.02 ¢ but the initial value was still in the 95% posterior credibility intervals(-0.25
10 0.06 g g'ly+L). Overall, the parameter correlations in the posterior parameter set across the four sites were timitmaksmein

ne-ease-strongerthanrH2-+low for soil carbon related

arameters (around 0.4 at maximum), but stronger correlations existed

455

between plant productivity-related

Fig. A3).

arameters (e.g., -0.7 between himax and prdx(1) and 0.58 between ppdf(1) and ppdf(2):

Figure 2 caption: Not clear what you want to say by 'uncertainty-based Bayesian model calibration’,
but since this is not a term generally used or a method description, | would leave out the term
'uncertainty-based’.

We changed this formulation as follows:

Figure 2. Prior compared to the posterior model parameter distribution resulting from the uneertainty-based-Bayesian model calibration of

DayCent using data from all sites combined (top) and the leave-one-site-out cross-validation (bottom). The uncertainty ranges of the priors
were based on the range of parameter values found in the literature and increased b

a factor of 1.5, because DayCent was applied to tropical

calibrated based on temperate sites. Dashed vertical lines represent the values of the initially selected

parameter set. The posterior distributions are based on all four study sites combined. For the description of the parameters see Table 1.



Figure 7: ‘the black solid line the simulation by the best parameter set for each site’ You did not
calibrate by site, but the caption can be understood as if you did. Since the panels are per site
anyway, | would recommend to omit ‘for each site’ here in the caption.

Thanks for spotting this ambiguity. We omitted “for each site” as suggested:

Figure 7. Measured (dots) versus simulated SOC stocks over time at the four study sites for the different organic resource and chemical
nitrogen fertilizer treatments. Error bars represent 95% confidence intervals for measured data, the black solid line the simulation by the best
parameter setfor-each-site. Grey bands represent the 95% credibility intervals of the model posterior simulations, calibrated by leave-one

site-out cross-validation. Note that due to intense soil erosion, data from Machanga was not used in the calibration process.

Figure 8: Credibility intervals for cumulative fluxes are quite narrow, and do not cover the 1:1 line. Are
these really credibility intervals? Unlike the other figures, N20 was not calibrated. | think they are
quite misleading here, since N20 was not included in the calibration so of course they remain narrow
if you put narrow posterior distributions. Or is it variance that is displayed? Please add explanation in
the caption.

You are right and we added this fact to the explanation:

Figure 8. Simulated compared to measured N,O emissions at the four study sites for the different organic resource and chemical nitrogen
fertilizer treatments, based on the calibrated parameter set using leave-one-site-out cross-validation. Displayed are the measured versus
modelled per treatment for the days where measurements were conducted (top) and for the mean of cumulative flux measurements per season
using the trapeziod method (bottom). The 808 data points (top) correspond to the daily measurements from the experimental treatments over

one to two seasons, depending on the site. Symbols represent the different organic resource and chemical nitrogen fertilizer treatments. Error

bars represent 95% confidence intervals (measurements) and credibility intervals (simulations). Note that the credibility intervals are onl

informed by vield, SOC and harvest index data and therefore do not represent the full uncertainty of N>O emissions. Abbreviations: EF,

Nash-Sutcliffe medeting-model efficiency; RMSE, root mean squared error; SB, squared bias; NU, non-unity slope; LC, lack of correlation.

For claiming that the posterior distributions are suitable for upscaling this must also be true for N20,
while my view for N20 a realistic uncertainty estimate is not shown.

This is true, we added a sentence on this in the results and another one in the discussion:

per season, there was a better agreement between the simulated and measured values. All sites, except Machanga, showed
positive model efficiencies (highest in Embu, 0.62: lowest in Sidada, 0.03:-). but generally underestimated the uncertainty

around cumulative N>O emissions (Fig. 8). Additionally, the correlation between simulated and measured N>O emissions was

redicted cumulative N>O emissions was lower than the uncertainties of the

655 Nonetheless, the fact that the uncertainty around

measurements indicates_that the posterior, which was only calibrated with yield, SOC, and harvest index data. underestimates

the uncertainty around NoO emission predictions. Thus, although DayCent’s simulations of N>O emissions are superior to

roaches (dos Reis Martins et al., 2022), simulating N>O emissions remains challenging and highly

using emission factor app

uncertain due to the complexity of the processes involved and their high temporal and spatial variability. Given the limited bias

Which ISFM method is simulated with highest accuracy etc?



If you target a robust fit for upscaling the effect of different ISFM methods, then it might be worth
presenting the bias and rmse per treatment across site.

Thanks for this suggestion. We agree and have added this to the Supplementary Section.
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Figure A8, Treatment-specific simulated compared to measured changes in SOC stocks (without the Machanga
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experiment at the four study sites for the calibrated parameter set by leave-one-site-out cross-validation. Abbreviations: EF, Nash-Sutcliffe

model efficiency; RMSE, root mean squared error; SB, squared bias; NU, non-unity slope; LC, lack of correlation.

