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Abstract. Accurate and efficient modeling of stomatal conductance (gs) has been a key challenge in vegetation models across

scales. Current practice of most land surface models (LSMs) assumes steady-state gs and predicts stomatal responses to envi-

ronmental cues as immediate jumps between stationary regimes. However, the response of stomata can be orders of magnitude

slower than that of photosynthesis, and often cannot reach a steady state before the next model time-step, even on half-hourly

time scales. Here, we implemented a simple dynamic gs model in the vegetation module of an LSM developed within the Cli-5

mate Modeling Alliance, and investigated the potential biases caused by the steady state assumption from leaf to canopy scales.

In comparison with steady-state models, the dynamic model better predicted the coupled temporal response of photosynthesis

and stomatal conductance to changes in light intensity using leaf measurements. In ecosystem flux simulations, while the im-

pact of gs hysteresis response may not be substantial in terms of monthly integrated fluxes, our results highlight the importance

of considering this effect when quantifying fluxes in the mornings and evenings, and interpreting diurnal hysteresis patterns10

observed in ecosystem fluxes. Simulations also indicate that the biases in the integrated fluxes are more significant when stom-

ata exhibit different speeds for opening and closure. Furthermore, prognostic modeling can bypass the A-Ci iterations required

for steady-state simulations and can be robustly run with comparable computational costs. Overall, our study demonstrates the

implications of dynamic gs modeling in improving the accuracy and efficiency of LSMs, and for advancing our understanding

of plant-environment interactions.15

1 Introduction

Modeling stomatal conductance (gs), the opening and closure of tiny pores on leaves, is one of the key elements and challenges

in land surface models (LSMs). Stomata regulate the gas exchange rates of plants, allowing the uptake of CO2 for photosyn-

thetic assimilation while constraining water loss through transpiration (Berry et al., 2010; Damour et al., 2010). The behavior

of stomata, especially their responses to environmental variations, plays a significant role in determining the fluxes of carbon,20

water, and energy between vegetated surfaces and the atmosphere (Berry et al., 2010; Buckley, 2017). Therefore, accurate and

efficient modeling of gs is important for understanding the current Earth system and projecting future changes.

Stomatal conductance has been traditionally predicted with empirical models, relating gs to photosynthesis rate and environ-

mental cues with estimated parameters from statistical regressions (Ball et al., 1987; Leuning, 1990, 1995; Medlyn et al., 2011;

1



Damour et al., 2010). Efforts have also been made to constrain stomatal behavior from the principle of optimizing the trade-offs25

between carbon gain with the related penalty of stomatal opening (Wolf et al., 2016; Venturas et al., 2018; Wang et al., 2020).

Additional understanding of stomatal response includes plant hydraulic models that consider the transport of water from soil

through plants into the atmosphere (soil-plant-atmosphere continuum, SPAC) (Sperry et al., 1998, 2002; Bonan et al., 2014).

However, most existing stomatal models, especially those currently used to scale from leaf to canopy level and implemented

in LSMs, assume steady states (Vialet-Chabrand et al., 2017). They predict the opening and closure of stomata in stationary30

regimes, modeling stomatal response to environmental variations as immediate jumps between states (Vialet-Chabrand et al.,

2013).

While steady-state models assume that stomatal conductance changes instantaneously with the environment, the temporal re-

sponse of stomata in reality can often be an order of magnitude slower than the biochemical response of photosynthesis (Pearcy

and Seemann, 1990; Vialet-Chabrand et al., 2013). Plants can experience frequent environmental changes on a timescale of sec-35

onds, such as light fluctuations due to cloud cover and canopy shading. Meanwhile, stomatal response times vary from minutes

to more than an hour. Thus, a steady state is often not reached when environmental conditions change faster than stomata can

respond to (Lawson and Blatt, 2014; Vialet-Chabrand et al., 2017). This slower response of gs could further impose regulations

on assimilation rate via its effects on intercellular CO2 concentration (Ci), notably under rapidly-changing incident radiation

in natural environments (Kaiser and Kappen, 2000; Vialet-Chabrand et al., 2017). The mismatch and interaction of photosyn-40

thesis and stomatal response could lead to temporal variations in water use efficiency (WUE) as well (Lawson et al., 2011;

Venturas et al., 2018). These can all lead to biases and it is important to consider non-steady-state temporal responses of gs for

more accurate predictions of ecosystem fluxes. Additionally, the inclusion of this factor may also contribute to the hysteresis of

plant responses and ecosystem fluxes observed in natural diurnal cycles (Vialet-Chabrand et al., 2013), e.g. evapotranspiration

(ET) rates tend to be higher in the afternoon under the same incoming radiation, while canopy conductance overall decreases.45

These patterns have often been attributed solely to the asymmetry of meteorological variables, especially in temperature and

vapor pressure deficit (Zeppel et al., 2004; Bai et al., 2015; Gimenez et al., 2019; Oogathoo et al., 2020; Lin et al., 2019).

The current practice of employing gs models that assume steady-states requires iterations to converge to stable solutions at

each simulation step. At the leaf level, this typically involves two nested iteration loops, first to solve the coupled photosynthesis-

stomatal conductance (An−gs) model for Ci, and then to solve the leaf energy budget for leaf temperature (Collatz et al., 1991;50

Bonan et al., 2018), as gs affects latent heat flux through transpiration. This approach can potentially lead to numerical issues

(Sun et al., 2012) and increased computational costs, particularly when upscaling with complex canopies, where angular distri-

bution setups are necessary (Wang and Frankenberg, 2022). However, by utilizing prognostic updates of variables, a dynamic

model could simplify simulation steps and improve computational efficiency, enabling runs at finer temporal resolutions.

