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Abstract.

Over the remote Southern Ocean, cloud feedbacks contribute substantially to Earth system model (ESM) radiative biases.

The evolution of low Southern Ocean clouds (cloud top heights < ∼ 3 km) is strongly modulated by precipitation and/or

evaporation, which act as the primary sink of cloud condensate. Constraining precipitation processes in ESMs requires robust

observations suitable for process-level evaluations. A year-long subset (April 2016 – March 2017) of ground-based profiling5

instrumentation deployed during the Macquarie Island Cloud and Radiation Experiment (MICRE) field campaign (54.5 ◦S,

158.9 ◦E) combines a 95 GHz (W-band) Doppler cloud radar, two lidar ceilometers, and balloon-borne soundings to quantify

the occurrence frequency of precipitation from liquid-phase cloud base. Liquid-based clouds at Macquarie Island precipitate ∼
70% of the time, with deeper and colder clouds precipitating more frequently and at a higher intensity compared to thinner and

warmer clouds. Supercooled cloud layers precipitate more readily than layers with cloud top temperatures > 0 ◦C, regardless of10

the geometric thickness of the layer, and also evaporate more frequently. We further demonstrate an approach to employ these

observational constraints for evaluation of a 9-year GISS-ModelE3 ESM simulation. Model output is processed through the

Earth Model Column Collaboratory (EMC2) radar and lidar instrument simulator with the same instrument specifications as

those deployed during MICRE, therefore accounting for instrument sensitivities and ensuring a coherent comparison. Relative

to MICRE observations, the ESM produces a smaller cloud occurrence frequency, smaller precipitation occurrence frequency,15

and greater sub-cloud evaporation. The lower precipitation occurrence frequency by the ESM relative to MICRE contrasts

with numerous studies that suggest a ubiquitous bias by ESMs to precipitate too frequently over the SO when compared

with satellite-based observations, likely owing to sensitivity limitations of space-borne instrumentation and different sampling

methodologies for ground- versus space-based observations. Despite these deficiencies, the ESM reproduces the observed
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tendency for deeper and colder clouds to precipitate more frequently and at a higher intensity. The ESM also reproduces20

specific cloud regimes, including near-surface clouds that account for ∼ 25% of liquid-based clouds during MICRE and

optically thin, non-precipitating clouds that account for ∼ 27% of clouds with bases higher than 250 m. We suggest that the

demonstrated framework, which merges observations with appropriately constrained model output, is a valuable approach to

evaluate processes responsible for cloud radiative feedbacks in ESMs.

1 Introduction25

Extratropical shortwave (SW) radiation cloud feedbacks are a significant source of uncertainty in Earth system model (ESM)

projections of a perturbed climate (e.g., Caldwell et al., 2016; McCoy et al., 2020). In particular, ESMs in phase 5 of the

Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) exhibit high-biased SW absorption due to a deficit in

low- and mid-level cloudiness over the Southern Ocean (SO) (Bodas-Salcedo et al., 2014, 2016; Naud et al., 2014). CMIP6

models improved this bias to some degree (e.g., Schuddeboom and McDonald, 2021; Cesana et al., 2022), but low- and mid-30

level clouds at latitudes higher than 55 ◦S were found to still produce a low bias in reflected SW radiation compared to satellite

observations (e.g., Mallet et al., 2023), likely due to poor phase representation in the dominant supercooled liquid cloud regime

(Cesana et al., 2022). Furthermore, the equilibrium climate sensitivity (ECS) has increased from CMIP5 to CMIP6 generations,

primarily due to stronger positive low cloud feedbacks (Zelinka et al., 2020) that may contribute to increased high-biased sea

surface temperatures in CMIP6 compared to CMIP5 (Zhang et al., 2023).35

Low-level clouds (< ∼ 3 km) that form in the warm and cold sectors of extratropical cyclones accounts for up to 80%

of annual fractional cloud cover in observations (Mace et al., 2009). Cloud condensate amount and sustenance are heavily

modulated by precipitation (Kay et al., 2016b; Tan et al., 2016), which is the dominant factor for moisture depletion (McCoy

et al., 2020). In a warming climate, an expected shift to more liquid-bearing ("warm") clouds has been shown to increase

liquid-phase cloud amount, increase optical depth, and contribute to a larger negative cloud feedback (Mitchell et al., 1989;40

Tsushima et al., 2006; Mülmenstädt et al., 2021), following from findings that precipitation efficiency is generally weaker in

warm clouds compared to supercooled clouds (Mitchell et al., 1989; Senior and Mitchell, 1993; Tsushima et al., 2006; Hoose

et al., 2008). Properly predicting extratropical SW cloud feedbacks is thus dependent on an ESM’s ability to faithfully represent

both observed precipitation occurrence frequency and cloud phase, but these are common shortcomings of ESMs, especially

over the SO (Kay et al., 2016b, 2018; Naud et al., 2020; Gettelman et al., 2020; Cesana et al., 2022).45

Robust observational constraints are needed in order to understand precipitation occurrence frequency in ESMs. Space-borne

platforms offer the longest and most spatially expansive constraints but have some limitations. For example, the CloudSat Cloud

Profiling Radar (CPR; Stephens et al., 2002) experiences contamination in the lowest 1 km due to ground clutter that hinders

detection of low marine clouds, inducing a miss rate of up to 39% over the global oceans (Liu et al., 2016; McErlich et al.,

2021). Low CPR sensitivity also limits detection of optically thin clouds and its relatively coarse horizontal resolution misses50

shallow cumulus clouds (Rodts et al., 2003; Zhang and Klein, 2013; Cesana et al., 2019a). Lamer et al. (2020a) found that

CPR limitations impeded detection of warm marine boundary layer clouds over the eastern North Atlantic by 29%-43% and
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distorted cloud macroscopic properties compared to ground-based instrumentation. Over the Arctic and Antarctic, Silber et al.

(2021) found that differences in sensitivity and precipitation detection algorithms can reduce space-borne estimates of cloud-

base and surface precipitation occurrence frequency by more than 50%. For the purpose of cloud-base precipitation evaluation,55

space-based lidars furthermore become attenuated in visibly opaque layers with optical depths >∼ 3, preventing identification

of a cloud layer throughout the entire column and thus leaving cloud base height poorly defined (Vaughan et al., 2009).

Another approach used for characterizing precipitation frequency and intensity is the use of ground-based remote sensing

deployments that allow for long-term (order of months to years) statistics to be compiled at high temporal and vertical spatial

resolution (Illingworth et al., 2007; Bühl et al., 2016; Ansmann et al., 2019; Bühl et al., 2019; Lamer et al., 2020b; Griesche60

et al., 2021; Ramelli et al., 2021; Silber et al., 2021; McFarquhar et al., 2021). Such ground-based datasets usually include pe-

riodic balloon soundings that provide direct colocated measurements of atmospheric thermodynamic state, which are generally

missing from satellite remote sensing. Although often horizontally limited (employing only zenith-viewing instruments), such

methods provide a means to obtain characteristics of shallow, boundary layer-limited clouds that are regionally ubiquitous and

is complementary to satellite remote sensing. For instance, Silber et al. (2021) used measurements from Utqiaġvik (formerly65

Barrow), North Slope of Alaska (NSA; Verlinde et al., 2016) and McMurdo Station, Antarctica (Lubin et al., 2020b) to es-

tablish the precipitation occurrence frequency in polar supercooled clouds. Using a combined sounding-radar approach, they

found that supercooled cloud layers are precipitating from liquid cloud base 75% of the time at the NSA and 85% of the time

at McMurdo Station. Lamer et al. (2020b) similarly used a combined radar-lidar approach at the U.S. Department of Energy

(DOE) Atmospheric Radiation Measurement (ARM) program’s Eastern North Atlantic (ENA) site to determine that 80% of70

warm clouds in subsidence regimes are precipitating from cloud base. Ship-based deployments have also been extensively

evaluated using these profiling measurement techniques. For example, Griesche et al. (2021) combined ship-based lidar, radar,

and radiosondes during an Arctic summer voyage and found that for cloud top temperatures > -15 ◦C, surface-coupled clouds

were more likely to contain ice than were surface-decoupled clouds. These techniques have also been used to perform mixed-

phase microphysical retrievals, such as ice- and liquid-mass flux (Bühl et al., 2016) and ice crystal number concentrations75

(Bühl et al., 2019).

Addressing ESM biases over the SO has recently motivated numerous airborne and ship-based field campaigns to character-

ize cloud, aerosol, and radiation properties across a latitudinal band from ∼ 45 – 75 ◦S (Mace and Protat, 2018a, b; Kremser

et al., 2021; McFarquhar et al., 2021). Ship-based campaigns equipped with lidar, radar, and radiosondes have yielded results

on cloud processes and microphysics (Mace and Protat, 2018a, b; McFarquhar et al., 2021). For example, clouds near the80

Antarctic coast were found to have higher droplet number concentrations than those further north due to continental air masses

with large cloud condensation nuclei concentrations and increased sulfate aerosol (Mace et al., 2021), and supercooled liquid

drizzle is often observed beneath clouds in the same coastal Antarctic region (Alexander et al., 2021).

