
Non-steady-state Stomatal Conductance Modeling and Its
Implications: From Leaf to Ecosystem
Ke Liu1, Yujie Wang1, Troy Magney2, and Christian Frankenberg1,3

1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
2Department of Plant Sciences, University of California, Davis, CA 95616, USA
3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA

Correspondence: Ke Liu (klliu@caltech.edu) and Christian Frankenberg (cfranken@caltech.edu)

Abstract. Accurate and efficient modeling of stomatal conductance (gs) has been a key challenge in vegetation models across

scales. Current practice of most land surface models (LSMs) assumes steady-state gs and predicts stomatal responses to envi-

ronmental cues as immediate jumps between stationary regimes. However, the response of stomata can be orders of magnitude

slower than that of photosynthesis, and often cannot reach a steady state before the next model time-step, even on half-hourly

time scales. Here, we implemented a simple dynamic gs model in the vegetation module of an LSM developed within the Cli-5

mate Modeling Alliance, and investigated the potential biases caused by the steady state assumption from leaf to canopy scales.

In comparison with steady-state models, the dynamic model better predicted the coupled temporal response of photosynthe-

sis and stomatal conductance to changes in light intensity using leaf measurements. In ecosystem flux simulations, while the

impact of gs hysteresis response may not be substantial in terms of daily or monthly integrated canopy fluxes, our results sug-

gested the importance of considering this effect when quantifying fluxes in the mornings and evenings, and interpreting diurnal10

hysteresis patterns observed in ecosystem fluxes. Furthermore, prognostic modeling can bypass the A-Ci iterations required

for steady-state simulations and can be robustly run with comparable computational costs. Overall, our study highlights the

implications of dynamic gs modeling in improving the accuracy and efficiency of LSMs, and for advancing our understanding

of plant-environment interactions.

1 Introduction15

Modeling stomatal conductance (gs), the opening and closure of tiny pores on leaves, is one of the key elements and challenges

in land surface models (LSMs). Stomata regulate the gas exchange rates of plants, allowing the uptake of CO2 for photosyn-

thetic assimilation while constraining water loss through transpiration (Berry et al., 2010; Damour et al., 2010). The behavior

of stomata, especially their responses to environmental variations, plays a significant role in determining the fluxes of carbon,

water, and energy between vegetated surfaces and the atmosphere (Berry et al., 2010; Buckley, 2017). Therefore, accurate and20

efficient modeling of gs is important for understanding the current Earth system and projecting future changes.

Stomatal conductance has been traditionally predicted with empirical models, relating gs to photosynthesis rate and environ-

mental cues with estimated parameters from statistical regressions (Ball et al., 1987; Leuning, 1990, 1995; Medlyn et al., 2011;

Damour et al., 2010). More recently, efforts have been made to constrain stomatal behavior from the principle of optimizing
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water use efficiency, i.e., the trade-offs between the carbon gain and water loss of stomatal opening (Wolf et al., 2016; Venturas25

et al., 2018; Wang et al., 2020). Additional understanding of stomatal response includes plant hydraulic models that consider

the transport of water from soil through plants into the atmosphere (soil-plant-atmosphere continuum, SPAC) (Sperry et al.,

1998, 2002; Bonan et al., 2014). However, most existing stomatal models, especially those currently used to scale from leaf

to canopy level and implemented in LSMs, assume steady states (Vialet-Chabrand et al., 2017). They predict the opening and

closure of stomata in stationary regimes, modeling stomatal response to environmental variations as immediate jumps between30

states (Vialet-Chabrand et al., 2013).

While steady-state models assume that stomatal conductance changes instantaneously with the environment, the temporal

response of stomata in reality can often be an order of magnitude slower than the biochemical response of photosynthesis

(Pearcy and Seemann, 1990; Vialet-Chabrand et al., 2013), and a steady state is often not reached before the next change in

conditions (Lawson and Blatt, 2014; Vialet-Chabrand et al., 2017). This slower response of gs could further impose regulations35

on assimilation rate via its effects on intercellular CO2 concentration (Ci), notably under rapidly-changing incident radiation in

natural environments (Kaiser and Kappen, 2000; Vialet-Chabrand et al., 2017). The mismatch and interaction of photosynthesis

and stomatal response could lead to temporal variations in water use efficiency (WUE) as well (Lawson et al., 2011; Venturas

et al., 2018). These can all lead to biases and it is important to consider non-steady-state temporal responses of gs for more

accurate predictions of ecosystem fluxes. Additionally, the inclusion of this factor may also contribute to the hysteresis of plant40

responses and ecosystem fluxes observed in natural diurnal cycles (Vialet-Chabrand et al., 2013), e.g. evapotranspiration (ET)

rates tend to be higher in the afternoon under the same incoming radiation, while canopy conductance overall decreases. These

patterns have often been attributed solely to the asymmetry of meteorological variables, especially in temperature and vapor

pressure deficit (Zeppel et al., 2004; Bai et al., 2015; Gimenez et al., 2019; Oogathoo et al., 2020; Lin et al., 2019).