Moreover, accurate parameter estimation with steady-state models (e.g. linear fitting for the slope g1 in empirical models)55

necessitates measurements to be taken after reaching each equilibrium (Leuning, 1990; Miner et al., 2017). Depending on wide-

ranging stomatal response speeds (McAusland et al., 2016), obtaining one accurate response curve could take several hours

(Liozon et al., 2000; Duarte et al., 2016). Too short of a time step could result in overestimation, underestimation, or unstable

results of parameter estimates with steady-state assumptions (Xu and Baldocchi, 2003), which may often be overlooked (Miner
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et al., 2017). Alternatively, estimates can be approached with a prognostic model by fitting the entire response curve, where60

steady-state measurements are not fundamentally necessary.

Limitations of steady-state stomatal modeling have driven efforts to develop dynamic models, primarily at the leaf level

(Damour et al., 2010; Vialet-Chabrand et al., 2017). Based on observed variations of gs, analytical equations of sigmoidal or

exponential response have been commonly used (Naumburg and Ellsworth, 2000; Noe and Giersch, 2004; Vialet-Chabrand

et al., 2013; Vialet-Chabrand et al., 2017; Martins et al., 2016; McAusland et al., 2016); directly adding time-dependent terms65

into traditional steady-state models has also been proposed (Matthews et al., 2018). While these models have demonstrated

effective performance in reproducing leaf-level responses to light intensity in controlled conditions, the impacts of including

temporal stomatal dynamics on the simulations of larger-scale fluxes under coupled variations in the natural environment

(e.g., transpiration in the coupled diurnal cycles of radiation, temperature, and vapor pressure deficit (VPD)) have not been

investigated. This may be partly due to the parametrization and complexity of many models optimized for leaf-scale predictions70

(Kirschbaum et al., 1988; Vialet-Chabrand et al., 2016), which constrains the feasibility of scaling them to the canopy level in

LSMs.

In this study, we aim to: 1) implement a simplified dynamic stomatal model in the CliMA-Land model, i.e., the land com-

ponent of a new generation Earth system model within the Climate Modeling Alliance (CliMA); 2) test model performance on

leaf-level measurements and demonstrate an alternative method of parameter estimation with the non-steady-state model in a75

Bayesian nonlinear inversion framework; 3) compare simulations of the dynamic model with traditional steady-state modeling,

primarily focusing on the differences in predictions of canopy fluxes and responses to coupled environmental variations on

different time scales.

2 Methods and Materials

2.1 Model framework80

2.1.1 Dynamic stomatal modeling

The current steady-state modeling approach in LSMs requires convergence of nested iteration loops to solve leaf fluxes at each

time step (Figure 1a) (Bonan et al., 2018). In this study, we proposed to replace the inner loop for steady solutions of the

coupled photosynthesis-stomatal conductance (An − gs) model with prognostic updates of gsw at finer time steps (Figure 1b).

At each step, instead of assuming a initial Ci and iterating until convergence, our framework starts with an initial gsw (e.g.85

for the first time step of a diurnal simulation from midnight, this can be set as the minimal conductance in dark). Then solves

An and Ci with biochemical demand and diffusive supply of internal CO2 (Figure 1). For instance, when applying the Farquhar

photosynthesis model for C3 plants (Farquhar et al., 1980), with a given gsw, the RubisCO limited rate (Ac) and light limited
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rate Aj are calculated using:

Ac = Vcmax ·
Ci −Γ∗

Ci +Km
= glc · (Ca −Ci)+Rd, (1)90

Aj = J · Ci −Γ∗

4Ci +8Γ∗ = glc · (Ca −Ci)+Rd. (2)

where the middle parts in Eq. 1 and Eq. 2 represent the biochemical demand, and the right part represents the diffusive

supply limitation of photosynthesis. Vcmax is the maximum carboxylation rate, Ca is the ambient CO2 concentration, Rd is the

respiration rate, Γ∗ is the CO2 compensation point with the absence of respiration, J is the electron transport rate, Km is the

Michaelis-Menten’s coefficient, glc is the leaf total conductance to CO2, which can be calculated using: g−1
lc = g−1

bc +1.6g−1
sw +95

g−1
m , with gbc the boundary conductance to CO2 and gm the mesophyll conductance. Note that computing Ac or Aj requires

solving for Ci first. With a known glc from gsw at each time-step, rearranging Eq. 1 and Eq. 2 allows for the analytical solution

of Ci, Ac and Aj, respectively.

For prognostic updates of gsw, we implemented a simplified dynamic model, adapted from previous studies on leaf-level

prognostic modeling (Kirschbaum et al., 1988; Rayment et al., 2000; Noe and Giersch, 2004; Vialet-Chabrand et al., 2016):100

∆gt
∆t

=
(gss − gt)

τ
(3)

where ∆t is the time step of the simulation, gt represents the conductance at the current time step, gss is the target conductance

calculated with steady-state models at the current conditions, and τ is the time constant, representing the time scale of stomatal

responses. In this study, we used the Ball-Berry model (Ball et al., 1987) to compute the gss for leaf level simulations for sim-

plicity and the Medlyn model (Medlyn et al., 2011) for the canopy scale simulations, as the vegetation trait dataset (De Kauwe105

et al., 2015) we employed for our study region is only available for the Medlyn parameters. We should note that the selection

of the empirical stomatal model is of minor relevance to our primary findings, as our study focuses on the differences between

steady-state and prognostic schemes only.

