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Abstract. The interactions between the terrestrial biosphere, atmospheric chemistry, and climate involve complex 16 

feedbacks that have traditionally been modeled separately. We present a new framework that couples the Yale 17 

Interactive terrestrial Biosphere (YIBs), a dynamic plant-chemistry model, with the RegCM-Chem model. 18 

RegCM-Chem-YIBs integrates meteorological variables and atmospheric chemical composition from 19 

RegCM-Chem with land surface parameters from YIBs. The terrestrial carbon flux calculated by YIBs, are fed 20 

back into RegCM-Chem interactively, thereby representing the interactions between fine particulate matter 21 

(PM2.5), ozone (O3), and carbon dioxide (CO2). For testing purposes, we carry out a one-year simulation (2016) at 22 

a 30 km horizontal resolution over East Asia with RegCM-Chem-YIBs. The model accurately captures the spa-23 

tio-temporal distribution of climate, chemical composition, and ecological parameters. In particular, the estimated 24 

O3 and PM2.5 are consistent with ground observations, with correlation coefficients (R) of 0.74 and 0.65, respec-25 

tively. The simulated CO2 concentration is consistent with observations from six sites (R ranged from 0.89 to 0.97) 26 

and exhibits a similar spatial pattern when compared to carbon assimilation products. RegCM-Chem-YIBs pro-27 

duces reasonably good gross primary productivity (GPP) and net primary productivity (NPP), showing seasonal 28 

and spatial distributions consistent with satellite observations, and mean biases (MBs) of 0.13 and 0.05 kg C m-2 29 

year-1. This study illustrates that the RegCM-Chem-YIBs is a valuable tool to investigate coupled interactions 30 

between the terrestrial carbon cycle, atmospheric chemistry, and climate change at a higher resolution in regional 31 

scale.  32 



2 

 

1 Introduction 33 

Air pollution and climate change are major focal points in atmospheric and environmental science (Hong et 34 

al., 2019; Kan et al., 2012). In this respect, China exhibits both high air pollution levels and large greenhouse 35 

gas emissions (Zheng et al., 2018; Li et al., 2016a). The consequences of China's air pollution on global, region-36 

al, and urban climate are significant (Liu et al., 2022; Lu et al., 2020). Conversely, global warming impacts the 37 

dynamics, physics, and chemical mechanisms underlying atmospheric pollutant formation, underscoring a ro-38 

bust link between atmospheric chemistry and climate change (Baklanov et al., 2016; Fiore et al., 2015; Fiore et 39 

al., 2012).  40 

PM2.5, O3, and CO2 are important for regional air pollution and climate. O3, a potent pollutant, is harmful 41 

for human health and can also harm chloroplasts in plant cells, consequently influencing the carbon assimilation 42 

efficiency of land ecosystems (Xie et al., 2019; Ainsworth et al., 2012). Similarly, PM2.5 is not only one of the 43 

most dangerous pollutants for human health (Kim et al., 2015), but also affects atmospheric radiation mechanics, 44 

modulates radiation fluxes reaching vegetation canopies, and hence impacts plant physiological processes and 45 

terrestrial carbon fluxes (Lu et al., 2017; Strada and Unger, 2016). Terrestrial ecosystems, absorbing nearly 30% 46 

of anthropogenic CO2 emissions, play an essential role in the global carbon cycle, for which even minor altera-47 

tions can trigger significant oscillations in atmospheric CO2 concentrations, potentially destabilizing the global 48 

climate (Forkel et al., 2016; Ahlstrom et al., 2015). As a result, PM2.5, O3, and CO2 exhibit intricate interplays. 49 

Models that couple climate and chemistry are vital tools for investigating the interplay between environ-50 

mental pollution and climate warming (Dunne et al., 2020; Yahya et al., 2017), and in particular the direct and 51 

indirect influences of aerosols, O3, and greenhouse gases on climates at different scales (Chutia et al., 2019; Pu 52 

et al., 2017; Li et al., 2017a). For example, the Atmospheric Chemistry and Climate Model Intercomparison 53 

Project (ACCMIP) addresses this issue through the use of a range of global coupled climate-chemistry models 54 

(Young et al., 2013; Shindell et al., 2013; Lamarque et al., 2013). In fact, China has achieved significant ad-55 

vancements in atmospheric chemistry and coupled climate models during recent years, both at the global and 56 

regional scale. Representative models encompass BCC_AGCM2.0_CAM, BCC-AGCM_CUACE2.0, 57 

RIEMS-Chem, and RegCCMS. 58 

BCC_AGCM2.0_CAM was coupled by the China Meteorological Administration through direct integra-59 

tion of the National Climate Center's atmospheric circulation model (BCC-AGCM) with the Canadian aerosol 60 

model (CAM) (Zhang et al., 2012). Atmospheric model BCC-AGCM2.0 was developed by the National Climate 61 
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Center. For example, at the regional scale the Institute of Atmospheric Physics of the Chinese Academy of Sci-62 

ences, has constructed the Regional Integrated Environmental Modeling System (RIEMS), which is widely used 63 

in studies on East Asian regional climate change and severe weather systems (Scheuch et al., 2015; Xiong et al., 64 

2009). It incorporates atmospheric chemistry and aerosol dynamics into the Regional Integrated Environment 65 

Modeling System and produces online simulations of meteorological parameters, aerosol chemical composition, 66 

optical characteristics, radiation forcing, and aerosol-induced climate feedback (Li et al., 2014; Li et al., 2013a; 67 

Han et al., 2012).  68 

The Nanjing University developed the Regional Climate Chemistry Modeling System (RegCCMS), a syn-69 

thesis of the regional climate model RegCM2 and the tropospheric atmospheric chemistry model TACM, pri-70 

marily oriented toward investigating the spatio-temporal distribution, radiation forcing, and climatic effects of 71 

tropospheric O3 and sulfate aerosols. Subsequently, RegCM3 was coupled with TACM, integrating modules for 72 

aerosols into RegCCMS (Zhang et al., 2014; Li et al., 2009). The system incorporates parameterization schemes 73 

facilitating the simulation of aerosols' direct, indirect, and semidirect climatic effects. Extensive evaluations 74 

have been carried out regarding major aerosol impacts on the meteorology and regional climate within East Asia 75 

