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Abstract. The evolution of reefs over geologic time is diverse and includes a range of different builders. An 15 
understanding of the consequences of natural and anthropogenically-driven sediment influx to reef systems is 16 
crucial to planning future protection and mitigation strategies. Most reef systems are associated with clear water 17 
settings, however, many reef communities have evolved in turbid water environments stressed by high rates of 18 
sediment influx. Conventionally, these mixed carbonate-clastic environments have been considered unfavourable 19 
to reef organisms. Utilising case-studies of sediment-stressed reefs from the Devonian to Recent, we clearly 20 
demonstrate that reef organisms can survive, and even thrive, under the influence of clastic sediment influx. Ten 21 
case-studies were selected on the basis of: i) the presence of a mixed carbonate-clastic matrix, and ii) the existence 22 
of a coral framework. For each example, the system was characterised in terms of sediment input, organism growth 23 
forms (with a focus on corals) and the overall reef morphology. The host sediment from Cenozoic reefs was found 24 
to be typically better-described than that within Paleozoic and Mesozoic communities. This may be due to the 25 
closer affinity between Cenozoic communities and recent species when compared to more ancient systems. The 26 
same reasoning accounts for the paucity of data describing the internal structure of many fossil reefs, a feature also 27 
related to outcrop quality. This study clearly demonstrates that, while reefs in sediment-impacted environments 28 
are common, there is no general developmental model that can be applied to all reefs. No relationship was 29 
identified between the nature of the reef builders, the character of the siliciclastic component and the reef structure. 30 
We demonstrate that, in the majority of cases, the clastic matrix within reefs, both ancient and recent, is 31 
insufficiently described – this inhibits understanding of mixed carbonate-clastic reef systems and significantly 32 
compromising forecasts of future reef development. 33 
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1. Introduction 35 

Throughout Earth's history, reef ecosystems have formed complex environments including soft and hard substrates 36 
(Wood, 2011; Lipps and Stanley, 2016). The oldest reef-like structures date from the Archean (Wood, 1999; Lipps 37 
and Stanley, 2016). Over geological time, the main reef builders have changed from photosynthetic cyanobacteria 38 
during the Precambrian (Allwood et al., 2007) to scleractinian corals and photosynthetic coralline algae in modern 39 
reefs (Stanley, 2003; Wood, 2011). The history of reefs is a story of booms and collapses (Jury and Jokiel, 2016). 40 
Interestingly, many examples of reefal systems in Earth’s history have developed despite suboptimal conditions, 41 
such as turbid waters and sediment-loaded (often argillaceous or clastic material) environments (e.g., Lokier et al., 42 
2009; Santodomingo et al., 2016; Zweifler et al., 2021). Classically, these sediment-loaded (or stressed) 43 
environments have been regarded as hostile to reefal organisms (Rogers, 1990; Jones et al., 2015; Ricardo et al., 44 
2015). More recently, a number of studies have demonstrated that reefal organisms can indeed survive, and even 45 
flourish, under clastic sediment influx in a range of depositional environments (Woolfe and Larcombe, 1999; 46 
Wilson and Lokier, 2002; Lokier et al., 2009; Zapalski et al., 2021; Unger et al., 2023). The processes that allow 47 
recent reefal organisms to inhabit such environments are still poorly understood (Zweifler et al., 2021). This fact 48 
is largely due to a lack of detailed studies of such mixed carbonate-clastic reefal ecosystems throughout much of 49 
Earth's history (Wilson, 2005). Studying ancient reefal systems is important to understanding modern coral 50 
communities and their possible reactions to anthropogenically-induced climate change or ocean acidification 51 
(Kleypas et al., 2001; Santodomingo et al., 2016). 52 

In this paper, 10 case examples of sediment-stressed coral reefs described in the literature are compared. While 53 
any comparisons between Phanerozoic reefs must fully consider the palaeoecological, palaeobiological and 54 
palaeoceanographic limitations of the main reef builders at the time of reef construction (e.g., May, 1997; Wood, 55 
1999), it is still possible to undertake an overall analysis of broad-scale organism response and reef morphology 56 
to siliciclastic sediment influx. 57 

The main aims of this study are to undertake environmental analysis, considering sediment influx, organism growth 58 
forms (particularly those of corals) and species diversity with reference to case examples spanning the Devonian 59 
to Recent. General conclusions for diagnosing reefs in sediment-stressed environments and the current state of 60 
research are drawn.  61 

1.1 Reefs in the course of time 62 

Numerous scholarly papers and books have summarised the evolution of reefal ecosystems through geological 63 
time. Here, only a condensed summary of those aspects most relevant to understanding the concepts and principles 64 
discussed in this paper is presented. Please refer to cited references for more detail. 65 