As indicated in the flow chart (Figure 1), our dynamic modeling avoids nested iterations for steady solutions while requires

updates of variables at finer time steps (e.g. 5-10 min, compared to 30 or 60 min time steps of current LSMs) for the stability110

of simulations, which we tested and discussed in Section 2.3.2 and 3.3. The prognostic updates of leaf temperature can be

implemented accordingly, but as it is not within the scope of this study, we prescribed the leaf temperature updates with

measurements in our simulations.

2.1.2 Implementation in LSM

CliMA Land (https://github.com/CliMA/Land), a new generation LSM, is highly modularized and offers flexible model schemes115

(Wang et al., 2021, 2023), enabling easy implementation and assessment of the dynamic stomatal model across scales. To test

the model performance and compare simulations with different stomatal modeling schemes, we implemented our non-steady-

state framework in CliMA Land. More information on the CliMA Land configuration can be found in the supplementary

material (Section S1.1) and Wang et al. (2021, 2023).
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Figure 1. Comparison of leaf flux calculation flows in (a) steady-state (SS) and (b) non-steady-state (NSS) dynamic modeling. (a) illustrates

the two nested loops at each time step in the current practice of steady-state framework, adapted from Bonan et al. (2018). The inner iteration

in the light yellow box represents the flow of solving the coupled photosynthesis-stomatal conductance (An-gs) model for Ci. The outer

solves the leaf energy budget for leaf temperature (Tl). The focus of this study is to implement and compare a dynamic modeling framework

to the An-gs model, illustrated in light blue box in (b), where, instead of iterating for steady solutions, gsw is updated prognostically at finer

time steps, based on environmental conditions and a simplified dynamic model (Section 2.1.1). This NSS framework of modeling gsw also

allows prognostic updates of Tl. As its implementation is not within the scope of this study, related flows are shown in dashed parts.

2.2 Performance on leaf level measurements120

2.2.1 Leaf gas exchange

To test our model and determine key parameters, we recorded light response curves of grape (Vitis vinifera) and walnut (Juglans

regia cv.) leaves using a LI-6800 portable photosynthesis system (LI-COR, Inc., Lincoln, NE, USA). Saplings of Vitis vinifera

and Juglans regia cv. were planted in 5-gallon pots with UC soil mix. 44.4 mL of Osmocote® Smart-Release® Plant Food

Plus fertilizer were added to each pot. The plants were grown in a UC Davis lath house. The plants were watered to maintain125

around 75 percent of completely saturated soil by weight (details in Meeker et al. (2021)). The youngest, fully expanded, intact

leaf was chosen and dark-adapted for 30 min. During the measurements, the photosynthetic photon flux density (PPFD) was

sequentially increased following the gradient of 50, 100, 200, 400, 600, 900, 1200, 1500, 1800 µmol m−2 s−1, with a time step

of 30 min at each light level. The chamber air temperature was set at 25 ◦C; CO2 partial pressure was controlled at 400 ppm;the

relative humidity in the chamber was maintained around 50%.130
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2.2.2 Parameter optimization

We applied a Bayesian nonlinear inversion framework (Rodgers, 2000; Dutta et al., 2019) to jointly fit the response curves

of the net photosynthetic assimilation (An) and stomatal conductance (gs) for each leaf with the non-steady-state model. The

forward problem in this case can be represented as follows:

y = F(X;b)+ ϵ; (4)135

where y represent the measurements, i.e. the light response curves of both An and gs (see Section 2.2.1); F represents the

forward model, CliMA-Land with the dynamic gs model (see Section 2.1); X is the state vector of parameters to be retrieved,

which in our case includes: the maximum carboxylation rate (Vcmax), the slope (g1) and the minimum conductance (g0) of the

BB model, the mesophlly conductance (gm) (Sun et al., 2014), and the time constant (τ ). We also included a scaling factor

for An, to account for variations in the respiration rate and the ratios between CO2 and H2O fluxes; b is the vector of other140

parameters that have influences the measurements, are known to some accuracy but not intended to be retrieved, e.g. the ratio

between Jmax (the maximum electron transport rate) and Vcmax, which is assumed to be 1.6 in this study but may vary across

conditions (Medlyn et al., 2002); and ϵ is the error term.

The Levenberg–Marquardt (LM) iterations (Levenberg, 1944; Marquardt, 1963; Rodgers, 2000) were utilized to solve the

nonlinear inversion problem and find the best estimate of key parameters:145

xi+1 = xi +
(
(1+ γ)S−1

a +KT
i S

−1
ϵ Ki

)−1 (
KT

i S
−1
ϵ [y−F (Xi)]−S−1

a [xi −xa]
)

(5)

where xa is the prior estimate of the state (in this study, Vcmax: 70 µmol m−2s−1, g1: 9, g0: 0.03 mol H2O m−2 s−1, gm: 0.4

mol CO2 m
−2 s−1, τ : 600 s, scalingA: 1); Sa is the prior covariance matrix, assumed to be purely diagonal, with Gaussian

uncertainties in the prior state (the assumed prior standard deviation of Vcmax: 30, g1: 3, g0: 0.005, gm: 0.02, τ : 100, scalingA,

0.01). Ki is the Jacobian matrix at the ith iteration. γ is adjusted at each step, ensuring that each update of the state vector150

moves towards minimizing the cost function. Sϵ is the error covariance matrix; in our case, errors were assumed to be mainly

from measurement uncertainties and calculated based on the standard deviation and mean of the ∆CO2 and ∆H2O in LI-6800

measurements.