The current practice of employing gs models that assume steady-states requires iterations to converge to stable solutions at45

each simulation step. At the leaf level, this typically involves two nested iteration loops, first to solve the coupled photosynthesis-

stomatal conductance model for Ci, and then to solve the leaf energy budget for leaf temperature (Collatz et al., 1991; Bonan

et al., 2018), as gs affects latent heat flux through transpiration. This approach can potentially lead to numerical issues (Sun

et al., 2012) and increased computational costs, particularly when upscaling with complex canopies, where angular distribution

setups are necessary (Wang and Frankenberg, 2022). However, by utilizing prognostic updates of variables, a dynamic model50

could simplify simulation steps and improve computational efficiency, enabling runs at finer temporal resolutions.

Moreover, accurate parameter estimation with steady-state models (e.g. linear fitting for the slope g1 in empirical models)

necessitates measurements to be taken after reaching each equilibrium (Leuning, 1990; Miner et al., 2017). Depending on wide-

ranging stomatal response speeds (McAusland et al., 2016), obtaining one accurate response curve could take several hours

(Liozon et al., 2000; Duarte et al., 2016). Too short of a time step could result in overestimation, underestimation, or unstable55

results of parameter estimates with steady-state assumptions (Xu and Baldocchi, 2003), which may often be overlooked (Miner

et al., 2017). Alternatively, estimates can be approached with a prognostic model by fitting the entire response curve, where

steady-state measurements are not fundamentally necessary.
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Limitations of steady-state stomatal modeling have driven efforts to develop dynamic models, primarily at the leaf level

(Damour et al., 2010; Vialet-Chabrand et al., 2017). Based on observed variations of gs, analytical equations of sigmoidal or60

exponential response have been commonly used (Naumburg and Ellsworth, 2000; Noe and Giersch, 2004; Vialet-Chabrand

et al., 2013; Vialet-Chabrand et al., 2017; Martins et al., 2016; McAusland et al., 2016); directly adding time-dependent terms

into traditional steady-state models has also been proposed (Matthews et al., 2018). While these models have demonstrated

effective performance in reproducing leaf-level responses to light intensity in controlled conditions, the impacts of including

temporal stomatal dynamics on the simulations of larger-scale fluxes under coupled variations in the natural environment65

(e.g., transpiration in the coupled diurnal cycles of radiation, temperature, and vapor pressure deficit (VPD)) have not been

investigated. This may be partly due to the parametrization and complexity of many models optimized for leaf-scale predictions

(Kirschbaum et al., 1988; Vialet-Chabrand et al., 2016), which constrains the feasibility of scaling them to the canopy level in

LSMs.

In this study, we aim to: 1) implement a simplified dynamic stomatal model in the CliMA-Land model, i.e., the land com-70

ponent of a new generation Earth system model within the Climate Modeling Alliance (CliMA); 2) test model performance on

leaf-level measurements and demonstrate an alternative method of parameter estimation with the non-steady-state model in a

Bayesian nonlinear inversion framework; 3) compare simulations of the dynamic model with traditional steady-state modeling,

primarily focusing on the differences in predictions of canopy fluxes and responses to coupled environmental variations on

different time scales.75

2 Methods and Materials

2.1 Model framework

2.1.1 Dynamic stomatal modeling

The current steady-state modeling approach in LSMs requires convergence of nested iteration loops to solve leaf fluxes at each

time step (Figure 1a) (Bonan et al., 2018). In this study, we proposed to replace the inner loop for steady solutions of the80

coupled photosynthesis-stomatal conductance (An− gs) model with prognostic updates of gsw at finer time steps (Figure 1b).

At each step, instead of assuming a initial Ci and iterating until convergence, our framework starts with an initial gsw (e.g.

for the first time step of a diurnal simulation from midnight, this can be set as the minimal conductance in dark). Then solves

An and Ci with biochemical demand and diffusive supply of internal CO2 (Figure 1). For instance, when applying the Farquhar

photosynthesis model for C3 plants (Farquhar et al., 1980), with a given gsw, the RubisCO limited rate (Ac) and light limited85

rate Aj are calculated using:

Ac = Vcmax ·
Ci−Γ∗

Ci + Km
= glc · (Ca−Ci) +Rd, (1)

Aj = J · Ci−Γ∗

4Ci + 8Γ∗
= glc · (Ca−Ci) +Rd. (2)
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where the middle parts in Eq. 1 and Eq. 2 represent the biochemical demand, and the right part represents the diffusive

supply limitation of photosynthesis. Vcmax is the maximum carboxylation rate, Ca is the ambient CO2 concentration, Rd is the90

respiration rate, Γ∗ is the CO2 compensation point with the absence of respiration, J is the electron transport rate, Km is the

Michaelis-Menten’s coefficient, glc is the leaf total conductance to CO2, which can be calculated using: g−1
lc = g−1

bc +1.6g−1
sw +

g−1
m , with gbc the boundary conductance to CO2 and gm the mesophyll conductance. Note that computing Ac or Aj requires

solving for Ci first. With a known glc from gsw at each time-step, rearranging Eq. 1 and Eq. 2 allows for the analytical solution

of Ci, Ac and Aj, respectively.95

For prognostic updates of gsw, we implemented a simplified dynamic model, adapted from previous studies on leaf-level

prognostic modeling (Kirschbaum et al., 1988; Rayment et al., 2000; Noe and Giersch, 2004; Vialet-Chabrand et al., 2016):

∆gt

∆t
=

(gss− gt)
τ

(3)

where ∆t is the time step of the simulation, gt represents the conductance at the current time step, gss is the target conductance

calculated with steady-state models at the current conditions, and τ is the time constant, representing the time scale of stomatal100

responses.