(Zhuang et al., 2013; Zhuang et al., 2011; Wang et al., 2010). Subsequently, Shalaby et al. (2012) developed the 76 

regional climate-chemistry model RegCM-Chem, by coupling the CBM-Z gas phase chemistry module to ver-77 

sion 4 of the RegCM system, RegCM4 (Giorgi et al., 2012). RegCM-Chem also includes a simplified aerosol 78 

scheme including radiatively interactive sulfates, carbonaceous aerosols, sea salt, and desert dust (Zakey et al., 79 

2006; Solmon et al., 2006), and it has been used for a variety of applications in different domains. 80 

By developing the regional climate-chemistry-ecology model RegCM-Chem-YIBs, in which the interactive 81 

biosphere model YIBs is coupled to RegCM-Chem. The model can produce multi-process simulations of re-82 

gional climate, atmospheric chemistry, and ecology, especially PM2.5, O3, and CO2, and their interactions with 83 

atmospheric variables (Xu et al., 2023; Ma et al., 2023b; Ma et al., 2023a; Xu et al., 2022; Gao et al., 2022; Xie 84 

et al., 2020). Here we expand on these previous studies. We carry out a one-year simulation (2016) at a 30 km 85 

horizontal resolution over East Asia with RegCM-Chem-YIBs and conduct a comprehensive assessment. We 86 

validate the simulation not only in terms of atmospheric variables but also in terms of atmospheric composition 87 

and ecological parameters, by comparison with a range of observations available for this period. 88 

The paper is organized as follows. In section 2 we first describe the RegCM-Chem-YIBs system, focusing 89 

in particular on the newly implemented coupling with the ecological component. We also describe the observa-90 
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tion datasets used in the model assessment. The simulations are then analyzed in section 3, while section 4 pre-91 

sents our conclusions and a general discussion of our results and future developments. 92 

2 Model and Methods 93 

2.1 Overall Framework 94 

In RegCM-Chem-YIBs, the atmospheric variables produced by RegCM (temperature, humidity, precipita-95 

tion, radiation, etc.) and atmospheric chemical compounds, such as O3 and PM2.5, produced by the chemis-96 

try/aerosol module are input into YIBs, which simulates the physiological processes of vegetation (such as pho-97 

tosynthesis, respiration, etc.), and calculates land process variables such as CO2 fluxes, BVOC emissions, and 98 

stomatal conductance. The output from YIBs is then fed back to RegCM-Chem, which adjusts the CO2, O3, and 99 

PM2.5 concentrations and their radiative and microphysical effects on the meteorological fields in the lower at-100 

mosphere, thereby achieving a full coupling between climate, chemistry, and ecology. Figure 1 shows the basic 101 

framework of the RegCM-Chem-YIBs coupled model. 102 

 103 

Figure 1. RegCM-Chem-YIBs Coupling Model Framework 104 

2.2 Descriptions of the RegCM-Chem model 105 

The inception of the RegCM system traces back to the late 1980s and early 1990s, when NCAR's (U.S. Na-106 

tional Center for Atmospheric Research) RegCM 1 was first developed for climate downscaling (Giorgi, 1990; 107 
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Giorgi and Bates, 1989; Dickinson et al., 1989). After a series of developments, subsequent versions were in-108 

troduced, such as RegCM2 (Giorgi et al., 1993), RegCM2.5 (Giorgi and Mearns, 1999), RegCM3 (Pal et al., 109 

2007), RegCM4 (Giorgi et al., 2012). The RegCM system presently managed, maintained, and expanded by the 110 

Earth System Physics (ESP) section of the Abdus Salam International Center for Theoretical Physics (ICTP), is 111 

open-source and extensively employed in regional climate studies, contributing to the establishment of a com-112 

prehensive Regional Climate Research Network (RegCNET) (Giorgi et al., 2006). The model can be applied to 113 

all regions of the globe (Giorgi et al., 2012) and is moving into a fully-coupled regional Earth system model 114 

framework through coupling with the ocean (Turuncoglu et al., 2013; Artale et al., 2010), lake (Small et al., 115 

1999), aerosol (Solmon et al., 2006), dust (Zakey et al., 2006), chemistry (Shalaby et al., 2012), hydrology 116 

(Coppola et al., 2003), land surface processes (Oleson et al., 2008). Of specific interest for our study, Shalaby et 117 

al. (2012) added a radiatively interactive gas-phase chemical module (CBM-Z) to RegCM4, generating 118 

RegCM-Chem, in which atmosphere physics and chemistry are fully coupled.  119 

2.2.1 Aerosol Mechanisms 120 

The RegCM model integrates a simplified aerosol framework, enabling the simulation of sulfate, black 121 

carbon (BC), organic carbon (OC), sea salt, and desert dust. The model specifies an external mix of aerosols and 122 

accounts for the influence of horizontal advection, turbulent diffusion, vertical transport, emissions, dry and wet 123 

deposition, and gas-liquid transition on aerosol concentration (Solmon et al., 2012; Giorgi et al., 2012; Zakey et 124 

al., 2006). The secondary organic aerosol scheme VBS (volatile basis set) has also been introduced into the 125 

model to further improve RegCM-Chem's simulation of tropospheric aerosols (Yin et al., 2015). The model in-126 

corporates the ISORROPIA thermodynamic equilibrium scheme to describe the formation process of secondary 127 

inorganic salts, thus enhancing the model's capability to simulate secondary inorganic aerosols (Li et al., 2016b). 128 

The further addition of bioaerosols was carried out by Liu (Liu et al., 2016). 129 

2.2.2 Gas phase chemical mechanism 130 

RegCM4-Chem includes the CBM-Z (Carbon Bond Mechanism-Z) atmospheric chemistry mechanism 131 

(Zaveri and Peters, 1999). The CBM-IV mechanism, recognized for its widespread use, serves as the basis for 132 

CBM-Z (Gery et al., 1989) and was developed to balance simulation accuracy and computational speed. Both 133 