2.2.3 Uncertainties in traditional parameter estimation

To illustrate the influence of time steps on parameter estimation in the traditional method, which assumes steady states, we used155

the NSS model to generate leaf response curves to the same PPFD sequence but with different time intervals. For example,

in the 5-min time step simulation, light intensity input jumped every 5 minutes, and measurements were assumed to be taken

right before the next jump, following the traditional method. We then employed these curves to calculate the estimated g1 and

g0 values using the traditional linear fitting method for the Ball-Berry model. The potential biases were assessed by comparing

fitted parameters with different applied time steps.160
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2.3 Comparison of models in diurnal cycles

To assess the potential bias of the current steady-state modeling in LSMs, we compared the predictions of surface fluxes from

models with different assumptions under natural environmental variations. We evaluated and compared the simulation results

on both the leaf and canopy flux scales.

2.3.1 Environmental drivers and plant traits165

As the light intensity tends to be the most rapidly changing environmental condition that stomata response to, we employed

high temporal resolution radiation measurements in the field as the incoming irradiance inputs and ran CliMA Land with both

setups. Photosynthetically active radiation (PAR) in a crop field (42.481677◦N, 93.523521◦W) was recorded with a LI-190R

quantum sensor (LI-COR, Inc., Lincoln, NE, USA) at 1 s temporal resolution during August 2017.

In addition to the fluctuations of total incoming photon density that the PAR sensor can provide, canopies in natural environ-170

ments also experience variations in the fraction of direct and diffuse components in the total radiation. This variation affects

the distribution of PAR received by individual leaves across different layers of the canopy structure (Durand et al., 2021). To

account for this effect, we employed an empirical fitting with the hourly radiation data from ERA5 (Figure S2), to estimate the

partitioning between the direct and diffuse radiation (Boland et al., 2001). The empirical relationship was then applied to high

temporal resolution PAR measurements to obtain the direct and diffuse components in the recorded total radiation, which were175

used as inputs for simulations at the canopy scale.

Other meteorological variables (e.g. air temperature, dew-point temperature, volumetric soil water, wind speed etc.) were

extracted from the ERA5 hourly reanalysis dataset (Hersbach et al., 2018) and input as environmental drivers for the simulations

on the canopy scale. Linear interpolations were applied for runs at sub-hourly time steps. Key plant traits (e.g. Vcmax, g1, leaf

area index (LAI)) were extracted from several globally gridded datasets using GriddingMachine (Wang et al. 2022; Croft et al.180

2020; Butler et al. 2017; Luo et al. 2021; De Kauwe et al. 2015; Yuan et al. 2011; He et al. 2012, ; also see Wang et al. (2023)

for detailed information on global scale datasets used in CliMA-Land).

2.3.2 Model simulations

We ran the CliMA Land surface flux simulations with different stomatal modeling schemes to assess the effects of gs temporal

response on model predictions. In the SS runs, iterations were employed to converge to steady-state solutions at each time step.185

For NSS mode, previous studies have observed different time constants for stomatal opening (τop) and closure (τcl) in various

species, as well as a positive correlation between τop and τcl, with of the τop/τcl ratio varying from around 1/3 to 3 (McAusland

et al., 2016; Vico et al., 2011; Ozeki et al., 2022). Based on the average time constant retrieved from the leaf response curves in

Section 2.2.1 and 2.2.2 as well as previous estimates on the time constant variations (Vialet-Chabrand et al., 2013; McAusland

et al., 2016; Vialet-Chabrand et al., 2017; Vico et al., 2011; Ozeki et al., 2022), we tested several sets of τop and τcl varying190

from 300 s to 900 s, including (a) τop = τcl = 900 s, as the base comparison; (b) τop > τcl, with τop/τcl ratios varying from 1.2

to 3, e.g. τop = 900 s, τcl = 300 s; (c) τcl > τop, with τcl/τop ratios from 1.2 to 3, e.g. τop = 300 s, τcl = 900 s.
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For the leaf-scale runs, we used the key parameters retrieved in previous sections and tested model predictions for an ideal

clear-sky day. To investigate the differences in ecosystem fluxes, we ran and assessed the NSS and SS simulations using a

time step of 1 minute, with the inputs of meteorological drivers and plant traits at the location of the PAR measurement for195

the month of August 2017. Meteorological variables are updated at each time step. In order to further evaluate the potential

contribution of gs hysteresis to the observed diurnal hysteresis of ecosystem fluxes, we compared the standard runs with the

model predictions where environmental variables (e.g. temperature, VPD, soil water content (SWC), etc.) were held constant

over the daytime (as the mean of daytime values in each day). This approach allowed us to isolate the effect of hysteresis in gs

response and assess its potential contribution to the observed diurnal hysteresis of canopy and ecosystem fluxes.200

Furthermore, to test the stability of prognostic modeling and assess the computational cost, we compared NSS simulations

using different time steps, as well as the SS simulation run at a time step of 30 min, which is commonly used in current LSMs.

This enabled us to evaluate the sensitivity of NSS predictions to the time step used, as well as compare the computational cost

for stable NSS runs and standard SS simulations. We resampled the environmental drivers from ERA5 and the PAR sensor

to match the temporal resolution of the simulations, while maintaining constant average values for each diurnal cycle across205

simulations with different time steps.