During the Great Ordovician Biodiversification Event, metazoan reefs replaced the early microbial reefs typical 66 
for the middle and late Cambrian (e.g., stromatolites, thrombolites etc; Grotzinger, 1990; Webby, 2002; Adachi et 67 
al., 2011). Metazoan associations of stromatoporoid sponges, corals and calcified algae dominated the middle 68 
Palaeozoic seas (; Copper, 1994; Wood, 1999; Stanley, 2001) and the resultant structures had characteristics 69 
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similar to those known of modern reefal systems (Copper, 2002). Tabulate and rugose corals building these reefs 70 
biomineralized calcitic skeletons (Sandberg, 1975), and some authors describe tabulate corals as photosymbiotic 71 
(Copper, 2002; Zapalski, 2013). The mass extinction at the end of the Ordovician had only a subordinate influence 72 
on these reefal ecosystems (Stanley, 2001). During the Silurian and, even more importantly, during the Devonian, 73 
coral-stromatoporoid reefs dominated the tropical shallow water platforms but these reef associations collapsed 74 
during the Frasnian-Famennian crisis (McGhee, 1996). After the Devonian acme, framework reefs were rare 75 
(Wood, 1999; Webby, 2002), and reefal buildups were dominated by bryozoans, calcified algae and sponges 76 
(Fagerstrom, 1987). The early Carboniferous is described as a period of recovery of shallow marine reefal 77 
assemblages, while microbial mud mounds developed in platform to open marine settings (Yao et al., 2020). Until 78 
the mass extinction at the end of the Permian, organisms producing aragonite and high-Mg calcite, such as various 79 
sponges and algae, dominated the reef structure during the Pennsylvanian and Permian (Jury and Jokiel, 2016). 80 

Palaeozoic reef builders (including tabulate and rugose corals) became extinct during the end Permian mass 81 
extinctions (Benton, 2003). Several million years later, during the Middle Triassic, the first scleractinian corals are 82 
documented (Stanley, 1981). Their relationship to the Paleozoic ‘ancestors’ is widely discussed (e.g., Oliver, 83 
1996). Nevertheless, scleractinian corals did not directly evolve from the tabulate nor the rugose corals and are 84 
thus regarded as a separate clade (Hill, 1981). Reef-building during the Mesozoic differs from that typical of the 85 
middle Paleozoic reef acme. Scleractinian corals replaced the rugose and tabulate corals, and different calcifying 86 
sponges and calcifying algae contributed to reef formation (Fig. 1; Stanley, 2003; Kiessling, 2009). Scleractinians 87 
persisted as successful reef builders during the Middle and Late Triassic. Suffering severe extinction, no excessive 88 
reefal buildups developed during the Early Jurassic. In the Late Jurassic to Early Cretaceous, reef-building 89 
regenerated, reached and even transcended modern rates of reef formation (Flügel and Kiessling, 2002; Stanley, 90 
2003; Kiessling, 2009). Cretaceous rudists evolved as a primary contributor to reef construction and competitively 91 
replaced coral-algae reefs (Kauffman and Johnson, 1988). Rarely, coral reefal buildups are described during the 92 
Cretaceous and many Mesozoic reef builders vanished during the end Maastrichtian extinction (Kiessling, 2009).  93 

Following the end Maastrichtian extinction, coral diversity was low during the Paleocene (Lipps and Stanley, 94 
2016). The Cenozoic Era was dominated by large and sudden climate changes associated with warming and 95 
cooling cycles (Zachos et al., 2001). Symbiont-bearing coral species evolved and corals developed the capability 96 
of rapid linear extension and quick recovery even under the influence of stressors. Simultaneously, reef 97 
frameworks were strengthened by coralline algae (Lipps and Stanley, 2016). During the middle Paleocene, some 98 
coral-algal barrier reefs and patch reefs adapted to the greenhouse period but declined during short warming pulses 99 
(Zamagni et al., 2012; Lipps and Stanley, 2016). Reef-building decreased significantly at the Paleocene-Eocene 100 
Thermal Maximum (ca. 65 Ma, Fig. 1; Kiessling and Baron-Szabo, 2004). This event is currently discussed and 101 
proposed as an analogue for modern climate change, ocean acidification and future global warming (Zachos et al., 102 
2005; Lipps and Stanley, 2016). Reefs and photosymbiotic corals generally changed, thrived and suffered in 103 
concert with climate fluctuations throughout the Cenozoic (Perrin, 2002; Kiessling, 2006; Lipps and Stanley, 104 
2016).  105 

 106 
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Figure 1: Bubble diagram of reef abundance and reef community types throughout Earth’s history. Dashed lines 107 
represent mass extinctions. Dark areas represent periods of reef decline or poor reef development in general. The here 108 
compared examples of reefs in sediment-stressed environments are known from the Devonian, Jurassic, Cretaceous and 109 
Neogene (based on Langenstrassen, 1982; Fagerstrom, 1987; Braga and Martín, 1988; Kaufmann and Johnson, 1988; 110 
Robardet et al., 1994; Wood, 1999; Mitchell, 2002b; Wilson and Lokier, 2002; Olivier et al., 2004; Mabille et al., 2008; 111 
Kiessling, 2009; Lokier et al., 2009; Lipps and Stanley, 2016; Moura et al., 2016; Zapalski et al., 2021, with 112 
modifications).  113 