Complementary to these ship-based campaigns, the Macquarie Island Cloud and Radiation Experiment (MICRE) was orga-

nized by the DOE ARM program, the Australian Bureau of Meteorology (BoM), and the Australian Antarctic Division (AAD)85

from March 2016 to March 2018. MICRE is thus far the only stationary, ground-based campaign to provide an annual cycle

of SO cloud measurements at a fixed site (where the SO is defined broadly as 45 to 75 ◦ S). Situated at 54.5 ◦S and 158.9
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◦E, Macquarie Island is well located in the middle of the SO midlatitude storm track, making it a valuable location to observe

cloud regimes responsible for ESM biases and has been subject to detailed study (e.g., Adams, 2009; Wang et al., 2015; Lang

et al., 2018, 2020; Tansey et al., 2022). Tansey et al. (2022) combined data streams from a surface disdrometer, cloud radar, and90

tipping bucket rain gauge during MICRE and found that surface precipitation occurs 44 ± 4% of the time and is dominated by

relatively small particles (< 1 mm in diameter). Wang et al. (2015) evaluated an 8-year record (2003-2011) of 3-hourly tipping

bucket rain gauge observations at Macquarie Island with a lower measurement limit of 0.2 mm hr−1 and found that surface

precipitation occurred 36% of the time with a large contribution from light precipitation rates. Lang et al. (2020) used 18 years

of hourly surface precipitation measurements to reveal a diurnal cycle in precipitation that peaks during night/early morning95

and is strongest during Austral summer.

In this work we report a combined analysis of measurements from a 95 GHz (W-band) zenith-pointing Doppler cloud radar,

two lidar ceilometers, and atmospheric soundings deployed at Macquarie Island that were coincident during a year of the

MICRE campaign (April 2016 to May 2017; McFarquhar et al., 2021; Tansey et al., 2022). A leading objective is to merge

instrument data streams to compute the precipitation occurrence frequency from liquid cloud base (LCB). A focus on LCB100

precipitation, whether or not the precipitation reaches the surface, provides an important constraint for ESMs because it means

that an active precipitation process is occurring that should be represented by a given model’s physics parameterizations. In

an observational analysis of coalescence scavenging over the SO, Kang et al. (2022) found that light precipitation rates (<

0.1 mm hr−1) have a significant impact on scavenging of cloud condensation nuclei and the resulting cloud droplet number

concentration, demonstrating the relevance of precipitation rates at the low-intensity limit. Moreover, understanding the degree105

to which evaporation or sublimation is prevalent below cloud base is important as it impacts sub-cloud precipitation accumu-

lation, boundary layer structure, and cloud mesoscale organization. For example, Heymsfield et al. (2020) used satellite-based

radar measurements to evaluate hydrometeor phase contributions to the global precipitation budget and found a significant con-

tribution from evaporation of melted, frozen precipitation in an ESM. Retrievals of LCB precipitation rates, cloud top and base

temperatures, and cloud geometric thickness are used here to investigate the degree to which LCB precipitation properties are110

sensitive to the cloud top supercooling and the cloud geometric thickness. Retrievals of precipitation occurrence frequency are

then projected onto sensitivities that emulate instrument and algorithm sensitivity, providing comparative uncertainties associ-

ated with space-based retrievals that can be used going forward to inform strategies for fusion of ground- and satellite-based

data sources for model evaluation.

The merged MICRE dataset is finally used to evaluate a 9-year ESM simulation by means of the Earth Model Column Col-115

laboratory (EMC2; Silber et al., 2022) radar and lidar instrument simulator and subcolumn generator. EMC2 was designed to

enable robust comparisons between ground-based observations and ESM column physics in a manner that remains faithful to

the model’s physics assumptions. Using EMC2, forward simulations are performed on ESM output from the National Aeronau-

tics and Space Administration (NASA) Goddard Institute for Space Studies (GISS) ModelE3 (GISS-ModelE3; Cesana et al.,

2019b, 2021) ESM at 2.0 × 2.5 ◦ resolution as a free-running global simulation with prescribed sea surface temperatures and120

sea ice distributions. Vertical profiles of microphysical quantities required for forward simulation of remote-sensing observ-

ables are output at time-step frequency at Macquarie Island’s geographic location and processed through EMC2 to produce
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radar and lidar calculations consistent with the specifications of instrumentation deployed during MICRE. In this manner, we

demonstrate a framework for process-level evaluation of ESM column physics against long-term, ground-based observations

over the SO using the MICRE measurements.125

The remainder of the article is structured as follows: data and methods, including observational datasets and precipitation

detection algorithm development, are described in Sect. 2. Observational results are presented in Sect. 3, and a demonstration

of GISS-ModelE3 evaluation against those results is provided in Sect. 4. Implications of findings for ESMs, satellite retrievals,

and designing future SO missions are presented in Sect. 5, and conclusions are summarized in Sect. 6.

2 Data and Methods130

2.1 Data

Instruments used in this study include the BoM’s Bistatic Radar System for Atmospheric Studies (BASTA; Delanoë et al.,

2016) 95 GHz (W-band) zenith-pointing Doppler cloud radar, ARM’s Vaisala CT25K 910 nm ceilometer (Morris et al., 2016;

Morris, 2016), the University of Canterbury’s Vaisala CL51 910 nm ceilometer (Alexander and McDonald, 2019), and 12-

hourly atmospheric balloon soundings conducted by the Australian Bureau of Meteorology (Barnes-Keoghan, 2000). A 2-hour135

example of data from this instrumentation is shown in Fig. 1.

The BASTA radar operates in four three-second modes with varying sensitivity and vertical resolution. Here, we use the

25-m mode most suitable for detecting low-level liquid cloud layers (Delanoë et al., 2016), for which the effective temporal

resolution is 12 seconds with a vertical range from 125 m to 12 km above ground level (AGL). Although MICRE extended

over 2 years (2016 to 2018), the BASTA radar’s residence was limited to only approximately the first year of the campaign140

(April 2016 to March 2017). Calibration of BASTA is achieved using recent ship-based campaign data from BASTA, a 24 GHz

Micro-Rain Radar PRO, an optical disdrometer, and T-matrix calculations (Protat et al., 2019). BASTA has a sensitivity of -36

dBZ at 1 km AGL and any bins with values below the theoretical minimum reflectivity (Ze,min, see Appendix B) are treated as

free of hydrometeors.

The ARM ceilometer has native 16-second temporal resolution and 10-m vertical resolution extending from the surface to145

7.7 km above ground level (AGL). The cloud base height (CBH) product (Morris, 2016) allows the detection of up to three

CBHs, but only the lowest identified CBH is used here. CBH detections come from the vendor’s proprietary software, which is

generally associated with a peak signal in attenuated backscatter (βatt) with an uncertainty of ±5 m for liquid clouds (Morris,

2016). The University of Canterbury ceilometer has native 6-second temporal resolution and 10-m vertical resolution with

three CBHs retrieved up to 15.4 km AGL at 10-m resolution. The ARM ceilometer is primarily used for CBH detection,150

though due to prolonged blackout periods, the University of Canterbury ceilometer is used to fill in gaps when the ARM

ceilometer was not operational. Because the highest identifiable CBH by the ARM ceilometer is 7.7 km AGL, all CBHs

higher than 7.7 km identified by the University of Canterbury ceilometer are discarded, though this limit is high enough to

encapsulate the overwhelming majority of liquid layers. Collectively, the merged ceilometer dataset is referred to as CEIL. We

note that attenuated backscatter was not calibrated in this study since CBH is provided by instrument firmware. Uncalibrated155
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Figure 1. Two-hour example of measurements at Macquarie Island: (a) sounding temperature, water vapor mixing ratio (q), and potential

temperature (θ) with melting level indicated (dashed line), (b) relative humidity with respect to liquid water (RHliq) and ice (RHice) with 95%

RHliq indicated (dashed line), (c) satellite visible reflectance from the Himawari-8 satellite (ARM User Facility, 2016) and the location of

Macquarie Island, (d) BASTA radar reflectivity, (e) BASTA mean Doppler velocity, and (f) ARM ceilometer apparent attenuated backscatter

(βatt). In panels (d)-(f), the sounding path is shown as a black line from 2315 UTC and the cloud base heights (CBHs) are shown as black

dots. Purple shading in panels (b), (d), and (e) indicates the vertical extent where sounding RHliq > 95%.
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or "apparent" βatt is shown in Fig. 1f only for demonstration of peak βatt associated with cloud base. However, attenuated

backscatter is used to evaluate near-surface clouds in Section 3.4.2, where sensitivities to instrument calibration are considered

and discussed.

Soundings were released nominally every 12 hours and measured atmospheric pressure, temperature, and relative humidity

with respect to liquid water (RHliq). Uncertainties in RHliq, temperature, and pressure are assumed to be 5%, 0.5 ◦C, and 1160

hPa, respectively (Holdridge, 2020). A surface meteorology station is also used contextually in our analysis (Howie and Protat,

2016).

2.2 Methods

All instruments are merged and gridded onto the BASTA time-height grid of 12 seconds and 25 m, and time periods with invalid

radar and/or ceilometer data are discarded. Cloud base heights are interpolated with a nearest neighbor approach in time and165

space, where the nearest time cannot exceed 12 seconds from a BASTA time stamp and the nearest heights lie within or on

the edge of a valid BASTA range gate. Cloud-base precipitation occurrence frequency depends on the CEIL-identified CBH,

the uncertainties for which are discussed next along with calculations of cloud macrophysical and thermodynamic properties.

Derivations of cloud-base and surface precipitation occurrence frequency (P cb and P sfc, respectively) are then described,

followed by retrievals of cloud-base precipitation rates (Rcb). Appendix A provides a list of abbreviations and notation used170

throughout the manuscript.

2.2.1 Cloud Macrophysics and Thermodynamics

All CBH detections by CEIL are assumed to be liquid cloud base (LCB) heights. Silber et al. (2018) compared various LCB

height products for polar supercooled liquid cloud cases and found that the ARM ceilometer occasionally detects liquid cloud

bases that are actually ice as identified by polarization lidar data, but these false detections remain below 2% of the distribution175

for any given altitude, though we note the vastly different environments sampled between Macquarie Island and the polar

sites they evaluated. We also note that although a polarization lidar was present during the MICRE campaign, the data have

calibration stability and other problems that prevented its use in this study, but are being corrected and will be released soon

(Tansey et al., submitted).