3 Results

3.1 Model performance and parameter estimates on leaf measurements

With the parameters estimated from the LM inversion framework, the non-steady-state model well predicted the temporal

responses of gsw and An (Figure 2). The model was able to capture the gradual increases of gsw and An after each step change210

in APAR, and the reproduced curves were close to the measurements, with all R2 higher than 0.98. Fitted time constant τ

showed a variation between the two example leaves (292 s and 2028 s for the Vitis vinifera leaf and the Juglans regia cv.

leaf, respectively). The relative difference in the time constant matched with the variations of response speed observed in the

measured response curves (Figure 2). Compared to the SS model, the dynamic model provided more accurate prediction to the

temporal responses. The improvements in R2 were more prominent in the predictions of the Juglans regia cv. leaf responses,215

which have a larger time constant, than in those of the Vitis vinifera leaf. Other parameters estimated for the Vitis vinifera leaf

include Vcmax: 71 µmol m−2s−1, g1: 11.3, g0: 0.023 mol H2O m−2 s−1, gm: 0.18 mol CO2 m
−2 s−1, scalingA: 1.1; for the

Juglans regia cv. leaf, Vcmax: 152 µmol m−2s−1, g1: 3.9, g0: 0.052 mol H2O m−2 s−1, gm: 0.34 mol CO2 m
−2 s−1, scalingA:

1.0.

The dynamic model was also able to better capture the temporal variations of internal CO2 concentration (Figure 3). Par-220

ticularly, the NSS model reproduced the undershooting of the intercellular CO2 concentration (Ci) after each step change in

light intensity, which resulted from the differences in the speed of gs and An responses and their interactions. As shown in the

measured time series (Figure 2), after each increase in the incident light, photosynthesis was able to respond almost instanta-

neously, leading to a rapid decrease in Ci, while stomata opened gradually, slowly bringing up Ci over time. This then led to

a gradual rise of An after the initial rapid response, indicating the regulation of gs on An through its impacts on the internal225
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Figure 2. Modeled and measured temporal responses of the stomatal conductance (gsw) and net photosynthesis rate (An) to the step changes

in APAR for different leaves. The shaded area indicates the difference between the prediction of the steady-state (SS) model and the non-

steady-state (NSS) dynamic model. (a-b) The temporal responses of the Vitis vinifera leaf, (c-d) the Juglans regia cv. leaf.

CO2 supply. In the meantime, the increasing An further promoted the opening of stomata with a higher internal CO2 demand,

demonstrating their coupled responses to environmental variations.

With the dynamic model and optimized parameters that accurately reproduced the measured leaf responses, we investigated

the influence of time steps used in light response curves (i.e. the length of intervals between step changes in light intensity) on

parameter estimates obtained with traditional methods (Figure 4). The results showed that, particularly for the Juglans regia230

cv. leaf that has a long time constant over 2000 s, the values and relationship between the Ball-Berry index and gsw varied

significantly depending on the time step used, resulting in notable uncertainties in fitted g1 and g0 with too short of a interval to

reach equilibrium. This also suggested that obtaining reliable estimates for this leaf using the traditional method could require

more than an hour for stable readings at each step.

3.2 Model comparison in diurnal cycles235

3.2.1 Leaf responses

To compare NSS and SS models over the course of a day, we evaluated the differences in their predictions of leaf responses

to an ideal diurnal cycle of light with other environmental conditions (e.g. temperature, VPD, CO2) held constant (Figure 5).
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Figure 3. Modeled and measured temporal responses of intercelluar CO2 concentration (Ci) for (a) the Vitis vinifera leaf and (b) the Juglans

regia cv. leaf. As indicated in labels, measured curves were shifted to illustrate the comparison of modelled and measured response patterns,

as the absolute values are not directly comparable due to different assumptions of LI-6800 and CliMA-Land in calculating the internal CO2.

The shaded area indicates the difference between the prediction of the steady-state (SS) model and the non-steady-state (NSS) dynamic

model.
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Figure 4. Parameter estimates for the Ball-Berry model with the traditional linear fitting method using model-reproduced response curves

with different time steps (5 min, 10 min, 30 min, 60 min, 120 min). (a) fitting results for the Vitis vinifera leaf, (b) the Juglans regia cv. leaf.

Corresponding Ball-Berry index and gsw are plotted, along with the fitted lines and parameters (i.e. the Ball-Berry slope, g1, and the intercept,

namely, the minimum conductance, g0).

Results showed that compared to NSS, the SS model predicted a higher An and gs in the morning, as it assumed the stomata

could respond immediately to an increase in light, whilst in the more realistic NSS simulation, the gradual opening of stomata240

limited the CO2 supply for photosynthesis with a lower Ci. The opposite was true for the afternoon, but the overestimation of

An and gs in SS modeling in the morning was more significant than the underestimation in the afternoon, leading to slightly

higher diurnally-integrated predictions than those of the NSS model. This was due to the fact that in the course of sunset,
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Figure 5. Predictions of the leaf diurnal course of (a) net photosynthesis rate (An), (b) stomatal conductance to water vapor (gsw), (c)

intercellular CO2 concentration (Ci), and (d) intrinsic water-use efficiency (WUE) for a leaf with a stomatal time constant of 900 s in an

ideal clear-sky day (τop = τcl = 900 s). Other environmental conditions (e.g. leaf temperature, VPD) were held constant. The shaded areas

indicate the differences between the NSS and SS simulations (blue: SS > NSS; orange: SS < NSS), both in absolute and relative terms.

Relative differences (RD, NSS - SS) in the temporal integrals are also presented, for morning (am, 5:00-12:00), afternoon (pm, 12:00-19:00),

and daytime (5:00-19:00). RD∗ of WUE represents the ratio between integrated An and gsw, differing from the RD, the integral of the

instantaneous WUE during the daytime.

the major limiting factor on productivity was the decreasing light, in contrast to the sunrise where it was the available Ci

regulated by gs responses that mainly constrained An increases. The relative differences (RDs) in integrated gs in the morning245

and afternoon were both higher than those of the photosynthesis, reflecting the differences in the response speed.