1.2 Sediment-impacted environments – hostile or opportunity? 114 

Reefs represent habitats that are exposed to a range of different intense physical and biological processes (Wood, 115 
2011). Changes in physical, chemical and biological patterns are seen as endangering the ecosystem (Graham et 116 
al., 2006). Studying stressors, such as high turbidity, low levels of incident light, high (or low) seawater 117 
temperatures, and low pH or salinity, is important to understanding modern and ancient reefal communities and 118 
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their responses to environmental changes (Kleypas et al., 2001; Hahn et al., 2012; Santodomingo et al., 2016; 119 
Zweifler et al., 2021). Traditionally, excessive sediment influx is considered to be unfavourable to the reef 120 
ecosystem. Modern scleractinian coral reefs react to sediment stress with lower growth rates, a reduced number of 121 
species, declining calcification, a greater number of branching forms, fewer living corals and, consequently, slower 122 
reef accretion (Rogers, 1990; Jones et al., 2015). 123 

Conversely, several studies have demonstrated that turbid waters do not inhibit coral growth per se (Roy and 124 
Smith, 1971) and that reefal communities can flourish and even display great diversity in such an environment 125 
(Johnson et al., 2015; Santodomingo et al., 2016). Inhabiting turbid water environments or settings with high 126 
sedimentation rates is possible via a range of passive and active survival strategies. Due to water circulation 127 
through waves and currents, fine-grained sediment is flushed from the feeding surface of reef organisms. In 128 
addition, the accumulation of sediment and, thus, the burial of reef organisms is prevented where the sediment is 129 
entrained and transported to deeper waters (e.g., Woolfe and Larcombe, 1999; Wolanski et al., 2005). The 130 
morphology of reef organisms can also cause sediment to slide off due to gravity (Stafford-Smith, 1993). 131 

In some cases, organisms may respond to sediment inundation with active self-cleaning, as observed in modern 132 
reefs (Rogers, 1990; Stafford-Smith and Ormond, 1992; Bell, 2004). Other examples show the preferential 133 
development of reefs on topographic elevations where the effects of high sediment influx are less substantial than 134 
adjacent deeper water settings (Gong et al., 1998). Even though reefs in unfavourable environments have received 135 
little attention so far, the case studies known today show how important it is to better understand these ecosystems 136 
(Wilson and Lokier, 2002; Zweifler et al., 2021). 137 

2. Methods 138 

To examine the characteristics of coral reefs impacted by argillaceous and siliciclastic material and to highlight 139 
the state of research, 10 case examples of coral reefs exposed to sediment-stressed environments throughout Earth's 140 
history were chosen for this literature-based study. As data was limited, these examples only had to fulfil two 141 
selection criteria: i) have corals as the primary reef constructing agent and, ii) presenting a mixed clastic-142 
carbonated matrix. Under these criteria, rudist reefs, for example, were not considered as viable candidates for 143 
discussion. Particular focus was given to the reef type and its size, the internal structure, the fossil assemblage, 144 
coral diversity, the type of sediment-stressed environment and the grain size of the preserved sediments within the 145 
reef. Both siliciclastic and volcanoclastic environments were considered on an equal basis, as comparable grain 146 
sizes affect the reefs in the same way (Wilson and Lokier, 2002).  147 
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3. Case examples 149 

3.1 Palaeozoic 150 

3.1.1. Lower Devonian reefs of NW France 151 

At Point d'Amérique in northwestern France (Fig. 2), a succession of Lochkovian strata gives insights into a series 152 
of reefal buildups embedded in muddy, siliciclastic facies on the northern Gondwana shelf (Pelhate and 153 
Plusquellec, 1980; Robardet et al., 1994). Initially, a metre-scale coral-dominated buildup developed in a low-154 
energy environment (Fig. 3) before being smothered and terminated by an influx of siliciclastic sediment. The 155 
succeeding bioherm (metre to 10s of metre scale) was constructed by corals and stromatoporoids building 156 
contemporaneously with clastic sediment influx into a low-energy environment. The predominantly bulbous 157 
morphology of the stromatoporoids has been interpreted as evidencing growth in a sediment-stressed environment 158 
(Pelhate and Plusquellec, 1980). However, the characteristics of the siliciclastic host sediments are not described 159 
in detail. 160 

Figure 2: Map of the Earth (recent times) with localities of the here compared examples of sediment-stressed reefs. 161 
Many reefs are located in today's Europe. Age of each site is indicated by the colour of the symbol that marks the 162 
position. Sites: 1) Lower Devonian reef of France; 2) Lower to Middle Devonian reef of Belgium; 3) Middle Devonian 163 
reef of Germany; 4) Middle Devonian reef of Australia; 5) Upper Jurassic reefs of France; 6) Upper Cretaceous reefs 164 
of Jamaica; 7) Eocene reefs of Spain; 8) Miocene reefs of Indonesia; 9) Miocene reefs of Spain; 10) Recent Amazon 165 
River mouth reefs.  166 

  167 
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Figure 3: Sketch of the outcrop at Point d'Amérique. The blue lines mark the first reefal build-ups. The yellow line 168 
indicates the boundary of the succeeding biostrome (modified from Pelhate and Plusquellec, 1980). 169 