CBM-IV and CBM-Z categorize volatile organic compounds (VOCs) into groups dependent on their carbon 134 
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bond formation and use lumped species to represent each group. However, CBM-Z includes additional species 135 

and reactions compared to CBM-IV, which are crucial for simulating typical urban environments and long-term 136 

simulations at regional to global scales. Enhancements in CBM-Z include (1) specific representation of stable 137 

alkanes; (2) updated parameters for higher alkanes; (3) separation of olefins into two categories based on differ-138 

ing reactions; (4) addition of peroxy alkane self-reactions significant in low-NOx, such as remote regions; (5) 139 

incorporation of reactions among alkanes, peroxyacyl radicals, and NO3, which are crucial nocturnally; (6) in-140 

clusion of long-lived organic nitrates and peroxides; and (7) refinement of isoprene and its peroxy radical chem-141 

istry. Collectively, these updates to the CBM-Z chemistry mechanism enhance the model's ability to more accu-142 

rately simulate long-lived VOCs and address the atmospheric chemistry transition from urban to rural settings.  143 

2.2.3 Radiation scheme 144 

RegCM4 adopts the CCM3 radiation scheme, which uses the delta-Eddington approximation for solar 145 

spectral radiation and accounts for the attenuation effect of atmospheric components such as O3, H2O, CO2, O2 146 

on solar radiation (Kiehl et al., 1996). The CCM3 radiation scheme, implemented in RegCM4, extends from 0.2 147 

to 5 µm, and is segmented into 18 bands. It uses the cloud scattering and absorption parameter scheme, and 148 

cloud optical characteristics. As cumulus clouds form, the cloud optical characteristics stretch from the cloud 149 

base up to the cloud top, and the radiation calculations assume random overlap. It is assumed in the model that 150 

the cloud thickness is equivalent to that of the model's vertical layers, with distinctive cloud water and ice 151 

contents assigned to high, middle, and low clouds (Slingo, 1989). 152 

2.2.4 Photolysis rate 153 

Meteorological conditions and chemical input fields determine the photolysis rate, with most variables 154 

dynamically produced by the RegCM's modules and updated every 3-30 minutes. SO2 and NOx, inverted from 155 

the US standard atmosphere's vertical profile, are model-defined. Owing to the computational demands of 156 

precise photolysis rates from the Tropospheric Ultraviolet‒Visible Model (TUV) method (Madronich and 157 

Flocke, 1998) and eight data stream spherical harmonics discretization, a look-up table and interpolation method 158 

are adopted. Considering the significant impact of clouds on the photolysis rate, it becomes crucial to adjust the 159 

cloud amount. Here we use the cloud optical depth information for each grid cell within the model. As the 160 

absorption and scattering of ultraviolet radiation by clouds reduce the photolysis rate inside and below the cloud 161 
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while enhancing it above the cloud, the correction value for the photolysis rate under clear sky conditions de-162 

pends on the position to the cloud layer. Hence, cloud height and optical depth are necessary for the photolysis 163 

rate computation (Chang et al., 1987). 164 

2.2.5 Deposition Processes 165 

In the model, dry deposition serves as the principal removal process for trace gases, with the deposition 166 

velocity being determined by three categories of resistance: aerodynamic, quasi-laminar sublayer, and surface 167 

resistance, encompassing soil and vegetation absorption. The latter is inclusive of both stomatal and nonstomatal 168 

absorption. The dry deposition module, taken from the CLM4 surface scheme, covers 29 gas-phase species and 169 

comprises 11 types of land cover. To enhance the accuracy of the daily variation in dry deposition simulation, 170 

both stomatal and nonstomatal resistances are accounted for in the dry deposition scheme. The calculation of all 171 

deposition resistances is performed within the CLM land surface model (Wesely, 1989). Wet deposition uses the 172 

MOZART global model's wet deposition parameterization scheme (Emmons et al., 2010; Horowitz et al., 2003), 173 

including 26 gas-phase species in CBM-Z, and the wet deposition amount is based on the simulated precipita-174 

tion. 175 

2.3 Descriptions of the YIBs model 176 

The YIBs model, pioneered by Yale University, integrates plant physiological mechanisms to simulate how 177 

photosynthesis, respiration, and other physiological processes respond to environmental drivers such as radia-178 

tion, temperature, and moisture. Moreover, YIBs simulates the carbon cycle both regionally and globally (Yue 179 

and Unger, 2015). For example, its simulation of terrestrial carbon flux closely matches ground flux observa-180 

tions and satellite-derived data in diverse geographical areas such as the United States and China (Yue and 181 

Unger, 2017; Yue et al., 2017). 182 

2.3.1 The main processes in YIBs 183 

In the YIBs model, eight distinct Plant Functional Types (PFTs) are incorporated, encompassing evergreen 184 

coniferous forest, evergreen broad-leaved forest, deciduous broad-leaved forest, shrub forest, tundra, C3 grass-185 

land, C4 grasslands, and crops. The model employs the Michaelis–Menten enzyme-kinetics scheme for simulat-186 

ing plant photosynthesis (Farquhar et al., 1980), and the total photosynthesis (Atot) of leaves is affected by Ru-187 
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bisco enzyme activity (Jc), electron transfer rate (Je), and photosynthetic product (triose phosphate) transport 188 

capacity (JS) limitation. 189 

2.3.2 Canopy Radiation Scheme 190 

A multilayer canopy radiation transmission scheme is adopted in YIBs for canopy radiation transmission 191 

(Spitters et al., 1986), consisting of a radiation transfer model based on the total leaf area index, extinction coef-192 

ficient, and vegetation height. The entire vegetation canopy is usually divided into 2 to 16 layers, and the spe-193 

cific number of layers can be automatically adjusted according to the height of the canopy. 194 

2.3.3 Biogenic Volatile Organic Compound Emission Scheme 195 

Differently from the traditional MEGAN scheme, the YIBs model applies a biogenic volatile organic com-196 

pound (BVOC) emission scheme on a leaf scale, which is better suited to describe the photosynthesis process in 197 

vegetation (Guenther et al., 1995). This introduces an effect of plant photosynthesis on BVOC emissions which 198 

is more closely related to the real physiological process of vegetation. BVOC emissions from leaves to the can-199 

opy are integrated to obtain total canopy emissions. The intensity of leaf BVOC emission depends on the rate of 200 

photosynthesis 𝐽𝑒 under electron transfer rate limitation, leaf surface temperature, and intracellular CO2 con-201 

centration (Yue and Unger, 2015): 202 

𝐼 = 𝐽𝑒 ∙ 𝛽 ∙ 𝜅 ∙ 𝜏 ∙ 𝜀 ,                               (1) 203 

where I is the intensity of leaf BVOC emission in units of µmol m−2[leaf] s−1. 𝐽𝑒  is the electron 204 

transport-limited photosynthesis rate, the calculation formula is as follows: 205 

