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Abstract. Low-cost particulate matter (PM) sensors continue to grow in popularity, but issues such as aerosol size-dependent 

sensitivity drive the need for effective calibration schemes. Here we devise a time-evolving calibration method for the 

Plantower PMS5003 PM2.5 mass concentration measurements. We use 2 years of measurements from the Berkeley 10 

Environmental Air-quality and CO2 Network sensors deployed in San Francisco and Los Angeles in our analysis. The 

calibration uses a hygroscopic growth correction factor derived from k-Köhler Theory, where the calibration parameters are 

determined empirically using EPA AQS reference data at co-location sites during the period from 2021–2022. The parameters 

are found to vary cyclically through the seasons, and the seasonal cycles match changes in sulfate and elemental carbon PM 

composition fractions throughout the year. In both regions, the seasonal RH dependence calibration performs better than the 15 

uncalibrated data and data calibrated with the EPA’s national Plantower calibration algorithm. In the San Francisco Bay Area, 

the seasonal RH dependence calibration reduces the RMSE by ~40% from the uncalibrated data and maintains a mean bias 

much smaller than the EPA National Calibration scheme (–0.90 vs –2.73 µg/m3). We also find that calibration parameters 

forecasted beyond those fit with the EPA reference data continue to outperform the uncalibrated data and EPA calibration data, 

enabling real-time application of the calibration scheme even in the absence of reference data. While the correction greatly 20 

improves the data accuracy, non-Gaussian distribution of the residuals suggests that other processes besides hygroscopic 

growth can be parameterized for future improvement of this calibration. 

1 Introduction 

Particulate matter (PM) is a major air pollutant, presenting a significant human health concern. PM2.5, particulate matter with 

diameters less than 2.5 microns, has been linked with a number of health outcomes including decreased lung function, 25 

premature death, cardiovascular diseases, and cancer (Kim et al., 2015; Cohen et al., 2017). As such, local PM observations 

are an essential part of a system for monitoring and improving community health and wellbeing. Additionally, coincident 

measurements of PM and other pollutants, like CO or NOx (NOx ≡ NO + NO2), can be used to elicit information on urban 

emissions and atmospheric processes (Fitzmaurice and Cohen, 2022). The increasing availability of low-cost PM sensors has 

facilitated high-density PM monitoring and widespread use outside the scientific and professional air quality communities.  30 
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A well-documented issue with low-cost nephelometric PM sensors is their size-dependent and index of refraction dependent 

sensitivity. These sensors are imperfect nephelometers. They are most sensitive to sub-micron particles, and their sensitivity 

decreases as particles get larger with near-zero detection for particles larger than 2 microns and lower efficiency below 300nm 

(Kuula et al., 2020; Molina Rueda et al., 2023; Ouimette et al., 2021). For a constant particle size distribution and composition, 

a single scale factor can translate the observations to those made with instruments that capture the mass of the entire size 35 

distribution. However, fixed calibrations are inadequate for temporally evolving particle size and composition distributions. 

One of the major drivers of variability in particle size distributions is hygroscopic growth, the uptake of atmospheric water 

onto PM. While reference instruments such as those used in the US Environmental Protection Agency’s Air Quality System 

(EPA AQS) measure particles under controlled, low-humidity conditions, low-cost sensors usually measure particles under 

ambient atmospheric conditions (Ambient Monitoring Technology Information Center, 2022; Giordano et al., 2021). 40 

Fluctuations in the relative humidity (RH) change particle size and refractive index through water uptake, both of which impact 

particle light scattering and subsequent detection by nephelometers (Petters and Kreidenweis, 2007; Han et al., 2020; Hänel, 

1968). On longer timescales, PM size distributions and composition vary depending on primary emissions sources and 

secondary PM formation pathways (Mackey et al., 2021; Sayahi et al., 2019; Stavroulas et al., 2020). Theoretical calculations 

show that relative humidity is the largest source of uncertainty for optical particle sensors when the aerosol is hygroscopic 45 

(Hagan and Kroll, 2020). An efficient calibration scheme for nephelometric sensors must therefore account for both rapid 

(hourly) size fluctuations due to changes in humidity as well as long-term (monthly) variations in particle composition and 

hygroscopicity. 