The differences in predictions of An and gsw responses also led to RDs in the intrinsic water-use efficiency (WUE, i.e. the

ratio between An and gsw). Although the mean instantaneous WUE during the daytime was higher in the NSS simulation,

diurnal WUE calculated from the integrated An and gsw was lower. This was because the gradual opening of stomata during

the sunrise limited assimilation in the morning, whereas during the sunset, delayed closure led to unnecessary water loss when250

carbon gain was constrained by low light.
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3.2.2 Canopy fluxes

To quantify the impacts of the inclusion of gs temporal response, we analyzed the simulated canopy fluxes under natural

radiation variations and coupled dynamics of environmental conditions. As shown in the examples of diurnal cycle simulations

(Figure 6 and 7), the SS model predicted higher variations in instantaneous fluxes in response to rapid fluctuations in radiation,255

particularly in transpiration rates.

When τop = τcl, the overestimate of morning gsw in SS predictions was mostly compensated by an underestimate of after-

noon gsw, resulting in relatively minor differences in daily average gsw (Figure 8c; the mean RD of daytime-mean gsw, 0.5 %).

However, when the time constants of stomatal opening and closure were not equal, there is overall underestimation or overes-

timation in both mornings and afternoons, and the daily-mean RDs can be notable (Figure 8g and k, Figure S3, Figure S4). For260

example, when τop = 3τcl, the faster closure than opening of stomata led to overall lower conductance over the diurnal cycles,

compared to SS runs (Figure 8k; the mean RD of daytime-mean gsw, -6.1 %).

In the simulations with same time constants of stomata opening and closure, the differences in fluxes between the NSS and

SS predictions were not significant when integrated over monthly periods (e.g. the mean RD of transpiration in August 2017,

0.87 %, and the median, 1.0 %), but can be notable at sub-diurnal scales depending on the environmental conditions (e.g. the265

variation of afternoon RDs ranged from -7.4 % to 6.1 %). When there were differences in τop and τcl, the divergences between

NSS and SS predictions can be more significant (e.g. when τop = 1/3τcl, the mean RD of transpiration in August 2017, 4.9 %,

the maximum daily-mean RD of transpiration, 9.0 %).

The overall tendency to overestimate productivity with traditional SS models was also observed at the canopy scale, when

τop was equal to or larger than τcl, as the regulation of gs hysteresis on the supply of CO2 for photosynthesis was not considered270

(Figure 8b and j). For example, in Figure 6, when rapid spikes of radiation occurred in the afternoon, the speed of gs response

constrained the increases of photosynthesis in the NSS simulation. However, when τop was smaller than τcl, predicted daily-

mean photosynthesis is slightly higher in NSS simulation (Figure 8f; the mean RD of productivity in August 2017, 0.2 %). This

resulted from the overall higher gsw, due to faster opening than closure (Figure 8g), as higher conductance resulted in higher

Ci (Figure S5), leading to generally higher rates of photosynthesis.275

In contrast to the leaf-scale results, when accounting for other co-varying environmental drivers (e.g. temperature, VPD, soil

water content), the SS model tended to underestimate canopy transpiration rates, when τop = τcl (Figure 6b, Figure 7b, Figure

8a). This could be because the transpiration rates were determined by both gsw and VPD. During the daytime, VPD typically

increased following air temperature and peaked in the afternoon, when the slow response of stomata to the increasing VPD

and decreasing radiation could result in excess water loss (Figure 7b, Figure 8 a and c). The overestimation of productivity280

and underestimation of transpiration in SS simulations both contributed to the overestimation of WUE. When τop < τcl, slower

stomatal closure led to increased water loss and thus a more significant underestimation of transpiration in the SS predictions

(Figure 8e; the mean RD of transpiration in August 2017, 4.9 %), resulting in further overestimation of the WUE. When τop

> τcl, the NSS model predicted lower transpiration rates and higher WUE, compared to the SS model, because of the overall
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Figure 6. Comparison of the predicted diurnal cycles of ecosystem fluxes, (a) the net productivity and (b) the transpiration rate for DOY

219, 2017. The shaded areas in blue and orange indicate the differences between the NSS and SS predictions (blue: SS > NSS; orange: SS <

NSS). The shaded areas in gray under the radiation curves represent the diffuse component of the total radiation. Relative differences (RD,

NSS - SS) in the temporal integrated fluxes are also presented, for morning (am, 5:00-12:00), afternoon (pm, 12:00-19:00), and daytime

(5:00-19:00).

lower gsw (Figure 8i and k). As lower gsw yielded overall lower Ci (Figure S5), larger gradients of CO2 concentration across285

stomata contributed to higher WUE on daily and monthly timescales.

3.2.3 Diurnal hysteresis

To investigate the relative contributions of gs hysteresis and environmental variables to the hysteresis observed in plant be-

haviors and ecosystem fluxes, we separated the effects of these two factors by comparing predicted response curves in NSS

and SS simulations with and without diurnal environmental variations (e.g. temperature, VPD, soil water content). While the290

asymmetry of environmental variables in the diurnal cycle could lead to a modeled hysteresis of gs in response to radiation,

where gs tended to be lower in the afternoon mainly due to higher VPD and temperature, our results (Figure 9) showed that

the kinetic lag of gs could partially offset this effect (Figure 9 b and d), even presenting an opposite tendency at low radiations.

Additionally, only the NSS model simulations predicted a hysteresis of canopy transpiration, with or without the consideration

of coupled environmental variations (Figure 9 g and h), in which canopy H2O fluxes tended to be higher in the afternoon.295

Differences between τop and τcl affected the magnitudes of hysteresis, but the overall patterns remained similar (Figure S6,

S7).
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Figure 7. Comparison of the predicted diurnal cycles of ecosystem fluxes, (a) the net productivity and (b) the transpiration rate for DOY

224, 2017. The shaded areas in blue and orange indicate the differences between the NSS and SS predictions (blue: SS > NSS; orange: SS <

NSS). The shaded areas in gray under the radiation curves represent the diffuse component of the total radiation. Relative differences (RD,

NSS - SS) in the temporal integrated fluxes are also presented, for morning (am, 5:00-12:00), afternoon (pm, 12:00-19:00), and daytime

(5:00-19:00).