As indicated in the flow chart (Figure 1), our dynamic modeling avoids nested iterations for steady solutions while requires

updates of variables at finer time steps (e.g. 5-10 min, compared to 30 or 60 min time steps of current LSMs) for the stability

of simulations, which we tested and discussed in Section 2.3.3 and 3.3. The prognostic updates of leaf temperature can be

implemented accordingly, but as it is not within the scope of this study, we prescribed the leaf temperature updates with105

measurements in our simulations.

2.1.2 Implementation in LSM

CliMA Land (https://github.com/CliMA/Land), a new generation LSM, is highly modularized and offers flexible model schemes

(Wang et al., 2021, 2023), enabling easy implementation and assessment of the dynamic stomatal model across scales. In this

study, we used the classic photosynthesis model developed by Farquhar et al. (1980) for C3 plants. For stomatal conductance,110

we implemented the non-steady-state modeling framework in CliMA Land, and the steady-state gs responses were predicted

using the Ball-Berry model (Ball et al., 1987) and the Medlyn model (Medlyn et al., 2011).

2.2 Performance on leaf level measurements

2.2.1 Leaf gas exchange

To test our model and determine key parameters, we recorded light response curves of grape (Vitis vinifera) and walnut (Juglans115

regia cv.) leaves using a LI-6800 portable photosynthesis system (LI-COR, Inc., Lincoln, NE, USA). Saplings of Vitis vinifera

and Juglans regia cv. were planted in 5-gallon pots with UC soil mix. 44.4 mL of Osmocote® Smart-Release® Plant Food

Plus fertilizer were added to each pot. The plants were grown in a UC Davis lath house. The plants were watered to maintain

around 75 percent of completely saturated soil by weight (details in Meeker et al. (2021)). The youngest, fully expanded, intact
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Figure 1. Comparison of leaf flux calculation flows in (a) steady-state (SS) and (b) non-steady-state (NSS) dynamic modeling. (a) illustrates

the two nested loops at each time step in the current practice of steady-state framework, adapted from Bonan et al. (2018). The inner iteration

in the light yellow box represents the flow of solving the coupled photosynthesis-stomatal conductance (An-gs) model for Ci. The outer

solves the leaf energy budget for leaf temperature (Tl). The focus of this study is to implement and compare a dynamic modeling framework

to the An-gs model, illustrated in light blue box in (b), where, instead of iterating for steady solutions, gsw is updated prognostically at finer

time steps, based on environmental conditions and a simplified dynamic model (Section 2.1.1). This NSS framework of modeling gsw also

allows prognostic updates of Tl. As its implementation is not within the scope of this study, related flows are shown in dashed parts.

leaf was chosen and dark-adapted for 30 min. During the measurements, the photosynthetic photon flux density (PPFD) was120

sequentially increased following the gradient of 50, 100, 200, 400, 600, 900, 1200, 1500, 1800 µmol m−2 s−1, with a time step

of 30 min at each light level. The chamber air temperature was set at 25 ◦C; CO2 partial pressure was controlled at 400 ppm;the

relative humidity in the chamber was maintained around 50%.

2.2.2 Parameter optimization

We applied a Bayesian nonlinear inversion framework (Rodgers, 2000; Dutta et al., 2019) to jointly fit the response curves125

of the net photosynthetic assimilation (An) and stomatal conductance (gs) for each leaf with the non-steady-state model. The

forward problem in this case can be represented as follows:

y = F(X;b) + ϵ; (4)

where y represent the measurements, i.e. the light response curves of both An and gs (see Section 2.2.1); F represents the

forward model, CliMA-Land with the dynamic gs model (see Section 2.1); X is the state vector of parameters to be retrieved,130

which in our case includes: the maximum carboxylation rate (Vcmax), the slope (g1) and the minimum conductance (g0) of the

BB model, the mesophlly conductance (gm) (Sun et al., 2014), and the time constant (τ ). We also included a scaling factor

for An, to account for variations in the respiration rate and the ratios between CO2 and H2O fluxes; b is the vector of other
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parameters that have influences the measurements, are known to some accuracy but not intended to be retrieved, e.g. the ratio

between Jmax (the maximum electron transport rate) and Vcmax, which is assumed to be 1.6 in this study but may vary across135

conditions (Medlyn et al., 2002); and ϵ is the error term.