Several previous studies have reported calibrations to correct for the hygroscopic growth of particles measured with low-cost 

optical sensors. Crilley et al. noted the high bias of PM2.5 mass concentrations from optical particle counters (OPCs) when the 50 

relative humidity was high and used a bias correction scheme derived from k-Köhler Theory, which has subsequently been 

applied to other low-cost OPC studies (Crilley et al., 2018; Di Antonio et al., 2018). Similar bias correction schemes have also 

been applied to nephelometric PM sensors. Malings et al. used a hygroscopic growth correction on Plantower PMS5003 in the 

PurpleAir sensors as well as the Met-One NPM during a field study in Pittsburgh, PA, where separate parameters were set for 

summer, winter, and transition months to account for seasonal changes in the hygroscopicity of the particles based on measured 55 

speciation data (Malings et al., 2020). 

Malings et al. recognized the need for seasonally variant parameterization of hygroscopic growth and implements a piecewise 

change in hygroscopic growth parameters to account for these seasonal changes. Here, we propose a calibration scheme for 

the Plantower PMS5003, a low-cost nephelometric PM sensor, whose hygroscopic growth parameters smoothly evolve through 

the seasons based on smooth evolution of observed composition to represent gradual changes in PM hygroscopicity over time. 60 

The Plantower is a widely-used low-cost PM sensor (Nilson et al., 2022; Molina Rueda et al., 2023; Barkjohn et al., 2021; 

Kumar and Sahu, 2021; Sayahi et al., 2019), so the development of regional, easy-to-implement corrections for these 

instruments is useful to air quality monitoring broadly.  
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2 Methods 

The Berkeley Environmental Air-quality and CO2 Network (BEACO2N) is a high-density network of low-cost sensors spread 65 

across multiple urban centers around the globe, monitoring CO2, CO, NOx, O3, and PM2.5 (Shusterman et al., 2016). There are 

currently 57 active BEACO2N sites in the San Francisco Bay Area, with additional networks in Los Angeles, CA, Providence, 

RI, and Glasgow, UK. Each BEACO2N node enclosure contains a Plantower PMS5003 (Plantower, 2016) for PM 

measurements as well as an Adafruit BME280 (Adafruit Industries, 2023) for temperature, pressure, and humidity 

measurements, with fans on either end of the enclosure to cycle air through the node. The Plantower PMS5003 is a 70 

nephelometric PM sensor reporting mass concentrations for PM1, PM2.5, and PM10, though for the remainder of this work we 

will only discuss the PM2.5 output measurement for this sensor. The sensor has internal calibrations, unknown to the user, that 

convert from scattered light intensity to PM mass concentrations. Here, we use the CF = ATM sensor output, which is 

recommended for outdoor PM2.5 measurements. The calibration factor described herein is applied to this PM2.5 mass 

concentration sensor output. Plantower data was recorded every 8 seconds and averaged to hourly data points, which are used 75 

in this analysis. 

The humidity-dependent equilibrium water uptake by particles is often parametrized by the hygroscopic growth parameter, k, 

which is dependent on particle composition. k–Köhler theory can be used to derive an RH-dependent factor to account for 

hygroscopic particle growth (Nilson et al., 2022; Petters and Kreidenweis, 2007; Crilley et al., 2018). This can be supplemented 

by an additional scaling factor, m, which can account for discrepancies between the assumed particle size distribution in the 80 

factory calibration and the true particle size distribution for the particles being measured (Hagan and Kroll, 2020; Malings et 

al., 2020). This leads to the following calibration algorithm: 

𝑃𝑀!.# = 𝑃𝑀$%&'()*+, ∗
-

./ !
"## $%⁄ '"