3.3 Stability of the dynamic model

We further assessed the sensitivity of the dynamic modeling to the time step of simulation. Figure 10 shows the NSS model

was be able to run at a time step of 10 minutes stably and still demonstrated the impacts of gradual gs responses, as compared300

to the traditional practice of SS modeling at a time step of 30 minutes.

4 Discussion

In this study, we demonstrated the feasibility and benefits of implementing a non-steady-state stomatal conductance modeling

framework from the leaf to canopy scale, in a new generation LSM, CliMA-Land. Our results suggested that compared to

traditional steady-state models, the dynamic model was able to provide more realistic and accurate predictions of leaf temporal305

responses to the changes in light intensity (Section 3.1). In the meantime, modeling gs with prognostic updates - similar to how

plants control their stomata movements gradually in natural environments - neither increased computational cost nor model

complexity, as simulations were simplified with iterations to solve for steady states avoided. Sun et al. (2012) pointed out

the default 3-step fix-point iteration for solving the coupled An − gs model in CLM4 (the Community Land Model version 4)

does not always converge, leading to uncertainties in flux predictions. In our simulations at the canopy scale (Section 3.3),310

the dynamic model could be stably run at a temporal resolution (10 min) that presented comparable efficiency to the current

practice of 30-minute resolution SS simulations commonly used in LSMs (3-step prognostic updates for each SS default 3-step
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Figure 8. Relative differences (NSS - SS; RD) in the predicted daytime-mean fluxes of the NSS (time step: 1 min) and SS (1 min) simulations

for August 2017. The solid line in each box indicates the median, and the dashed line represents the mean. The results for the transpiration

rate (H2O flux), net productivity (CO2 flux), canopy-averaged stomatal conductance to water (gsw), and water-use efficiency (WUE) are

shown in the respective columns from left to right. (a-d) τop = τcl = 900 s, (e-h) τop = 300 s, τcl = 900 s, (i-l) τop = 900 s, τcl = 300 s. Diurnal:

5:00-19:00, AM: 5:00-12:00, PM: 12:00-19:00.

iteration). This also indicates the dynamic model can enable predictions of canopy flux dynamics at a finer time resolution with

higher efficiency and accuracy.

With the non-steady-state model, we were able to apply a Bayesian nonlinear inversion framework to jointly fit the light315

response curves of both An and gs, and obtain estimates for key parameters (Section 3.1). As suggested in our results (Figure 4)

and previous studies (Xu and Baldocchi, 2003; Miner et al., 2017), the time step of light response curves can notably influence

the estimated parameters obtained from the traditional linear fitting method for steady-state empirical models. Our framework

with the dynamic model can help reduce the time required for accurate parameter estimations, particularly for leaves with long

time constants, as equilibrium is not required. Although the retrieval setups presented in this study may not be optimal for320

estimating Vcmax, which is typically derived from A-Ci response curves (Medlyn et al., 2002; Miao et al., 2009; Duarte et al.,
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2016), a similar framework can be applied to other scenarios for estimation of various parameters, including a A-Ci curve for

Vcmax.

Furthermore, we evaluated how the inclusion of gs temporal responses could affect model predictions of leaf and canopy

fluxes in diurnal cycles with natural environmental variations (Section 3.2.2). The comparison of NSS and SS simulations325

indicated that the differences in fluxes depended on the integration timescales, relative speed of stomatal opening and closure,

and environmental variations. In terms of instantaneous effects, slow opening of stomata tended to limit productivity responses

to rapid radiation increases, and delayed closure of gs following decreases in radiation or increases in environmental stress

(e.g. increasing VPD) resulted in unnecessary water loss. The divergence of NSS and SS schemes was less significant when

considering the monthly integrated canopy fluxes, compared to daily or sub-diurnal scale results. The monthly differences330

were more notable when the speeds of stomata opening and closure differed. The overall effects on WUE also depended

on the relative speed of opening and closure. In the simulations where stomata open at a similar or faster speed than they

close, excessive water loss in the afternoons, when VPD was high, led to a lower WUE. This also suggested that traditional

steady-state simulations may overestimate WUE. Similar impacts have been noted in studies on leaf-scale response to PPFD

fluctuations (Lawson et al., 2011; Lawson and Blatt, 2014; McAusland et al., 2016). Meanwhile, when stomata opened more335

slowly than they closed, plants exhibited both a lower maximum gs during diurnal cycles and a lower average gs compared to

the SS runs. This resulted in reduced transpiration and increased WUE, even though productivity was also suppressed. These

results suggest that the temporal hysteresis of gs can have impacts on integrated canopy fluxes, and further studies on variations

of stomata opening and closure speeds across plants can be helpful to assess these effects more comprehensively on larger

scales.340

In addition, the hysteresis of leaf-level gs response can contribute to the hysteresis patterns at the ecosystem scale, which

have often been solely attributed to the asymmetry of environmental variables during the daytime. For instance, higher evap-

otranspiration (ET) fluxes and sap velocity (i.e. an indicator of plant transpiration rate) have been observed in the field, with

explanation often focused on higher VPD in the afternoon following increased air temperature (Zeppel et al., 2004; Gimenez

et al., 2019; Oogathoo et al., 2020; Lin et al., 2019). Our simulations showed that the SS model with diurnal environmental345

variations was unable to reproduce this hysteresis pattern, while it was captured in NSS runs. This indicated the significance

of considering gs temporal dynamics when interpreting diurnal hysteresis in transpiration (Section 3.2.3). Moreover, observed

patterns of lower gs in the afternoon have also been commonly explained with similar environmental asymmetry (Bai et al.,