The Levenberg–Marquardt (LM) iterations (Levenberg, 1944; Marquardt, 1963; Rodgers, 2000) were utilized to solve the

nonlinear inversion problem and find the best estimate of key parameters:

xi+1 = xi +
(
(1 + γ)S−1

a + KT
i S−1

ϵ Ki

)−1 (
KT

i S−1
ϵ [y−F (Xi)]−S−1

a [xi−xa]
)

(5)

where xa is the prior estimate of the state (in this study, Vcmax: 70 mol m−2s−1, g1: 9, g0: 0.03 mol H2O m−2 s−1, gm: 0.4140

mol CO2 m−2 s−1, τ : 600 s, scalingA: 1); Sa is the prior covariance matrix, assumed to be purely diagonal, with Gaussian

uncertainties in the prior state (the assumed prior standard deviation of Vcmax: 30, g1: 3, g0: 0.005, gm: 0.02, τ : 100, scalingA,

0.01). Ki is the Jacobian matrix at the ith iteration. γ is adjusted at each step, ensuring that each update of the state vector

moves towards minimizing the cost function. Sϵ is the error covariance matrix; in our case, errors were assumed to be mainly

from measurement uncertainties and calculated based on the standard deviation and mean of the ∆CO2 and ∆H2O in LI-6800145

measurements.

2.2.3 Uncertainties in traditional parameter estimation

To illustrate the influence of time steps on parameter estimation in the traditional method, which assumes steady states, we used

the NSS model to generate leaf response curves to the same PPFD sequence but with different time intervals. For example,

in the 5-min time step simulation, light intensity input jumped every 5 minutes, and measurements were assumed to be taken150

right before the next jump, following the traditional method. We then employed these curves to calculate the estimated g1 and

g0 values using the traditional linear fitting method for the Ball-Berry model. The potential biases were assessed by comparing

fitted parameters with different applied time steps.

2.3 Comparison of models in diurnal cycles

To compare the prediction of surface flux from models with different assumptions and to assess the potential bias of steady-155

state modeling, we employed high temporal resolution radiation measurements in the field as inputs and ran CliMA Land with

both setups. We evaluated and compared the simulation results on both the leaf and canopy flux scales.

2.3.1 Diurnal variations of radiations

Photosynthetically active radiation (PAR) in a crop field (42.481677◦N, 93.523521◦W) was recorded with a LI-190R quantum

sensor (LI-COR, Inc., Lincoln, NE, USA) at 1 s temporal resolution during August 2017.160

In addition to the fluctuations of total incoming photon density that the PAR sensor can provide, canopies in natural environ-

ments also experience variations in the fraction of direct and diffuse components in the total radiation. This variation affects

the distribution of PAR received by individual leaves across different layers of the canopy structure (Durand et al., 2021). To

account for this effect, we employed an empirical fitting with the hourly radiation data from ERA5 (Figure 2), to estimate the

6
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Figure 2. The empirical relationship between the direct radiation (DIR) fraction and the ratio between the total downward solar radiation

(ALL) and the clear sky radiation (CS) in August 2017, filtered by 100 W m−2 CS radiation. Radiations are from the ERA5-Land hourly

dataset.

partitioning between the direct and diffuse radiation (Boland et al., 2001). The empirical relationship was then applied to high165

temporal resolution PAR measurements to obtain the direct and diffuse components in the recorded total radiation, which were

used as inputs for simulations at the canopy scale.

2.3.2 Environmental drivers and plant traits

Meteorological variables (e.g. air temperature, dew-point temperature, volumetric soil water, wind speed etc.) from the ERA5-

Land hourly dataset were input as environmental drivers for the simulations on the canopy scale. Linear interpolations were170

applied for runs at sub-hourly time steps. Key plant traits (e.g. Vcmax, g1, leaf area index (LAI)) were extracted from several

globally gridded datasets using GriddingMachine (Wang et al. 2022; Croft et al. 2020; Butler et al. 2017; Luo et al. 2021;

De Kauwe et al. 2015; Yuan et al. 2011; He et al. 2012, ; also see Wang et al. (2023) for detailed information on global scale

datasets used in CliMA-Land).

2.3.3 Model simulations175

In the comparison of the dynamic (non-steady-state, NSS) and steady-state (SS) modeling, a time constant of 900 s was used

for the prognostic model, based on the average time constant retrieved from leaf response curve in Section 2.2.1 and 2.2.2 as

well as previous studies on the time constant variations (Vialet-Chabrand et al., 2013; McAusland et al., 2016; Vialet-Chabrand

et al., 2017). In the SS runs, iterations were employed to converge to steady-state solutions at each time step.

For the leaf-scale runs, we used the key parameters retrieved in previous sections and tested model predictions for an ideal180

clear-sky day. To investigate the differences in ecosystem fluxes, we ran and assessed the NSS and SS simulations using a

time step of 1 minute, with the inputs of meteorological drivers and plant traits at the location of the PAR measurement for

7
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the month of August 2017. In order to further evaluate the potential contribution of gs hysteresis to the observed diurnal

hysteresis of ecosystem fluxes, we compared the standard runs with the model predictions where environmental variables (e.g.

temperature, VPD, soil water content (SWC), etc.) were held constant over the daytime (as the mean of daytime values in185

each day). This approach allowed us to isolate the effect of hysteresis in gs response and assess its potential contribution to the

observed diurnal hysteresis of canopy and ecosystem fluxes.

Furthermore, to test the stability of prognostic modeling and assess the computational cost, we compared NSS simulations

using different time steps, as well as the SS simulation run at a time step of 30 min, which is commonly used in current LSMs.

This enabled us to evaluate the sensitivity of NSS predictions to the time step used, as well as compare the computational cost190

for stable NSS runs and standard SS simulations. We resampled the environmental drivers from ERA5 and the PAR sensor

to match the temporal resolution of the simulations, while maintaining constant average values for each diurnal cycle across

simulations with different time steps.

