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 13 

Abstract. An asthenospheric window underneath much of the South American continent 14 

increases the heat flow in the Southern Patagonian Andes, where glacial-interglacial cycles 15 

drive the building and melting of the Patagonian Icefields since the latest Miocene. The Last 16 

Glacial Maximum (LGM) was reached ~26000 years Before Present (BP). Significant 17 

deglaciation onsets between 21000 and 17000 years BP, subject to an acceleration since the 18 

Little Ice Age (LIA), ~400 years BP. Fast uplift rates of up to 41±3 mm/yr are measured by 19 

GNSS around the Southern Patagonian Icefield and currently ascribed to post-LIA 20 

lithospheric rebound, but the possible longer-term post-LGM rebound is poorly constrained. 21 

These uplift rates, in addition, are one order of magnitude higher than those measured on 22 

other glaciated orogens (e.g., the European Alps), which raises questions about the role of the 23 

asthenospheric window in affecting the vertical surface displacement rates. Here, we perform 24 

geodynamic thermo-mechanical numerical modelling to estimate the surface uplift rates 25 

induced by post-LIA and post-LGM deglaciation accounting for temperature dependent 26 

rheologies and different thermal regimes in the asthenosphere. Our modelled maximum 27 

postglacial rebound matches the observed uplift rate budget only when both post-LIA and 28 

post-LGM deglaciation are accounted for and if a standard continental asthenospheric mantle 29 

potential temperature is increased by 150-200 °C. The asthenospheric window thus plays a 30 

key role in controlling the magnitude of presently observed uplift rates in the Southern 31 

Patagonian Andes.  32 
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1. Introduction 33 

Vertical displacements of the Earth’s surface with respect to the geoid occur in 34 

response to the motion of crustal and mantle rock masses due to mantle dynamics, plate 35 

tectonics, and the redistribution of sediments, water, and ice by surface processes (e.g., 36 

Molnar and England, 1990; Watts, 2001; Champagnac et al., 2012; Sternai, 2023; Cloetingh 37 

et al., 2023). For instance, excess of topography in orogenic regions due to convergence, 38 

crustal shortening, and magmatism deflects the lithosphere downward, whereas surface 39 

unloading by erosion and ice melting causes upward deflection of the lithosphere, known as 40 

“isostatic” adjustment (e.g., Peltier and Andrews, 1976; Peltier, 1996, 2004; Mitrovica and 41 

Forte, 1997; Butler and Peltier, 2000; Kaufman and Lambeck, 2002; Watts, 2001; Turcotte 42 

and Schubert, 2002; Sternai et al., 2016a). Glacial isostatic adjustment (GIA) models study 43 

the visco-elastic response of the solid Earth to the building and melting of regional ice sheets 44 

and commonly use GNSS and/or satellite-measured rock uplift rates in regions subject to 45 

deglaciation to estimate, for instance, the regional mantle rheology and sea-level changes 46 

(e.g., Peltier and Andrews, 1976; Peltier, 1996, 2004; Mitrovica and Forte, 1997; Kaufman 47 

and Lambeck, 2002; Stuhne and Peltier, 2015; Van der Wal et al., 2015; Peltier et al., 2018; 48 

Whitehouse, 2018). Most of GIA studies address the post Last Glacial Maximum (LGM) 49 

around 21000 years Before Present (BP) deglaciation as a trigger to increasing uplift rates in 50 

glaciated regions (e.g., Peltier, 2004; Whitehouse, 2018). The magnitude of uplift rates is set 51 

primarily by the lithosphere and asthenosphere viscosities, which depend, amongst other 52 

factors, on the thermal field at depth (McKenzie and Richter, 1981; McKenzie and Bickle, 53 

1988; Gurnis, 1989; Ranalli, 1995, 1997; Kaufman et al., 1997; Watts, 2001; Turcotte and 54 

Schubert, 2002). While the GIA theory is well developed, few studies use thermo-mechanical 55 

visco-elasto-plastic (non-Newtonian Earth layers) geodynamic models to estimate uplift rates 56 

in response to surface load changes to be compared with GNSS data. Here, we use this 57 

approach to constrain the role of the solid Earth rheology in setting the rates of surface 58 

vertical displacement in Southern Patagonia, which hosts the biggest continental ice-sheets 59 

outside Antarctica and presents ongoing very high rock uplift rates (Ivins and James, 2004; 60 

Dietrich et al., 2010; Lange et al., 2014; Richter et al., 2016; Lenzano et al., 2023). 61 

The Southern Patagonian Andes in the South American Continent are located above a 62 

transition zone between the subducting Antarctic and Nazca plates and a wide asthenospheric 63 

window, where hot buoyant asthenospheric mantle upwells (Fig. 1a; Cande and Leslie, 1986; 64 

Breitsprecher and Thorkelson, 2009; Russo et al., 2010, 2022; Dávila et al., 2018; Ávila and 65 
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Dávila, 2018, 2020; Mark et al., 2022; Ben-Mansour et al., 2022). The Chile Triple Junction 66 

(CTJ) at ~46 °S delimits the surface tip of the asthenospheric window, which opened during 67 

the last ~16 Ma from south to north (Ramos and Kay, 1992; Breitsprecher and Thorkelson, 68 

2009). First order effects of the asthenospheric flow on the surface continental geology are 69 

the inhibition of arc volcanism in favour of retroarc magmatism, reduction of shortening to 70 

null or very minor, and rock uplift and exhumation (Ramos and Kay, 1992; Ramos, 2005; 71 

Lagabrielle et al., 2004, 2010; Breitsprecher and Thorkelson, 2009; Guillaume et al., 2009, 72 

2013; Scalabrino et al., 2010; Lange et al., 2014; Georgieva et al., 2016, 2019; Ávila and 73 

Dávila, 2020; Mark et al., 2022; Ávila et al., 2023; Muller et al., 2023). Rock uplift due to 74 

asthenospheric upwelling occurs through dynamic and thermal effects (Guillaume et al., 75 

2009, 2013; Conrad and Husson, 2009; Flament et al., 2013; Sternai et al., 2016b; Dávila et 76 

al., 2018; Ávila and Dávila, 2020; Faccenna and Becker, 2020; Mark et al., 2022). Dynamic 77 

uplift occurs above zones of viscous convection of the asthenospheric mantle, generating 78 

long wavelength (>300 km) deformation of the lithosphere through vertical stresses (Hager 79 

and O’Connell, 1981; Flament et al., 2013, 2015; Sternai et al., 2016b; Ávila and Dávila, 80 

