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Abstract. This paper presents MOGeomet ry, a multi-layer quasi-geostrophic (QG) equations solver for non-rectangular ge-
ometries. We advect the potential voriticity (PV) with finite volumes to ensure global PV conservation thanks to a staggered
discretization of the PV and stream-function (SF). Thanks to this staggering, the PV is defined inside the domain, removing the
need for defining the PV on the domain’s boundary. We compute PV fluxes with upwind-biased interpolations whose implicit
dissipation replaces the usual explicit (hyper-)viscous dissipation. The presented discretization does not require the tuning of
any additional parameter, e.g. additional eddy viscosity. We solve the QG elliptic equation with a fast discrete sine transform
spectral solver on rectangular geometry. We extend this fast solver to non-rectangular geometries using the capacitance matrix
method. We validate our solver on a vortex-shear instability test case in a circular domain, a vortex-wall interaction test-case,
and on an idealized wind-driven double-gyre configuration in a octogonal domain at a eddy-permitting resolution. We release
a concise, efficient, and auto-differentiable PyTorch implementation of our method to facilitate future developments upon this

new discretization, e.g. machine learning parameterization or data-assimilation techniques.

1 Introduction

Ocean fluid dynamics offers a hierarchy of models that trade between richness of the physical phenomena and dimensionality
of the system. On the one end of this hierachy are the Boussinesq non-hydrostatic equations. These equations describe the
evolution of the stratification via temperature and salinity, they model explicitly convective phenomena but they require the
evolution of six prognostic variables: the three components of the velocity u, v, w, temperature T and salinity s, and the free
surface 7.

On the other end of this hierachy are the multi-layer quasi-geostrophic equations. These equations are based on strong
hypotheses: static background stratification, hydrostatic and geostrophic balances. In a multi-layer QG model, the stream-
function (SF) v and potential vorticity (PV) q are stacked in NV isopycnal layers with density p; and reference thickness
H;:
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The governing equations read

u u 1
Orq + -Vihq =0, = Vip v, (1a)
v v
Antp — fi A = q— By, (1b)
1 1 -1
H g + H.g} Higq
1 1 + 1 —1 .
A= Hzg) Hagf Ha g5 Hag) . (1¢)
—1 1
Hng:],l Hﬂ,g:.‘71
Vit =[-0,,0,]7T stands for the horizontal orthogonal-gradient, A, = 92, + 6§y denotes the horizontal Laplacian. fo+ 3(y —

yo) is the Coriolis parameter under beta-plane approximation with the meridional axis center yo, g;, = ¢ is the gravitational
acceleration, and g} = g(pi+1 — pi)/p: are the reduced gravities. One can include bottom topography as a constant term in the
RHS of the QG elliptic equation (1b) (Hogg et al., 2014).

QG equations hence involve a single prognostic variable, the potential vorticity (PV) q, which is advected (eq. 1a). Despite
strong hypotheses, the multi-layer QG equations are a robust approximation of ocean meso-scale non-linear dynamics. They
offer a computationally efficient playground to study the meso-scale ocean dynamics and to develop physical parametrizations
of the unresolved eddy dynamics (Marshall et al., 2012; Fox-Kemper et al., 2014; Zanna et al., 2017; Ryzhov et al., 2020;
Uchida et al., 2022, e.g.).

Solving the QG equations requires solving an elliptic equation (eq. 1b) which relates the streamfunction 1) and the potential
vorticity q. On a rectangular domain, it can be easily achieved using a fast spectral solver based on discrete Fourier transform
(DFT) for periodic boundary conditions or discrete sine transform (DST) for no flow boundary conditions. Most of the available
open-source QG solvers like Geophisical Flows (Constantinou et al., 2021), PyQG or Q-GCM (Hogg et al., 2014) use such
spectral solvers and are therefore limited to rectangular geometries.

There are two major issues when implementing QG models on non-rectangular geometries. The first issue is the fact that
spectral elliptic solvers do not apply for non-rectangular domains. In ocean models, one typically uses conjugate gradient (CG)
iterative solvers like BICGSTAB (Van der Vorst, 1992) to solve elliptic equations on non-rectangular domains, for example
when solving the Poisson equations associated with a rigid lid-constraint (Hafner et al., 2021) or for implicit free-surface
computations (Kevlahan and Lemarié, 2022) in Primitive equation solvers. These CG iterative solvers are significantly slower
than spectral solvers to solve Poisson or Helmholtz equations on evenly spaced rectangular grids (Brown, 2020). Using them
in a QG solver would reduce significantly the computational efficiency that makes QG appealing compared to Shallow-water
(SW) models.

The second issue is the definition of the potential vorticity (PV) on the boundaries. If we discretize the potential vorticity q
on the same locations as the streamfunction 1), we have to define the potential vorticity on the boundaries. This requires using
partial free-slip/no-slip condition (Hogg et al., 2014, see e.g.) to define ghost points in order to compute the laplacian of the

streamfunction.
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In this paper, we present MOGeomet ry, a new multi-layer QG equations solver that addresses these two issues. This solver
uses a new discretization of the multi-layer QG equations based on two main choices. The first choice is to discretize the
potential vorticity (PV) and the stream-function (SF) on two staggered grids. When doing so, the PV is not defined on the
domain’s boundary but in its interior. This solves the issue of defining the PV on the domain boundaries. Moreover, this choice
allows using a finite-volume scheme for the PV advection. It guarantees the global conservation of the PV and leverages a fine
control on the PV fluxes. The second choice is to solve the elliptic equation using a fast spectral DST solver combined with
the capacitance matrix method (Proskurowski and Widlund, 1976) to handle non-rectangular geometries.