We further added a few sentences addressing these new results in the results section:
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(0.18) being the exception; Fig A7). Interestingly, DayCent poorly distinguished the mean yields and aboveground biomass of
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treatments with high compared to very high rates of N inputs (i.e., the differences between the different organic resources and

the control within the +N treatment). An additional test of the model sensitivity of mean yields to different levels of mineral N
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And in the discussion section:

able for upscaling of model simulations. Specifically, the yields of the ISFM treatments applying farmyard manure, Calliandra,

R A e v s N S S

and Tithonia were simulated well. both with and without the addition of mineral N fertilizer (Fig A7), The changes in SO

uuuuuu oree iy e S e S e e e e e B

570 wvariability is captured less accurately than the mean yields (lower RMSE) and that changes in SOC are better represented at

Figure 9: Please explain 9b in the caption (Mention 9 a b c in the caption.)

Thank you. We added this to the caption:

Figure 9. Cumulative simulated greenhouse gas (GHG) balance of N>O emissions and CO» emissions due to loss of SOC at the four study
sites for different organic resource and chemical nitrogen fertilizer treatments -—combined throughout the simulated period (16 years for

Aludeka/Sidada; 19 years for Embu/Machanga). Displayed are the GHG balance a) per area of land and year, b) the difference of GHG

»»»»»»»»»» S e el

equivalent over a 100-year horizon.

In several table & figure captions you explain the lowercase letters:

Same lowercase letters indicate the absence of a significant difference in XYZ .... Easier to read would
be a positive formulation: Different lowercase letters indicate a significant difference in XYZ between

We agree that the positive wording you suggest sounds simpler, but it is ambiguous and strictly
speaking not correct (see Piepho, 2018). To make it simpler, we adjusted it to the formulation that
Piepho (2018) suggested: “Means not sharing any letter are significantly different”.

Table A2. Mean measured chemical characteristics (and 95% confidence intervals) of organic resources applied at all sites. Measurements

were available from Embu and Machanga from 2002 to 2004, all sites from 2005 to 2007 and in 2018. Significant differences in residue

the creative common license 4: http://creativecommons.org/licenses/by/4.0/.

Figure A2. Subsoil SOC stocks for the 2.5-4.7 kt ha’ equivalent soil mass layer, corresponding to an approximate soil depth of 15-30 cm.

Displayed are the least square means estimated by the lincar mixed model described in (Laub et al., 2023a) for planted plots by treatment

Diversifolia. 0, 1.2 and 4 correspond to C additions of 0, 1.2 and 4 t Cha™ yr'.

Discussion & Conclusion
These sections make sense to me and | have no further comments.

Thank you for your constructive feedback.



References for the revision:

Georgiou, K., Jackson, R.B., Vinduskova, O., Abramoff, R.Z., Ahlstrém, A., Feng, W., Harden, J.W.,
Pellegrini, A.F.A., Polley, HW., Soong, J.L., Riley, W.J., Torn, M.S., 2022. Global stocks and
capacity of mineral-associated soil organic carbon. Nat Commun 13, 3797.
https://doi.org/10.1038/s41467-022-31540-9

Gurung, R.B., Ogle, S.M., Breidt, F.J., Williams, S.A., Parton, W.J., 2020. Bayesian calibration of the
DayCent ecosystem model to simulate soil organic carbon dynamics and reduce model
uncertainty. Geoderma 376, 114529. https://doi.org/10.1016/j.geoderma.2020.114529

Kamoni, PT., Gicheru, PT., Wokabi, S.M., Easter, M., Milne, E., Coleman, K., Falloon, P., Paustian, K.,
2007. Predicted soil organic carbon stocks and changes in Kenya between 1990 and 2030.
Agriculture, Ecosystems & Environment, Soil carbon stocks at regional scales 122, 105-113.
https://doi.org/10.1016/j.agee.2007.01.024

Menichetti, L., Katterer, T., Bolinder, M.A., 2020. A Bayesian modeling framework for estimating
equilibrium soil organic C sequestration in agroforestry systems. Agriculture, Ecosystems &
Environment 303, 107118. https://doi.org/10.1016/j.agee.2020.107118

Piepho, H.-P., 2018. Letters in Mean Comparisons: What They Do and Don’t Mean. Agronomy Journal
110, 431-434. https://doi.org/10.2134/agronj2017.10.0580

Tupek, B., Launiainen, S., Peltoniemi, M., Sievdnen, R., Perttunen, J., Kulmala, L., Penttil3, T., Lindroos,
A.J., Hashimoto, S., Lehtonen, A., 2019. Evaluating CENTURY and Yasso soil carbon models for
CO2 emissions and organic carbon stocks of boreal forest soil with Bayesian multi-model
inference. European Journal of Soil Science 70, 847—-858. https://doi.org/10.1111/ejss.12805