2020; Faccenna and Becker, 2020). This effect is difficult to measure because vertical 81 

stresses in the lithosphere occur also due to lithospheric tectonics and the surface mass 82 

redistribution of glaciers, lakes, and sediments (Lachenbruch and Morgan, 1990; Molnar and 83 

England, 1990; Watts, 2001). Dynamic uplift was estimated between 0.02 and 0.15 mm/yr in 84 

the last 3 Ma over an area of about 100000 km2 around the CTJ latitude (Guillaume et al., 85 

2009, 2013; Flament et al., 2015; Ávila and Dávila, 2020; Ávila et al., 2023). The thermal 86 

component is expressed by an increase of temperatures and shallowing of the lithosphere-87 

asthenosphere boundary where asthenospheric mantle upwells (Ávila and Dávila, 2018; 88 

2020; Russo et al., 2010, 2022; Mark et al., 2022; Ben-Mansour et al., 2022), decreasing the 89 

integrated elastic lithospheric thickness and generating uplift and higher surface heat flow 90 

than in normal subduction zones (Ranalli, 1997; Flament et al., 2015; Ávila and Dávila, 2018, 91 

2020; Ávila et al., 2023). The heat flow was calculated as >100 mW/m2 near the CTJ, ~70-90 92 

mW/m2 in the centre of the asthenospheric window (~50 °S), and 50-60 mW/m2 near its 93 

northern boundary (~46 °S) (Ávila and Dávila, 2018). Uplift due to lithospheric thinning was 94 

estimated as ~0.3 mm/yr since the middle Miocene in the Southern Patagonian Andes (Pedoja 95 

et al., 2011; Ávila and Dávila, 2020; Ávila et al., 2023; Ding et al., 2023).  96 

The Patagonian Ice Sheet covered the Southern Patagonian Andes between ~47000 97 

and ~17000 years BP, extending from latitudes 38° to 55° S with an estimated area of 98 

~490000 km2 (Fig. 1 a), volume of ~550000 km3, and average and maximum thickness of 99 
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1100 and 2500 m, respectively, based on preserved glacial geomorphology, stratigraphy, 100 

paleoecology, and geochronological data (Moreno et al., 1999, 2005, 2015; McCulloch et al., 101 

2000, 2005; Hulton et al., 2002; Rabassa, 2008; Glasser et al., 2004, 2005, 2008, 2016; 102 

Glasser and Jansson, 2008; Hein et al., 2010; Boex et al, 2013; Strelin et al., 2014; Bourgois 103 

et al., 2016; Martinod et al., 2016; Kaplan et al., 2016; Bendle et al., 2017; Thorndycraft et 104 

al., 2019; Reynhout et al., 2019; Davies et al., 2020; Yan et al., 2022). The LGM in Southern 105 

Patagonia is estimated around 26000 years BP, but the beginning of significant glacial retreat 106 

occurred between 21000 and 17000 years BP (Hulton et al., 2002; Hein et al., 2010; Glasser 107 

et al., 2011; Glasser and Davies, 2012; Moreno et al., 2015; Bendle et al., 2017; Reynhout et 108 

al., 2019; Davies et al., 2020). Long term ice loss rate is uncertain, but more than 75% of ice 109 

was certainly lost since the LGM, and some models predicted more than 95% of ice loss with 110 

separation between the Southern Patagonian Icefiled (SPI) and the Northern Patagonian 111 

Icefiled (NPI) in the first 5000 to 10000 years of post-LGM deglaciation (McCulloch et al., 112 

2000; Hulton et al., 2002; Boex et al., 2013; Bourgois et al., 2016; Thorndycraft et al., 2019; 113 

Davies et al., 2020). A glacial minimum must have been attained around 13000 years BP, but 114 

several glacial advances were recorded since that time, and the last one was the Little Ice Age 115 

(LIA) with apex around 1630 AD, well dated by terminal moraines around the present-day 116 

NPI and SPI (Ivins and James, 1999, 2004; McCulloch et al., 2000; Glasser et al., 2004, 117 

2008, 2011; Davies and Glasser, 2012; Strelin et al., 2014; Kaplan et al., 2016; Reynhout et 118 

al., 2019; Davies et al., 2020). Recent mass balance measurements in the Patagonian icefields 119 

- e.g., Shuttle-Radar Topography Mission (SRTM) or Gravity Recovery and Climate 120 

Experiment (GRACE) - often present discrepancies, but consistently show an increasing ice 121 

loss from ~15 Gt/yr between ~1940-2000, to ~25 Gt/yr between ~2000-2012 (Aniya, 1996; 122 

Aniya et al., 1997; Rignot et al., 2003; Chen et al., 2007; Ivins et al., 2011; Jacob et al., 2012; 123 

Willis et al., 2012; Gómez et al., 2022). Currently, the SPI covers an area of ~13219 km2 with 124 

a volume of 3632 ± 675 km3, whereas the NPI covers an area of ~3976 km2 with a volume of 125 

1124 ± 260 km3 (Fig. 1). The present-day ice thickness may reach up to ~2000 m in deep 126 

glacial valleys (Millan et al., 2019). 127 

GNSS-measured data show ongoing vertical rock uplift rates between 18±3 and 41±3 128 

mm/yr in the northern part (18° – 50.5° S) of the SPI (Fig. 1b), decreasing to values between 129 

2 ± 6 and 17 ± 5 mm/yr in its southern part (50.5 – 51.5 °S) (Ivins and James, 2004; Dietrich 130 

et al., 2010; Lange et al., 2014; Richter et al., 2016; Lenzano et al., 2023). Such outstandingly 131 

high uplift rates, specially in the northern part of the SPI, are currently ascribed to 132 
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lithospheric viscoelastic GIA following the LIA, which was responsible for an ice loss of 503 133 

± 101.1 km3 in the SPI (Glasser et al., 2011). To match the very high observed uplift rate 134 

budget, previous GIA studies infer low asthenosphere viscosity (in the order of 1018 Pa s) and 135 

thin elastic lithosphere (~35 km thick) (Ivins and James, 1999, 2004; Klemann et al., 2007; 136 

Dietrich et al., 2010; Lange et al, 2014; Richter et al., 2016; Ávila and Dávila, 2020; Mark et 137 

al., 2022; Lenzano et al., 2023). Although this is consistent with abnormally high 138 

asthenospheric mantle temperatures, viscosity estimates from these previous studies are 139 

untied to the regional thermal regime, which prevents a more thorough characterization of the 140 

role of the asthenospheric window underneath the SPI in affecting the observed uplift rates. 141 