Additionally, Silber et al. (2018) found based on a comparison with high-spectral resolution lidar (HSRL) measurements180

that, on average, the ARM ceilometer detects LCB 36-50 m in-cloud (site-dependent), but that it performs well in regions of

heavy precipitation and exhibits low variability compared to other CBH detection algorithms. Sensitivity to biases in CBH are

evaluated in Appendix C by decreasing the CBH by 25 to 50 m (i.e., one to two BASTA bins) for all retrievals. Herein, we also

discard any CBH detections that have a cloud base temperature (CBT) colder than the homogeneous freezing level (taken to

be -38 ◦C).185

In fog, CEIL signals attenuate completely near the surface, such that a CBH is identified near the surface and most often at

altitudes below 250 m. Since P cb is evaluated at a minimum height that is at least 200 m AGL based on radar contamination and

antenna coupling in the first few range bins, these fog-influenced backscatter profiles contribute minimally (< 3%) to profiles
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used for precipitation detection. For CBHs < 250 m, where they are relatively common, these CEIL backscatter profiles

indicative of fog are flagged and discussed separately in Sect. 3.4.2 and Appendix F.190

Independent evaluation of CEIL LCB was made by using in-situ RHliq thresholds from soundings. CEIL-recognized LCBs

at sounding release times were colocated and are shown as a function of RHliq and temperature in Fig. D1, indicating that more

than 66 (80)% of CEIL-recognized LCBs exhibit RHliq > 95 (90)%. Silber et al. (2020a) found that > 90% of polar supercooled

cloud bases identified by an HSRL had concurrent sounding RHliq > 95%. The reduced percentage of CEIL-recognized LCBs

with RHliq > 95% in the MICRE dataset compared to polar supercooled cloud layers in Silber et al. (2020a) can be attributed195

at least in part to spatiotemporal discrepancies between the cloud environments sampled by the soundings and by CEIL. For

example, Fig. 1b shows that RHliq drops quickly below the sounding-recognized LCB (i.e., where RHliq first exceeds 95% in

purple shading). Therefore, variability in CBH by even 100 m (which is within the range of variability of CEIL CBHs for the

2-hour time period in Fig. 1f) can lead to RHliq < 95% at the CEIL-recognized LCB. In addition, there are frequently scenarios

in which the sounding balloon passes in between horizontally inhomogeneous cloud layers, such that the sounding RHliq never200

reaches 95% despite the identification of nearby cloud via ceilometer. The approach taken by Silber et al. (2021) in which

cloud boundaries were identified by sounding RHliq thresholds rather than lidar and radar was motivated by the prevalence of

overcast multi-layer supercooled clouds in their polar cloud regimes and also enabled a sufficiently long sounding dataset over

∼ 7 years in the Arctic. By contrast, the relatively short duration of MICRE and the greater heterogeneity of cloud boundaries

over the SO relative to polar clouds in our case motivates LCB identification via remote sensing instrumentation with higher205

temporal resolution (i.e., CEIL and BASTA). Although there remains uncertainty in LCB height identification, particularly due

to unknowns regarding CBH algorithms, we have attempted to mitigate these uncertainties by evaluating CEIL LCBs against

sounding RHliq measurements (Appendix D), accounting for fog-influenced CEIL profiles (Appendix F), and accounting for

uncertainty in P cb due to errors in the height of LCB identified by CEIL (Appendix C). Potential improvements to instrument

strategies for LCB height determination in future campaigns are also discussed below.210

Cloud top height (CTH) is determined as the height at which a contiguous layer of reflectivity (Ze) above the CEIL-identified

cloud base drops below Ze,min (i.e., becomes free of hydrometeors). The difference between CTH and CBH defines the cloud

geometric thickness. Cloud top temperature (CTT) and cloud base temperature (CBT) are determined by near-in-time atmo-

spheric soundings. Soundings released at nominally 12-hr intervals are linearly interpolated onto constant altitude levels in

order to form a continuous curtain plausibly consistent with the radar and CEIL measurements. During periods when sound-215

ings were released more than 12 hours apart, temperature is taken to be constant for 6 hours on either side of the sounding

release time and time periods greater than 6 hours from the sounding release time are discarded, though we note that the results

here are not sensitive to the time period surrounding a given sounding (not shown). During periods of robust stratiform precip-

itation, the interpolated 0 ◦C isotherm is found to be consistent with a melting layer or "bright band" (i.e., a steep increase in

Doppler velocity and an apparent jump in radar reflectivity, see Austin and Bemis, 1950), further indicating relatively robust220

measurements of tropospheric temperature despite the coarse time frequency of measurements. Using CBT and CTT, cloud

layers are subdivided into supercooled layers ( CBT and CTT < 0 ◦C), partially supercooled layers (CBT ≥ 0◦C and CTT <

0 ◦C), and warm layers (CBT and CTT ≥ 0◦C).
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2.2.2 Precipitation Occurrence Frequency

Precipitation identification is determined by linearly averaging the reflectivity factor within a prescribed number of bins below225

the ceilometer-identified LCB height. The depth below LCB height used for precipitation detection is called Dmin. Precipitation

occurrence requires that the linearly averaged reflectivity exceeds the theoretical reflectivity minimum as a function of height

(Ze,min; Fig. B1) and that the minimum mean Doppler velocity within the range of bins is negative (downward, thus excluding

updrafts). We note instances in which there exists a CEIL-identified CBH without coincident reflectivity, where the higher

sensitivity of the ceilometer to smaller hydrometeors produces detectable backscatter returns from small droplets unregistered230

by the radar. We consider these instances to be non-precipitating clouds, which are discussed in detail in Sect. 3.4.1.

Cloud-base precipitation occurrence frequency (P cb) is calculated for varying minimum Ze,min that ranges from -55 to 15

dBZ and for varying depths below cloud base (Dmin) used for reflectivity averaging, ranging from 50 m to 600 m. The minimum

detectable height of the radar (hmin) is set to 150 m based on careful analysis of ground clutter contamination. The minimum

allowable CBH is thus hmin + Dmin, ranging from 200 m to 750 m AGL depending on Dmin (see Appendix E). Precipitation235

occurrence frequency at the surface (P sfc) is also derived by linearly averaging reflectivity within a prescribed number of bins

above hmin.

2.2.3 Precipitation Rates

Calculations of cloud-base precipitation rates (Rcb) are determined by first identifying the temperature of LCB. For CBTs ≥
0 ◦C, the drizzle reflectivity-rain rate relationship (Z-R) from Comstock et al. (2004) is used (Z = aRb, where a = 25 and b240

= 1.3). An examination of in situ aircraft data from the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental

Study (SOCRATES; McFarquhar et al., 2021) finds the Comstock et al. (2004) relationship holds well for drizzle falling from

SO stratocumulus (manuscript in preparation, Kang and Marchand, University of Washington). For CBTs < 0 ◦C, we follow

the methodology of Silber et al. (2021) and Bühl et al. (2016), and use the Hogan et al. (2006) parameterization for computing

ice water content (IWC) via reflectivity and temperature and then compute ice water flux by multiplying IWC by the minimum245

mean Doppler velocity within a prescribed depth below LCB (Dmin). This method assumes the column beneath the LCB

is subsaturated (supersaturated) with respect to liquid (ice). The minimum mean (reflectivity-weighted) Doppler velocity is

used as a central upper limit to the precipitation rate since preferential ice sublimation below LCB can significantly reduce

precipitation rates when averaged across Dmin. We note that there are significant uncertainties related to these precipitation

rate retrievals, especially considering a lack of robust Z-R relationships derived for SO clouds available for this study and the250

inability to robustly determine hydrometeor phase with the available instrumentation (e.g., Silber et al., 2020b). Whereas Silber

et al. (2021) found that Ze below LCB nearly universally increases downward in polar supercooled cloud layers, indicative of

ice-phase precipitation that grows by vapor diffusion below LCB (see their Appendix E), here we find that only ∼ 45 to 60% of

supercooled layers exhibit Ze increasing below LCB (not shown). This suggests that a relatively large fraction of supercooled

LCBs are precipitating primarily in the liquid phase, with warmer CTTs showing a greater likelihood for decreasing Ze below255

LCB (indicative of evaporation). The presence of liquid-phase precipitation below a supercooled LCB is consistent with Mace
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and Protat (2018a), who found that about half of supercooled liquid-based clouds contained liquid-phase precipitation during

the month-long ship-based Clouds, Aerosols, Precipitation, Radiation, and Atmospheric Composition over the Southern Ocean

(CAPRICORN I) campaign south of Tasmania (latitudinal range from ∼ 43 to 53 ◦S) from 13 March to 15 April 2016. Although

there is uncertainty in the phase of precipitation and thus the retrieval used to derive Rcb, we accept these uncertainties as a260

starting point in this study and focus on quantifying trends as a function of cloud properties that are expected to be important

modulating factors.

3 Results

Liquid cloud bases are identified by CEIL in 76% of valid profiles in the merged MICRE dataset spanning nearly 1 year, with

month-to-month variability of ∼ 10% (not shown). Given this variability and only a single annual cycle, we do not evaluate265

cloud and precipitation seasonal distributions but refer to Tansey et al. (2022) for a robust evaluation of MICRE’s seasonal

cycle of surface precipitation. However, we note that this total cloud occurrence frequency matches that determined by Mace

and Protat (2018a) (76%) during the CAPRICORN I voyage and by Protat et al. (2017) (77%) during another ship-based SO

campaign.

CEIL is obscured 2.5% of the time, in which the ceilometer experienced attenuated backscatter but a cloud base could not be270

determined. These profiles are omitted from further analysis, though we note that obscuration commonly occurs during heavy

precipitation or fog events, such that this 2.5% may be considered an uncertainty in total cloud occurrence frequency.