2015; Lin et al., 2019), whilst our results suggested the kinetic lag of gs could partially offset this effect, and thus should be

taken into account in understanding the hysteresis patterns.350

Our study mainly focused on taking the first step to implement prognostic stomatal modeling in a LSM, including the impacts

on canopy flux simulations. Further improvements can be made in assessing other effects of gs temporal responses in LSM

projections, as well as validating the comparisons with site-level observations. For example, while daily effects on canopy

productivity were minor, they may add up to significant differences in long-term vegetation growth trajectories. As plant traits

were prescribed in our simulations, the accumulative effects were not included in our analysis of the short-term predictions.355

The transient limitation on photosynthesis from the slow temporal response of gs could also cause potential photoinhibitory
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damage to the photosystem II reaction centers. Future studies can focus on the parameterization of these impacts in LSMs and

the evaluation of cumulative effects on plant growth and hydraulics in the long term.

The dynamic gs model enables predictions of temporal changes in latent heat flux through transpiration in leaf energy bal-

ance, which allows a similar prognostic framework to be employed for the modeling of leaf temperature. Coupled dynamic360

modeling of stomatal conductance and leaf temperature will enhance our ability to evaluate the influences of gs hysteresis on

the feedback between leaf transpiration and thermal condition. This is out of scope of our current study but can be a valu-

able direction for future research efforts. Bonan et al. (2018) implemented a non-steady-state framework for leaf temperature

modeling, but as steady-state gs models were employed, iterations for stable solutions were still required. With the dynamic gs

model presented in this study, the traditional nested iteration loops in leaf flux calculations, which can take up to 40 iterations365

to solve for a single simulation step in CLM4.5 (Bonan et al., 2018), can be replaced by more efficient and accurate prognostic

updates of variables with ordinary differential equations (ODEs). Such an approach can also facilitate better couplings of LSMs

with other components in Earth system models (ESMs), where ODE systems are commonly used.

5 Conclusions

We implemented a simplified dynamic stomatal conductance model in CliMA-Land, and evaluated its impacts on model sim-370

ulations across scales. In comparison with the traditional steady-state model, the dynamic model better predicted the coupled

temporal responses of An, gs and Ci observed in leaf measurements. We also found uncertainties in parameter estimation

for steady-state gs models with the traditional linear fitting method, when too short of a time step used resulted in unsta-

ble estimates. We proposed an alternative approach using a Bayesian nonlinear inversion framework with a dynamic model,

which could help reduce the time investment for estimation, particularly for leaves with long time constants. Our results on375

canopy-scale simulations suggested that the effects of temporal gs responses on ecosystem fluxes depend on the timescales of

integration, relative speed of stomatal opening and closure, and environmental variations. Although the differences in monthly

integrated fluxes between NSS and SS simulations were relatively minor, the hysteresis of gs should be taken into account

when predicting diurnal courses and quantifying sub-diurnal scale fluxes, as well as explaining the hysteresis patterns observed

in diurnal cycles. In addition, we also show that these divergences become notable when stomata open and close at different380

speeds.

We demonstrated that the more realistic prognostic modeling of gradual gs response simplified the simulation as iteration

loops for solving steady-states at each time step were avoided, and the dynamic model can be run at a finer time resolution that

presents comparable computational costs to the current practice of steady-state leaf flux calculation. A similar framework can

be extended to leaf temperature modeling which will enable prognostic updates of leaf level variables with higher efficiency385

and accuracy, towards better couplings of LSMs with other components in Earth system models (ESMs).
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Figure 9. Hysteresis of the canopy-mean stomatal conductance (gsw) and canopy transpiration rate (T ) in response to radiation during an

ideal clear-sky day, when τop = τcl = 900 s. (a, e) SS model, (b, f) SS model with coupled diurnal variations of environmental conditions (Env,

e.g. air temperature, VPD), (c, g) NSS model, (d, h) NSS model with Env. (a-d) normalized gsw responses, (e-h) normalized T responses. In

simulations without Env variations, except for the radiation, all the other environmental drivers were kept at the daytime means. gsw and T is

normalized with the values at noon (12:00). Arrows indicate the increasing and decreasing parts of the diurnal courses.

24



4 6 8 10 12 14 16 18 20
0.00

0.05

0.10

0.15

g s
w

(m
ol

m
2 s

1 ) NSS - 2min
NSS - 6min
NSS - 10min
SS - 30min

0

200

400

600

800

1000

Ra
di

at
io

n 
(W

m
2 )

0

500

1000

1500

VP
D 

(P
a)

DOY 224(a)

4 6 8 10 12 14 16 18 20
Hour of Day

0.00

0.05

0.10

0.15

0.20

g s
w

(m
ol

m
2 s

1 )

0

200

400

600

800

1000

Ra
di

at
io

n 
(W

m
2 )

0

500

1000

1500

VP
D 

(P
a)

(b)

Figure 10. Simulations of dynamic gsw using different time steps (2 min, 6 min, 10 min) and comparison with the traditional steady-state

modeling (30-minute resolution) predictions. a) using high temporal-resolution PAR as radiation input, values are resampled accordingly to

match the time step used; b) using ERA5 hourly radiation as input, values are linearly interpolated to 30-minute resolution. The shaded areas

in gray under the radiation curves represent the diffuse component of the total radiation.
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