In addition to this two choices, we decide to compute PV fluxes with upwind-biased stencil interpolation to remove the
additional (hyper-)viscosity used in most discrete QG models. Doing so, we explore a different approach that is complementary
to physical parameterizations of the horizontal momentum closure: a careful choice of the numerical schemes used to discretize
the continuous equations. This idea has been initially developed by Boris et al. (1992) in the context of large eddy simulations
(LES) models and made popular as implicit LES by Grinstein et al. (2007). It has been sucessfully tested by Von Hardenberg
et al. (2000) to study vortex merging in single layer QG model and by Roullet et al. (2012) to study the forced-dissipated three
dimensional QG turbulence in a channel configuration. While Von Hardenberg et al. (2000) and Roullet et al. (2012) used only
linear upwind-biased recontruction, we implement here linear and non-linear weighted essentially non oscillatory (WENO)
reconstructions (Jiang and Shu, 1996; Borges et al., 2008) that are tailored to remove spurious numerical oscillations created
by linear reconstructions (Liu et al., 1994).

We implement the proposed discretizations in a concise Python-PyTorch code that allows seamless GPU acceleration. It
benefits from built-in automatic differentiation to facilitate future developement in machine-learning or data-assimilation. We
validate our solver on a vortex-shear instability test case in a closed squared domain, an inviscid vortex-wall interaction, and
an idealized wind-driven double-gyre configuration in a non-rectangular configuration.

This paper is organized as follows. In Section 2, we describe the resolution of the PV advection equation with finite volume.
In Section 3, we present our elliptic solver based on discrete sine transform and capacitance matrix method (Proskurowski
and Widlund, 1976). In Section 4, we detail the solver implementation. In Section 5, we describe the experimental settings to

validate our discretization. We conclude and evoke further perspectives in Section 6.

2 PV advection with finite volumes

2.1 Staggered discretization of PV and SF

The first ingredient of our method is to use finite-volumes to solve PV advection (eq. 1a). This leads naturally to a staggered
discretization for the PV and the SF (see right panel of Figure 1). With this choice, the PV advection (1a) can be integrated

over the whole domain as a transported tracer with a finite volume formulation. Indeed, if 1 is discretized at the cell vertices,
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Figure 1. (left) usual and (right) proposed staggered discretization (bottom) of the prognostic variables (q, ¥, u, v) for the QG system (1).

the orthogonal-gradient of 1) computed with the standard second order discretization

Jig—Jfije
1 _ )
Vi fij= Y

fiv1,i—fij
ox

lies in the middle of the cell edges. The horizontal velocity u lives in the middle of the vertical egdes while the vertical velocity
v lives in the middle of the vertical edges. We thus have to discretize the PV q at the cell centers to solve its advection with
finite volumes.

At the boundary which passes along the cell edges, the condition is simply the no-flux of PV across the walls. This staggering
clearly separates the boundary condition associated with the transport of PV from the boundary condition associated with
optional friction (partial free-slip or no-slip). The global conservation of PV during advection is ensured up to numerical
precision with finite volumes.

In the usual discretization (see Appendix A), the PV must be defined on the boundary, which requires defining the Laplacian
operator Ay, there. This is problematic since it forces blending the slip boundary conditions into the definition of the Laplacian,
rather than having a slip boundary condition clearly separated from the definition of PV. Moreover, depending on this choice,
the material conservation of the PV might not be ensured even though the advection scheme, e.g. Arakawa-Lamb (Arakawa

and Lamb, 1981), conserves the PV inside the domain.
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Figure 2. Illustration of the upwind biased reconstruction. Away from boundaries we use a 5-points stencil for reconstruction, while close
to boundaries, we use a 3-points stencil when possible (top-left). At distance one from boundary when the velocity goes away from the
boundary (bottom-right), we use a second order reconstruction with a two-points centered stencil rather than upwind-1 reconstruction to
have a reconstruction of order at least two. For linear reconstructions, the weights ¢; are fixed. For non-linear reconstruction, the weights c;

depend on the solution.

2.2 Upwinding of PV fluxes
In a finite volume formulation, we rewrite the PV advection (1a) as the divergence of a flux:

u
0iq=—Vy- qal - ()

\%

The divergence is discretized with the usual second-order finite differences operator

vy [ ] = Yl Ui Vil = Vi

Vi ox oy
We hence need to interpolate q on the u and v grid points to compute these PV fluxes. In the context of finite volume methods,
we call these interpolations reconstructions.
For a good trade-off between stability and accuracy, we use a 5-points upwind-biased stencil for reconstruction. Near the

boundary we use a 3-points upwind-biased stencil or a 2-points centered stencil as illustrated in Figure 2. The ordering of
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Circular advection with finite volume, constant velocity, cfl=0.4
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Figure 3. One dimensional advection with constant velocity on a periodic domain over one period. We compare 3 finite volume methods

using linear, WENO-JS (Jiang and Shu, 1996), and WENO-Z (Borges et al., 2008) 5-points upwind reconstructions.

the stencil is given by the sign of the velocity. For instance, ¢° = Z§=1 csqs when the velocity is positive, and we have the
reverse order when the velocity is negative. Using upwind biased stencils for reconstruction allows removing additional ad-hoc
(hyper-)viscosity which is necessary when using centered reconstructions (Lemarié et al., 2015). We decide here to rely solely
on the upwinding to handle the potential enstrophy dissipation, which is done implicitely.