When an LCB was identified, 26% of identified LCBs are below 250 m AGL and are discussed in Sect. 3.4.2. The remaining

74% of LCBs are above 250 m AGL and are used for precipitation detection. Of these, 61% of layer LCBs are supercooled

(i.e., CBT < 0◦C). Precipitation occurrence frequencies are discussed next.275

3.1 Cloud-base Precipitation Occurrence Frequency (P cb)

Cloud-base precipitation occurrence frequency (P cb) is first discussed in terms of the depth below cloud base used for pre-

cipitation detection (Dmin, equivalent to the vertical resolution) and the minimum reflectivity threshold (Ze,min; Fig. 2). As in

Silber et al. (2021), this approach simultaneously illustrates both the MICRE dataset characteristics (in the lower left-hand

corners in Fig. 2 panels) and quantities roughly comparable to a wide range of current and future satellite instrument charac-280

teristics. For example, the Ze,min and Dmin sensitivities of the CloudSat 2C-Precip-Column (2C-PC; Haynes et al., 2009) and

2C-Snow-Column (Wood et al., 2014) "possible" and the 2C-PC "certain" data products are shown as symbols in Fig. 2. At

the BASTA Ze,min sensitivity and Dmin = 50 m, 69% of clouds are precipitating from LCB (Fig. 2a) and decreases as both a

function of Dmin and Ze,min. We note that limiting profiles to those containing only one CEIL-recognized CBH (single layer

clouds) changed Pcb by < 1 %, therefore likely mitigating significant influence of seeder-feeder mechanisms (e.g., He et al.,285

2022) to the extent that the ceilometer is not fully attenuated beyond the lowest cloud layer.

Supercooled layer P cb for BASTA is 61% (Fig. 2c) and warm layer P cb is 66% (Fig. 2g). While supercooled P cb is not a

strong function of Dmin, warm layer P cb decreases by a factor of 2 in the range of Dmin shown. In subsaturated air below LCB,
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liquid-phase cloud drops are expected to evaporate. As Dmin increases and Ze is averaged over a larger depth, evaporating

drops become smaller such that the average Ze drops below the radar sensitivity. This is demonstrated at the surface (Fig. 2h),290

whereby the precipitation occurrence decreases by 12 percentage points relative to cloud base. Conversely, the sub-cloud

environment for supercooled layers precipitating in the ice phase is expected to be supersaturated with respect to ice (though

temperature-dependent), allowing for ice growth via vapor deposition and thus increasing Ze below LCB (Silber et al., 2021).

The neutral slope of supercooled P cb as a function of Dmin indicates precipitation that is not strictly growing in the ice phase

nor evaporating in the liquid phase. As described above, Ze below LCB was found to often decrease below LCB, indicating that295

a fraction of these supercooled cloud layers are precipitating primarily in the liquid phase, but the influence of precipitating ice

is present. Indeed, near the surface, supercooled precipitation occurrence frequency (P sfc) decreases by 19 percentage points

(Fig. 2d), suggesting the presence of evaporating liquid-phase precipitation from supercooled cloud layers, sublimation of ice,

or evaporation of melted ice precipitation. Evaporation is discussed in more detail in Sect. 3.3.

Partially supercooled P cb is 97% for BASTA (Fig. 2e) and decreases by only 7 percentage points near the surface (Fig. 2f).300

These partially supercooled layers are shown below to generally be much thicker compared to purely supercooled or warm

cloud layers and also to precipitate at a higher intensity, both of which are a likely reason for higher P cb and less evaporation.

Finally, we note that sensitivities of P cb to potential biases in LCB height as discussed by Silber et al. (2018) are addressed in

Appendix C and Fig. C1.

The projection of P cb onto cloud thermodynamics and macrophysics is performed hereafter assuming a constant Dmin =305

100 m (4 range gates) to limit artifacts from false detections, and the native BASTA Ze,min profile is retained. Occurrence

frequencies and the precipitating fraction of cloud layers are shown as a function of cloud thickness, CBH, and CTT in Fig. 3,

where occurrence frequencies are normalized by all cloud layers (pink) and by non-precipitating cloud layers (green) and the

precipitating fraction is calculated for all samples in a given cloud property bin. Non-precipitating cloud layers are thinner

(Fig. 3a-d) and CBHs are higher (Fig. 3e-h) relative to all cloud layers, and the precipitating fraction increases with increasing310

cloud thickness and decreases with increasing CBH. Partially supercooled cloud layers are generally thicker and CBHs are

lower relative to purely supercooled layers. Cloud thickness and CBH distributions for all layers follow closely the supercooled

layer distributions, consistent with Fig. E1 showing that the majority of cloud layers are supercooled.

Cloud layers with CTTs < -20 ◦C (Fig. 3i) are rare, and the distribution of CTTs peak at slight supercoolings between 0

and -4 ◦C. The precipitating fraction as a function CTT has a notable peak ∼ -15 ◦C, which may be due to temperatures ∼315

-14 ◦C being the peak of vapor depositional growth rates on ice (e.g., Fukuta and Takahashi, 1999; Wallace and Hobbs, 2006)

increasing the likelihood of radar detectability, as also seen in Silber et al. (2021).

Alexander and Protat (2018) quantified the fraction of supercooled liquid water clouds at Cape Grim, Tasmania (40.7◦S,

144.7◦E) with ice virga below LCB using a ground-based lidar. They found that for stratocumulus layers with CTTs < -15 ◦,

the fraction of precipitating ice virga clouds was ∼ 70-80%, but this fraction decreased to < 20% for CTTs warmer than -15320
◦C. Radenz et al. (2021) found a similarly small percentage of ice virga clouds for CTTs warmer than -15 ◦C using a radar-

lidar approach over Punta Arenas, Chile (53.1 ◦S, 70.9 ◦W). However, both of these studies limited their datasets to relatively

optically and geometrically thin stratocumulus clouds. Here, the larger precipitating fraction at relatively warm supercooled
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Figure 2. Precipitation occurrence frequency (P cb, contours and color fill) as a function of the minimum reflectivity threshold (Ze ,min;

ordinate) and the depth below cloud base used to detect precipitation (Dmin; abscissa). All cloud layers are shown in the top row, supercooled

layers in the second row, partially supercooled layers in the third row, and warm layers in the bottom row. The first column is for precipitation

from cloud base (P cb) and the second column is for precipitation at the surface (P sfc). The black circles in the bottom left-hand corner of

each panel represent the BASTA Ze ,min and Dmin = 50 m (2 range gates). Blue and magenta symbols on all plots represent the Ze ,min and

Dmin (i.e., the vertical resolution) of the CloudSat 2C-PC/2C-SC "possible" and 2C-PC "certain" data products.

CTTs (> -15 ◦C) may be due to the inclusion of optically and geometrically thicker layers (e.g., cumulus), particularly partially

supercooled layers that precipitate in the liquid phase, are generally thicker, and precipitate quite frequently (Figs. 2e and 3c).325
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Figure 3. Occurrence frequency distributions of cloud thickness (top row), CBH (middle row), and CTT (bottom row) for all cloud layers

(first column), supercooled layers (second column), partially supercooled layers (third column), and warm layers (last column). All cloud

layers are shown as pink bars while non-precipitating cloud layers are shown as green bars. The precipitating fraction as a function of each

cloud property bin is shown as a black line.

Using soundings to calculate the estimated inversion strength (EIS; Wood and Bretherton, 2006), partially supercooled cloud

layers were found to occur in environments associated with lower EIS values, indicating greater decoupling from the surface

for this cloud type (not shown).

Fig. 3 shows that thicker clouds and those with colder CTTs are more likely to precipitate, but the cloud thickness and

CTT are highly correlated since thicker clouds have higher CTHs and thus colder CTTs. To discriminate between these two330

cloud properties, the cloud-base precipitating fraction is projected onto CTT and cloud thickness by means of joint histograms

in Fig. 4. As expected, the distribution shows that cloud thickness generally increases with decreasing CTT. However, the

precipitating fraction generally increases for colder CTTs for the same cloud thickness, indicating that supercooled cloud

layers more readily precipitate than warm clouds (e.g., Mitchell et al., 1989; Senior and Mitchell, 1993; Tsushima et al., 2006;

Hoose et al., 2008; Mülmenstädt et al., 2021). A stricter Ze threshold of -20 dBZ (Fig. 4b and as implied by Mace and Protat335

(2018a) to indicate light precipitation) shows this more clearly, where the precipitating fraction increases by up to a factor of

2 between CTTs of 0 and -15 ◦C for even relatively thin clouds (< ∼ 500 m). The exception to this is for cloud thicknesses <

200 m, where the majority of clouds do not precipitate regardless of their CTT.
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Figure 4. Joint histogram of CTT (abscissa) and cloud thickness (ordinate) shown as the percentage of the dataset in black contours and

color-filled with the precipitating fraction for all samples within a given CTT-cloud thickness bin. Panel (a) uses Ze,min = -36 dBZ for

detecting precipitating layers and panel (b) uses Ze,min = -20 dBZ. The bin width (∆) for CTT is 4 ◦C. For cloud thickness, ∆ is split

between two ranges. For thicknesses < 2 km, ∆ = 200 m, while ∆ = 1 km for thicknesses > 2 km, denoted by the horizontal dashed blue line.

3.2 Cloud-base Precipitation Rates (Rcb)

In total, 69% of identified cloud layers with CBHs > 250 m are precipitating from LCB. Of all precipitating cloud layers, ∼340

54% are supercooled, 22% are partially supercooled, and 24% are warm (legend of Fig. 5a). Precipitation rates are derived

as described in Sect. 2.2.3 and the probability distribution is shown in Fig. 5a. The Rcb distribution for all cloud layers peaks

just under 10−1 mm hr−1, where supercooled layers largely control the total Rcb distribution. Warm cloud layers produce the

weakest Rcb and peak between rates of 10−4 and 10−3 mm hr−1. The partially supercooled Rcb distribution is the narrowest
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Figure 5. Probability distributions of Rcb partitioned by (a) warm, partially supercooled, and supercooled layers, (b) CTT, and (c) cloud

geometric thickness. In (a), the combined PDF of all layers is shown in black.

with a peak just above 10−1 mm hr−1. Both supercooled and partially supercooled Rcb distributions are negatively skewed345

while warm cloud layer Rcb distributions are positively skewed.