𝐽𝑒 = 𝑎𝑙𝑒𝑎𝑓 ∙ 𝑃𝐴𝑅 ∙ 𝛼𝑞𝑒 ∙
𝐶𝑖 − Γ∗

𝐶𝑖 − 2Γ∗
 ,     (2) 206 

where 𝑎𝑙𝑒𝑎𝑓 is the leaf-specific light absorbance, PAR is photosynthetically active radiation, 𝛼𝑞𝑒 is the intrin-207 

sic quantum efficiency for photosynthetic CO2 uptake in the chlorophyll reaction system. 𝐶𝑖 is the internal leaf 208 

CO2 concentration. Γ∗ is the CO2 concentration compensation point in the absence of non-photorespiratory 209 

respiration (Collatz et al., 1991). 210 

𝛽 is the coefficient for converting electron transfer flux into BVOC emissions (Niinemets et al., 1999; 211 

Pacifico et al., 2011): 212 

𝛽 =
𝐶𝑖 − Γ∗

6(4.67𝐶𝑖 + 9.33Γ∗)
 ,            (3) 213 

where 𝜅 is related to the internal leaf CO2 concentration: 214 
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𝜅 =
𝐶𝑖_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝐶𝑖

 ,                        (4) 215 

where 𝐶𝑖_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 is the internal leaf CO2 concentration under standard conditions (when atmospheric CO2 is 216 

370 ppm). The 𝜏 term reflects the response of BVOC emission intensity to temperature: 217 

𝜏 = exp[0.1(𝑇 − 𝑇𝑟𝑒𝑓)] .         (5) 218 

where T is the blade surface temperature, 𝑇𝑟𝑒𝑓  is the standard temperature (30 °C). When the blade temperature 219 

is 40 °C, the BVOC emission intensity is maximum. As the temperature further rises, the BVOC emission grad-220 

ually weakens. In reality, such high temperatures are relatively rare and may only occur under extremely dry 221 

climate conditions. 222 

2.3.4 Ozone Damage Protocol 223 

When tropospheric ozone enters plants through stomata, it can directly damage plant cell tissues, thereby 224 

slowing the photosynthesis rate and further weakening the carbon sequestration capacity of vegetation. The 225 

YIBs model incorporates the semi-mechanistic parameterization scheme to delineate ozone's effect on plants 226 

(Sitch et al., 2007): 227 

𝐴 = 𝐴𝑡𝑜𝑡 ∙ 𝐹 ,                                                     (6) 228 

where A is photosynthesis minus the influence of ozone, 𝐴𝑡𝑜𝑡 is the total photosynthesis of leaves, F is the 229 

proportion of photosynthesis minus the influence of ozone, which depends on the ozone flux from the stomata 230 

into the vegetation that exceeds the threshold. 231 

𝐹 = 1 − 𝑎 ∙ max[(𝐹𝑜𝑧𝑛 − 𝐹𝑜𝑧𝑛𝑐𝑟𝑖𝑡), 0] ,       (7) 232 

where a is the sensitivity parameter of vegetation to ozone obtained based on observation data. 𝐹𝑜𝑧𝑛𝑐𝑟𝑖𝑡 repre-233 

sents the threshold corresponding to the damage caused by ozone to vegetation, 𝐹𝑜𝑧𝑛 represents the flux of 234 

ozone entering the page through the stomata: 235 

𝐹𝑜𝑧𝑛 =
[𝑂3]

𝑟𝑏 +
𝜅𝑂3

𝑟𝑠

 ,                                                   (8) 236 

where [O3] is the ozone concentration at the top of the canopy, 𝑟𝑏 is the boundary layer resistance, 𝜅𝑂3 is the 237 

ratio of O3 leaf resistance to water vapor blade resistance, 𝑟𝑠 is the stomatal resistance considering the influence 238 

of ozone: 239 

𝑟𝑠 = 𝑔𝑠 ∙ 𝐹 .                                                        (9) 240 

𝑔𝑠 is the leaf conductance without O3 effects. The set of equations (7), (8) and (9) yields a quadratic term in F 241 
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that can be solved analytically. 242 

2.4 Descriptions of the RegCM-Chem-YIBs model 243 

2.4.1 Coupling between RegCM-Chem and YIBs 244 

The integrated RegCM-Chem-YIBs model, an enhancement to the original RegCM-Chem, introduces CO2 245 

as an atmospheric constituent, incorporating its source-sink dynamics, transport, and diffusion processes. At-246 

mospheric CO2 concentration is primarily influenced by atmosphere-ocean CO2 exchange flux, biomass com-247 

bustion emissions, fossil fuel emissions, and terrestrial ecosystem CO2 flux. The model prescribes fossil fuel 248 

emissions, biomass combustion emissions, and atmosphere-ocean CO2 fluxes, while the terrestrial ecosystem 249 

CO2 fluxes are computed in real time via the coupled YIBs terrestrial ecosystem model. 250 

Within the coupled model system, meteorological variables (including temperature, humidity, precipitation, 251 

radiation, etc.) and atmospheric pollutant concentrations (O3 and PM2.5) generated by RegCM-Chem are incor-252 

porated into the YIBs model every six-minute intervals. This integration step is to be consistent with the integra-253 

tion time step of the chemistry module, thus maintaining synchronization between modules. Considering the 254 

complexity of chemical reactions and ecological processes, dynamic adjustments at short intervals enable the 255 

model to better capture transient interactions between ecology and the atmosphere. The choice of this adjust-256 

ment frequency balances the representation of actual processes with computational efficiency, ensuring that 257 

simulation results are both accurate and efficient. YIBs then simulates vegetation physiological processes such 258 

as photosynthesis and respiration, computing land surface parameters including CO2 flux, BVOC, and stomatal 259 

conductance. These outputs from the YIBs are subsequently integrated back into the RegCM-Chem model every 260 

six-minute intervals, the intricacies of this integration process lead to significant changes in various environ-261 

mental parameters. The major direct changes, prominently influencing the model's behavior, arise from altera-262 