We offer two possibilities for reconstructions: linear reconstructions or Weighted Essentially Non Oscillatory (WENO)
reconstructions (Liu et al., 1994). The weights c, are fixed for the linear reconstruction. However, flux computed with linear
reconstructions tend to produce spurious numerical oscillations when the field q is not smooth (see Figure 3).

WENO reconstructions benefit from the essentially non oscillatory property (Harten, 1984): they are designed to prevent
spurious numerical oscillations that occur with linear reconstructions (see Figure 3). With a WENO scheme, the weights c;
are not fixed: they depend on the value of ¢ on the five-point stencil via smoothness indicators, e.g. first and second-order
deritatives computed with finite difference (Jiang and Shu, 1996). The smoother g on the stencil, the closer the weights c are

to the linear weights. One can find a detailed explanation of these non-linear weights computations in Borges et al. (2008).
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2.3 Time integration

WENO schemes’ convergence and stability properties derived in Jiang and Shu (1996) require using TVD Runge-Kutta scheme
of order at least 3 (Shu and Osher, 1988). Here we use TVD Runge-Kutta scheme of order 3 for time integration with finite
time step dt.

Given the time ordinary differential equation

o0f=Lf,
one can write the TVD RK3 scheme with the following three stages:
fO = O 4 5t O
@ =54 % (Lf(l) _ 3Lf(0)) ,

0

t
O =@ 4 o <8Lf(2) —Lf® —Lf(o)) )

This low memory version requires only the storage of the intermediate time derivatives L f().

3 Spectral elliptic solver on non-rectangular domain
3.1 Staggering of PV and SF

After having solved PV advection equation (Eq. (1a)), one has to solve the elliptic equation (1b) to compute the SF. The SF 1)
satisfies the homogeneous Dirichlet boundary condition, hence we have to compute the r.h.s. terms inside the domain. Due to
the staggered discretization, we need to interpolate them between the two grids. A natural way to proceed is to use a 4-points

linear interpolation to interpolate q on the t»-grid (see Figure 4).
3.2 DST solver on rectangular geometry

To solve the elliptic equation (1b), we use a vertical transform and a fast spectral solver with discrete sine transform (DST).

One can diagonalize the matrix A (defined in eq. 1¢) as follows
A= Cm21A012m )

where the layer-to-mode matrix Cay, is the inverse of the mode-to-layer matrix Cy,01, and A is a diagonal matrix containing A

eigenvalues. One can then perform the following layer-to-mode transform:

17]7 (Nl = ClZmQ/)a Cl2mq .

With this transform, the elliptic equation (1b) becomes a stack of N two-dimensional Helmholtz equations

Antp — fAAY =G — By 3)
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Figure 4. Illustation of the 4-pts interpolation to interpolate q on the ¥)-grid.

with homogeneous Dirichlet boundary conditions. To solve these N two-dimensional Helmholtz equations, we use fast-

diagonalization with type-I discrete sine transform (DST-I) since the usual 5-points Laplacian operator

fivrj—2fi;+fic1y | fige1—2fi;+ fij
Apfi = J J J J J J
hf,j S22 + §y2

becomes a diagonal operator in the type-I sine basis (Press and Teukolsky, 2007, 20.4, p. 1055). After having solved these N

Helmholtz equation, we transform back 1) from mode to layers

'l/) = Cm2l’;z .

3.3 Capacitance matrix method for non-rectangular geometry

To handle non-rectangular domains, we use the capacitance matrix method (Proskurowski and Widlund, 1976). We have a
non-rectangular domain 2 = 0QU €} where 09 is the domain boundary and Q) is the interior of the domain. Our non-rectanglar
domain €2 is embedded in a rectangular domain Qg = 9Qr U SqZR. We denote by Z = 99\ 0Qg the set of non-rectangular
boundary indices (see Figure 5). We assume that we have K non-rectangular boundary points I, € 7.

We now explain how to solve the following non-rectangular Helmholtz equation
Anf—Af=rin AeRT, f=00n0N. @)

One can find a more detailed explanation in Blayo and LeProvost (1993) as this is our inspiration for using the capacitance

matrix method.
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Figure 5. Domain (2 included in a rectangular domain Qg, and the set Z = 992 \ 9w of non-rectangular boundary indices.

160 3.3.1 Pre-computations

For each non-rectangular boundary point I, € Z, a Green function gj, is defined as the solution of the following rectangular

Helmbholtz equation

lon I
Angr — Mg, = ) ;
gr =00n0Ng .

165 solved using DST-I fast-diagonalization. With these Green functions, we compute the square matrix M with coefficients

mpg = gi(Ix) -

We compute this matrix inverse to get the so-called capacitance matrix C' = M .
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3.3.2 First-step

In a first step, we solve the following rectangular Helmhotz equation
Apf® g =]" i“? O
0in Qr\ 2
M =00n0Qg
using DST-I fast-diagonalization. We then compute the vector s coefficients
se=fU(Iy)
and we deduce the vector

a=-Cs.