3.1.2. Middle Devonian reef of Belgium 170 

In the Namur-Dinant Basin (Fig. 2), a southwards-facing ramp system developed into a carbonate-rimmed 171 
carbonate shelf during the early Givetian. The Marenne Member (upper Eifelian to lower Givetian) is the regional 172 
equivalent to crinoidal shoals and biostromal units of the lower Trois-Fontaines Formation (Bultynck and 173 
DeJonghe, 2001; Mabille et al., 2008). The Marenne Member comprises a mixed siliciclastic-carbonate succession 174 
composed of up to metre scale beds of argillaceous and sandy limestones intercalated with claystone and siltstone.  175 

A 10 m thick reefal buildup, fringed by open marine facies, is documented at the Marenne Quarry (Mabille et al., 176 
2008; Boulvain et al., 2009). Here, a mud- to sand-grade siliciclastic component typically contributes up to 20% 177 
(locally up to 50%) of the matrix volume. The presences of this detrital component, even in the limestone beds of 178 
the Marenne Member, significantly influenced bioherm development (Mabille et al., 2008; pers. comm. Denayer, 179 
2022). Fauna, dominated by well-preserved (in situ) branching tabulate corals, fasciculate rugose corals, crinoids, 180 
brachiopods, massive stromatoporoids and bryozoans, was concentrated at the fair-weather wave base (Mabille et 181 
al., 2008). In more sandy areas, tabulate and rugose corals dominate and appear to have developed as well as, if 182 
not better than, in areas where stromatoporoids dominate (pers. comm. Denayer, 2022).  183 

3.1.3 Middle Devonian reef of Germany 184 

The Middle Devonian Klutert biostrome (carpet-reef) is accessible in Ennepetal, Germany, via a series of cave 185 
passages (Fig. 2; Unger et al., 2023). This biostrome formed on the southeastern shelf of Laurussia during the early 186 
Givetian (Middle Devonian). The reef represents a biostrome that developed in a mixed carbonate-siliciclastic 187 
deltaic environment (Langenstrassen, 1982; Basse et al., 2016) during a period of decreasing siliciclastic influx.  188 
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 189 

Figure 4: (A to D) Spatial model of the Klutert biostrome, not to scale. The thickness of the fully developed Klutert 190 
biostrome reaches a maximum of 12 m. Biostromal patches vary between 1 and 3 m in thickness and lateral between 191 
several metres to 10’s metres. (A) Initial reef settlement (= Coral Meadow Biostrome) is dominated by phaceloid rugose 192 
corals. (B) Patches of different subunits of the Coral-Stromatoporoid Biostrome developed on top of the Coral Meadow 193 
Biostrome Unit. The individual subunits gradually merge into each other and are not separated by a sharp transition 194 
to a siliciclastic matrix. (C) The spatially complex clusters of the subunits vary in size (metres to 10’s of metres) and 195 
arrange vertically and horizontally with no preferred direction. (D) Burial and demise of the Klutert biostrome 196 
(modified from Unger et al., 2023). 197 
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This biostrome classifies as an autoparabiostrome (sensu Kershaw, 1994) with a maximum stratigraphic thickness 198 
of ca. 12 m. Silt- to sand-grade clastic material (clay and quartz) contributes between 20 and 99 wt.-% of the matrix 199 
of the biostrome. 200 

As sediment input declined (20 wt.-% siliciclastics in the matrix), an initial coral meadow (dominated by phaceloid 201 
rugose corals) developed (Fig. 4 A). This primary settlement was followed by the development of a Coral-202 
Stromatoporoid Biostrome Unit that can be subdivided into five subunits (Fig. 4 B; for detailed descriptions of the 203 
subunits see Unger et al., 2023). These subunits expand laterally from a few metres to several tens of metres, 204 
reaching thicknesses of up to three metres, and are arranged as spatially complex clusters of smaller biostromes 205 
that define the internal structure of the carpet-reef (Fig. 4 C). The main reef builders are rugose and tabulate corals 206 
(10 species) and stromatoporoids, associated with crinoids (mainly trochites), brachiopods, gastropods and 207 
nautiloids. Although the siliciclastic component of the matrix was described in detail, no clear relationship between 208 
siliciclastic influx and the negative performance of reefal organisms was discerned. In fact, the intervals with the 209 
highest concentration of reef builders may yield the highest proportion of siliciclastic sediments. Reef builders 210 
were initially able to tolerate the muddy environments, however, a combination of decreasing siliciclastic grain 211 
size, decreasing water energy and increasing siliciclastic sediment load eventually overwhelmed the organisms 212 
and resulted in reef decline (Fig. 4 D; Unger et al., 2023).  213 

3.1.4 Middle Devonian reef of Australia 214 

The Fanning River inshore coral reef biostrome (Fig. 2) formed during the Givetian in a shallow, turbid, partially 215 
protected environment with significant clastic input (Cook, 1995; Zapalski et al., 2021). This reef overgrew a 20 216 
to 40-cm thick stromatoporoid biostrome (Zapalski et al., 2021), with nearby river mouths providing siliciclastic 217 
material sourced from a granitoid hinterland (Cook, 1995). The auto- to autoparabiostrome of massive, branching, 218 
and encrusting tabulate corals and solitary and rarely colonial, massive rugose corals is traceable over 300 m 219 
laterally (Zhen, 1996; Zapalski et al., 2021). Rarely, stromatoporoids and brachiopods are observed, while other 220 
typical Devonian invertebrates, such as crinoids, are absent. An internal lateral variation is described based on a 221 
range of assemblages, dominated by foliaceous and encrusting tabulates, branching tabulates and either massive 222 
or solitary rugose corals (Zapalski et al., 2021). The siliciclastic component of the sediments has not been 223 
described. The palaeo-ecological mechanisms that caused this internal zonation are not understood.  224 