tions in CO2 concentration. These changes are directly attributed to intricate physiological processes within the 263 

vegetation, including photosynthesis and respiration. The fluxes of CO2 through these biological processes play 264 

a pivotal role in shaping the atmospheric composition. On the indirect front, the integration of YIBs outputs in-265 

duces intricate variations in PM2.5 and O3 concentrations. These indirect changes are primarily orchestrated by 266 

shifts in BVOC emissions. The dynamic nature of these emissions contributes to the complexity of atmospheric 267 

chemistry, influencing the levels of PM2.5 and O3. Simultaneously, the integration process plays a crucial role in 268 

shaping the temporal variations of atmospheric temperature, humidity, and circulation. These changes over time 269 
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are intricately linked to variations in land surface parameters. The interplay of these variables illustrates the dy-270 

namic feedback loops between climate, chemical composition, and ecological processes within the integrated 271 

model system. 272 

2.4.2 Model input data 273 

The input data of RegCM-Chem-YIBs mainly includes four categories: surface data, initial boundary data, 274 

anthropogenic emission data and CO2 surface flux data, which are detailed below. 275 

(1) Surface data include surface vegetation cover type, terrain, and leaf area index. Land cover type infor-276 

mation is obtained from the MODIS and AVHRR satellites, employing the classification scheme suggested by 277 

Lawrence and Chase (Lawrence and Chase, 2007), which uses MODIS data to preliminarily distinguish forest, 278 

grassland, bare soil, etc., and combine this with AVHRR data to make a detailed forest classification. The dataset 279 

contains a total of 16 different vegetation functional types. To align with the classification conventions of the 280 

YIBs model, the original 16 vegetation functional types were converted into the corresponding 8 types recog-281 

nized by the YIBs model. The results are shown in Figure S1. 282 

(2) Initial and boundary data include initial and boundary conditions of meteorological variables and at-283 

mospheric chemical composition. Here we use ERA-Interim reanalysis meteorological data, a product from the 284 

European Center for Medium-Range Weather Forecasts (ECMWF) created through four-dimensional variational 285 

assimilation. The data is on 37 vertical levels, with a horizontal resolution of 0.125°×0.125°, and time resolution 286 

of 6 hours. Data for Sea Surface Temperature (SST) is provided by the weekly averaged Optimum Interpolation 287 

SST product (OI_WK) of the National Oceanic and Atmospheric Administration (NOAA) (Reynolds et al., 288 

2002). The initial and boundary conditions of atmospheric chemical components (e.g. O3), come from simula-289 

tions carried out with the global chemistry model MOZART (Emmons et al., 2010; Horowitz et al., 2003). In 290 

addition, the initial and boundary conditions for CO2 species come from the CarbonTracker global carbon as-291 

similation system (Peters et al., 2007) developed by NOAA Earth System Research Laboratory ESRL (Earth 292 

System Research Laboratory), which uses the ensemble Kalman filter algorithm to assimilate ESRL greenhouse 293 

gas observations and CO2 observation data provided by the network of collaborating institutions worldwide. The 294 

assimilated data includes not only conventional fixed-site observations but also mobile monitoring data such as 295 

aircraft and ships. Since 2007, yearly updated carbon assimilation products are provided by CarbonTracker, de-296 

livering global CO2 three-dimensional concentration data products every three hours. In this study, we utilized 297 
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the CT2019 product, updated in 2019, spanning a period from January 1, 2000 to March 29, 2019. 298 

(3) Anthropogenic emission data include precursors of ozone and particulate matter such as NOx, VOC, 299 

BC, OC, etc. The MIX Asian anthropogenic emission inventory developed by the Tsinghua University is used 300 

(Li et al., 2017b), which integrates the results of the emission inventories of various regions in Asia. The emis-301 

sions in China come from China’s multi-scale emission inventory MEIC (Multi-resolution Emission Inventory 302 

for China) and the high-resolution NH3 emission inventory developed by Peking University. The anthropogenic 303 

emissions in India come from the Indian local emission inventory developed by ANL (Argonne National Labor-304 

atory), while the anthropogenic emissions in South Korea come from the CAPSS (The Korean local emission 305 

inventory developed by the Policy Support System), and the man-made emissions in other regions are provided 306 

by the REAS (Regional Emission inventory in Asia) emission inventory version 2.1. The anthropogenic emis-307 

sions of major pollutants in the simulated area are shown in Figure S2. 308 

(4) Data pertaining to fossil fuel CO2 emissions are sourced from the MIX Asian anthropogenic emission 309 

inventory with a monthly time resolution. CO2 emissions resulting from biomass burning are derived from the 310 

FINN (Fire Inventory from NCAR) inventory (Wiedinmyer et al., 2011) developed by the National Center for 311 

Atmospheric Research. The FINN inventory has a daily time resolution. The model's ocean-atmosphere CO2 312 

exchange flux is obtained from the carbon flux product of the CarbonTracker assimilation system, constructed 313 

with the global atmospheric transport model TM5 and assimilating CO2 observation data via an ensemble Kal-314 

man filter algorithm. This provides global 1°×1° resolution CO2 exchange flux data between the ocean and the 315 

atmosphere updated every three hours. The emissions are detailed in Figure S3. 316 

3 Model Application 317 

3.1 Model setup 318 

To evaluate the performance of RegCM-Chem-YIBs we carried out a one-year simulation starting from 319 

December 1st, 2015, through December 31st, 2016. The initial month is used as spin-up period, and thus it is not 320 

included in the analysis. The simulation domain is centered at 36°N, 107°E, and covers a considerable part of 321 

East Asia, including China, Japan, the Korean Peninsula, and Mongolia, along with significant parts of India and 322 

Southeast Asia (Figure S4). The horizontal grid spacing is 30 km and we use 14 levels in the vertical, reaching 323 

up to 50 hPa. Section 2.4.2 provides a comprehensive description of the model input data. 324 
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3.2 Climate simulations in East Asian  325 

Given the importance of the climate for the East Asia region, we first present an assessment of the simula-326 

tion for the climate 2016 by comparison with the ERA-Interim data. The simulated temperature, specific 327 

humidity, and wind fields at varying altitudes and seasons compared well with the reanalyzed data (Figure S5~ 328 