3.3.3 Second-step

In a second step, we solve the following rectangular Helmhotz equation
rin Q)
Ahf@) - )\f(z) = ap on I
0in Qp \Q
@ =00n0Qg
using DST-I fast-diagonalization. This function () is such that
Anf® -2 f® =rin Q
fOI) =0V, €1
f@ =00n8Q\Z

The restriction of f(2) over our non-rectangular domain € is therefore solution of the Helmholtz equation (4).

3.3.4 Numerical cost

The capacitance matrix method involves solving a dense linear problem with K unknowns, K being the number of boundary
irregular points Z. The capacticance matrix is hence a K x K matrix, its inversions requires O(K®) computations.

In practice, the inversion is the most computationnally expensive operation, but it is precomputed a single time. This meth-
ods’ major limitation is in terms of memory, i.e. to store the K x K matrix especially on GPUs whose memory capacity is
usually smaller than CPUs. On the laptop utilized, we were able to use up to K = 10,000, allowing us to run simulations akin

to the North Atlantic at a resolution of 6km. At this resolution, the ageostrophic effects are becoming significant, and the QG

hypothesis might no longer be relevant.

10
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4 TImplementation
4.1 Programming language and library

One can implement the above discretization using any programming language. To anticipate later applications in data assimi-
lation and machine learning, and to benefit easily from GPU acceleration, we have decided to use the PyTorch library (Paszke
et al., 2019). This library contains the usual linear algebra routines, and the computations can be easily vectorized. It offers
a built-in automatic differentiation to compute gradients or adjoints. This can be beneficial for future machine-learning and

data-assimilation developments.
4.2 Upwind flux computation

Upwind flux computations require splitting the velocity into positive and negative part. This can be achieved very efficiently

using the ReL.U function
ReLU(z) = max(z,0)

whose PyTorch implementation is highly optimized since this function is widely use in neural networks. The positive part u™

and negative part v~ of the velocity are given by

ut =ReLU(u) ,

u =u—u
4.3 WENO reconstructions

Weighted essentially non-oscillatory (Liu et al., 1994, WENO) is a large class of reconstruction methods. We implement two
of the most widely used WENO reconstructions: the WENO-JS (Jiang and Shu, 1996) and the WENO-Z (Borges et al., 2008).

Implementating these methods require only a few lines of Python code (written in Appendix B).
4.4 Masks

For non-rectangular domain, one has to provide a binary mask for the PV grid with ones inside the domain and zeros outside.
Given this mask, we automatically compute the masks for the other variable, i.e. the stream-function 1) and the two components
of the velocity u and v, and we deduce the non-rectangular boundary set Z involved in the capacitance matrix computations.
We also compute sepecific masks that specify the stencil for PV reconstruction on u and v points for PV fluxes computations.

This is illustrated in Figure 6.

11
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Figure 6. Illustration of the different masks. The label "u ic2" means that one uses two-points centered stencils to reconstruct g on these u
points for PV fluxes computations. The label "v iup5" means that one uses five-points upwind-biased stencils to reconstruct q on these v

points for vertical PV fluxes computations.

4.5 Elliptic solver

Our elliptic solver is based on fast diagonalization using discrete sine transform. Since PyTorch implements FFT but not DST,
we implement DST-I using FFTs with specific pre- and post-processing operations. Notably, our DST-I implementation is
faster than Scipy’s implementation on Intel CPUs thanks to PyTorch bindings to MKL FFT.

The capacitance matrix method implementation is straightforward following the equations in section 3. Capacitance matrices
are precomputed given the set of non-rectangular boundary indices Z. The method solves the Helmholtz equation with machine
precision accuracy. Figure 7 illustrates this point on a circular domain at resolution 2562. From a prescribed streamfunction
f, taken as Gaussian white noise and vanishing along the boundary, we apply the Helmholtz operator to get a r.h.s. We then
solve the Helmholtz equation with this r.h.s. to get fi,,. Figure 7 shows that f;,, — f is of the order of machine precision. The

method is independant of the domain shape. The numerical experiments below explore various domain shapes.

12
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Figure 7. Example of Helmholtz equation solved with our solver on a circular domain embedded in a 2562 square domain. The true function
f is initialized with spatially uncorrelated Gaussian white noise. The inverted function finy is computed using our solver. The difference

between f and finy is of the order of machine precision.

Our spectral solver can’t handle curvilinear coordinates or non-constant metric terms. Solving the QG equations on a grid
with non-constant metric requires an iterative elliptic solver, e.g. a multigrid solver (Fulton et al., 1986). Iterative solver can be
speed-up with a good initial guess. One can still use the presented solver to provide an initial guess assuming that the metric

terms dx and dy are constant, e.g equal to the mean dx and dy.
4.6 Compilation

PyTorch embeds a compiler which allows a significant speed-up for computationally intense routines. We compile the flux

computations and finite difference routines. We get a 2.2 x speed-up thanks to this compilation with torch.compile.
4.7 Ensemble simulations

Thanks to PyTorch vectorized operations, our implementation allows running ensemble simulations, i.e. parallel simulations
starting from different initial conditions. This is a promising possibility for later developments of ensemble-based data assimi-

lation or for stochastic extensions such as (Li et al., 2023).
4.8 Architecture

The code is divided into six python scripts:

13
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helmholtz.py which contains the Helmholtz solvers based on DST-I and capacitance matrix method.

fd.py which contains the finite difference functions.

reconstruction.py which contains the reconstructions (i.e. interpolations in the context of finite volumes) routines.

masks . py which containts the mask utility module.

flux.py which contains the flux computations routines.

ggm . py which contains the python class implementing the multi-layer QG model.