3 Results

3.1 Model performance and parameter estimates on leaf measurements195

With the parameters estimated from the LM inversion framework, the non-steady-state model well predicted the temporal

responses of gsw and An (Figure 3). The model was able to capture the gradual increases of gsw and An after each step change

in APAR, and the reproduced curves were close to the measurements, with all R2 higher than 0.98. Fitted time constant τ

showed a variation across leaves (292 s and 2028 s for the Vitis vinifera leaf and the Juglans regia cv. leaf, respectively).

The relative difference in the time constant matched with the variations of response speed observed in the measured response200

curves (Figure 3). Compared to the SS model, the dynamic model provided more accurate prediction to the temporal responses.

The improvements in R2 were more prominent in the predictions of the Juglans regia cv. leaf responses, which have a larger

time constant, than in those of the Vitis vinifera leaf. Other parameters estimated for the Vitis vinifera leaf include Vcmax, 71

mol m−2s−1, g1, 11.3, g0, 0.023 mol H2O m−2 s−1, gm, 0.18 mol CO2 m−2 s−1, scalingA, 1.1; for the Juglans regia cv. leaf,

Vcmax, 152 mol m−2s−1, g1, 3.9, g0, 0.052 mol H2O m−2 s−1, gm, 0.34 mol CO2 m−2 s−1, scalingA, 1.0.205

The dynamic model was also able to better capture the temporal variations of internal CO2 concentration (Figure 4). Par-

ticularly, the NSS model reproduced the undershooting of the intercellular CO2 concentration (Ci) after each step change in

light intensity, which resulted from the differences in the speed of gs and An responses and their interactions. As shown in the

measured time series (Figure 3), after each increase in the incident light, photosynthesis was able to respond almost instanta-

neously, leading to a rapid decrease in Ci, while stomata opened gradually, slowly bringing up Ci over time. This then led to210

a gradual rise of An after the initial rapid response, indicating the regulation of gs on An through its impacts on the internal

CO2 supply. In the meantime, the increasing An further promoted the opening of stomata with a higher internal CO2 demand,

demonstrating their coupled responses to environmental variations.

With the dynamic model and optimized parameters that accurately reproduced the measured leaf responses, we investigated

the influence of time steps used in light response curves (i.e. the length of intervals between step changes in light intensity) on215
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Figure 3. Modeled and measured temporal responses of the stomatal conductance (gsw) and net photosynthesis rate (An) to the step changes

in APAR for different leaves. The shaded area indicates the difference between the prediction of the steady-state (SS) model and the non-

steady-state (NSS) dynamic model. (a-b) The temporal responses of the Vitis vinifera leaf, (c-d) the Juglans regia cv. leaf.
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Figure 4. Modeled and measured temporal responses of intercelluar CO2 concentration (Ci) for (a) the Vitis vinifera leaf and (b) the Juglans

regia cv. leaf. As indicated in labels, measured curves were shifted to illustrate the comparison of modelled and measured response patterns,

as the absolute values are not directly comparable due to different assumptions of LI-6800 and CliMA-Land in calculating the internal CO2.

The shaded area indicates the difference between the prediction of the steady-state (SS) model and the non-steady-state (NSS) dynamic

model.
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Figure 5. Parameter estimates for the Ball-Berry model with the traditional linear fitting method using model-reproduced response curves

with different time steps (5 min, 10 min, 30 min, 60 min, 120 min). (a) fitting results for the Vitis vinifera leaf, (b) the Juglans regia cv. leaf.

Corresponding Ball-Berry index and gsw are plotted, along with the fitted lines and parameters (i.e. the Ball-Berry slope, g1, and the intercept,

namely, the minimum conductance, g0).

parameter estimates obtained with traditional methods (Figure 5). The results showed that, particularly for the Juglans regia

cv. leaf that has a long time constant over 2000 s, the values and relationship between the Ball-Berry index and gsw varied

significantly depending on the time step used, resulting in notable uncertainties in fitted g1 and g0 with too short of a interval to

reach equilibrium. This also suggested that obtaining reliable estimates for this leaf using the traditional method could require

more than an hour for stable readings at each step.220

3.2 Model comparison in diurnal cycles

3.2.1 Leaf responses

To compare NSS and SS models over the course of a day, we evaluated the differences in their predictions of leaf responses

to an ideal diurnal cycle of light with other environmental conditions (e.g. temperature, VPD, CO2) held constant (Figure 6).