	 ,         (1) 

which has two parameters, m and k. For a given particle, k can be calculated as the weighted average of the hygroscopic 

growth parameters for all constituents in the particle (Petters and Kreidenweis, 2007). Similarly, one could use the weighted 85 

average of this value over a sample of particles to get their collective growth parameter. Since composition information for 

PM is not as widely available as total PM2.5 mass concentration measurements, we determine k and m empirically and validate 

their values over time using seasonal trends in observed PM composition. This empirical approach is more accessible to anyone 

trying to implement this calibration on sensors in areas with limited speciation data. However, as a point of comparison, we 

also calculate k using data from the EPA AQS Chemical Speciation Network. k values for the major aerosol components are 90 

taken from various studies in the literature (Petters and Kreidenweis, 2007; Cerully et al., 2015; Chen et al., 2022). 

The empirical parameters m and k in Eq. (1) are calculated using co-located BEACO2N Plantower PMS5003 and EPA AQS 

sites, where the EPA AQS PM2.5 provides a reference concentration for the calibration (Table 1). The fitting was performed 

on hourly Plantower and RH data with the Python package scipy.optimize (Virtanen et al., 2020). We describe application and 
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evaluation of this calibration approach to the BEACO2N networks in the San Francisco Bay Area and Los Angeles, CA during 95 

the years 2021 and 2022. A summary of the datasets used can be found in Table S1. 

In the San Francisco Bay Area, we utilize two co-location sites in the 2021–2022 period of study. These are listed in Table 1 

along with a co-location site in Los Angeles, CA. Note that the Castelar ES site is located 1.06 km from EPA site 06-037-

1103, whereas the two Bay Area BEACO2N sites are on-site with their respective EPA AQS reference instruments. All three 

EPA AQS sites measured hourly PM2.5 using a Met One BAM-1020 Mass Monitor w/VSCC.  100 
Table 1. Co-location sites used in this study 

BEACO2N 

Site 
Region 

Co-Located 

EPA Site 
Nearest AQS 

CSN Site 
Laney Bay Area, CA 06-001-0012 06-085-0005 

EBMUD Bay Area, CA 06-001-0011 06-085-0005 

Castelar ES Los Angeles, CA 06-037-1103 06-037-1103 

 

The EPA has also developed a national Plantower calibration algorithm with the following form: 

𝑃𝑀!.# = 0.524 ∗ 𝑃𝑀$%&'()*+, − 0.0862 ∗ 𝑅𝐻 + 5.75	 ,       (2) 

which they currently apply to PurpleAir Plantower PMS5003 measurements on their AirNow website (Barkjohn et al., 2021). 105 

This scheme, herein the “National EPA Calibration”, is used throughout the paper as a point of comparison. 

3 Results and Discussion 

3.1 RH Calibration 

Figures 1a and 1b show the calibration coefficients generated by fitting the observations from the Laney site (Table 1) 

Plantower sensor to the EPA reference data using a 4-week moving window. A strong seasonal cycle is evident. The EPA 110 

AQS Chemical Speciation Network (CSN) (sites used are listed in Table 1) provides measurements for components of PM, 

including the major aerosol species: ammonium, nitrates, sulfates, organic carbon, and elemental carbon (EC). Figure 1c and 

1d show the sulfate and elemental carbon (EC) fraction observed at the CSN site nearest to Laney. Sulfate is the most 

hygroscopic of the major components of aerosols, while EC is not hygroscopic (Petters and Kreidenweis, 2007; Wu et al., 

2016). For this reason, we will use these species to infer trends on the overall hygroscopicity of PM2.5 across the seasons.  115 

The speciation data from the nearest CSN site shows strong seasonal trends where the sulfate fraction is highest in the summers 

while the EC fraction is highest in the winters. The fitted k values show an appropriate response, where the particles are most 

sensitive to RH in the summers and least sensitive in the winters. The scaling factor, m, follows the same seasonal cycle as k. 