We end up with a concise PyTorch implementation (~ 750 lines of code) which is as close as possible to the equations. It can

run seamlessly on CPUs and GPUs with CUDA compatibility.
4.9 Performance

To assess the performance of our solver, we ran the double-gyre experiement (see below) on a Dell precision 7560 Laptop
equipped with a Intel Core i9-11950H CPU and a NVIDIA RTX A3000 Laptop GPU. We measure the number of seconds per
grid-point per time-step as well as the power comsumption of the devices using the commands nvidia-smi for GPU and
turbostat for CPU.

Using the GPU, we get an execution time of 2.5 x 10~® sec. per grid-point per time-step with a power consumption of 75
Watt. Using the CPU with a single core, we get an execution time of 1.9 x 10~7 sec. per grid-point per time-step with a power
consumption of 22 Watt. Using the full CPU with 16 cores, we get an execution time of 7.0 x 10~% sec. per grid-point per
time-step with a power consumption of 67 Watt.

As expected, the GPU has a better power efficiency than the CPU (Héfner et al., 2021). There is still room for improvement

for CPU parallelization in our code, as PyTorch’s native parallelism is not fully efficient in our case.
4.10 Accuracy

Despite the high-order WENO reconstruction used to solve the PV transport, our solver is formally second-order accurate due
to the staggering and the use of second order perpendicular and divergence operator. This calls for a discussion.

The perpendicular gradient operator is applied to the stream function, which is the smoothest field that we resolve. The bene-
fits of using higher-order schemes for this operator is less obvious. The second-order divergence operator used in finite-volume
advection ensures the global conservation of PV up to numerical precision. Higher-order scheme might discard this conserva-
tion property. For the PV advection, low-order reconstruction schemes suffer from higher numerical diffusion (Lemarié et al.,
2015) while linear reconstructions tend to create more oscillations for non-smooth fields. These two considerations motivate
the use of high-order non-linear reconstruction on the potential vorticity field, which is non-smooth since QG flows contain

boundary currents, eddies, and filaments.

14
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Figure 8. Vortex-shear instability experiement. Evolution of potential vorticity q at initial time ¢ =0, at intermediate times

57,7.57,97,137,187, 247, and at final simulation time 307.

5 Numerical validation

We run three numerical experiments involving meso-scale vortices (20 to 200 km diameters) to validate our solver. The first
one is a vortex shear instability, the second one is a vortex wall interaction, and the third one is an idealized double-gyre
experiement, which is a usual toy model for western boundary currents. With our solver, multi-layer QG equations deliver on
their promise of computationally efficient playground to study meso-scale non-linear dynamics. Indeed, the three presented
experiements ran on a laptop and took a few to to fifty minutes to run. We provide the python scripts to reproduce these

experiments and the figures.
5.1 Vortex shear instability

The first validation of our method consists of a vortex shear instability. We consider a rotating fluid in a circular domain with
diameter D = 100 km embedded in a square domain of size L, x L, =100kmx 100km on a f-plane with a Coriolis parameter
fo, whose value is deduced below from the Burger number below. There is a single layer of fluid with reference thickness
H = 1km. We assume no-flow and free-slip boundary conditions. The gravity constant is set to g = 10 ms 2.

We study the shear instability of a meso-scale shielded Rankine vortex, which has piece-wise constant potential vorticity. In

the initial state, the vortex is composed of a core vortex surrounded by a ring of opposite-sign potential vorticity to the core

15
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such that the total sum of the PV is zero. This system is shear unstable and generates multipoles (Morel and Carton, 1994). We
focus here on the tripole formation regime.

The core of the vortex has a radius 7o = 10 km and positive vorticity. The surrounding ring has an inner radius ro = 10km
and r; = 14 km. The remaining parameters of the simulation are set via the Rossby and Burger numbers defined as follows

umax
Ro= 5
°= foro )

gH
Bu= ,
(foro)?

where U,y 1S the maximum velocity of the initial condition. Given the Burger number, we compute the Coriolis parameter

using fo = |/ 7 Lh; . Then given the Rossby number, we rescale the velocity field of the initial condition such that the maximum
0

(6)

velocity is Umax = Roforo.

The quasi-geostrophic equations are valid for Bu < 1 and Ro < 1. We perform the experiment with Ro = 0.01 and Bu = 1.
The equations are integrated over a period of 307, with 7 = ||Qinit |5 ! the eddy-turnover time, and qjn;¢ the initial condition,
shown at the top-left of Figure 8. At initial time the PV contours of the core and the ring r = r; are slightly perturbed by means

of a mode three azymuthal perturbation defined in polar coordinates (r,6) by
(1+€cos(30))r=r;,

where € < 1 is a small parameter, typically e = 0.001. This perturbation favors the growth of the most unstable mode which,
given the ratio 1 /g, evolves nonlinearly into a tripole (Morel and Carton, 1994).