3.2 Mesozoic 225 

3.2.1 Upper Jurassic reefs of northern France 226 

In the Pagny-sur-Meuse area in northern France (Fig. 2), various reefal buildups developed on a platform along 227 
the northern margin of the Tethys during Oxfordian times (Late Jurassic; Olivier et al., 2004).  228 

The middle to upper Oxfordian units record the onset of siliciclastic influx into a formerly clear water setting. Prior 229 
to the influx of siliciclastic sediments, a large (>100 m wide, 15 m thick) biostrome developed in a low-turbidity 230 
setting. With the influx of siliciclastic sediments, sourced from the erosion of the Brabant-Ardennes Massif to the 231 
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north (Ziegler, 1990), there was a sharp increase in turbidity with an associated transition in reefal communities 232 
and morphologies. Within the new mixed carbonate-siliciclastic depositional environment, coral-microbial reefs 233 
developed as metre to decametre scale buildups, irregularly shaped buildups, decametre-sized bioherms or small 234 
(metre-scale) patch reefs. Corals are observed throughout the section, with a range of growth forms including 235 
phaceloid, lamellar, dome-shaped, ramose and irregularly shaped morphologies.  236 

Five different types of reefal buildups have been identified and described, each with a distinct coral assemblage 237 
and exhibiting a positive relationship between the volume of siliciclastic material and microbialites. The inter-reef 238 
sediments were only described in two cases – from clear water reefs lacking siliciclastic sediment, and for the 239 
mixed carbonate-siliciclastic reefs where siliciclastic sediment contributed up to 5% of the total reef volume. 240 
Relatively high coral diversity was observed in both clear water and mixed carbonate-siliciclastic reefs (15 and 16 241 
genera respectively). The lowest diversity coral assemblage (six genera) was observed in mixed carbonate-242 
siliciclastic reefs that had developed in deeper water settings. 243 

Under clear water conditions, corals thrived yet with the onset of siliciclastic influx, the primary control on 244 
assemblage development was water depth and the resulting hydrodynamic levels. Even under significant 245 
siliciclastic influx, reefs with diverse coral assemblages were still able to develop in shallow-water settings flushed 246 
by strong currents or storms. However, where the influx of siliciclastic sediment crossed a critical threshold corals 247 
are absent and oyster reefs developed (Olivier et al., 2004).  248 

3.2.2 Upper Cretaceous reefs of Jamaica 249 

During the late Campanian? to Maastrichtian (Cretaceous), small coral patch reefs developed under open marine 250 
conditions in association with an island arc setting (Fig. 2). Patch reefs developed during infrequent periods of 251 
reduced sedimentation in a setting otherwise dominated by the influx of silt grade volcaniclastic material 252 
(Coates,1965; Mitchell, 2002b). The relative contribution of volcaniclastic material is not recorded.  253 

Dense frameworks were constructed and dominated by branching ramose scleractinian corals, and debris contains 254 
further encrusting-lamellose scleractinian corals of moderate diversity. Coralline algae, bryozoans, serpulid worms 255 
and brachiopods contribute secondarily to the framework. The patch reefs are surrounded by reef-derived debris 256 
with beds reaching thicknesses of up to 1.5 m (Mitchell, 2002a). 257 

3.3 Cenozoic 258 

3.3.1. Eocene reefs of Spain 259 

Middle to upper Eocene shallow marine carbonates at the Calders Section in NE Spain (Fig. 2) show the transition 260 
from marine to fluviatile sedimentation (Santisteban and Taberner, 1988; Hendry et al., 1999). A prograding 261 
siliciclastic shelf was dominated by constant clay and silt input, with carbonates developing during periods of 262 
reduced siliciclastic influx (Cavagnetto and Anadón, 1996; Hendry et al., 1999). With decreasing siliciclastic 263 
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material (<65 wt.-%), benthic foraminifera and coralline algae dominated, while corals replaced the foraminifera 264 
where the siliciclastic component falls below 38 wt.-%. 265 

Within coral rubble, patches of a coral framework (<100 m in diameter) are observed. Robust branching corals 266 
and solitary corals dominate the shallow high-energy settings influenced by sand-grade siliciclastics (<27 wt.-%), 267 
while delicate branching forms dominate protected settings with a high clay-grade siliciclastic content (<39 wt.-268 
%). These buildups were buried during renewed progradation of the siliciclastic dune foresets (Lokier et al., 2009).  269 