This can be reasoned by concluding that when k is large, particles are subject to more hygroscopic growth, and consequently 
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particle size distributions are shifted to larger sizes which are detected with less efficiency by the Plantower sensor. Since k 120 

and m are calculated empirically, they may also respond to factors besides hygroscopic growth, which could account for 

differences seen between trends in these parameters and trends in the displayed aerosol components. Using the EPA AQS CSN 

data for all major aerosol components, we construct k from the speciation data and compare it to the empirically derived k in 

Figure S1. We find reasonably strong agreement in the seasonal trend for the two k timeseries, with peaks in k occurring 

during the same times of the year. 125 

The calibration coefficients can be smoothed, preventing overfitting, by fitting the coefficients to a sine curve. The gray lines 

in Fig. 1 show the sine curve fits for 2021 and 2022, where the periods of the curves are set to 1 year. Parameters for the 

sinusoidal fits can be found in Table S2. Application of Eq. (1) using these smoothed k and m parameters is herein referred to 

as the “Seasonal RH Dependence Calibration”. This calibration is applied to the data over 2021 and 2022. Figure 2 shows a 

timeseries of the pre- and post-calibration sensor data, along with the EPA AQS reference measurements. Table S3 shows that 130 

the calibrated data has a significantly improved Pearson’s correlation, r, and NRMSE, especially during the winter months. 

 
Figure 1. (a,b) Calibration parameters generated for Laney site, and (c,d) particle speciation data from the nearest EPA AQS CSN 
site. 
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 135 
Figure 2. Timeseries of the Laney site Plantower PM2.5 data without and with the seasonal RH dependence calibration, compared to 
the co-located EPA PM2.5 reference data for the whole two year study period (top) and for the subset of January 2022 (bottom). 

3.2 Evaluation 

Figure 3 shows that the strong RH-dependent bias in Plantower PMS5003 outputs is removed through the implementation of 

the seasonal RH dependence calibration scheme. Notably, the national EPA calibration scheme, which assumes a linear RH-140 

dependence, does not properly account for the non-linear RH effects on particle size and detection. Figure S2 shows that the 

seasonal RH dependence calibration also removes the temperature dependence of the residuals. This was expected since most 

of the temperature dependence was likely due to covariance of temperature and RH rather than intrinsic temperature effects 

on sensor measurement or performance. Figure 4 shows the uncalibrated and calibrated Plantower measurements compared to 

the EPA AQS reference observations for the entire two-year period. Both the National EPA calibration and the seasonal RH 145 

dependence calibration led to reductions of ~40% in the RMSE and increases of ~0.75 in the coefficient of determination (R2), 

but the EPA national calibration introduces a large negative bias in the measurement. It is worth noting the importance of 

having k and m change through time. When the calibration is applied with an optimized but constant k and m parameter (k = 

0.311, m = 1.02), the performance of the calibration is sizably worse (R2 = 0.407, RMSE = 4.884 µg m-3, Mean Bias = -2.296 

µg m-3) than the seasonal RH dependence calibration, as apparent in Figure S3. 150 

There were no major smoke events or other air quality events of substantial nature (e.g. multiday events, significantly high 

PM concentrations, etc.) during the 2021-2022 study period in the Bay Area. In August and September of 2021, there are many 

days with air quality warnings for smog due to winds carrying smoke from nearby fires and high temperature events worsening 

local pollution. If we remove data during this time period from Fig 4, the figure is virtually unchanged and the statistics are 

quite similar (Fig. S4). In other time periods, we’d expect that significant air quality events could impact the analysis and 155 

should be removed from the dataset prior to fitting and applying the calibration.  
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Figure 3. Measurement residuals (sensor output – EPA AQS values) for data from the Laney site with different calibration 
algorithms, binned into 30 RH bins. 160 

 
Figure 4. Sensor predicted PM2.5 values versus EPA reference values for Laney site from 2021–2022 with different correction 
algorithms. Performance metrics are the Coefficient of Determination (R2), root-mean-square error (RMSE), and mean bias. 

Analyzing the distribution of errors from each of the calibration types under different mass concentration and humidity levels 

can help assess the completeness of each of the calibration schemes. We would expect that a complete calibration would 165 

produce zero-centered, Gaussian error distributions since all remaining errors would be from random noise in the measurement. 