In addition, the contribution of post-LGM deglaciation to present-day rock uplift rate was 142 

marginally addressed (Ivins and James, 1999, 2004; Klemann et al., 2007). Here, we perform 143 

fully coupled thermo-mechanical numerical geodynamic experiments forced by surface 144 

unloading scaled on post-LIA and post-LGM ice melting to evaluate their relative 145 

contribution to the observed regional uplift rates. Numerical experiments account for a range 146 

of positive thermal anomalies in the asthenosphere to further assess the role of the 147 

asthenospheric window in setting the mantle viscosity and associated postglacial rebound. 148 

Focusing on the magnitude rather than the pattern of the inferred surface uplift rates due to 149 

limited information on the spatial-temporal variations of the ice net mass balance and 150 

thickness since the LGM (e.g. Davies et al., 2020), we use the observed budget of rock uplift 151 

rate to constrain plausible thermal and viscosity structures at depth as well as the timing of 152 

postglacial rebound. 153 

 154 

2. Methodology 155 

 We used as reference the GNSS-derived data from 31 GPS stations installed by 380 156 

km in north-south and 130 km in east-west directions around the SPI since 1996, published in 157 

Lange et al. (2014). The observed and estimated regional aseismic viscoelastic uplift rates 158 

presented in that study are shown in Fig. 1b. Details on the GPS data acquisition and analysis 159 

are given in the reference study (Lange et al., 2014). 160 

2.1. Numerical model 161 

We use a fully coupled thermo-mechanical, visco-elasto-plastic numerical 162 

geodynamic model to quantify the effect of thermal anomalies in the asthenospheric mantle 163 

on the magnitude of surface uplift rates due to deglaciation. We provide a short overview of 164 
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the governing equations hereafter, while a detailed description of numerical technique can be 165 

found, for instance, in Gerya and Yuen (2007), Gerya et al. (2019), Sternai (2020), Sternai et 166 

al. (2021), and Muller et al. (2022). The continuity equation allows for the conservation of 167 

mass during the displacement of a geological continuum: 168 

(1) !"
!"

 + 𝛻(𝜌𝑣) =  0 169 

where 𝜌 is the local density, 𝑡 𝑖𝑠 𝑡𝑖𝑚𝑒, 𝑣 is the velocity vector, and 𝛻 is the divergence 170 

operator. The momentum equation describes the changes in velocity of an object in the 171 

gravity field due to internal and external forces: 172 

(2) 
!!!"
!!!

 +  𝜌𝑔! =  𝜌 !!!
!"

 +  𝑣!
!!!
!!!

 173 

where 𝜎!" is the stress tensor, 𝑥! and 𝑥! are spatial coordinates, and 𝑔! is the i-th component of 174 

the gravity vector. The energy equation allows for the conservation of energy during 175 

advective and conductive heat transfer in the continuum: 176 

(3) 𝜌𝐶!
!"
!"
− 𝑑𝑖𝑣 𝑐𝛻𝑇  +  𝑣𝛻𝑇 =  𝐻!  +  𝐻!  +  𝐻!  +  𝐻! 177 

where P is pressure, 𝑇 is temperature, 𝐶! is specific heat capacity at a constant P, 𝑐 is the 178 

thermal conductivity, 𝐻!  +  𝐻!  +  𝐻!  +  𝐻! are the volumetric heat productions by 179 

radiogenic, shear, adiabatic and latent heat, respectively. 𝐻! ∝  !"
!"

, 𝐻! =  𝜎′!"𝜀′!"(!"#!"#$), and 180 

𝐻! and 𝐻! are the radiogenic and latent heat productions.  181 

Ductile deformation is thermally activated generating viscous flow, which involves 182 

diffusion and dislocation creep, calculated according to the material shear viscosity: 183 

(4) !
!!"#$%&'

 =  !
!!"##

 +  !
!!"#$

 184 

with 185 

 𝜂!"##  =  !!
!!!"!!!

𝑒𝑥𝑝 !! ! !!!
!"

, and 186 

 𝜂!"#$  =  !!
!
!

!
𝑒𝑥𝑝 !! ! !!!

!"#
𝜀!!
!
!!! 187 

where 𝜂!"## and 𝜂!"#$ are the shear viscosity for diffusion and dislocation creep, respectively, 188 

𝜂! is the material static viscosity, 𝜎!" is the diffusion-dislocation transition critical stress, n is 189 

the stress exponent, 𝐸! is the activation energy, 𝑉! is the activation volume, R is the gas 190 

constant, and 𝜀!!  is the second invariant of the strain rate tensor. The viscous deviatoric strain 191 

rate tensor, 𝜀′!" (!"#$%&#), is defined by: 192 

(5) 𝜀′!" (!"#$%!") =  !
!!!"#$%&'

𝜎′!" +  𝛿!"𝜂!"#$𝜀!! =
!

!!!"##
𝜎′!" +

!
!!!"#$

𝜎′!" + 𝛿!"𝜂!"#$𝜀!! 193 
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where 𝜎′!" is the deviatoric stress tensor, 𝛿!" is the Kronecker delta, 𝜀!! is the volumetric 194 

strain rate (e.g., related to phase transformations), and 𝜂!"#$ is the bulk viscosity. 195 

Recoverable deformation is defined by the elastic deviatoric strain rate tensor, 𝜀′!" (!"#$%&'), as: 196 

(6) 𝜀′!" (!"#$%&') = !
!!

 ! ̆!!!"
!"

 197 

where 𝜇 is the shear modulus and 
! ̆!!!"
!"

 is the objective co-rotational time derivative of the 198 

deviatoric stress tensor. The plastic deformation, brittle and localised, occurs at low 199 

temperature when the absolute shear stress limit, 𝜎!"#$%, is reached, with 200 

(7) 𝜎!"#$%  =  𝐶 + 𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜑)𝑃  201 

where 𝐶 is cohesion and 𝜑 is the effective internal friction angle. The plastic strain rate 202 

tensor, 𝜀′!" (!"#$%&'), is defined as:  203 

(8) 𝜀′!" (!"#$%&') = 0 𝑓𝑜𝑟 𝜎!! < 𝜎!"#$%, 𝜀′!" (!"#$%&') = 𝑋 !!!!"
!!!!