Figure S9), especially temperature and specific humidity, while a tendency to overestimate wind speed is 329 

observed at the near surface and 850 hPa levels. The fields at 500 hPa show very close agreement with 330 

reanalysis data, indicating a strong mid-atmosphere forcing by the boundary conditions, while the simulated 331 

circulation patterns near the surface and at 850 hPa in summer tend to deviate more from the driving reanalysis. 332 

The simulated circulation patterns in the other seasons are basically consistent with the reanalysis data. 333 

We first calculated the daily average of the meteorological variables, such as temperature, wind speed, and 334 

specific humidity, from the model simulation and reanalysis data, respectively. Then we calculate the 335 

corresponding statistical indicator correlation coefficient (R), mean deviation (MB), and root mean square error 336 

(RMSE) based on the daily averages. Table 1 reports a number of statistical metrics of comparison between 337 

simulated and reanalysis meteorological variables at different heights. Correlation coefficients (R) range from 338 

0.95 to 0.98 for temperature, 0.71 to 0.97 for longitudinal wind, 0.81 to 0.92 for latitudinal wind, and 0.91-0.92 339 

for specific humidity, indicating a general good consistency between model and driving data, in line with previ-340 

ous studies (Zhuang et al., 2018; Zhou et al., 2014; Wang et al., 2010). 341 

Table 1. Statistical indicators for comparison between model simulation results and reanalysis data 342 

Heights 

Statistical 

index 

Air  

Temperature(K) 

Longitudinal 

wind (m/s) 

Latitudinal wind 

(m/s) 

Specific  

humidity (kg kg-1) 

500 hpa 

R 0.98 0.97 0.92 0.91 

MB 0.15  0.35  -0.03  0.00015  

RMSE 0.93  0.75  0.51  0.00019  

850 hpa 

R 0.96 0.77 0.85 0.94 

MB -0.98  0.38  0.15  -0.00066  

RMSE 1.1  1.08  0.59  0.00077  

Near sur-

face 

R 0.95 0.71 0.81 0.92 

MB -1.21  0.33  0.23  -0.00098  

RMSE 1.35  0.59  0.54  0.00112  
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(Correlation coefficients (R), mean biases (MB), and root mean square error (RMSE)) 343 

The magnitude of surface radiation flux directly determines the rates of photosynthesis in vegetation. For 344 

verification purposes, model surface solar fluxes were compared with data on solar energy at the surface 345 

retrieved from the Clouds and the Earth's Radiant Energy System (CERES) satellite, which has a 1° × 1° 346 

horizontal and monthly temporal resolution. Figure S10 shows the simulated surface net shortwave radiation in 347 

different seasons and comparison with observational data. The model tends to overestimate surface net 348 

shortwave radiation in spring and winter over India and summer over North China (Yin et al., 2014). Overall, 349 

the simulated surface net shortwave radiation agrees well with the CERES satellite retrieval results, capturing 350 

the spatial distribution and seasonal fluctuation patterns of surface shortwave radiation. The simulation findings 351 

from our study are consistent with earlier research regarding surface net shortwave radiation (Han et al., 2016). 352 

In conclusion, RegCM-Chem-YIBs demonstrates a good performance in simulating the climatological 353 

features of the East Asia atmospheric circulations, effectively reproducing the spatial distribution and seasonal 354 

variations of temperature, specific humidity, and radiation. 355 

3.3 Simulations of PM2.5, O3 and CO2 356 

In this section, we compare simulated PM2.5 and O3 concentrations against observational data from 366 357 

stations provided by the China National Environmental Monitoring Center. The geographical distribution of the 358 

simulated annual mean near-surface daily PM2.5 and maximum daily 8-hour average (MDA8) O3 concentration, 359 

along with the observed values, are shown in Figure 2. Supplementary Figure S11 then compares in a scat-360 

ter-plot format the observation and simulation results. Both figures demonstrate that the model reproduces the 361 

spatial distribution patterns of PM2.5 and O3, with a significant agreement between modeled and measured 362 

values across all stations. The statistical indicators of simulated and measured surface PM2.5 and O3 levels are 363 

shown in Table S1, showing a correlation between simulation and observations of O3 and PM2.5 of 0.74 and 0.65, 364 

respectively. The simulated O3 concentrations are generally lower than observed in the Fenwei Plain of China, a 365 

discrepancy possibly attributable to uncertainties in the emission inventory for this region. In summary, the 366 

RegCM-Chem-YIBs model demonstrates a good ability to capture the spatial distribution of observed 367 

near-surface ozone and particulate matter, especially in highly polluted areas.  368 
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 369 

Figure 2. Simulation and observation comparison of (a, b) O3 and (c, d) PM2.5 and their differences (e,f) in China. 370 

The differences are simulation minus observation. The colored circles in the figure represent station observations. 371 

Units: μg m-3. 372 

Measured and calculated monthly mean CO2 concentrations at six observation stations in East Asia from 373 

the World data Center for Greenhouse Gases are shown in Figure 3. Information on the six sites is listed in Table 374 

2. The simulated CO2 concentration agrees well with observations, with correlation coefficients ranging from 375 

0.89 to 0.97. However, in urban and coastal areas, the model performance deteriorates likely due to local emis-376 

sion fluctuations and errors in biogenic fluxes. Nevertheless, the model overall captures the seasonal variations 377 

in CO2 concentrations (Figure 3). This result likely stems from the complex relationship between biogenic and 378 

fossil fuel emissions, which are known contributors to observed seasonal CO2 patterns (Kou et al., 2015). A high 379 
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CO2 mixing ratio (412.3 ppm) is observed at the TAP site, which is associated with strong local emissions. Fur-380 

ther analysis into the specific sources contributing to elevated CO2 levels would provide valuable insights into 381 

localized patterns of emissions and their effects on regional carbon cycle processes. The model's ability to re-382 

produce the geographical and seasonal CO2 patterns serves as an illustration of its ability to capture the main 383 

processes driving CO2 dynamics. In summary, while discrepancies in urban or coastal areas highlight the chal-384 

lenges associated with capturing localized CO2 dynamics, the model's overall performance and ability to repro-385 

duce geographical and seasonal CO2 patterns demonstrates its usefulness in studying CO2 dynamics at a regional 386 

scale. 387 

Table 2. Information on six CO2 stations in East Asia and statistical indicators of observed and modeled CO2. 388 