We use WENO-Z reconstructions for this experiment. This experiment can be reproduced with script vortex_shear.py.
We run the reference experiment at a resolution of 10242,

We see on Figure 8 the evolution of the vortex potential vorticity q at different times between the beginning and the end of the
simulation at time ¢t = 307. At time ¢ = 57 the result of the instability is visible and the core vortex which was initally circular
has a triangular shape. At time ¢ = 7.5 7 the outer positive PV ring has become the expected tripole (Morel and Carton, 1994).
At time ¢ = 97 the core vortex recovers a triangular shape with negative PV filaments ranging from the triangle vertices to the
three positive vortices. At time ¢ = 137, the core vortex keeps a triangular shape and the voriticity finalements are becoming
thinner. At time ¢ = 187, the filaments thickness are reaching the grid scale and they start being dissipated by WENO-Z
implicit dissipation. At time ¢ = 24 7, the filaments have are being progressively dissipated and have a smaller amplitude. The
core vortex shape is become more circular, and the three positive vortices are surrounded by a smaller negative vortex. At final
time ¢ = 307, the filaments amplitude have lowered, and small vorticity dipoles appear. The order three symmetry, that was
injected by the initial perturbation, starts to be lost only at time ¢ = 30 7. For later times (not shown), the system evolves into a
chaotic system. This chaotic evolution is expected as the system is sensitive to initial conditions.

To measure the sensitivity of our solver to resolution and to order of the reconstruction scheme (3 or 5), we compare the
solutions produced by our solver at resolution 10242, 5122, and 2562 using third-order WENO (WENO-3) and fifth-order
WENO (WENO-5) reconstructions. In Figure 9 we plot the evolution of the total enstrophy at the three different resolutions.
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Figure 9. Evolution of the total enstrophy for the vortex-shear at resolutions 10242, 5122, and 256> using WENO-3 or WENO-5 for PV

reconstruction.

The results show that the enstrophy dissipation decreases as the resolution increases, indicating that a higher resolution better
preserves the PV variance, and that low resolution simulations suffer from an excessive dissipation.

We also note that WENO-3 leads to excessive numerical dissipation compared to WENO-5. Moreover, the enstrophy is

better preserved with WENO-5 at resolution 5122 than with WENO-3 at resolution 10242. We plot on Figure C1 in appendix

320 the final state of the simulation at resolutions 5122 and 10242 with WENO-3 and WENO-5. This indicates that WENO-5

increases the effective resolution. In terms of computation cost, the simulation runtime is 1 minute 2 secondswith WENO-5

at resolution 5122 and 5 minutes 52 seconds WENO-3 at resolution 10242 with the NVIDIA RTX A3000 Laptop GPU. This

illustrates the benefits of using high-order reconstructions despite the fact that our code is globally second-order accurate.

5.2 Vortex-wall interaction

325 To challenge the numerics we now study the propagation of a single meso-scale vortex along a solid boundary, with a free slip
boundary condition. The domain is square with a thin wall obstacle. Because the flow is inviscid, up to numerical errors, the
vortex is expected to follow the boundary according to the mirror effect. In particular the vortex should slip around the obstacle
and litteraly circumvent it, without detaching from it, without producing filaments (Deremble et al., 2016). The challenge is
thus to have a solution as inviscid as possible, and to enforce as better as possible both the no-flow and the free-slip boundary

330 conditions.
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Figure 10. Vortex-wall interaction experiement. (Top) Vortex potential vorticity q and streamfunction 1) contours at initial time ¢t =0,

at intermediate times 3.17,6.37,9.47,12.67,15.77,18.97, and at final simulation time 227. (Bottom) Evolution of the total enstrophy at
resolutions 10242, 5122, and 256°.

The setup is as follows. The domain size is L, x L, =100kmx100km on a f-plane with a Coriolis parameter f,. The
thin wall obstacle is vertical starting from the middle of the domain south boundary and of length L, /4 (see Figure 10) and
has a two cells width. There is a single layer of fluid with reference thickness H = 1km. We assume no-flow and free-slip

boundary conditions. The gravity constant is set to g = 10 ms~2. In the initial state, the vortex is a circle of radius 7o = 10 km
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Table 1. Parameters of the idealized double-gyre configuration

Parameters Value Description
Lo x Ly (5120 x 5120) km Domain size
Ng X Ny 256 x 256 Grid dimension
dx x dy 20%20 km Spatial resolution

Hy, (400,1100,2600) m Layer thickness

I (0.025,0.0125) m s~ 2 Reduced gravity

é 1431075571 Bottom drag coef.
To 0.08 N m~2 Wind stress magnitude
o 1000 kg m 3 Ocean density

fo 9.375107° s~ * Mean Coriolis

B 1.754107* (ms)~! Coriolis gradient
Lqg (41,25) km Rossby radii

dt 4000 s Time-step

with constant potential vorticity and is at the bottom of the domain and at the left of the wall. The circular shape differs from
the oval shape a vortex has when moving along a rectilinear wall. The remaining parameters of the simulation are set via the
Rossby and Burger with Ro = 0.01, and Bu =1

Figure 10 shows PV snapshots at various times, superimposed with the streamfunction. The vortex behaves according to
the inviscid regime. It clearly follows the wall and the obstacle elastically, without any sign of dissipative process such as
filament detachement. The vortex at ¢ = 227 has recovered the characteristic oval shape. Between t =9.47 and ¢t =12.67
the vortex circumvents the edge which causes it to experience its maximal deformation, but the solution remains smooth. The
streamfunction is clearly constant along the boundary, as a direct consequence of the capacitance matrix method. During the
circumvention, it remains so, despite the thin wall imposing a strong curvature at the edge.