Results showed that compared to NSS, the SS model predicted a higher An and gs in the morning, as it assumed the stomata225

could respond immediately to an increase in light, whilst in the more realistic NSS simulation, the gradual opening of stomata

limited the CO2 supply for photosynthesis with a lower Ci. The opposite was true for the afternoon, but the overestimation of

An and gs in SS modeling in the morning was more significant than the underestimation in the afternoon, leading to slightly

higher diurnally-integrated predictions than those of the NSS model. This was due to the fact that in the course of sunset,

the major limiting factor on productivity was the decreasing light, in contrast to the sunrise where it was the available Ci230

regulated by gs responses that mainly constrained An increases. The relative differences (RDs) in integrated gs in the morning

and afternoon were both higher than those of the photosynthesis, reflecting the differences in the response speed.
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Figure 6. Predictions of the leaf diurnal course of (a) net photosynthesis rate (An), (b) stomatal conductance to water vapor (gsw), (c)

intercellular CO2 concentration (Ci), and (d) intrinsic water-use efficiency (WUE) for a leaf with a stomatal time constant of 900 s in an ideal

clear-sky day. Other environmental conditions (e.g. leaf temperature, VPD) were held constant. The shaded areas indicate the differences

between the NSS and SS simulations (blue: SS > NSS; orange: SS < NSS), both in absolute and relative terms. Relative differences (RD, NSS

- SS) in the temporal integrals are also presented, for morning (am, 5:00-12:00), afternoon (pm, 12:00-19:00), and daytime (5:00-19:00).

RD∗ of WUE represents the ratio between integrated An and gsw, differing from the RD, the integral of the instantaneous WUE during the

daytime.

The differences in predictions of An and gsw responses also led to RDs in the intrinsic water-use efficiency (WUE, i.e. the

ratio between An and gsw). Although the mean instantaneous WUE during the daytime was higher in the NSS simulation,

diurnal WUE calculated from the integrated An and gsw was lower. This was because the gradual opening of stomata during235

the sunrise limited assimilation in the morning, whereas during the sunset, delayed closure led to unnecessary water loss when

carbon gain was constrained by low light.
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3.2.2 Canopy fluxes

To quantify the impacts of the inclusion of gs temporal response, we analyzed the simulated canopy fluxes under natural

radiation variations and coupled dynamics of environmental conditions. As shown in the examples of diurnal cycle simulations240

(Figure 7 and 8), the SS model predicted higher variations in instantaneous fluxes in response to rapid fluctuations in radiation,

particularly in transpiration rates.

The differences in fluxes between the NSS and SS predictions were not significant when integrated over monthly periods

(e.g. the mean RD of transpiration in August 2017, 0.87 %, and the median, 1.0 %), but are notable in diurnal cycles depending

on the radiation and other conditions, especially when considering the sub-diurnal scale (e.g. the maximum RD in transpiration245

for daytime integrals was 2.74 % and the variation of afternoon RDs ranged from -7.4 % to 6.1 %).

The overall tendency to overestimate productivity with traditional SS models was also observed on the canopy scale, as the

regulation of gs hysteresis on the supply of CO2 for photosynthesis was not considered (Figure 9b). For example, in Figure 7,

when rapid spikes of radiation occurred in the afternoon, the speed of gs response constrained the increases of photosynthesis

in the NSS simulation.250

In contrast to the leaf-scale results, when accounting for other co-varying environmental drivers (e.g. temperature, VPD, soil

water content), the SS model tended to underestimate canopy transpiration rates, although RDs in the mornings and afternoons

varied depending on the radiation dynamics (Figure 7b, Figure 8b, Figure 9a). This could be because the transpiration rates

were determined by both gsw and VPD. During the daytime, VPD usually increased following the air temperature and peaked in

the afternoon, when the slow response of stomata to the increasing VPD and decreasing radiation could result in excess water255

loss (Figure 8b, Figure 9 a and c). The overestimation of productivity and underestimation of transpiration in SS simulations

also led to further overestimation of the WUE.

3.2.3 Diurnal hysteresis

To investigate the relative contributions of gs hysteresis and environmental variables to the hysteresis observed in plant be-

haviors and ecosystem fluxes, we separated the effects of these two factors by comparing predicted response curves in NSS260

and SS simulations with and without diurnal environmental variations (e.g. temperature, VPD, soil water content). While the

asymmetry of environmental variables in the diurnal cycle could lead to a modeled hysteresis of gs in response to radiation,

where gs tended to be lower in the afternoon mainly due to higher VPD and temperature, our results (Figure 10) showed that

the kinetic lag of gs could partially offset this effect (Figure 10 b and d), even presenting an opposite tendency at low radiations.

Additionally, only the NSS model simulations predicted a hysteresis of canopy transpiration, with or without the consideration265

of coupled environmental variations (Figure 10 g and h), in which canopy H2O fluxes tended to be higher in the afternoon.
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Figure 7. Comparison of the predicted diurnal cycles of ecosystem fluxes, (a) the net productivity and (b) the transpiration rate for DOY

219, 2017. The shaded areas in blue and orange indicate the differences between the NSS and SS predictions (blue: SS > NSS; orange: SS <

NSS). The shaded areas in gray under the radiation curves represent the diffuse component of the total radiation. Relative differences (RD,

NSS - SS) in the temporal integrated fluxes are also presented, for morning (am, 5:00-12:00), afternoon (pm, 12:00-19:00), and daytime

(5:00-19:00).