Sites Latitude Longitude Elevation 

Observations 

(ppm) 

Simulations 

(ppm) 

R RMSE 

WLG 36.29 100.90 3810 404.3 402.9 0.94 1.75 

TAP 36.72 126.12 20 412.3 414.8 0.97 2.70 

UUM 44.45 111.08 992 405.7 403.7 0.96 2.66 

LLN 23.46 120.86 2867 406.0 407.2 0.93 1.63 

YON 24.47 123.02 30 407.1 407.4 0.89 2.80 

HK 22.31 114.17 65 407.9 409.7 0.92 15.67 

(Correlation coefficients (R) and root mean square error (RMSE)) 389 
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 390 

Figure 3. Modeled (blue) and observed (black) monthly mean CO2 concentrations validated at six sites in East 391 

Asia. Units: ppm. 392 

The limitations of ground-based CO2 observation stations, particularly their sparse spatial distribution, pose 393 

challenges in obtaining high-resolution CO2 data. To offset this limitation, data assimilation methods have been 394 

implemented to ensure a coherent global distribution of atmospheric CO2, effectively filling the void left by 395 

sparse ground-based observations. Here we utilize the Carbon Tracker global carbon assimilation system 396 

developed by the NOAA Earth System Research Laboratory (ESRL) to validate the simulated CO2 397 

concentrations (Peters et al., 2007). This comparison for the year 2016 is shown in Figure 4. The simulated CO2 398 

concentrations tend to be lower than observed in Northeastern India and Northeastern China, while they show a 399 

better agreement with observations in other regions. These discrepancies can be traced back to factors such as 400 

the underestimation of localized CO2 emissions along with the effects of complex topography and circulation 401 

patterns. However, the closer agreement in other regions suggests that the model effectively captures the 402 

primary processes driving CO2 concentrations.  403 

Seasonal variations in the spatial distribution of CO2 concentrations for 2016 are illustrated in supplemen-404 

tary Figure S12. The simulations show marked seasonal variations, with elevated concentrations in spring, 405 

autumn, and lower values during summer. In northern regions, including Russia, Mongolia, and Northeast China, 406 

the lowest near-surface CO2 concentrations occur in summer. This pattern can be attributed to the enhanced 407 
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photosynthetic activity of terrestrial vegetation in summer, leading to enhanced atmospheric CO2 sequestration. 408 

Conversely, winter months are characterized by lower solar radiation fluxes and reduced vegetation 409 

photosynthesis, resulting in relatively higher CO2 concentrations. In specific regions, notably the eastern coastal 410 

zones of China and South Korea, the seasonal pattern of CO2 concentration is reduced, likely because of the 411 

high levels of urbanization, dense population, and intense anthropogenic emissions in these areas. In contrast, 412 

regions such as Yunnan, the southern side of the Qinghai-Tibet Plateau, and Southeast Asia exhibit consistently 413 

low CO2 concentrations during summer because of significant vegetation sinks in these densely vegetated areas. 414 

An increase in CO2 concentrations can be observed over these regions during spring due to local forest fires and 415 

straw-burning processes, which release substantial amounts of CO2 into the atmosphere (Chuang et al., 2014). 416 

 417 

Figure 4. Evaluation of simulated CO2 (a) using Carbon Tracker products (b) and their difference (c) in 2016. The 418 

differences are simulation minus observation. Units: ppm. 419 

3.4 Simulations of carbon fluxes in terrestrial systems 420 

Our assessment of GPP and NPP uses the MOD17A3 Collection 6, a global product originating from 421 

MODIS satellite observations. GPP data include 8-day values with a resolution of 500 meters, as produced in 422 
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MOD17A2H Version 6 based on radiation use efficiency theory. Such data can be used as input to computations 423 

of terrestrial carbon and energy flows, water cycling processes, and vegetation biogeochemistry. Moreover, the 424 

MOD17A3H Version 6 product provides information on annual NPP, also on a resolution of 500 meters. All 425 

8-day Net Photosynthesis (PSN) products (MOD17A2H) from a particular year are combined to derive annual 426 

NPP values (He et al., 2018; Madani et al., 2014; Running, 2012).  427 

Figure 5 (a, b, e) shows the geographical distribution of the mean GPP in 2016 from the model simulations 428 

and MODIS products. RegCM-Chem-YIBs effectively captures the observed spatial GPP features, with high 429 

values mostly over Southwest, Central, and Southeastern China, areas characterized by deciduous broad-leaf 430 

and evergreen coniferous forests (Figure S1). The annual average GPP simulated by RegCM-Chem-YIBs is 431 

higher than observed over  Southwest and Central China by 6.8% and 12.7%, respectively. The annual average 432 

simulated GPP over China is 6.18 Pg C yr-1, which is about 7.56% higher than the GPP in MODIS. 433 

Figure 6 (a) and Table S2 show the scatter plots of the simulated annual average GPP on each model grid 434 

point compared with MODIS. A correlation coefficient of 0.91 and root mean square error of 0.4 kg C m-2 yr-1 is 435 

found,  reflecting an overall good simulation by the model. Compared with the results obtained from the global 436 

model NASA ModelE2–YIBs (Yue and Unger, 2017), the GPP value estimated here compares better with the 437 

MODIS product, which may also be attributed to the higher spatial resolution of the regional system. Moreover, 438 

our GPP results are also in line with earlier findings, such as from Li (Li et al., 2013b) who estimated an annual 439 

average GPP over China of 6.04 Pg C yr-1 based on the light energy utilization model EC-LUE. 440 

 Figure 5 (c, d, f) shows the spatial distribution of mean NPP for both the simulations and MODIS 441 

products in 2016. NPP, similarly to GPP, exhibits a gradual reduction from southeast to northwest China. The 442 

scatter plot comparing the simulated and MODIS annual average NPP across the model grid is illustrated in 443 

Figure 6 (b). According to Table S2, a correlation coefficient of 0.87 is found between the simulated and 444 

MODIS NPP, with a root mean square error of 0.22 kg C m-2 yr-1. Notably, the simulated NPP shows a distinct 445 

underestimation over regions with higher NPP values. Compared with the MODIS NPP data products, the 446 

annual average NPP simulated for the entire China region in 2016 is overestimated by approximately 8.64%, 447 

mostly because of the model overestimate in Central China (16.6%).  448 

Part of the reason for this result is the relatively simple treatment of the nitrogen deposition process in YIBs 449 