This experiment shows that the numerics has very good conservation properties on inviscid flows. This may come as a sur-
prise since the upwinding does induce a numerical dissipation. In practice, the dissipation seems to self adjust to the minimum
required to prevent noise at the grid scale. This way of discretizing, in line with the ILES approach, turns out to be a viable
alternative to conservative discretization combined with an explicit dissipation term.

At the bottom of Figure 10 we plot the evolution of the total enstrophy at the three different resolutions. Once again, we note
that the enstrophy dissipation decreases as the resolution increases: higher resolutions better preserve the PV variance, while

low resolution simulations suffer from more dissipation.
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Upper-layer after 50 years of spin-up
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Figure 11. (Top) Upper-layer stream function ¢ and relative vorticity (i.e. A)) after 50 years of spin-up. (Bottom) Upper-layer mean stream

function, mean kinetic energy density, and eddy kinetic energy density computed over 40 years after 10 years of spin-up.

5.3 Double-gyre configuration

Our third numerical experiment to validate our solver is an idealized double-gyre configuration. Double-gyre configurations
are a natural test for QG implementation or parameterization (Zanna et al., 2017; Ryzhov et al., 2020; Uchida et al., 2022, e.g.).
We consider here an octogonal ocean basin to illustrate the ability of our solver to handle non-square geometries. This octogon
has maximal dimensions L, x L,. We assume free-slip boundary conditions on the boundaries. We consider N = 3 layers on
the vertical. We use an idealized stationary and symmetric wind stress (7,,7,) with 7, = —(70/po) cos(2wy/L,) and 7, =0
on the top and linear drag at the bottom drag coefficient §. The parameter values are given in Table 1.

We study this configuration in an eddy-permitting resolution of 20km the eddy-resolving meaning that the spatial resolu-

tion (20km) is half of the larger baroclinic Rossby radius (41km). Already at such eddy-permitting resolution, multi-layer
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QG solvers do not necessarily produce a well-pronounced eastward jet and usually require additional eddy parameterization
(Uchida et al., 2022).

We plot on top of Figure 11 a snapshot of upper-layer streamfunction and relative vorticity (i.e. A1)) after 30 years of spin-up.
As expected, our solver produces a strong western boundary current on the vertical and non-vertical boundaries. In the middle
of this boundary starts a well extended eastward jet whose length is qualitatively comparable with the Gulf-stream length in the
North-Atlantinc basin. This jet is surrounded by a recirculation zone with several meso-scale eddies, which appears coherent
with eddy-resolving resolution simulations. We notice large scale Rossby waves that are emerging near the eastern boundary
and that propagate westward.

Since this system is chaotic, showing a snapshot is not very representative of the dynamical behaviour of the system. We plot
statistics of our solution on the bottom of Figure 11: the mean stream-function, the mean kinetic energy (i.e. the kinetic energy
of the mean velocity), and the eddy kinetic energy (i.e. the kinetic energy of the velocity standard deviation). These statistics
were computed over 40 years after 10 years spin-up, saving one snapshot every 15 years. These statistics are symmetric
which is expected since the domain shape and the wind forcing are symetric. They confirm the presence of a strong western
boundary currents and fluctuating eastward jet whose length is roughly three fourth of the domain. These results seem to
confirm the relevance of implicit dissipation provided by upwinding, since usual multi-layer QG solvers require additional
eddy parameterization (Uchida et al., 2022) to produce a well-pronounced eastward jet.

To assess the influence of the resolution on the solution produced by our solver, we run the same double-gyre experiment at
lower resolutions: 27km, 40km, and 53km. We plot the the mean stream-function, the mean and eddy kinetic energy statistics
on Figure 12. We note that the eastward jet progressively diminishes as the resolution decreases: at resolution 27km, it bearly
reaches the middle of the domain, while at resolutions 40km and 53km, it almost disappears. At these two coarsest resolutions
that are comparable to the largest baroclinic Rossby radius, 41km in our configuration, meso-scale eddies can not be resolved

properly by our solver, one would require an additional eddy parametrisation to produce the eastward jet (Zanna et al., 2017).

6 Conclusions

We presented MQOGeomet ry, a multi-layer quasi-geostrophic equations solver for non-rectangular geometries. This solver has
three original aspects compared to usual solvers like Q-GCM, PyQG or PEQUOD: the use of finite-volume for advection via
staggering of the potential voriticity and stream-function, the non-linear WENO upwind-biased reconstructions with implicit
dissipation, and the ability to handle non-square geometry with a fast spectral DST solver combined with the capacitance
matrix method. Running a simulation with this solver does not require the tuning of any additional parameter, e.g. additional
hyper-viscosity.