3.3.2 Miocene reefs of Indonesia 270 

During the Miocene, several patch reefs developed in front of the Mahakam Delta, Kalimantan, Indonesia (Fig. 271 
2). Several studies have focused on the so-called 'coral triangle' region (Wilson and Lokier, 2002; Wilson, 2005; 272 
Santodomingo et al., 2015, 2016) as these patch reefs provide a good analogue for reefs forming in turbid habitats 273 
(Wilson and Lokier, 2002). For the Mahakam Delta, recent observations indicate a tide-dominated environment 274 
and a significant influx of silt and clay (Storms et al., 2005). The Miocene patch reefs formed in low-energy 275 
environments (Allen et al., 1976) and extend between 2 to 4 km laterally with a thickness of up to 40 m (Wilson 276 
and Lokier, 2002). Reefal organisms are represented by coralline algae, large benthic foraminifera, echinoids, 277 
various molluscs and scleractinian corals (Wilson and Lokier, 2002; Santodomingo et al., 2015). The internal 278 
organization of the different patch reefs is relatively simple; a well-ordered sequence of different packstone units 279 
referred to as coral sheetstones and platestones (Wilson and Lokier, 2002; Santodomingo et al., 2016). A 280 
relationship between coral morphologies and the siliciclastic content is observed, as the number of branching corals 281 
increases when the siliciclastic content (up to 20 wt.-% and 10 wt.-%) decreases. Platy corals, for example, are 282 
more abundant in fine-grained siliciclastics (up to 60 wt.-%; Wilson and Lokier, 2002).  283 

Even though the environment may be considered as less than favourable, these patch reefs represent the origins of 284 
the 'biodiversity hotspot' of corals from the Miocene (Johnson et al., 2015; Santodomingo et al., 2016). It is 285 
proposed that these challenging environments may have been important to the development of corals able to 286 
tolerate a diverse range of settings and, thus, were able to migrate into a range of habitats (Santodomingo et al., 287 
2016). 288 

3.3.3 Miocene reefs of Spain 289 

During the late Tortonian (Miocene), several different types of coral reefs developed in the Almanzora River 290 
Corridor in southeastern Spain (Fig. 2). Reef formation in this siliciclastic-dominated succession occurred during 291 
times of lower siliciclastic sediment influx. Reefs developed on fan deltas (patch reefs), at the margins of delta 292 
lobes (patch to barrier reefs) and on coastal platforms (barrier reefs; Braga and Martín, 1988; Martín et al., 1989). 293 
All of these reef types colonised on either silt or conglomerate substrates and are intercalated with silt layers 294 
(Martín et al., 1989). Internal structures are dominated by cyclic successions of beds dominated by two main faunal 295 
associations of different corals and, occasionally, coralline algae. The only exemption is represented by the patch 296 
reefs in the fan delta setting. In these settings, the central portions of the patches are dominated by a single coral 297 
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species (Tarbellastraea) that is fringed by the bedded succession of siltstones (Fig. 5; Braga and Martín, 1988; 298 
Martín et al., 1989). The species diversity of these reefs is comparatively low, with only 7 coral genera observed 299 
in the different reefal buildups. Previous studies did not find a connection between species morphology and 300 
sediment load. Conversely, a trend with more densely packed colonial structures in deeper waters was observed 301 
(Martín et al., 1989).  302 

Figure 5: Internal structure of the Miocene patch reefs located at the fan delta area of the Almanzora River. One single 303 
coral species (Tarbellastraea) dominates the centre and is surrounded by bedded corals (modified from Martín et al., 304 
1989). 305 

3.3.4 Recent Amazon River mouth reefs 306 

The Great Amazon Reef System spans over 9,500 km2 at depths ranging from 70 to 220 m (Moura et al., 2016; 307 
Francini-Filho et al., 2018) on the outer shelf in front of the delta of the Amazon River (Fig. 2; Moura et al., 2016). 308 
Turbidity is high due to the sediment-loaded Amazon plume that seasonally influences the northern and central 309 
parts of the reef system (Moura et al., 2016; Francini-Filho et al., 2018). The high turbidity and resulting low 310 
illumination do not appear to be limiting factors to reef development (Francini-Filho et al., 2018). Internal variation 311 
is high and includes areas of rhodolith beds, patch and ridge-like reefs (mainly sponges, black corals and 312 
octocorals) and so-called sponge bottoms. 313 

Less than 5% of the reef system has been studied to date (Francini-Filho et al., 2018) and little quantitative data is 314 
available in relation to the associated siliciclastic sediments. Based on limited data, reefs and sponge bottoms are 315 
more commonly described in the central and southern sections (Moura et al., 2016; Francini-Filho et al., 2018) 316 
while reefs with nearly 100% live coverage are predominantly described from the deepest parts (Francini-Filho et 317 
al., 2018).  318 

4. Discussion 319 

The analysis of data from the accessible literature clearly reveals that sediment-impacted reefs that have developed 320 
in environmentally comparable settings do not necessarily record the same characteristics throughout the 321 
stratigraphic record (Table 1). Beyond the comparably well-studied examples, there are other ancient reef systems 322 
that were only superficially described (Esteban, 1980; pers. comm. Denayer, 2022).  323 

  324 
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Table 1: Comparison of the selected examples of reefs in sediment-stressed environments. Abbreviations used: 325 
stromatoporoids (strom.); tabulate corals (tc.); rugose corals (rc.); scleractinian corals (sc.).  326 