 𝑓𝑜𝑟 𝜎!! ≥ 𝜎!"#$% 204 

where 𝑋 is the plastic multiplier which satisfies the plastic yielding condition 𝜎!!  =  𝜎!"#$%. 205 

The bulk strain rate tensor, 𝜀′!"(!"#$), integrates the viscous, elastic and plastic deformation: 206 

(9) 𝜀′!"(!"#$) =  𝜀′!"(!"#$%&#)  +  𝜀′!"(!"#$%&')  +  𝜀′!"(!"#$!"#) 207 

 208 

2.2. Reference model setup and modeling approach 209 

The model domain is 700 km wide and 120 km thick, to account for a region similar 210 

to the South American continent at latitudes of the SPI, realistic thickness of the lithosphere 211 

and asthenospheric mantle (van der Meijde et al., 2013; Ávila and Dávila, 2018, 2020), and 212 

avoid boundary effects in the numerical results. From top to bottom, the model accounts for 213 

10 km of ‘sticky’ air, 30 km of continental crust (with rheology of quartzite, Ranalli, 1995), 214 

30 km of lithospheric mantle, and 50 km of asthenospheric mantle (with rheology of dry 215 

dunite, Ranalli, 1995), in agreement with literature data (e.g., van der Meijde et al., 2013; 216 

Ávila and Dávila, 2018, 2020). The initial geotherm is piece-wise linear resulting from an 217 

adiabatic temperature gradient of 0.5 °C/km in the asthenosphere (Turcotte and Schubert, 218 

2002) and thermal boundary conditions equal to 0 °C at the surface and 1327 °C at the 219 

bottom of the lithosphere, with nil horizontal heat flux across the vertical boundaries. The 220 

rheologic and thermal structure of the reference model give a lithospheric elastic thickness, 221 

Te (sensu Burov and Diament, 1995), of ~30 km, comparable to previous estimates 222 

underneath the SPI based on GIA models (Ivins and James, 1999; Dietrich et al., 2010; Lange 223 

et al., 2014), heat flow data (Ávila and Dávila, 2018), waveform inversion (Robertson 224 
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Maurice et al., 2003), and low-temperature thermochronology data (Thomson et al., 2010; 225 

Guillaume et al., 2013; Georgieva et al., 2016, 2019; Stevens Goddard and Fosdick, 2019; 226 

Ávila et al., 2023; Muller et al., 2023). Rocks rheological properties are listed in Table 1. 227 

The numerical model uses the finite differences with marker-in-cell technique, 228 

resolved by 51 × 61 nodes in the horizontal, x, and vertical, y, directions, respectively, 229 

distributed on a Eulerian grid that accounts for a maximum resolution of 1 km along the y 230 

direction in the upper part of the model domain, and ~13 km in the x direction. 400 × 400 231 

Lagrangian markers are randomly distributed along the x and y dimensions and used for 232 

advecting the material properties (Gerya and Yuen, 2007; Gerya et al., 2019). The material 233 

properties carried by Lagrangian markers are then interpolated onto the Eulerian grid via a 4th 234 

order Runge-Kutta interpolation scheme. An internal free surface is simulated through the 10 235 

km thick layer of sticky air. The velocity boundary conditions are free slip at all boundaries 236 

(x = 0 and x = 700 km; y = 0 and y = 120 km). 237 

 On the top of the crust and in the middle of the model domain we impose a 2 km thick 238 

pseudo-icecap to simulate lithospheric unloading during deglaciation (Fig. 2a). The pseudo-239 

icecap has an initial density, 𝜌!"#, of 920 kg/m3 (Harvey et al., 2017) (Table 1), and we 240 

compute the surface load through time, L, as 241 

(10)  𝐿 = 𝜌!"#𝑔ℎ!"# , 242 

where g is the gravity acceleration, and hice is the icecap thickness. The load change due to 243 

the deglaciation occurs by gradually and uniformly reducing ℎ!"# in time (Fig. 2 b, c). We run 244 

two sets of experiments for the post-LGM deglaciation. In Model set 1, 75% of ice loss 245 

occurs in 20000 years (i.e., 1500 m drop of ice thickness, Fig. 2 b), thus assuming a 246 

conservative estimate of ice loss since the beginning of the LGM until the present-day, 247 

simplifying the several glacial retreats and re-advances since the LGM (e.g., Glasser et al., 248 

2004, 2008, 2011; Davies and Glasser, 2012; Strelin et al., 2014; Kaplan et al., 2016; 249 

Reynhout et al., 2019). In Model set 2, 95% of ice loss occurs in 10000 years (i.e., 1900 m 250 

drop of ice thickness, Fig. 2 b), assuming faster deglaciation rates of the Patagonian Ice Sheet 251 

in the first half of post-LGM deglaciation (McCulloch et al., 2000; Hulton et al., 2002; Boex 252 

et al., 2013; Bendle et al., 2017; Thorndycraft et al., 2019; Davies et al., 2020). For the post-253 

LIA deglaciation, we simulate 10% of ice loss in 400 years (i.e., 200 m drop of ice thickness, 254 

Fig. 2 c), using estimates of ice loss rates since the 19th century (Aniya, 1996; Aniya et al., 255 

1997; Rignot et al., 2003; Ivins and James, 1999, 2004; Chen et al., 2007, Dietrich et al., 256 

2010; Ivins et al., 2011; Jacob et al., 2012; Willis et al., 2012). The pseudo-icecap is 200 km 257 
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wide for the post-LGM model sets 1 and 2, based on estimates of LGM maximum extent of 258 

the Patagonian Ice Sheet (e.g., McCulloch et al., 2000; Hein et al., 2010; Thorndycraft et al., 259 

2018; Davies et al., 2020), and 70 km wide for the post-LIA model set, based on the 260 

estimates of LIA maximum extent of the SPI (e.g., Glasser et al., 2011; Strelin et al., 2014; 261 

Kaplan et al., 2016; Reynhout et al., 2019) (Fig. 2 a). 262 

In the models, the lateral extent of the pseudo-icecap does not change throughout the 263 

deglaciation. Although this simplification may affect the inferred pattern of postglacial 264 

rebound, it greatly facilitates the simulation of deglacial lithospheric unloading without 265 

significantly affecting the magnitude of postglacial rebound, which is the main focus here. 266 

All simulations account for some spin up time before the deglaciation begins, so that the 267 

lithosphere-asthenosphere system adjusts to the pseudo-icecap initial load. The uplift rate 268 

during the deglaciation is calculated through time as the surface elevation change resulting 269 

from the modelled strain field divided by the viscoelastic timestep (i.e., 𝑈 = (𝑧!"## −270 

𝑧!"#$)/𝑡, where 𝑧!"##is the modelled topography at the considered timestep, 𝑧!"#$is the 271 

modelled topography at the previous timestep, and t is the viscoelastic timestep duration). 272 

Given the geologically short time window investigated here, we neglect deformation related 273 

to longer term tectonic forces (Breitsprecher and Thorkelson, 2009; Guillaume et al., 2013; 274 

Eagles and Scott, 2014; Muller et al., 2021). The parametric study focuses on the 275 

asthenospheric mantle potential temperature (sensu McKenzie and Bickle, 1988) which 276 

accounts for positive thermal anomalies, TA, of up to 200 °C in steps of 50 ° C, added to the 277 

reference asthenospheric mantle potential temperature of 1265 °C (McKenzie and Bickle, 278 