This multi-layer QG solver delivers a computationally efficient playground to study meso-scale non-linear dynamics. It opens
the path to study the QG dynamics in basin with realistic coast line, e.g. Mediterranean or North-Atlantic basins. Moreover,
with PyTorch automatic differentiation, one can easilly build upon this implementation to develop new machine learning

parameterizations of the QG sub-grid scales or new data-assimilation techniques using QG.
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Figure 12. Upper-layer mean stream function, mean kinetic energy density, and eddy kinetic energy density computed over 40 years after 10

years of spin-up at resolutions (top to bottom) 27km, 40km, and 53km.
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We believe that more complex modeling systems can be implemented in high-level languages like Python without sacrifying

performance as demonstrated by Héfner et al. (2021). The QG system that we implemented in this solver is fairly simple, and

the present solver shall be seen a proof of concept. Our plan is to extend the presented approach to shallow-water equations and

subsequently to primitive equations. Major advantages are the seamless parallelism offered by GPUs, enabling us to write code

that closely aligns with the continuous equations, and the automatic differentiation, allowing to learn vertical parameterization
in a end-to-end fashion (Kochkov et al., 2023).

Code availability. The python source code to reproduce the results is accessible on line at https://github.com/louity/MQGeometry. It contains

a readme file with the instructions to run the code and a script to compute statistics and reproduce the figures.

Appendix A: Usual discretization of multi-layer QG equations.

One typically solves multi-layer QG equations using the following strategy (Hogg et al., 2014, e.g.) :

1.

Use an evenly spaced Arakawa C-grid with the PV and the SF discretized on the same location, namely the cell vertices

(see left panel of Figure 1).

Solve the PV advection equation (1a) using energy-enstrophy conservative Arakawa-Lamb scheme (Arakawa and Lamb,

1981) in the interior domain (i.e. not on the boundaries).

Since the scheme is energy conserving, use an additional (hyper-)viscosity scheme to dissipate the energy fueled by the

wind forcing.
Given the matrix A diagonalization
A= C(11121AC’12m s

where the layer-to-mode matrix Clay, is the inverse of the mode-to-layer matrix C,0), and A is a diagonal matrix con-

taining A eigenvalues, perform the following layer-to-mode transform:

¥, 4= Clam®, Ciamg -

With this transform, the elliptic equation (1b) becomes a stack of N two-dimensional Helmholtz equations

Antp— f§Ap=a Py (AD)

with homogeneous Dirichlet boundary conditions.

. Solve these IV two-dimensional Helmholtz equations, using e.g. fast-diagonalization with type-I discrete sine transform

(DST-I):

ik
L+1

L
DST—I[m]k:lesin[ },k‘:l...L.
=1
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420 6. Transform back from mode to layers
1#7 q= 01112117)3 Cm21§ .

7. Update the PV boundary values using the elliptic equation (1b). This requires defining the Laplacian on the boundaries

and possibly involves partial free-slip/no-slip boundary condition.

Appendix B: WENO implementation

425
1: def weno5(gmm, gqm, q0, qp, qpp):
2: """ WENO Jiang Shu 1996."""
3: eps = le—S8
4: qil = 1/3*qgmm — 7/6%qm + 11/6%q0
430 5: qi2 = —1/6xgqm + 5/6xq0 + 1/3xqp
6: qi3 = 1/3%q0 + 5/6xqp — 1/6xqpp
7:
8: kl, k2 = 13/12, 0.25
9: betal = k1 % (gmm—2#qm+q0 )2\
435 10: + k2 % (qmm—4sxqm+3xq0 )2
11: beta2 = k1l * (qm—2#q0+qp)==*2\
12: + k2 = (qm—qp)#*2
13: beta3 = k1l = (q0—2xqp+qpp)*=*x2\
14: + k2 * (3%q0—4+qp+qpp)#*+*2
440 15:
16: gl, g2, g3 =20.1, 0.6, 0.3
17: wl = gl / (betal+eps)*x2
18: w2 = g2 / (beta2+eps)*x2
19: w3 = g3 / (beta3+eps)=x*2
445  20:
21: qi_weno5 = (wlxqil+w2xqi2+w3*qi3 )\
22: /[ (wl4+w2+w3)
23:
24: return qi_weno5
450 25:
26: def weno5z(gmm, qm, qO0, qp, qpp):
27: """ WENO-Z Borges et al. 2008"""
28: eps = le—14
29: qil = 1/3%gmm — 7/6%qm + 11/6%q0
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455 30: qi2 = —1/6xqm + 5/6%q0 + 1/3xqp

31: qi3 = 1/3%xq0 + 5/6%qp — 1/6=qpp
32:
33: k1, k2 = 13/12, 0.25
34: betal = k1 * (gmm—2xqm+q0 )s 2\
460 35: + k2 % (qgmm—4s=qm+3+q0 )2
36: beta2 = k1l % (qm—2xqO0+qp )2\
37: + k2 % (qm—qp)#%2
38: beta3 = k1 * (q0—2xqp+qpp)**2\
39: + k2 % (3%xq0—4xqp+qpp)**2
465  40:
41: tau = torch.abs(betal — beta3)
42: gl, g2, g3 =20.1, 0.6, 0.3
43: wl = gl % (1 + tau/(betal+eps))
44: w2 = g2 % (1 + tau/(beta2+eps))
470  45: w3 = g3 % (1 + tau/(beta3+eps))
46:
47: qgi_weno5 = (wlxqil+w2xqi2+w3%qi3 )\
48: /[ (Wl4+w2+w3)
49:
475  50: return qi_weno5

Appendix C: Vortex shear instability
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Figure C1. Vortex shear instability final-state (¢ = 307) with resolution 5122 and WENO-5 and with resolution 10242 and WENO-3/WENO-
5.
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