Rcb distributions are further partitioned by CTT (Fig. 5b) and cloud thickness (Fig. 5c). Rcb peak probabilities increase with

decreasing CTT and increasing cloud thickness. Rcb was also found to increase for decreasing CTT while controlling for cloud

thickness (not shown), implying that colder clouds, regardless of their thickness, have higher Rcb, likely owing to the presence

of ice precipitation.350

3.3 Evaporation/Sublimation Below Cloud Base

Evaporation (or sublimation) below cloud base is evaluated in terms of the evaporated fraction, which is the fraction of layers

with detectable cloud-base precipitation that is not continuous down to hmin. The evaporated fraction is shown as a function of

CTT and cloud thickness via a joint histogram in Fig. 6a and as a function of surface RH (RHsfc) and CBH in Fig. 6b. Evaporated

fraction decreases with increasing cloud thickness. Thicker cloud layers are likely to have more vertically integrated condensate355
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Figure 6. Joint histograms of (a) CTT and cloud thickness and (b) RHsfc and CBH with percentage of the dataset contoured in grey and the

color-fill is evaporated fraction. The bin width (∆) for RHsfc is 5%. Bin widths for CBH and cloud thickness are split between two ranges.

For thicknesses < 2 km or CBHs < 2 km AGL, ∆ = 200 m, while ∆ = 1 km for thicknesses > 2 km or CBHs > 2 km AGL, denoted by the

horizontal dashed blue line.

and have higher Rcb such that thicker layers are more resilient to complete desiccation (Fig. 5c). Unsurprisingly, evaporated

fraction increases for decreasing CTT owing to the Clausius-Clapeyron relationship. This suggests that precipitation from

supercooled cloud layers is more likely to evaporate/sublimate below LCB than precipitation from warm layers. This trend is

consistent with the larger decrease in supercooled precipitation occurrence at the surface relative to cloud base in supercooled

layers compared to warm layers (Fig. 2c,d and g,h). In Fig. 6b, surface RH and CBH are expectedly correlated. The evaporated360

fraction increases for increasing CBH and decreasing RH, as cloud bases at higher altitudes have a larger depth of sub-cloud

air for evaporation to act and are likely to be colder (barring temperature inversions).
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3.4 Special Cases

3.4.1 Optically Thin Cloud Layers

Cloud detection herein relies on the merged ceilometer dataset (CEIL), the CBHs for which are derived by the vendor’s pro-365

prietary algorithm. Precipitation detection requires that reflectivity be coincident in the bin identified by CEIL, but a large

proportion (27%) of clouds with CBHs > 250 m were optically thin where the CEIL-identified cloud base bins do not have

coincident reflectivity. This is illustrated in Fig. 1, for example between ∼ 2335 UTC and 2350 UTC, where the ARM ceilome-

ter’s apparent attenuated backscatter (βatt) observes values > 10−4 m−1 sr−1 (indicative of liquid cloud bases, Fig. 1f) but

radar reflectivity during this time period (Fig. 1d) does not reach BASTA’s Ze,min at that altitude. These layers are referred to370

as CEIL-only clouds.

Fig. 7 shows a scatterplot between the CBH and CBT for these CEIL-only cloud bases. The color-fill of each point on the

scatterplot is the observation density and a histogram is shown on each axis for the one-dimensional observation density for

CBH and CBT ignoring the other variable. The majority of these optically thin clouds have bases < 2 km AGL (peaking ∼ 1

km AGL) and temperatures ranging from -10 ◦C and 5 ◦C. The median CBT for these clouds is -3 ◦C, indicating that many of375

these clouds are only very slightly supercooled.

Mace and Protat (2018a) determined that approximately 30% of clouds during the SO CAPRICORN I voyage were detected

only by a lidar with no coincident layer-averaged reflectivity (as opposed to just considering reflectivity at cloud base as is

done here). Here, the CEIL-only percentage reduces to ∼20% when also considering profiles where radar reflectivities exceed

the noise floor within 100 m above LCB (not shown), which is evidence of cloud layers where droplets are too small to be380

recognizable by BASTA at cloud base but become detectable as they grow above cloud base. This indicates that 20–30% of

clouds from MICRE and CAPRICORN I are representative of optically thin liquid layers unregistered by BASTA. We note

that these layers were also evaluated during times with colocated soundings, in which sounding RHliq values often showed

a high peak (> 95%) at the same level with enhanced βatt values where LCB is detected without coincident reflectivity (not

shown). Their structure is often persistent with little vertical variability in the LCB height and in some instances hydrometeors385

grow large enough to be intermittently detected by BASTA (for example in Fig. 1). Accounting for these optically thin clouds

has important implications for defining P cb since these non-precipitating cloud layers are a non-negligible fraction of the

normalizing cloud population. Because many studies have required that a cloud layer have coincident reflectivity (e.g., Lamer

et al., 2020b; Silber et al., 2021), it is therefore possible that P cb for warm cloud layers is overestimated in such studies due

to elimination of these optically thin layers from the cloud population. However, for supercooled layers in which ice-phase390

precipitation can be "detached" from cloud base as it grows below LCB via vapor diffusion, P cb may still be underestimated

(e.g., Silber et al., 2021). The prevalence of this cloud regime in other geographical regions is unclear, though Mace and Protat

(2018a) also found this optically thin cloud type in ∼ 20% of cloud layers over the ARM ENA site at Graciosa Island in the

Azores (39 ◦N and 28 ◦W).
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Figure 7. Scatterplot of the 27% of cloud bases above 250 m AGL where a cloud base is detected only by CEIL (i.e., no coincident radar

reflectivity) as a function of CBT (abscissa) and CBH (ordinate). Points are color-filled with the observation density. One dimensional

observation density histograms are also plotted on the respective axes.

3.4.2 Near-surface Clouds and Fog395

P cb calculations require the minimum CBH to be 250 m using Dmin = 100 m. Of all CEIL-identified layers, 26% of cloud bases

are < 250 m, which collectively are called "near-surface clouds". The apparent βatt profiles for these periods show repeating

patterns of specific cloud morphology. Two case studies for these morphologies are discussed in Appendix F. In particular,

Figs. F1 and F2 show CBHs identified below 150 m (within the BASTA "blind zone") and the apparent βatt profiles from

CEIL show values > 10−4 m−1 sr−1 at cloud base but with no significant reduction in apparent βatt below cloud base towards400

the surface. We consider these cases to be fog, noting that this is a broad definition that may include deliquescenced aerosols

that produce haze or possibly sea spray.

A simple fog identification algorithm was developed to identify cases where the cloud-base apparent βatt > 10−4.5 m−1

sr−1 and does not decrease by at least an order of magnitude below cloud base. There are several caveats to this detection
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method. First, only profiles with a valid CBH detection below 250 m AGL are considered, therefore neglecting any profiles405

where fog may be detectable using βatt alone. Second, βatt is uncalibrated. To explore the sensitivity to this, calibration factors

were applied to all near-surface CBH profiles (e.g., O’Connor et al., 2004; Hopkin et al., 2019; Kuma et al., 2021). Calibration

factors were guided by literature (Kuma et al., 2021) and by applying the lidar autocalibration method described by O’Connor

et al. (2004) for optically thick non-precipitating stratocumulus, though we note that few cases were found to be appropriate

for calibration with this method in this dataset. For a cloud-base βatt threshold of 10−4.5 m−1 sr−1 used for fog identification,410

calibration factors ranging from 1-4 yielded fog occurrence frequencies relative to all near-surface clouds that ranged from 69-

82%. Sensitivity to calibration factors increased with increasing cloud-base βatt thresholds, and the fog occurrence frequency in

general was more sensitive to this threshold than to calibration. Given these multiple uncertainties, we do not formally attempt

to calibrate βatt in this study, but note that future work concerning surface-based fog detection over the Southern Ocean should

consider all profiles with valid βatt (regardless of valid CBH detection) and should pursue calibration methods appropriate for415

fog.

Profiles matching the fog identification algorithm using apparent βatt occurred 18% of the time (accounting for 69% of

near-surface clouds). We examine distributions of surface measurements for all near-surface clouds and for those identified as

fog in Fig. 8. RHsfc values exceed 90% for almost the entirety of the distributions for near-surface clouds and fog, with some

tendency for smaller values for non-fog profiles, supporting the possibility of haze in some instances. Surface temperatures are420

always above freezing during this time period, peaking around 7 ◦C with no significant differences between the distributions

of near-surface clouds and fog. Surface wind speeds also show no significant differences for fog relative to all near-surface

clouds, but we note the persistence of rather strong surface wind speeds (distribution modes ∼ 20 m s−1), indicating that these

fog events are likely of the advective type rather than radiative fog, which requires calm surface conditions. The fog formation

processes may be analogous to those during Arctic air formation (Tjernström et al., 2019). Mace and Protat (2018a) reported425

that the air temperature was colder than the sea surface temperature except for a few days during the SO CAPRICORN I voyage

spanning 43 to 53 ◦S, equatorward of Macquarie Island, which may explain the lack of similarly abundant near-surface clouds

reported in their study. While other recent SO voyages reached the edge of Antarctica (e.g., Kremser et al., 2021; McFarquhar

et al., 2021) , none occurred during the coldest months of the year and each was relatively short compared to the annual cycle

observed during MICRE. Indeed, fog detections during MICRE were more frequent in Austral winter and transition months430

than during Austral summer (not shown).