1988; Currie and Hyndman, 2006; Ávila and Dávila, 2018, 2020; Sternai, 2020; Mark et al., 279 

2022) to mimic the presence of a slab window at depth.  280 
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3. Results 281 

Results are shown in Table 2 and Figs. 4-7. In agreement with the theory of 282 

lithospheric flexure (e.g., Turcotte and Schubert, 2002) the deglaciation triggers uplift in the 283 

region covered by the melting pseudo-icecap and subsidence in the neighbouring regions 284 

(Figs. 4-6). Overall, increasing the asthenospheric mantle potential temperature decreases the 285 

asthenospheric viscosity, with significant effects on the magnitude of the modelled surface 286 

velocity field. The asthenosphere viscosity ranges between 1022-1019 Pa s in simulations with 287 

TA equal to 0 (reference model), 50 and 100 °C, and between 1019-1016 Pa s in simulations 288 

with TA equal to 150 and 200 °C (Fig. 3 a-d). Lithospheric warming due to increasing 289 

asthenospheric mantle potential temperature also leads to a reduction of the lower lithosphere 290 

viscosity (from 1022 to 1020 Pa s), thereby decreasing the integrated lithospheric strength. 291 

In Model set 1 for Post-LGM deglaciation, when TA is 0 (reference model) the 292 

maximum uplift rates is < 1 mm/yr during the first 5000 years of the deglaciation, increasing 293 

gradually up to 9.5 mm/yr in the later stages of the deglaciation (i.e., 20000 years, Fig. 4). 294 

When TA equals 50, 100, 150 and 200 °C, the maximum uplift rates can reach up to ~2, ~5, 295 

~12, and ~15 mm/yr, respectively, already in the first 1000 years of the deglaciation (Fig. 4 296 

a). When TA is 50 and 100 °C the maximum uplift rate is subject to a protracted increase in 297 

time, reaching up to ~12 and ~14 mm/yr after 20000 years of deglaciation (Figs. 4 b-d and 7 298 

a). For TA equal to 150 and 200 °C, the maximum uplift rate reaches a plateau between 11 299 

and 17 mm/yr during the 20000 years of deglaciation (Figs. 4 and 7 a, Table 2a). After the 300 

end of the deglaciation, the maximum uplift rate takes longer than about 5000 years to re-301 

equilibrate to 0 mm/yr when TA ≤ 100 °C, whereas it drops to 0 mm/yr almost immediately 302 

when TA is 150 or 200 °C (Fig. 7 a). 303 

In the Model set 2 for Post-LGM deglaciation, the maximum uplift rate is less than 2 304 

mm/yr during the first 1000 years of deglaciation when TA is 0, 50 and 100 °C, whereas it 305 

reaches up to ~22 and ~30 mm/yr during in the first 1000 years of deglaciation when TA is 306 

150 and 200 °C (Fig. 5 a, 7 b, and Table 2). Between 5000 and 10000 years of deglaciation, 307 

the maximum uplift rate increases to ~19, ~25 and ~36 mm/yr, respectively when TA is 0, 50 308 

and 100 °C, whereas it reach up to between 36 and 41 mm/yr between 50000 and 1000 years 309 

of deglaciation when TA equal to 150 and 200 °C. The maximum uplift rate decreases slower 310 

if TA is 0, 50 and 100 °C, taking longer than 5000 year after the deglaciation to drop to 311 

values <5 mm/yr (Fig. 7 b and Table 2b), whereas it quickly drops to < 2 mm/yr when the 312 

deglaciation is over and TA is 150 and 200°C (Figs. 5 b-d and 7b). Overall, a warmer and 313 
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less viscous asthenosphere generates a higher magnitude and fast changing postglacial 314 

rebound than a cooler and more viscous asthenosphere. 315 

In the post-LIA model set, the maximum uplift rate is ~1.4, ~2.3 and ~2.2 mm/yr 316 

during the first 100 years of deglaciation when TA is respectively 0, 50, and 100 °C, whereas 317 

it reaches ~8.3 and ~23 mm/yr during the same interval when TA is respectively 150 and 200 318 

°C (Figs. 6 a, 7 c, and Table 2c). Between 200 and 400 years of deglaciation, the maximum 319 

uplift rate reaches ~1.9, ~2.5 and ~3 mm/yr when TA equal to 0, 50 and 100 °C, and ~14 and 320 

~25.5 mm/yr when TA is 150 and 200 °C, respectively (Figs. 6 c-d, 7 c, and Table 2c). When 321 

the deglaciation ends, the maximum uplift rate drops to ~0 mm/yr in ~ 100 years when TA ≤ 322 

100 °C, whereas it takes longer than 1000 years when TA equals 150 °C or 200 °C (Fig. 7 c). 323 

Overall, a warmer and less viscous asthenosphere generates a higher magnitude postglacial 324 

rebound which, however, takes much longer to re-equilibrate to 0 mm/yr after the end of the 325 

deglaciation than a cooler and more viscous asthenosphere. 326 

 327 

4. Discussion  328 

Our modelling is simplistic in that we impose a linear and uniform ice loss instead of 329 

a more realistic ice-sheet melting pattern in space and time (Fig. 2b,c). Although the 330 

stratigraphic and geochronologic record is fairly precise for the post-LGM ice extent (e.g., 331 

Lagabrielle et al., 2004; Rabassa, 2008; Glasser et al., 2011; Davis and Glasser, 2012; Strelin 332 

et al., 2014; Kaplan et al., 2016; Martinod et al., 2016; Bendle et al., 2017; Reynhout et al., 333 

2019; Davies et al., 2020), information about melting velocities and associated ice thickness 334 

and redistribution of the surface masses are limited for the time windows investigated here. 335 

GNSS, SRTM, and GRACE data constraining the net ice mass balance only during the last 336 

few decades, still showing some discrepancies (e.g., Aniya, 1996; Aniya et al., 1997; Rignot 337 

et al., 2003; Ivins and James, 1999, 2004; Chen et al., 2007; Dietrich et al., 2010; Ivins et al., 338 

2011; Jacob et al., 2012; Lange et al., 2014; Willis et al., 2012; Richter et al., 2016; Gómez et 339 

al., 2022; Lenzano et al., 2023). Tracing back the post-LGM or Holocene ice loss rate from 340 

current measurement is difficult, considering that climate was at least 6 °C colder during the 341 

LGM (Hulton et al., 2002; Sugden et al., 2002; Seltzer et al., 2021; Yan et al., 2022). As a 342 

result, previous models have assumed simple deglaciation histories as well (e.g., Ivins and 343 