 327 
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4.1 Characterising the siliciclastic component 328 

As with any other reef system, turbid water reefs are typically described either in relation to their location (e.g., 329 
nearshore, distal), in the context of the energy system (e.g., sheltered, wave influenced), in terms of the water depth 330 
(e.g., shallow, deep) or as a combination of these adjectives (e.g. shallow, low energy, lagoonal). However, this 331 
study clearly demonstrates that, in the majority of cases, there is a severe paucity of detailed data describing the 332 
siliciclastic component that is found in association with these reefs (Table 2). In many cases, the presence or 333 
absence of a siliciclastic component is not explicitly stated (e.g., Hayward, 1982; Mitchell et al., 2001; Yue et al., 334 
2004). Even where a reef is described from a mixed carbonate-siliciclastic environment, this does not conclusively 335 
prove the presence of siliciclastic material within the reef matrix, for example in cases where the reef is sheltered 336 
from turbid environments (Kershaw, 1981; Méndez-Bedia and Soto, 1984). While reference may be made to the 337 
presence of siliciclastic material, a detailed quantitative description of the volume, distribution and nature of the 338 
siliciclastic grains is relatively rare (e.g., Godefroid, 1968; Pelhate and Plusquellec, 1980; Nield, 1982; Braga and 339 
Martín, 1988; Mabille et al., 2008; Moura et al., 2016; Francini-Filho et al., 2018; Denayer, 2019; Zapalski et al., 340 
2021). Where these sediments are described, the description is often incomplete – particularly with reference to 341 
any relationship to reef builders. A further difficulty is establishing the temporal relationship between reef growth 342 
and siliciclastic influx – was reef growth contemporaneous with siliciclastic input or were these sediments 343 
deposited after the reef growth? 344 

Table 2: Overview of the here compared mixed siliciclastic reefal settings. The traffic light system highlights whether 345 
and how detailed information on the siliciclastic content and relation to the internal structure are provided for each 346 
study. Green: detailed information; Orange: some information; Red: no information provided.  347 
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4.2 Reef morphology 348 

The reefs described here are ridge-like, barrier, patch or biostromal reefs. All of these units have a limited (metre 349 
to decametre) thicknesses (e.g., Pelhate and Plusquellec, 1980; Mitchell., 2002a, b; Olivier et al., 2004) and lateral 350 
extent – only rarely reaching hundreds of metres (Wilson and Lokier, 2002; Zapalski et al., 2021; Unger et al., 351 
2023). In addition to corals, numerous other biota (e.g., microbial communities, serpulids) have been documented 352 
as forming patch reefs in argillaceous settings – again, these reefs are of limited extent (metre to decametre; e.g., 353 
Berra and Jadoul, 1996). Regardless of the nature of the reef-forming organism, all of the described siliciclastic-354 
associated reefs form sedimentary bodies that are significantly thinner and with a smaller footprint than 355 
contemporaneous reefs that formed in ‘blue water’ settings.  356 

The examples in this study clearly demonstrate that siliciclastic-sediment hosted reefs can and do develop and 357 
thrive under significant sediment influx (e.g., Unger et al., 2023) and in constantly turbid waters (e.g., 358 
Santodomingo et al., 2015, 2016; Reuter et al., 2019) – this is counter to the widely held notion that sediment 359 
particles will, by default, smother and kill reefal organisms (Rogers, 1990; Jones et al., 2015; Ricardo et al., 2015). 360 
However, the observation that siliciclastic-hosted reefs are typically considerably smaller than their blue water 361 
counterparts, implies that siliciclastic sediment does impact reef morphology by limiting both the vertical and 362 
lateral extent of reef development. This conclusion is supported by the observation that, in siliciclastic settings, 363 
reef size is related to the volume of siliciclastics within the reef matrix as a proportion of the total reef volume. 364 
Larger reefs yield relatively small amounts of clastics from their matrix while smaller reefs typically display a 365 
higher volume of siliciclastic matrix (e.g., Olivier et al., 2004). In other words, higher volumes of clastic influx 366 
result in smaller reefal bodies.  367 

4.3 Coral growth morphology 368 

It is hypothesised that, during the Paleozoic, massive and platy-foliose tabulate coral forms evolved in turbid 369 
shallow water environments (Zapalski et al., 2021). By contrast, Mesozoic to Recent, scleractinian corals with 370 
branching frameworks have been associated with significant sediment influx (Rogers, 1990; Mitchell, 2002a, b; 371 
Lokier et al., 2009; Jones et al., 2015). Yet such relationships are not universal, scleractinian corals from the 372 
Miocene of Indonesia exhibit a strong, converse, relationship between growth form and siliciclastic influx with 373 
branching forms dominating during periods of low influx and platy forms where rates are high (Wilson and Lokier, 374 
2002). A further complication arises in that numerous studies have recorded that there is no discernible relationship 375 
between siliciclastic sediment influx and coral growth morphology (Mabille et al., 2008; Unger et al., 2023). 376 
Clearly, associating coral morphology with siliciclastic sediment influx is highly problematical – particularly for 377 
ancient ecosystems where the nature of the associated siliciclastic material is poorly documented, and the rate of 378 
sediment influx is unknown. 379 