Even though CBH is too low to establish precipitation below it, valid radar reflectivity was identified between 150 and

250 m in > 98% of all near-surface clouds and fog layers. Figure 8d shows the layer-averaged Ze between 150 and 250m

AGL (Ze,150−250m). Distributions of Ze,150−250m are largely similar between near-surface clouds and fog, although fog layers

are shifted slightly toward larger values. Note that ∼ 60% of the distributions have Ze,150−250m > -15 dBZ, suggesting a435

non-negligible portion of these near-surface clouds experience precipitation from above, for example as demonstrated in Fig.

F1.

The Arctic and Antarctic sites evaluated by Silber et al. (2021) required an hmin of 300 m, such that near-surface clouds

(including potential fog) were not considered, but we note that fog features were seen to some degree in the Arctic data
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Figure 8. Probability distributions of (a) RHsfc, (b) surface temperature, (c) surface wind speed, and (d) layer-averaged Ze between 150 and

250 m AGL (Ze,150−250m). Light blue bars are for all near-surface clouds and dark blue bars are for near-surface clouds identified as fog.

The solid and dashed lines show the cumulative fraction for profiles identified as fog and for all near-surface clouds, respectively. The text

box in the lower right shows the percentage of cloud profiles identified as near-surface clouds, the percentage of cloud profiles identified as

fog, and the percentage of near-surface cloud profiles identified as fog.

from NSA. Because the radar "blind zone" (i.e., the surface through hmin) limits the detection of hydrometeors within this440

range, it is routine for studies to truncate cloud detection from ground-based instrumentation to above hmin. However, the large

proportion of CBHs identified below 250 m (26% of all clouds) in this study implies the need for more robust quantification

of fog and near-surface clouds. Indeed, a 30-year climatology (1952-1981) of global cloud type distributions from ship-based

observations showed a global peak in fog frequency of occurrence between a latitudinal band from 40 to 70 ◦S, including over

Macquarie Island’s longitude (Warren et al., 1988). They showed a seasonal cycle that appears to maximize during Austral445

summer, suggesting that fog formation mechanisms are not limited to Arctic air formation during Austral winter discussed

above. In addition, Kuma et al. (2020) used ship-based ceilometer data from multiple SO voyages and found that occurrence

frequencies of CBHs peak below 500 m AGL and often very near the surface, indicative of fog, and that these low clouds were

often associated with near-surface air temperatures < 0 ◦C and warmer than the SST, analogous to Arctic air formation.
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4 ESM Evaluation450

4.1 Model Setup

We next demonstrate use of the merged MICRE dataset to evaluate a 9-year (2012-2020), global free-running (i.e., no nudg-

ing) simulation using the NASA GISS-ModelE3 ESM. In brief, the simulation used here employs 2 x 2.5 ◦ resolution and 110

vertical levels. The model configuration is the same as used by Cesana et al. (2021), also referred to as GISS-ModelE3-Phys in

that study’s supporting information, denoting a configuration that uses the default set of tuning parameters and an alternative455

entrainment closure for moist convection. Other aspects of the model are summarized by Cesana et al. (2021) and references

therein. The simulation is initialized on November 1, 2011 for two months of model spin-up and prescribes sea surface tem-

peratures using a climatology following the Atmospheric Model Intercomparison Project (AMIP) specifications (Gates, 1992;

Gates et al., 1999). Aerosol profiles are prescribed as a single-mode log-normal size distribution with regionally and sea-

sonally varying concentrations and activation follows from Abdul-Razzak et al. (1998). For stratiform cloud microphysics, a460

modified version of the Gettelman and Morrison (2015) two-moment bulk microphysics scheme (MG2) is used that includes

prognostic precipitation. Convective cloud microphysics are described in Cesana et al. (2019b). Both the stratiform and con-

vective schemes include the following four hydrometeor classes: cloud liquid water, cloud ice, precipitating liquid water, and

precipitating ice.

4.2 EMC2 Instrument Simulator Application465

For application of EMC2, microphysical variables required for the simulation of radar and lidar moments are output in the grid

cell containing Macquarie Island at model physics time-step frequency (30 minutes) as instantaneous values for comparison

with observations. EMC2 offers two approaches for remote sensing calculations, including a radiation scheme logic that gen-

eralizes hydrometeor fractions and uses bulk scattering calculations for specific size distributions, and a microphysics logic

that uses single-particle scattering calculations with the model’s predicted particle size distributions. Here, the microphysics470

scheme logic is used. After providing to EMC2 a user-defined number of subcolumns (taken here as 8), hydrometeors are

allocated to the subcolumns by translating the volume fraction of the model’s hydrometeor class to a number of hydrometeor-

containing and hydrometeor-free subcolumn bins. The maximum-random overlap approach (Tian and Curry, 1989; Fan et al.,

2011; Hillman et al., 2018) is then applied from the top down, which preferentially extends cloud layers vertically within

a subcolumn and retains vertical continuity of cloud and precipitation features. Further details of subcolumn generation and475

forward simulation can be found in Silber et al. (2022).

A 24-hr example of variables simulated by EMC2 is shown in Fig. 9 for a slightly supercooled, precipitating stratocumulus

case. Three of the eight subcolumns are used to demonstrate simulated 95 GHz attenuated Ze, 910 nm βatt, and GISS-ModelE3

precipitation rates. Precipitation detection for GISS-ModelE3 is performed in a similar manner as for MICRE observations

with a few differences. Rather than performing a CBH identification algorithm via the simulated 910 nm ceilometer βatt, LCB480

is identified explicitly as the lowest altitude subcolumn pixel in time-height space that contains cloud liquid water content

(CLWC). This treatment implies an LCB for every column that contributes to total liquid cloud fraction. We note that LCB
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Figure 9. Example 24-hr time-height series of EMC2 simulated (a)-(c) 95 GHz attenuated Ze, (d)-(e) 910 nm βatt, and (g)-(i) GISS-ModelE3

precipitation rate (sum of convective and stratiform precipitation rates) for a slightly supercooled, precipitating stratocumulus case. The three

columns represent three out of eight subcolumns generated using EMC2. CBH is denoted by magenta dots and the 0◦C isotherm is shown

by a red dashed line. Hatching in (a)-(c) represents hydrometeor-containing grid cells with reflectivity lower than the BASTA Ze ,min.

identified with this method is most often colocated with locally enhanced simulated βatt > 10−4 m−1 sr−1 (Fig. 9d-f). For

comparison with the observational approach, we find that the cloud occurrence frequency is not sensitive to CLWC or βatt

thresholding beyond an arbitrary value that is indicative of non-negligible liquid cloud mass (see Appendix G and Fig. G1).485

Precipitation detection is then performed at the same pixel as LCB. While the GISS-ModelE3 convective and stratiform

precipitation schemes inform whether or not the precipitation process is active immediately at cloud base, precipitation is

only considered detectable for comparison with MICRE observations where the simulated 95 GHz attenuated Ze is above the

BASTA noise floor. If a column pixel has a Ze value above the noise floor coincident with hydrometeor mass from a precipi-

tating hydrometeor species at LCB, the cloud layer is diagnosed as precipitating. The explicit mass-weighted precipitation rate490

from the model at that pixel is then taken as the cloud-base precipitation rate (i.e., Rcb). We note that P cb is not sensitive to an

arbitrary minimum Rcb threshold (Appendix G). Finally, all algorithm limits applied to the MICRE dataset are applied to the

GISS-ModelE3 simulation. Namely, LCBs are limited to altitudes below 7.7 km AGL, CBTs and CTTs are limited to warmer

than -38 ◦C, and noise floor restrictions from 95 GHz attenuated Ze emulating BASTA are applied to cloud and precipitation

retrievals.495
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Table 1. Comparison of cloud and precipitation properties between the MICRE dataset and the 9-year GISS-ModelE3 ESM simulation.

Indentations are used to represent percentages relative to the normalizing population given one indentation level above, where the top-level

normalizing population for MICRE is ∼ 1 year of valid profiling instrument data and for GISS-ModelE3 is the 9 years of simulation data.

Values in parentheses under the GISS-ModelE3 columns are absolute differences from MICRE observations. Brackets for the E3 total cloud

occurrence frequency represents the interannual range of the 9-year simulation.

All Layers Supercooled Partially Supercooled Warm

MICRE E3 MICRE E3 MICRE E3 MICRE E3

Total Cloud Occurrence

Frequency (%)

76 57 [55-61]

(-19)

- - - - - -

CBH < 250 m (%) 26 26 (0.0) - - - - - -

Fog (%) 69 69 (0.0) - - - - - -

CBH > 250 m (%) 74 74 (0.0) 61 78 (+17) - - 39 23 (-16)

CEIL-only (%) 27 31 (+4.0) 75 87 (+12) - - 25 13 (-12)

P cb (%) 69 55 (-14) 63 50 (-13) 97 93 (-4.0) 65 53 (-12)

Evaporated

Fraction (%)

38 53 (+15) 49 57 (+8.0) 12 26 (+14) 36 71 (+35)

Supercooled

Partitioning (%)

- - 54 70 (+16) 24 19 (-5.0) 22 11 (-11)

P sfc (%) 54 29 (-25) 45 24 (-21) 90 72 (-18) 53 18 (-35)

Total Fog Occurrence Fre-

quency (%)

18 18 (0.0) - - - - - -

4.3 Comparison with MICRE

Table 1 provides a comparison of cloud and precipitation properties between MICRE and the GISS-ModelE3 simulation. All

values are percentages relative to a normalizing population, given as the population one indentation level above. The top-level

normalizing population for MICRE is ∼ 1 year of operational vertical profiles passing quality control, while the GISS-ModelE3

top-level normalizing population is 9 years of simulated profiles. Absolute differences between MICRE and GISS-ModelE3500

statistics are denoted in parentheses. GISS-ModelE3 produces a total cloud occurrence frequency of 57% (interannual range of

55-61%), which is 19 percentage points lower than the MICRE observations. Of all cloudy profiles, 74 % of GISS-ModelE3

CBHs are higher than 250 m, which is the same percentage as MICRE. Supercooled layers account for 78% of all CBHs >

250 m AGL in GISS-ModelE3 and 61% in MICRE. For CBHs > 250 m AGL, 31% of cloud bases in GISS-ModelE3 did not

have coincident Ze above the noise floor compared to 27% of MICRE cloud bases being identified only by CEIL.505
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For CBHs > 250 m, 55% are precipitating from LCB in GISS-ModelE3 compared to 69% in MICRE. P cb as a function

of Ze,min is shown in Fig. 10 for GISS-ModelE3 and MICRE for all cloud layers and partitioned by supercooled, partially

supercooled, and warm layers. This Pcb projection illustrates both the radar sensitivity and the contribution to Pcb by cloud

bases precipitating at a given Ze threshold. All layers precipitate less frequently in GISS-ModelE3 compared to MICRE,

which is constant regardless of Ze,min. Partially supercooled cloud layers precipitate most frequently in GISS-ModelE3, with510

only a decrease by 4 percentage points relative to MICRE, while supercooled and warm layers precipitate less frequently in

GISS-ModelE3 by 14 and 12 percentage, respectively, at the BASTA sensitivity.