James, 1999, 2004; Hulton et al., 2002; Klemann, 2007; Ivins et al., 2011; Boex et al, 2013). 344 

Measurements of regional erosion rates since the LGM are between 0.02 to 0.83 mm/yr 345 

(Fernandez et al., 2016). However, given the short time intervals investigated here, it seems 346 
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reasonable to assume that the eroded material is still in the transport zone and therefore does 347 

not significantly contribute to unloading the surface of the orogen. If one refers to erosion 348 

rates from low-temperature thermochronology, although these measures quantify erosion 349 

rates over Myrs and not millennia, Fosdick et al. (2013), Herman and Brandon, 2015, 350 

Fernandez et al., (2016), and Muller et al. (2023), suggests values between 0.1 and 1 mm/yr 351 

from 7 to 4 Ma, followed by a period of erosional quiescence (<0.1 mm/yr), and a possible 352 

increase to 1 mm/yr in the last ~2 Ma in the SPI region (Muller et al., 2023). Supposing that 353 

these erosion rates still apply in the last ~20000 years, this would translate into 2-20 m of 354 

rocks eroded on average since the LGM, leading to local unloading of approximately 60-600 355 

kPa if one assumes a crustal density of 3000 kg/m3. Such stress change is approximately 356 

equivalent to the melting of about 6-60 m of ice, whereas we simulate the melting of 200-357 

1500 m of ice in our simulations. The forcing of Quaternary cooling on increasing erosion 358 

rates is, however, debated, and not widely quantified in Patagonia nor worldwide (Valla et 359 

al., 2012; Champagnac et al., 2014; Herman et al., 2013, 2018; Herman and Brandon, 2015; 360 

Fernandez et al., 2016; Georgieva et al., 2019; Yan et al., 2022). Even if long term erosion 361 

rates contribute to present-day uplift rate (Herman et al., 2018), since they are comparable to 362 

those of e.g., the European Alps, we assume a similar contribution to regional uplift rates 363 

(i.e., generally a fraction of a mm/yr; Sternai et al., 2019), that is a negligible contribution in 364 

the context of the Southern Patagonian Andes. We also assume a homogeneous lithosphere 365 

and neglect lateral viscosity variations in the asthenosphere, despite the long-term southern 366 

Andean orogenic history (Cande and Leslie, 1986; Ramos, 2005; Breitsprecher and 367 

Thorkelson, 2009; Muller et al., 2021) and suggested contribution from lateral rheological 368 

heterogeneities (Klemann et al., 2007; Richter et al., 2016). Overall, notwithstanding these 369 

limitations in the model, our fully coupled numerical thermo-mechanical geodynamic 370 

experiments provide realistic uplift rates (Figs. 4-7) that one can compare to current geodetic 371 

observations. Following the example of previous studies (Ivins and James, 1999, 2004; 372 

Klemann et al., 2007; Dietrich et al., 2010; Lange et al., 2014; Richter et al., 2016; Lenzano 373 

et al., 2023), we discuss our results assuming that GNSS-measured rock uplift rates are 374 

mostly related to the deglaciation history and only marginally controlled by the longer term 375 

geodynamics (e.g., Ramos, 2005; Breitsprecher and Thorkelson, 2009; Eagles and Scott, 376 

2014; Muller et al., 2021). 377 

The elastic thickness of the lithosphere (Te) varies between the simulations according 378 

to the imposed asthenospheric thermal anomaly, but it is generally lower than 30 km, 379 

resulting in a decoupled lithospheric rheology (sensu e.g., Burov and Diament, 1995), as 380 
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shown by the yield stress envelope in Fig. 2a. This results in predominant elastic deformation 381 

in the upper crust (below the ~300 °C isotherm) and upper mantle lithosphere (below the 382 

~700 °C isotherm) and viscous deformation in the lower crust, lower lithospheric mantle and 383 

asthenosphere (Fig. 3). We remark that, when we impose higher temperatures in the 384 

asthenospheric mantle, shallower 300 °C and 700 °C isotherms decreases Te and increases 385 

the isostatic surface uplift rates. Lithospheric thinning due to the asthenospheric window 386 

underneath Southern Patagonia thus affects the regional uplift rates as previously suggested 387 

(Avila and Davila, 2018, 2020; Mark et al., 2022; Ben-Mansour et al., 2022; and Avila et al., 388 

2023).  389 

The inferred maximum post-LIA uplift rate of up to a few mm/yr from experiments 390 

without or with a low asthenospheric thermal anomaly (TA ≤ 100 °C, Fig. 7c) are within the 391 

same order of magnitude of maximum uplift rates measured in collisional orogens such as the 392 

European Alps (Sue et al., 2007; Serpelloni et al., 2013; Walpersdorf et al., 2015; Sternai et 393 

al., 2019) and the Himalayas (Larson et al., 1999). Since these collisional orogens are 394 

characterised by a thicker lithosphere (Geissler et al., 2010; Ravikumar et al., 2020), they are 395 

likely less sensitive to mantle dynamics than the Southern Patagonian Andes. When we 396 

consider lithospheric unloading due to post-LGM deglaciation of a wider ice sheet, however, 397 

the inferred maximum uplift rate via Model set 1 and Model set 2 reaches up to 10 mm/yr for 398 

and 20 mm/yr, respectively, even without asthenospheric thermal anomaly (Fig. 7a,b). This 399 

suggests a likely contribution from long-term postglacial rebound to the present-day uplift 400 

rates measured in the SPI. 401 

In the Southern Patagonian Andes, GIA models estimated the regional asthenosphere 402 

viscosity between 1.6 and 8 × 1018 Pa s (Ivins and James, 1999, 2004; Dietrich et al., 2010; 403 

Willis et al., 2012; Lange et al., 2014; Richter et al., 2016; Lenzano et al., 2023). Similarly, 404 

the asthenosphere viscosity from our models when TA > 100 °C is < 1019 Pa s, with the 405 

lowest viscosity value of 1016 Pa s imposed where partial melting, supported by the regional 406 

Holocene volcanism (Stern and Kilian, 1996) and by geophysical data (e.g., shear wave 407 

velocity data by Mark et al., 2022), occurs. Under these conditions, however, our experiments 408 

provide max uplift rates between 14 and 26 mm/yr toward the end of the LIA deglaciation 409 

(Fig. 7c). Even with a very low viscosity asthenosphere, the rebound due to short-term post-410 