3 6 9 12 15 18 21
0

10

20

30

Ne
t P

ro
du

ct
iv

ity
 

(
m

ol
m

2 s
1 )

0

300

600

900
Ra

di
at

io
n 

(W
m

2 )

0

750

1500
VP

D 
(P

a)

RDam = -0.75%
RDpm = -0.13%

RD = -0.38%

DOY 224(a)
SS Model
NSS Model

3 6 9 12 15 18 21
Hour of Day (h)

0

3

6

9

12

Tr
an

sp
ira

tio
n 

(m
m

ol
m

2 s
1 )

0

300

600

900

Ra
di

at
io

n 
(W

m
2 )

0

750

1500

VP
D 

(P
a)

RDam = -4.52%
RDpm = 2.55%

RD = 0.20%

(b)
SS Model
NSS Model

Figure 8. Comparison of the predicted diurnal cycles of ecosystem fluxes, (a) the net productivity and (b) the transpiration rate for DOY

224, 2017. The shaded areas in blue and orange indicate the differences between the NSS and SS predictions (blue: SS > NSS; orange: SS <

NSS). The shaded areas in gray under the radiation curves represent the diffuse component of the total radiation. Relative differences (RD,

NSS - SS) in the temporal integrated fluxes are also presented, for morning (am, 5:00-12:00), afternoon (pm, 12:00-19:00), and daytime

(5:00-19:00).

13

https://doi.org/10.5194/egusphere-2023-1706
Preprint. Discussion started: 4 August 2023
c© Author(s) 2023. CC BY 4.0 License.



Diurnal AM PM
7.5

5.0

2.5

0.0

2.5

5.0

H2O Flux(a)

Diurnal AM PM

3

2

1

0

CO2 Flux(b)

Diurnal AM PM
7.5

5.0

2.5

0.0

2.5

5.0

7.5
gsw(c)

Diurnal AM PM
6

4

2

0

2

4

6
WUE(d)

Re
la

tiv
e 

Di
ffe

re
nc

e 
(%

)

Figure 9. Relative differences (NSS - SS) in the predicted daytime-mean fluxes of the NSS (time step: 1 min) and SS (1 min) simulations for

August 2017. The solid line in each box indicates the median, and the dashed line represents the mean. (a) RDs in H2O flux, the transpiration

rate, (b) CO2 flux, the net productivity, (c) Canopy-averaged stomatal conductance to water (gsw), (d) Water-use efficiency (WUE). Diurnal:

5:00-19:00, AM: 5:00-12:00, PM: 12:00-19:00.

3.3 Stability of the dynamic model

We further assessed the sensitivity of the dynamic modeling to the time step of simulation. Figure 11 shows the NSS model

was be able to run at a time step of 10 minutes stably and still demonstrated the impacts of gradual gs responses, as compared

to the traditional practice of SS modeling at a time step of 30 minutes.270

4 Discussion

In this study, we demonstrated the feasibility and benefits of implementing a non-steady-state stomatal conductance modeling

framework from the leaf to canopy scale, in a new generation LSM, CliMA-Land. Our results suggested that compared to

traditional steady-state models, the dynamic model was able to provide more realistic and accurate predictions of leaf temporal
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responses to the changes in light intensity (Section 3.1). In the meantime, modeling gs with prognostic updates - similar to how275

plants control their stomata movements gradually in natural environments - neither increased computational cost nor model

complexity, as simulations were simplified with iterations to solve for steady states avoided. Sun et al. (2012) pointed out

the default 3-step fix-point iteration in CLM4 (the Community Land Model version 4) does not always converge, leading to

uncertainties in flux predictions. In our simulations at the canopy scale (Section 3.3), the dynamic model could be stably run

at a temporal resolution that presented comparable efficiency to the current practice of 30-minute resolution SS simulations280

commonly used in LSMs. This also indicates the dynamic model can enable predictions of canopy flux dynamics at a finer

time resolution with higher efficiency and accuracy.

With the non-steady-state model, we were able to apply a Bayesian nonlinear inversion framework to jointly fit the light

response curves of both An and gs, and obtain estimates for key parameters (Section 3.1). As suggested in our results (Figure 5)

and previous studies (Xu and Baldocchi, 2003; Miner et al., 2017), the time step of light response curves can notably influence285

the estimated parameters obtained from the traditional linear fitting method for steady-state empirical models. Our framework

with the dynamic model can help reduce the time required for accurate parameter estimations, particularly for leaves with long

time constants, as equilibrium is not required. Although the retrieval setups presented in this study may not be optimal for

estimating Vcmax, which is typically derived from A-Ci response curves (Medlyn et al., 2002; Miao et al., 2009; Duarte et al.,

2016), a similar framework can be applied to other scenarios for estimation of various parameters, including a A-Ci curve for290

Vcmax.

Furthermore, we evaluated how the inclusion of gs temporal responses could affect model predictions of leaf and canopy

fluxes in diurnal cycles with natural environmental variations (Section 3.2.2). The comparison of NSS and SS simulations

indicated that, while the differences in monthly fluxes were not significant, effects of gs temporal dynamics could be notable

in diurnal courses and on sub-diurnal scales depending on the conditions. Overall, slow opening of stomata tended to limit295

productivity responses to rapid radiation increases, and delayed closure of gs following decreases in radiation or increases in

environmental stress (e.g. increasing VPD), results in unnecessary water loss. Both aspects led to overestimation of canopy

WUE in traditional steady-state simulations. Similar effects have been noted in studies on leaf-scale response to PPFD fluctu-

ations (Lawson et al., 2011; Lawson and Blatt, 2014; McAusland et al., 2016). This suggests that the temporal hysteresis of gs

can have impacts on the integrated cost (water loss) and benefit (carbon gain) of stomatal behavior in diurnal cycles, especially300

in highly fluctuating environments (e.g. understory plants experiencing sunflecks), and it is necessary to include its effects on

the optimal trade-off to understand and predict stomatal responses with the optimization theory (Cowan and Farquhar, 1977;

Vialet-Chabrand et al., 2017).