For supercooled and partially supercooled cloud layers, P cb is relatively insensitive to Ze,min < -36 dBZ (region to the left

of the light blue dashed line in Fig. 10), which occupies the lowest 1 km AGL of BASTA’s range. However, warm cloud

layers populate this Ze range since warm CBH is generally < 1 km (see Fig. 3h). This Ze range accounts for a 10% increase515

in warm-layer P cb in GISS-ModelE3 and a 15% increase in MICRE when decreasing Ze,min from -36 dBZ to -50 dBZ. We

emphasize that in both MICRE and GISS-ModelE3, although the P cb for supercooled and warm layers listed in Table 1 are

similar, a large portion of warm-layer P cb is attributable to cloud layers with sub-cloud base Ze < -36 dBZ. At higher Ze,min

thresholds (e.g., > -36 dBZ), supercooled cloud layers consistently precipitate more frequently than warm layers. Overall,

GISS-ModelE3 produces a systematic low bias in P cb relative to MICRE regardless of the cloud top temperature or Ze,min520

threshold. One potential cause for lower P cb in GISS-ModelE3 is the lack of interactive aerosol, which is prescribed in the

current runs and should be investigated in future studies.

Precipitating layers also evaporate more frequently in GISS-ModelE3 compared to MICRE. The evaporated fraction is 38%

in MICRE, but 53% in GISS-ModelE3. All levels of supercooling produce excessive evaporated fractions, but the largest bias

occurs in warm clouds, where the evaporated fraction is 71% in GISS-ModelE3 compared to 36% in MICRE. This excessive525

evaporation results in a P sfc of only 18% in GISS-ModelE3 relative to 53% in MICRE.

Distributions of GISS-ModelE3 Rcb are shown in Fig. 11 and separated by supercooling, CTT, and cloud thickness, as in

Fig. 5. The MICRE Rcb PDF is also shown in Fig. 11a. GISS-ModelE3 captures trends in Rcb that are present in the MICRE

observations well, whereby supercooled layers have higher Rcb relative to warm layers and partially supercooled layers have the

highest Rcb. However, one distinct difference is lower supercooled Rcb and higher partially supercooled Rcb in GISS-ModelE3530

relative to MICRE. This may be indicative of a transfer of relative rainfall production between cloud populations, whereby

partially supercooled clouds produce more rainfall and purely supercooled clouds produce less rainfall in GISS-ModelE3.

Precipitation rates also increase with colder CTT and with larger cloud geometric thickness, as was seen in the MICRE dataset

(Fig. 5b-c). The total Rcb distribution for both MICRE and GISS-ModelE3 are largely controlled by supercooled cloud layers,

which account for 70% of the distribution in GISS-ModelE3 compared to 54% in MICRE (Table 1).535

Finally, the same fog identification algorithm applied to the MICRE dataset in Sect. 3.4.2 is applied here. Fog is identified at

the same frequency in GISS-ModelE3 as in MICRE. This agreement indicates that these near-surface cloud layers commonly

observed during MICRE are to some degree represented in GISS-ModelE3.
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Figure 10. Cloud base precipitation occurrence frequency (P cb) as a function of Ze ,min for the GISS-ModelE3 simulation (dashed lines) and

for MICRE (solid lines) showing all cloud layers in black and partitioned by supercooling in colors.

5 Discussion

5.1 Implications for ESMs540

MICRE provides a unique year-long dataset for observing cloud and precipitation properties over the remote SO. A common

shortcoming of CMIP5 ESMs over the SO is a lack of clouds in general that results in excessive absorbed shortwave radiation

at the surface relative to observations (e.g., Trenberth and Fasullo, 2010; Bodas-Salcedo et al., 2012, 2014; Flato et al., 2013;

Cesana et al., 2022). Conversely, some CMIP6 models improved this bias and based on a classification of ISCCP data now may

simulate too much stratocumulus that are not reflective enough (e.g., Schuddeboom and McDonald, 2021). In the current study,545

the occurrence frequency of liquid-based clouds is 57% in GISS-ModelE3 compared to 76% in MICRE (with month-to-month

variability of ∼ 10 percentage points), implying that GISS-ModelE3 cloud occurrence frequency is lower than observed. The

majority of LCBs in MICRE and in GISS-ModelE3 are supercooled, which is consistent with space-borne documentation of

ubiquitous supercooled low-level liquid clouds (e.g. Morrison et al., 2011; Huang et al., 2012; Cesana and Chepfer, 2013;

Chubb et al., 2013; Bodas-Salcedo et al., 2016). Even though GISS-ModelE3 produces fewer liquid-based clouds relative550

to observations, the majority of these clouds are indeed supercooled. Kay et al. (2016a) found that the Community Earth

System Model (CESM1; Hurrell et al., 2013) with the Community Atmosphere Model (CAM5) produced too few persistent

supercooled liquid cloud layers and too much ice over the SO relative to satellite observations due to a preferential glaciation

of simulated supercooled clouds. However, we note that here the supercooled P cb in GISS-ModelE3 is weaker than observed,
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Figure 11. Probability distributions of GISS-ModelE3 Rcb (dashed lines) partitioned by (a) warm, partially supercooled, and supercooled

layers, (b) CTT, and (c) cloud geometric thickness. In (a), the combined PDF of all layers is shown in black and the MICRE Rcb PDFs are

shown as solid lines.

suggesting that a lack of simulated supercooled cloud in GISS-ModelE3 may not be caused by a tendency for supercooled555

liquid clouds to glaciate and precipitate quickly.

The finding that supercooled cloud layers precipitate more readily than warm cloud layers for the same geometric thickness

has implications for precipitation behavior in a warming climate. Mülmenstädt et al. (2021) discuss a negative cloud radiative

feedback (i.e., cooling effect) in which a shift from ice and mixed-phase clouds to mostly liquid clouds in a warming climate

leads to more reflective clouds (optical feedback component) with a longer desiccation timescale (described as a so-called560

"lifetime" feedback component, where "lifetime" metaphorically refers to an increase in the horizontal extent and residence

time of cloud condensate in the atmosphere). However, this negative cloud feedback is modulated by how readily warm clouds

precipitate. Studies that compare ESM warm-rain precipitation probability to space-borne active remote sensors show a rela-

tively ubiquitous bias in which warm clouds precipitate too readily (e.g. Stephens et al., 2010; Suzuki et al., 2015; Jing et al.,

2017; Kay et al., 2018). Indeed, Mülmenstädt et al. (2021) found in ESM simulations that a 4-K increase in surface temper-565
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ature led to an increase in warm rain fraction over the SO, increasing the optical feedback component. However, they found

that warm-rain precipitation efficiency was high-biased relative to satellite observations, thereby reducing the efficiency of the

lifetime feedback component. By reducing the warm-rain probability in the ESM to better agree with satellite observations,

they found that the lifetime feedback component was three times larger than that in the default model owing to an increase in

liquid water path.570

Here, we find that warm clouds precipitate less frequently in GISS-ModelE3 relative to ground-based observations, which

is inconsistent with literature consensus based on satellite observations. Such differing conclusions could arise for several rea-

sons. First, we demonstrated the likelihood that satellite observations underestimate precipitation occurrence frequency relative

to colocated ground-based observations. Fig. 2h showed P cb for all liquid-based clouds using the sensitivity and vertical resolu-

tion of BASTA and for CloudSat 2C-PC "certain" and "possible" products, where P cb decreased from 70% for BASTA to 35%575

("possible") and 20% ("certain") for 2C-PC. Although the sensitivity and vertical resolution of CloudSat suggested by Fig. 2h

does not account for CloudSat’s data characteristics below 750 m AGL, this is roughly consistent with Tansey et al. (2022, see

their Fig. 10), who showed that liquid-phase surface precipitation frequency decreased by 30% in their ground-based dataset

compared to CloudSat. This comparison also implies that the GISS-ModelE3 P cb of 55% could be larger than CloudSat sug-

gests, but confirming that would require applying EMC2 to GISS-ModelE3 outputs with CloudSat rather than BASTA radar580

characteristics. Related to this point, established model-observation comparisons may consider substantially different condi-

tions owing to sampling or methodology in general. For example, true cloud base is very difficult to observe from space-borne

instrumentation, making cloud and precipitation somewhat ambiguous. Moreover, satellite studies have often focused on warm

rain processes (e.g., Suzuki et al., 2015; Jing et al., 2017; Mülmenstädt et al., 2021). Clouds with CTTs > 0 ◦C during MICRE

accounted for a smaller fraction of the cloud population than supercooled clouds, and most often warm cloud bases were below585

CloudSat’s 750 m AGL threshold. Despite this, Kay et al. (2018) found that Southern Ocean supercooled cloud layers also

produced snow too often in CESM1 relative to satellite observations, in contrast to our results. This leaves open the possibility

that GISS-ModelE3 behaves differently from other ESMs, which could be verified by evaluating supercooled Southern Ocean

clouds across multiple models to determine the prevalence of this reasoning. Reconciling these differing conclusions regard-

ing ESM precipitation occurrence to which model results are sensitive (Mülmenstädt et al., 2021) will motivate further work590

to robustly evaluate models simultaneously against both ground-based observations and satellite observations, while directly

comparing ground-based and space-based observations as demonstrated by Tansey et al. (2022). Additionally, ESM evaluation

methodology using ground-based versus space-based simulators is worthy of further investigation since results and conclusions

drawn can be sensitive to the representation of model physics (e.g., Cesana et al., 2021).