LIA deglaciation does not reach the presently observed maximum uplift rates of 41 ± 3 411 

mm/yr. Experiments that account for a low viscosity asthenosphere and long-term post-LGM 412 

deglaciation lasting for 20000 years and 10000 years reach up to ~25 and ~42 mm/yr of uplift 413 

rate during the final stages of the deglaciation (Fig. 7a-b), respectively, comparable to 414 
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present-day values. Results, therefore, indicate that the outstanding observational budget of 415 

rock uplift in the SPI is matched only when accounting for higher-than-normal 416 

asthenospheric mantle temperatures, thereby highlighting the relevance of the regional 417 

asthenospheric window. Consistently, although the higher heat flow is currently further north 418 

from our study region, near the CTJ (46-48 °S) (Ramos, 2005; Breitsprecher and Thorkelson, 419 

2009; Avila and Davila, 2018, 2020; Ben-Mansour et al., 2022), increased asthenospheric 420 

temperatures beneath the Southern Patagonia is highly supported by the geophysical data 421 

(e.g., Russo et al., 2010, 2022; Mark et al., 2022; Avila and Davila, 2018, 2020; Ben-422 

Mansour et al., 2022). 423 

Because of the limited knowledge regarding the timing and amount of ice loss since 424 

the LGM (e.g., Ivins and James, 1999, 2004; Hulton et al., 2002; Klemann, 2007; Boex et al, 425 

2013; Davies et al., 2020), it is difficult to position in time present-day uplift rate 426 

measurements within the investigated deglaciation scenarios to assess the contribution of 427 

post-LGM, post-LIA, and present-day deglaciation to the maximum uplift rate budget. In the 428 

faster post-LGM deglaciation scenario (Model set 2) the observed maximum uplift rate 429 

budget is attained in about 10000 years of deglaciation, but only minor residual rebound 430 

could be observed today regardless of the amount of ice loss (Fig. 7 b). If post-LGM 431 

deglaciation occurred slower (Model set 1), this event may contribute up to 40% to the 432 

present-day uplift rate budget (Fig. 7a). Although it is difficult to reconcile this scenario with 433 

the geomorphological and geochronological evidences (Hulton et al., 2002; Boex et al., 2013; 434 

Davis and Glasser, 2012; Martinod et al., 2016; Bendle et al., 2017; Thorndycraft et al., 2019; 435 

Davies et al., 2020), it appears that post-LIA rebound alone cannot cover the entire budget of 436 

the observed uplift rates even with the highest tested TA, which points to a non-negligible 437 

contribution from post-LGM deglaciation. This latter conclusion is reinforced by estimates of 438 

the mantle relaxation time, 𝜏!, as (Turcotte and Schubert, 2002): 439 

(11) 𝜏! =
!!"
!"

,  440 

where 𝑣 is the asthenosphere viscosity, 𝜆 is the width of the ice sheet, and 𝑔 is the 441 

gravity acceleration. Using 1016<𝑣<1018 Pa s and 𝜆 =200 km leads to ~2000<𝜏!<~200000 442 

years, a time range considerably longer than the post-LIA deglaciation and including full 443 

Pleistocene glacial-interglacial cycles (Ruddiman et al., 1986). Although increasingly 444 

negative ice mass balance in the last ~50 years contribute to the elastic lithospheric uplift 445 

rates (Dietrich et al., 2010, Lange et al., 2014), a longer term contribution from the viscous 446 
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lithosphere is necessary to explain the GNSS-measured uplift rates and (Ivins and James, 447 

2004; Dietrich et al., 2010; Lange et al., 2014; Richter et al., 2016; Lenzano et al., 2021). 448 

As a final consideration, our models suggest that we shall measure regional uplift 449 

rates in the order of the tens of cm/yr in the next century if the currently observed ice loss rate 450 

of at least -20 Gt/yr in the SPI (Willis et al., 2012) will continue until the total meltdown of 451 

the ice sheet in ~200 years. 452 

 453 

5. Conclusions 454 

 455 

We propose that rock uplift rates of up to 40 mm/yr in the Southern Andes are due to 456 

both post-LIA and long-term post-LGM lithospheric rebound, as postulated for other 457 

glaciated orogens (e.g., the European Alps, Fennoscadia, and North America, Peltier et al., 458 

2018). We also propose that currently observed uplift rates in the Southern Andes are 459 

enhanced by a mantle thermal anomaly of at least 150 °C due to the regional asthenospheric 460 

window. Asthenospheric thermal anomalies higher than 200 °C are unlikely and would 461 

decrease the asthenospheric viscosities to unrealistic values (less than 1016 Pa s). Our thermo-462 

mechanical visco-elasto-plastic forward modelling approach thus helps constraining the 463 

increase in temperature in geodynamic asthenospheric upwelling contexts such as in Southern 464 

Patagonia (Russo et al., 2010, 2022; Avila and Davila, 2018, 2020; Mark et al., 2022; Ben-465 

Mansour et al., 2022). 466 
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 892 
Fig. 1. Regional context and uplift rate data. a) Map of southern Patagonia with the Southern Patagonian Icefield (SPI), Northern 893 
Patagonian Icefield (NPI), and the Cordillera Darwin Icefield (CDI) in light blue, the approximate extension of the Patagonian Ice Sheet at 894 
the Last Glacial Maximum (LGM) (adapted from Thorndycraft et al., 2019), and the approximate extension of the present-day 895 
asthenospheric window (dashed region) beneath the South American Continent (SAM) (adapted from Breitsprecher and Thorkelson, 896 
2009). In the Pacific Ocean, the spreading ridges (s.r., thick black lines) and transform faults (t.f., thin black lines) separate the Nazca (NZ) 897 
and the Antarctic (AT) plates. The subduction trench is also highlighted in black. The arrows show the approximate rate and direction of 898 
subduction of the oceanic plates (adapted from DeMets et al., 2010). b) Zoom on the SPI with GNSS-measured rock uplift rates (color-899 
coded disks) used to estimate the viscoelastic uplift rates in Lange et al. (2014). 900 
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 901 