In addition, the hysteresis of leaf-level gs response can contribute to the hysteresis patterns at the ecosystem scale, which

have often been solely attributed to the asymmetry of environmental variables during the daytime. For instance, higher evap-305

otranspiration (ET) fluxes and sap velocity (i.e. an indicator of plant transpiration rate) have been observed in the field, with

explanation often focused on higher VPD in the afternoon following increased air temperature (Zeppel et al., 2004; Gimenez

et al., 2019; Oogathoo et al., 2020; Lin et al., 2019). Our simulations showed that the SS model with diurnal environmental

variations was unable to reproduce this hysteresis pattern, while it was captured in NSS runs, indicating the significance of
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considering gs temporal dynamics when interpreting diurnal hysteresis in transpiration (Section 3.2.3). Moreover, observed310

patterns of lower gs in the afternoon have also been commonly explained with similar environmental asymmetry (Bai et al.,

2015; Lin et al., 2019), whilst our results suggested the kinetic lag of gs could partially offset this effect, and thus should be

taken into account in understanding the hysteresis patterns.

Further improvements can be made in applying separate time constants for stomata opening and closing course, as previous

studies have suggested different response speeds of increasing and decreasing gs to a step change in irradiance (McAusland315

et al., 2016; Vialet-Chabrand et al., 2017; Matthews et al., 2018). More comprehensive measurements of temporal response

curves across species and conditions can also contribute to improving our understanding of the variation of time constant

towards better predictions of gs temporal responses.

The dynamic gs model enables predictions of temporal changes in latent heat flux through transpiration in leaf energy

balance, which allows a similar prognostic framework to be employed for the modeling of leaf temperature. Bonan et al.320

(2018) implemented a non-steady-state framework for leaf temperature modeling, but as steady-state gs models were employed,

iterations for stable solutions were still required. With the dynamic gs model presented in this study, the traditional nested

iteration loops in leaf flux calculations, which can take up to 40 iterations to solve for a single simulation step in CLM4.5

(Bonan et al., 2018), can be replaced by more efficient and accurate prognostic updates of variables with ordinary differential

equations (ODEs). Such an approach can also facilitate better couplings of LSMs with other components in Earth system325

models (ESMs), where ODE systems are commonly used.

5 Conclusions

We implemented a simplified dynamic stomatal conductance model in CliMA-Land, and evaluated its impacts on model sim-

ulations across scales. In comparison with the traditional steady-state model, the dynamic model better predicted the coupled

temporal responses of An, gs and Ci observed in leaf measurements. We also found uncertainties in parameter estimation for330

steady-state gs models with the traditional linear fitting method, when too short of a time step used resulted in unstable esti-

mates. We proposed an alternative approach using a Bayesian nonlinear inversion framework with a dynamic model, which

could help reduce the time investment for estimation, particularly for leaves with long time constants. Our results on canopy-

scale simulations suggested that, although the effects of temporal gs responses on ecosystem fluxes may not be significant in

terms of monthly integrals, but should be take into account when predicting diurnal courses and quantifying sub-diurnal scale335

fluxes, as well as explaining the hysteresis patterns observed in diurnal cycles.

We demonstrated that the more realistic prognostic modeling of gradual gs response simplified the simulation as iteration

loops for solving steady-states at each time step were avoided, and the dynamic model can be run at a finer time resolution that

presents comparable computational costs to the current practice of steady-state leaf flux calculation. A similar framework can

be extended to leaf temperature modeling which will enable prognostic updates of leaf level variables with higher efficiency340

and accuracy, towards better couplings of LSMs with other components in Earth system models (ESMs).
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implementation of dynamic stomatal conductance framework is available from the project website: https://github.com/CliMA/LandCliMA.
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Figure 10. Hysteresis of the canopy-mean stomatal conductance (gsw) and canopy transpiration rate (T ) in response to radiation during an

ideal clear-sky day. (a, e) SS model, (b, f) SS model with coupled diurnal variations of environmental conditions (Env, e.g. air temperature,

VPD), (c, g) NSS model, (d, h) NSS model with Env. (a-d) normalized gsw responses, (e-h) normalized T responses. In simulations without

Env variations, except for the radiation, all the other environmental drivers were kept at the daytime means. gsw and T is normalized with the

values at noon (12:00). Arrows indicate the increasing and decreasing parts of the diurnal courses.
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Figure 11. Simulations of dynamic gsw using different time steps (2 min, 6 min, 10 min) and comparison with the traditional steady-state

modeling (30-minute resolution) predictions. a) using high temporal-resolution PAR as radiation input, values are resampled accordingly to

match the time step used; b) using ERA5 hourly radiation as input, values are linearly interpolated to 30-minute resolution. The shaded areas

in gray under the radiation curves represent the diffuse component of the total radiation.
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