(Yue and Unger, 2015). On the other hand, some studies have noted that due to the limitations of driving data 450 

and algorithm parameters, the MODIS NPP products have some problems in China (Li et al., 2013b). 451 
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Furthermore, the NPP value estimated by the model over China is 3.21 Pg C yr-1, in line with the mean value 452 

(2.92 ± 0.12 Pg C yr−1) found in previous 37 studies (Wang et al., 2017). 453 

 454 

Figure 5. Spatial distribution of modeled (a, c) and MODIS (b, d), annual mean GPP (a, b) and NPP (c, d), and 455 

their differences (e, f). The differences are simulation minus observation. Units: kg C m-2 year-1. 456 
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 457 

Figure 6. Density scatter plots of (a) GPP and (b) NPP for model simulations and inversion-based products for 458 

2016. Units: kg C m-2 year-1. 459 

Figure 7 and Figure 8 illustrate the seasonal fluctuations in GPP and NPP, as simulated for 2016 in East 460 

Asia. Both GPP and NPP present pronounced seasonal variations, with negligible values during winter, and a 461 

strong peak in summer.  The winter minimum is attributable to limiting environmental factors such as reduced 462 

solar radiation, lower temperatures, and suppressed photosynthetic activity by vegetation. Conversely, summer 463 

shows the highest GPP and NPP values due to extended daylight hours, increased solar radiation, and 464 

temperatures facilitating increased photosynthetic activity and vegetation metabolism.  465 

 466 

Figure 7. Spatial distribution of GPP simulated by model of spring(a), summer(b), autumn(c) and winter(d) in 467 

2016. Units: g C m-2 468 
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 469 

Figure 8. Spatial distribution of NPP simulated by model of spring(a), summer(b), autumn(c) and winter(d) in 470 

2016. Units: g C m-2 471 

3.5 Simulations of other carbon-bearing species 472 

The analysis of additional carbonaceous compounds such as BC, OC and carbon monoxide (CO), is crucial 473 

due to their considerable influence on climate and the carbon cycle. The spatial distribution of simulated BC for 474 

each season of 2016 is shown in Figure S13. BC concentrations are mainly centered in North China, Central 475 

China, the Sichuan Basin, Chongqing, and Northeast India, regions with a higher concentration of industrial and 476 

residential emission sources. BC displays a marked seasonal variation, with elevated levels in winter, possibly 477 

attributed to residential heating, more stagnant conditions, and reduced removal by precipitation.  478 

Figure S14 then shows the spatial corresponding distribution of seasonal OC, which is also higher over 479 

North China, Central China, Sichuan and Chongqing, and Northeast India. Finally, Figure S15 reports the 480 

annual mean near-surface CO concentrations for observations and simulation data across the monitoring sites in 481 

China. While simulated CO concentrations agree well spatially with observations, the simulations produce 482 

higher values than observed in Central China, likely linked to uncertainties in emission inventories. Figure S16 483 

presents the seasonal spatial distributions of CO, with simulated high values mostly localized in 484 

Sichuan-Chongqing and Central China, and a peak in winter.  485 
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4 Conclusions 486 

 Regional climate-chemical coupled models can be used to study the characteristics of regional-scale cli-487 

mate and pollutants, and is an important means to investigate the behavior of atmospheric pollutants and their 488 

radiative climate effects. However, current coupled regional climate models describe the physiological process 489 

of terrestrial vegetation relatively simply and do not consider the interaction between atmospheric pollutants 490 

(such as PM2.5 and O3) and CO2, as well as their impacts on terrestrial ecosystems. 491 

To overcome this problem, in this work we coupled the YIBs biogeochemical model to the RegCM-CHEM 492 

regional climate-chemistry model, and tested this coupled modeling system over a domain covering East Asia at 493 

a 30 km horizontal grid spacing for the year 2016. The model output was validated against reanalysis data, ob-494 

servational data, and satellite remote sensing data, both for the atmosphere and the carbon cycle.  495 

Our simulations show that the coupled RegCM-Chem-YIBs system can effectively reproduce the spa-496 

tio-temporal distribution of meteorological variables, atmospheric composition (PM2.5, O3, and CO2) and terres-497 

trial carbon fluxes (GPP and NPP). Comparisons of the simulated temperature, longitudinal wind, latitudinal 498 

wind, and specific humidity for different seasons with the driving ERA-Interim reanalysis data showed correla-499 

tion coefficients of 0.95-0.98, 0.71-0.97, 0.81-0.92, and 0.91-0.92, respectively. The correlation coefficients 500 

between observed and simulated O3 and PM2.5 levels in China were 0.74 and 0.65, respectively, while the corre-501 

sponding correlations for CO2 were in the range of 0.89 to 0.97. Comparison of the ecological parameters GPP 502 

and NPP simulated in East Asia with the observed data showed correlation coefficients of 0.91 and 0.87, respec-503 

tively. In addition, in all cases, the seasonal variation of the different variables was captured by the model. 504 

Therefore, we conclude that, overall, the RegCM-Chem-YIBs model demonstrates a good performance in simu-505 

lating the spatio-temporal distribution characteristics of regional meteorological characteristics, atmospheric 506 

composition, and ecological parameters over East Asia.  507 

In the future, we will continue to improve RegCM-Chem-YIBs in the following aspects. First, we will in-508 

vestigate the impact of CO2 and O3 inhomogeneity on radiation calculations by integrating temporally and spa-509 

tially varying concentrations derived from YIBs and Chem into the RegCM radiation module. This will enable 510 

additional accurate computation of longwave radiation flux, improving the representation of the regional radia-511 

tion balance. Second, we intend to assimilate a module representing various chemical transformations happening 512 

on the surfaces of aerosol particles. Finally, we will include the wet removal process of O3. These advancements 513 

will contribute to the refinement of RegCM-Chem-YIBs, enhancing our ability to investigate the interactions 514 
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between regional atmosphere, carbon cycle, and vegetation processes.  515 

Code and data availability  516 

The RegCM-Chem source code can be obtained from https://github.com/ICTP/RegCM (last access: 10 July 517 
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