Fig. 2. Reference numerical model setup. a) Thermo-mechanical numerical model domain with rheological layers (Table 1), isotherms 902 
(white lines), and yield strength (𝛥𝜎 = 𝜎1 − 𝜎3) profile (yellow line). The yield strength (𝛥𝜎) profile is not scaled and aims to show the 903 
proportionality of the yield strength amongst the layers, dependent on the temperature and composition (Eq. 4). (b, c) Ice thickness vs. 904 
time used in the numerical models to simulate the post-LGM deglaciation in two model sets (b), and the post-LIA deglaciation (c). 905 
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 906 
Fig. 3. Distribution of viscosity and velocity vectors in the numerical models. a, c) Reference model without an asthenospheric thermal 907 
anomaly, TA = 0 °C, in the last timestep of post-LIA deglaciation (a) and of Model set 1 of post-LGM deglaciation (c). b, d) Model with 908 
the higher simulated asthenospheric thermal anomaly, TA = 200 °C, in the last timestep of post-LIA deglaciation (b) and of Model set 1 of 909 
post-LGM deglaciation. Model set 2 has a very similar viscosity and velocity vectors distribution with Model set 1 in the last deglaciation 910 
timestep. Velocity vectors do not have the same scaling and are only meant for visualization purpose. 911 
 912 
 913 
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 914 
Fig. 4. Surface uplift rates vs. distance for Model set 1 of post-LGM deglaciation. a) t = 1000 years of deglaciation, b) t = 5000 years 915 
of deglaciation, c) t = 10000 of deglaciation, d) 20000 years of deglaciation. Different line colours correspond to different TA. 916 
 917 
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 918 
Fig. 5. Surface uplift rates vs. distance for Model set 2 of post-LGM deglaciation. a) t = 1000 years of deglaciation, b) t = 5000 years 919 
of deglaciation, c) t = 10000 of deglaciation, d) 20000 years of deglaciation. Different line colours correspond to different TA. 920 
 921 
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 922 
Fig. 6. Surface uplift rates vs. distance for post-LIA deglaciation model set. a) t = 100 years of deglaciation, b) t = 200 years of 923 
deglaciation, c) t = 300 years of deglaciation, d) 400 years of deglaciation. Different line colours correspond to different TA.924 
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 925 

Fig. 7. Maximum uplift rates vs. time for model sets of deglaciation with different TA. a) Model set 1 of post-LGM deglaciation 926 
accounting of 75% of ice loss in 20000 years, deglaciation starts at 400000 years. b) Model set 2 of post-LGM deglaciation accounting of 927 
95% of ice loss in 10000 years, deglaciation starts at 100000 years and c) Post-LIA deglaciation model set accounting 10% of ice loss in 928 
400 years (blue-shaded region), deglaciation starts at 100000 years. Blue-shaded regions highlight the modelled deglaciation intervals. 929 
Please note that the time axis in a, b, and c are different and post-LGM models account for longer timescales.  930 
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Table 1 – Material properties used in the numerical experiments. 931 
  𝜌0

s Ea Va n C Visc.  Sin  c µ Cp Hr Hl α β 

  (km/
m3) 

(kJ/mo
l) 

(m3/
mol)   

(M
pa
) 

flow 
law 

 (ϕeff
) (W/m/K) (Gp

a) 
(J/kg/
K) 

(µW/
m3) 

(kJ/k
g) 

(1/
k) 

(1/P
a) 

Crust 2800 154 0 2.3 10 Wet 
Qz. 0.2 0.64+807/(T+

77) 10 1000 1 300 3x1
0-5 

1x1
0-11 

Lithos-
pheric 
mantle 

3250  

 
532 10 3.5 10 

Dry 

Ol.  
0.6 0.73+1293/(T

+77) 67 1000 0.022 400  3x1
0-5 

1x1
0-11 

Asthenos-
pheric 
mantle 

3250  532 10 3.5 10 
Dry 

Ol.  
0.6 0.73+1293/(T

+77) 67 1000 0.022 400 3x1
0-5 

1x1
0-11 

Ice 920  154 0 2.3 10 - 0 0.73+1293/(T
+77) 67 1000 0.022 400 3x1

0-5 
1x1
0-11 

𝜌!!  is the standard densities of solid rocks; 𝐸! is the activation energy; 𝑉! is the activation volume; n is the stress exponent; C is cohesion; 932 
𝜑!"" is the effective internal friction angle; c is thermal conductivity; 𝜇 is the shear modulus; Cp is the specific heat capacity; Hr and Hl 933 
are the radiogenic and latent heat productions, respectively; 𝛼 is thermal expansion; 𝛽 is compressibility. Qz and Ol are quartzite and 934 
olivine, respectively. All rheological and partial melting laws/parameters are based on experimental rock mechanics and petrology 935 
(Ranalli, 1995; Hirschmann, 2000; Johannes, 1985; Turcotte and Schubert, 2002). 936 
  937 
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Table 2 – Maximum uplift rates derived from the numerical models with a thermal anomaly (TA) of 0, 50, 100, 150 and 200 °C for 938 
the Model set 1 (a) and Model set 2 (b) of post-LGM deglaciation, and the post-LIA deglaciation model set (c). The t = 0 is the 939 
timestep immediately before the beginning of deglaciation, and other selected timesteps show how the uplift rates change during the 940 
deglaciation until it is over for the post-LGM (a,b) and post-LIA(c) deglaciation intervals. Fig. 7 is a plot of the maximum uplift rate vs. 941 
time calculated for each timestep in all numerical models. 942 

a) Model set 1 of post-LGM deglaciation (20000 years) 

TA (°C) Maximum uplift rate (mm/yr) 

0 0.04 0.04 0.98 3.28 6.43 9.50 4.98 

50 0.05 0.56 2.21 6.10 10.76 12.75 4.66 

100 0.07 3.58 5.14 11.37 13.63 14.31 4.07 

150 0.05 11.72 12.79 14.32 15.18 15.59 1.39 

200 0.15 11.48 15.02 16.26 16.46 16.26 0.90 

 t = 0  t = 1000 yr t = 5000 yr t = 10000 yr t = 15000 yr t = 20000 yr t = 25000 yr 

b) Model set 2 of post-LGM deglaciation (10000 years) 

TA (°C) Maximum uplift rate (mm/yr) 

0 0.50 1.09 8.03 19.48 5.69 3.12 2.15 

50 0.25 1.52 15.93 24.87 5.24 2.72 1.73 

100 0.33 1.29 26.94 36.02 4.94 2.30 1.41 

150 0.43 22.30 36.33 37.11 1.93 0.93 0.60 

200 0.37 30.05 39.46 41.98 1.48 0.75 0.50 

 t = 0  t = 1000 yr t = 5000 yr t = 10000 yr t = 15000 yr t = 20000 yr t = 25000 yr 

c) post-LIA deglaciation model set (400 years) 

TA (°C) Maximum uplift rate (mm/yr) 

0 0.43 1.412 1.67 1.84 1.95 0.18 0.10 

50 0.03 2.28 2.43 2.57 2.45 0.30 0.23 

100 0.03 2.20 2.32 2.52 2.99 0.49 0.38 

150 0.09 8.27 11.57 14.03 11.83 8.11 7.15 

200 0.10 22.89 25.70 25.57 18.97 4.00 2.55 

 t = 0 t = 100 yr t = 200 yr t = 300 yr t = 400 yr t = 500 yr t = 600 yr 

 943 