Looking at the distribution of errors at different PM2.5 mass concentrations (Fig. 5) it is evident that, while the seasonal RH 

dependence calibration produces errors more symmetric and centered near zero than the uncalibrated data and the EPA 

calibration data, the errors are still not perfectly Gaussian, especially when the PM2.5 mass is high. This suggests that there are 

other processes and aerosol properties at play unaccounted for by this calibration, as discussed further in Section 3.5. We also 170 

explore the error distributions when k and m are not smoothed to sine waves and find no meaningful differences between the 
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smoothed and unsmoothed cases when PM2.5 ≤ 20 µg m–3, which accounts for over 95% of the data (Fig. 5). As such, 

representing seasonal changes of k and m throughout the year as sine waves is a valid approximation. 175 

 
Figure 5. Sensor residual distributions for different calibration schemes at different PM2.5 mass concentration bins for RH < 50% 
(light color) and RH > 50% (dark color) conditions. The calibration scheme "Seasonal RH Dependence Calibration: Coefficients 
Not Smoothed” uses the calculated k and m values as-is, without smoothing to a sine wave. 

3.3 Inter-Region and Intra-Region Comparisons 180 

Given that the k and m parameters follow trends consistent with PM speciation data, it is reasonable to assume that the 

parameters generated at one site can be applied to nearby sites if the particle composition is homogenous across the urban area. 

To further test this assumption, we independently generate calibration coefficients for another Bay Area co-location pair at the 

EBMUD site (Table 1). As seen in Fig. S5, the EBMUD and Laney co-location pairs independently reproduce nearly identical 

calibration coefficients, ensuring that the coefficients are not over-fit on one site but rather reflect regional trends in PM 185 

composition. Another concern is the possibility that individual sensors have disparate sensitivities or offsets. We find that 

uncalibrated measurements from 17 co-located Plantowers show strong agreement with each other (Fig. S6), with differences 

between sensors generally less than 1 µg m–3, suggesting that there is little sensor-to-sensor variability in sensor performance. 

The seasonal RH dependence calibration scheme was tested in another urban area to ensure its generalizability beyond the Bay 

Area. Using a co-location site in Los Angeles, CA, we find that the aerosol composition again displays seasonality (Fig. 6), 190 

with the sulfate fraction highest in the summers and the EC fraction highest in the winters. In Los Angeles, as in the Bay Area, 

the trends in k and m match the composition variations. k and m are largest in the summers when the particles are the most 

hygroscopic, and smallest in the winters when the particles are the least hygroscopic. The k sine fitting has a sizable phase 
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shift from the fits of the particle composition data, though this might be attributable to the low quality of the sine fitting for 

the LA data (Table S4). Additionally, there is poorer agreement between this empirical k and the composition-derived k (Fig. 

S7). This could indicate that in Los Angeles, factors unrelated to hygroscopicity are being captured in the empirical calculation 

of k. These factors could include sub-seasonal changes in refractive index or particle size distribution, though further study is 200 

needed to provide evidence for these. Despite this, the seasonal RH dependence calibration outperforms the national EPA 

calibration and the uncalibrated data, with a higher coefficient of determination and lower RMSE (Table S5). 

 
Figure 6. (a,b) Calibration parameters generated for the Los Angeles site, and (c,d) particle speciation data from the nearest EPA 
AQS CSN site. 205 

3.4 Real-Time Application of the Calibration 

Since the calibration coefficients generated in Fig. 1 and Fig. 6 are periodic and aerosol composition and its seasonal variation 

are changing slowly from year to year, it is possible to apply the seasonal RH dependence calibration to sensor measurements 

in real-time without the need for EPA reference measurements to be real-time as well. We test the validity of this approach by 

generating sinusoidal calibration coefficients in 2021 and projecting them forward 6 months into 2022 without using the 2022 210 
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reference data, as shown for data at the Laney site in Fig. 7. Like before, both the seasonal RH dependence calibration and the 

national EPA calibration led to significant reductions in the RMSE (~40%), and the national EPA calibration produces a 

significant negative bias (–2.39 µg/m3, compared to 0.98 µg/m3 in the seasonal RH dependence calibration). Thus, in regions 

with strong and stable seasonal cycles for PM composition, the sinusoidal parameters can be applied in the months following 215 

the period in which they were generated with reasonable accuracy. 