  380 
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4.4 Internal organisation 381 

Normal marine reef communities have been described as ‘highly patchy’ in terms of both the distribution of 382 
organisms and growth morphology (Hubbard, 2006; Wood, 2011); this axiom holds true for the majority of the 383 
sediment-stressed examples discussed here.  384 

Reefs developing in sediment-stressed settings clearly exhibit lateral and vertical variability at a range of scales 385 
from metre (Zapalski et al., 2021; Unger et al., 2023) to many tens or even hundreds of kilometres (Francini-Filho 386 
et al., 2018). Internal organisation of facies and biotic assemblages may appear random, as observed in the Middle 387 
Devonian auto- to autoparabiostromes documented from Australia and Germany (Zapalski et al., 2021; Unger et 388 
al., 2023). Alternatively, discernible cyclical stacking patterns may be observed, as is the case for the Miocene 389 
examples from Spain and Indonesia (Braga and Martín, 1988; Martín et al., 1989; Wilson and Lokier, 2002). 390 

Several of the studied examples lacked any definitive information pertaining to the internal organisation of the reef 391 
system (e.g., Pelhate and Plusquellec, 1980; Olivier et al., 2004; Mabille et al., 2008). Such a paucity of data may 392 
result from the nature of the outcrops, with poor or insufficient exposure prohibiting the elucidation of three-393 
dimensional and, in some case, even two-dimensional architectures. Establishing internal organisation can also be 394 
significantly compromised where post depositional (diagenetic) processes have overprinted primary depositional 395 
fabrics. In conclusion, no discernible relationship was established between the internal organisation of the reef and 396 
its depositional context. 397 

As has been demonstrated, reefs are able to develop and even thrive under conditions of elevated siliciclastic 398 
influx, and increased turbidity, particularly for short durations. However, periods of prolonged sediment influx or 399 
episodic large scale sedimentation, particularly in combination with other stressing factors, will either smother and 400 
kill most reefal organisms or induce a change in the reefal community (van Woesik and Done, 1997; Jordán-401 
Dahlgren and Rodríguez-Martínez, 2003; Januchowski-Hartley et al., 2020; Lokier, 2021). 402 

Where reefs are observed in naturally turbid settings, this is usually in association with relatively high 403 
hydrodynamic energies where waves and currents constantly remobilise sediments to limit the duration and, 404 
therefore, effects of smothering (e.g., Larcombe et al., 2001; Richards et al., 2018). In cases where a pre-existing 405 
reef is affected by anthropogenically-induced siliciclastic influx then, depending on the rate and volume of 406 
sediment influx, we can expect to see either the burial and demise of the reef or a switch in the composition of the 407 
reef building community. 408 

Documenting and understanding the relationships between siliciclastic influx and the development of ancient reefs 409 
offers an opportunity to predict the responses of recent reefs to future anthropogenically-driven stress and climate 410 
change (Kleypas et al., 2001; Santodomingo et al., 2016; Zweifler et al., 2021). Present-day reefs developing under 411 
a range of environmental stresses, including turbid-water environments, have been cited as possible refugia from 412 
which the evolutionary selection of more stress-resistant communities may be utilised to repopulate damaged reefs 413 
in the future (Cacciapaglia and van Woesik, 2015; Morgan et al., 2016). 414 
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5. Conclusions 415 

Reefs have occurred in sediment-stressed environments throughout the Phanerozoic, yet, beyond some broad-scale 416 
generalisations, our understanding of these systems remains hamstringed by a lack of the quantitative data that is 417 
necessary to undertake relational analysis. In order to fully elucidate the relationship between siliciclastic 418 
sedimentation and reef development, there needs to be a significant step-change in how we routinely record ancient 419 
and recent reefal systems. It is only through the collection of constrained quantative data that we can progress 420 
beyond the largely conjectural associations postulated for many ancient reefal systems. 421 

Where a reef has developed in relation to siliciclastic sediments, it is necessary to discern if the influx of siliciclastic 422 
material was contemporaneous with reef growth or occurred after the development of the reef, for example through 423 
the infiltration of siliciclastic material into the reef framework (Lafuste et al., 1991; Fernandez et al., 2006; Huang 424 
et al., 2022). Stratigraphic relationships between the siliciclastic sediments and the reef should be detailed, 425 
particular attention must be paid to contact relationships. All sedimentary structures, including bioturbation, should 426 
be fully documented. A quantitative analysis of the mineralogy and textural properties of the siliciclastic grains 427 
should be undertaken. The carbonate component of the matrix should be similarly documented in detail. Any 428 
relationships between bioclasts and siliciclastic components (incorporation, overgrowth, abrasion, etc.) needs to 429 
be recorded. The morphologies of the skeletal components should be described in detail. Where a reef has 430 
developed in a siliciclastic dominated setting, but the reef lacks a siliciclastic component, then an attempt should 431 
be made to discern the reason for the lack of siliciclastics. 432 

Under a trajectory of accumulative anthropogenically-driven reef stress, there is an increasing urgency to study 433 
and understand these systems that, potentially, offer refugia for those hardy and tolerant corals species that are 434 
preadapted to environmental stressors. 435 
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