 
Figure 7. (top) k and m parameters calculated at the Laney co-location site in 2021 with sinusoidal fits projected 6 months into 2022, 
and (bottom) sensor predicted PM2.5 values versus co-located EPA reference values for the Laney site for Jan–Jun 2022 with 
different calibration algorithms. 220 

3.5 Limitations of the Calibration 

There are several limitations worth noting in this calibration scheme. First, the calibration focuses on discrepancies arising 

from hygroscopic growth of particles, and while theoretical calculations show this to be the largest source of error (Hagan and 

Kroll, 2020), there are several other documented sources of error. Changes in the particle size distribution unrelated to 

hygroscopic growth, such as from changes in the sources of PM, are partially accounted for by the m parameter, but this is 225 

likely incomplete. Changes in particle composition also change the refractive index of the particles, which is ignored by this 

correction scheme.  

Additionally, the method assumes that particle composition is uniform across the domain and changes slowly and smoothly 

over the course of a year to reflect seasonal changes in particle size and composition. As such, non-seasonal changes in particle Deleted: time230 
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size and hygroscopicity are not properly corrected by this method. Isolated extreme events require unique corrections, as is the 

case when measuring wildfire smoke or dust events (Kaur and Kelly, 2022; Holder et al., 2020). Sensors that are close to 

unique point sources might be consistently subject to particulate matter of a different composition and size distribution than 

other sensors in the network and may subsequently experience systematic biases. 

There are also potential errors associated with slow drift that can occur over multiple years. Due to changes in PM sources and 235 

relative source loadings, PM composition is not expected to be the same year-over-year, so periodic recalculation of the 

coefficients is likely necessary. If one sensor in a network is permanently co-located with a regulatory instrument, it can be 

used to update the coefficients year to year for all sensors within its region. Though sensors can drift and degrade over time, 

current literature finds that these sensors tend to be stable for at least 3 years (deSouza et al., 2023). 

4 Conclusions 240 

The Plantower seasonal RH dependence calibration is aimed at addressing biases in sensor measurement caused by changes 

in the size distribution of PM, largely from fluctuations in relative humidity leading to hygroscopic growth and seasonal 

changes in particle composition that affect hygroscopicity. We provide a physically meaningful calibration scheme that is 

simple to define and implement for multiple regions in the United States. The seasonal RH dependence calibration utilizes 

only RH as an additional parameter and has calibration coefficients that reflect seasonal changes in PM speciation. This method 245 

provides a time-variant calibration scheme that can be implemented in real-time due to the periodic nature of the calibration 

coefficients. Speciation data provides insight and validation to the calibration parameters but is not needed in creating the 

calibration. Additionally, analysis of multiple co-location pairs in the Bay Area show that the calibration parameters are 

generally uniform within a given region, and as such this calibration can be generated for many sites using limited co-location 

pairs if there is reasonable confidence that aerosol speciation is uniform across the application area. Future work will be done 250 

to explore the stability of this calibration over long periods of time and work towards simple methods for correcting the 

unaccounted errors mentioned in the limitations section of the discussion. 

The seasonal RH dependence calibration is being actively applied to the PM2.5 measurements in the BEACO2N network, which 

are publicly available and can be found on their website (beacon.berkeley.edu). 

5 Code and Data Availability 255 

Data and code used in this paper are available at the following GitHub repository: https://github.berkeley.edu/milan-

patel/Plantower-Calibration-Paper. Data from the BEACO2N network (beacon.berkeley.edu) and the EPA AQS network 

(epa.gov/aqs) are also publicly available online. 
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