This study also found that GISS-ModelE3 precipitation evaporates too frequently before it reaches within 250 m of the595

surface, which can be expected to influence the cloud condensate budget in a number of competing ways. For example, sub-

cloud evaporation can act as a condensate sink by stabilizing the boundary layer (decreasing vertical mixing and cloud amount),

but can also act as a source of moisture in turbulent regions, where the condensate is not entirely lost to the surface through

precipitation and therefore is a moisture source for condensation to later occur.
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Although we do not seek to actively address the model biases presented herein, these findings stress the importance of600

understanding cloud and precipitation properties from a process-oriented perspective and using a simulator approach to account

for both observational limitations and consistency with model physics. We leave further in-depth assessment of the model’s

physical mechanisms responsible for model-observations differences for future work. Ideally, future analyses should evaluate

thermodynamic and cloud conditions simultaneously over multiple sites in order to more robustly establish process-based

mechanisms and link them to leading biases. Indeed, Fiddes et al. (2022) evaluated nudged simulations by the Australian605

Community Climate and Earth System Simulator (ACCESS) atmosphere model against satellite observations over the SO and

found that even when cloud radiative biases were small on average, cloud properties such as cloud fraction and vertically

integrated condensate can remain large.

5.2 Related Studies

Tansey et al. (2022) analyzed the same year of MICRE data and found that surface precipitation occurs 44 ± 4% of the time610

during the campaign. In the current study, a cloud occurrence frequency of 76% and a P sfc of 54% (Table 1) implies a campaign-

long surface precipitation occurrence frequency of ∼ 41%, indicating good agreement with their study. Tansey et al. (2022)

found precipitation to be primarily composed of small particles (< 1 mm in diameter) and found a significant contribution from

light rain rates (< 0.5 mm hr−1) that accounted for 11% of accumulated surface precipitation. Similar contributions by light

rain rates were documented by Wang et al. (2015).615

Similar observational analyses have been performed at other geographic locations. For example, Silber et al. (2021) docu-

mented the P cb of supercooled liquid-bearing layers at an Antarctic site (McMurdo Station, Antarctica) during the ARM West

Antarctic Radiation Experiment (AWARE; Lubin et al., 2020a) and at an Arctic site (NSA). They used soundings with an

RHliq threshold to identify cloud boundaries combined with the ARM Ka-band Zenith Radar (KAZR; Widener et al., 2012) at

both polar sites to detect sub-cloud precipitation. They found that 85% (75%) of supercooled clouds were precipitating from620

LCB at the Arctic (Antarctic) site. McMurdo Station is located at 77.8 ◦S and 166.7 ◦E, roughly 22.5 ◦ south and 8◦ east of

Macquarie Island. We note that KAZRs have sensitivities around -50 dBZ at 1 km AGL (compared to -36 dBZ for BASTA

during MICRE), although their hmin is typically higher (e.g., Silber et al., 2021). When considering only Ze > -36 dBZ (below

which supercooled clouds in this study are insensitive, see Fig. 10), the P cb at McMurdo Station from supercooled cloud layers

per Silber et al. (see 2021, their Fig. 1b) was ∼ 70% while in MICRE it was ∼ 61% (see Fig. 2). Different cloud morphologies625

exist between Macquarie Island and McMurdo station, even for supercooled layers, due to Macquarie Island’s location north of

the Polar front, a shift towards more frequent supercooled clouds further south, and potential effects of terrain at McMurdo Sta-

tion. The 9% absolute difference in supercooled cloud P cb between the stations may also lie within their summed uncertainties

owing to relatively short deployments for the purposes of a climatology.

Lamer et al. (2020b) used 3 years of data from the ARM ENA observatory to evaluate cloud and precipitation properties630

in post-cold frontal subsidence regimes using a ceilometer and a radar, also taking a similar approach. They found 80% of

cloud layers in subsidence regimes to be precipitating. The higher P cb of 80% over ENA compared to MICRE may be due to

the requirement that their cloud layers produce detectable reflectivity above lidar-identified cloud base, whereas here we also
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consider optically thin, non-precipitating clouds without coincident radar reflectivity above the noise floor, which increases

the normalizing cloud population in our study. They also related cloud geometric thickness to P cb and Rcb and found that635

P cb increases with increasing cloud geometric thickness, which is consistent with this study and results in Silber et al. (2021).

Rcb also increased with increasing cloud thickness in Lamer et al. (2020b), agreeing with our study and following from other

observational studies suggesting that Rcb scales with cloud thickness (e.g., Yang et al., 2018; vanZanten et al., 2005). Also

similar to our study, Lamer et al. (2020b) found a higher likelihood for precipitation to reach the surface from deeper cloud

layers.640

5.3 Implications for Satellites

Silber et al. (2021) reconciled discrepancies between ground-based observations that indicate polar supercooled clouds as

nearly continuously precipitating lightly from LCB and much lower precipitation frequencies derived from space-borne instru-

ments, based on differences in radar sensitivity and vertical resolution. Here we find a similar importance of radar sensitivity

(Fig. 2) spanning clouds with both supercooled and warm CBTs, especially for Ze values that represent the weakest precipita-645

tion fluxes. Satellite observing platforms experience ground clutter near the surface and are thus unable to detect clouds within

the lowest 0.75-1 km AGL. During MICRE, the majority of warm-based clouds and a large fraction of supercooled clouds have

CBHs < 1 km (Fig. 3). This high frequency of CBHs < 1 km suggests severe limitations for detection of cloud-base precipita-

tion from current spaceborne instrumentation. Indeed, CloudSat’s 2C-PC "possible" Ze,min = -15 dBZ and vertical resolution

(Dmin) = 250 m would yield a P cb = 40%, nearly 30 percentage points lower than shown here from BASTA (see Fig. 2a). As650

discussed by Silber et al. (2021), the future EarthCARE mission’s Cloud Profiling Radar will be more sensitive and better at

establishing light precipitation processes (Kollias et al., 2014; Illingworth et al., 2015). However, given that all current and

future ground-based and satellite instrument datasets will have limitations in terms of geographical and temporal coverage,

instrument resolution and sensitivity, and factors such as attenuation and ground clutter, a simulator approach provides a robust

pathway to enable fusion of spaceborne and ground-based platforms for reliable model evaluation, as pioneered by tools such655

as the 2nd version of the Cloud Feedback Model Intercomparison Project Observational Simulator Package (COSP2; Swales

et al., 2018).

5.4 Caveats and Guidance for Future Southern Ocean Campaigns

Macquarie Island’s latitude of 54.5 ◦S is not necessarily expected to be representative of the vast SO. For example, Fiddes et al.

(2022) split the SO into three latitudinally bound regions and found that model biases in cloud phase and morphology were660

different among the three regions. Expansion of the results here to other latitudes should be focus of future work. In addition,

we note that Tansey et al. (2022) documented that MICRE summer surface precipitation was anomalously high relative to a

long-term tipping bucket record from Macquarie Island, indicating the need for more routine measurement platforms over the

SO and robust satellite supplementation in order to place the results of this study within the context of the broader Macquarie

Island and SO climatologies.665
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Finally, this study illustrates a number of needs for future ground-based missions over the SO. Longer deployments (order

of years) are needed to robustly characterize the cloud climatology and seasonal variability over Macquarie Island. The cloud

properties presented herein could be more robustly analyzed with higher-capability lidar instrumentation. Although polariza-

tion lidar capability was present during MICRE, it was not available for statistical evaluation. Verifying the phase of cloud

base detections via polarization lidar is needed since this is difficult to determine through ceilometer attenuated backscatter670

alone, though Guyot et al. (2022) demonstrated a data-driven approach to classify cloud phase based on ceilometer attenuated

backscatter gradients. We note also BASTA’s sensitivity would have been higher during MICRE had the low noise ampli-

fier been operational (see Appendix B). In particular, determining the height of LCB presented a leading uncertainty in this

study, including that associated with the proprietary vendor algorithm used to detect LCB height. Low cloud bases within the

radar "blind zone" should also be investigated further over the SO (e.g. Maahn et al., 2014; Kuma et al., 2020) . For example,675

Alexander and Protat (2018) found that ∼ 15% of lidar-identified cloud bases at Cape Grim, Tasmania (40.7◦S, 144.7◦E) were

below 200 m AGL. During MICRE, about a quarter of ceilometer-identified CBHs were below 250 m. Over half of these

surface-based clouds during MICRE were representative of fog, which with the exception of Kuma et al. (2020) has not been

extensively studied over the SO and also deserves further investigation.

6 Conclusions680

This study evaluated cloud and precipitation properties using ground-based profiling instrumentation at the Southern Ocean’s

Macquarie Island (54.5 ◦S, 158.9 ◦E) during ∼ 1 year of the MICRE field campaign. A merged dataset from a 95 GHz

(W-band) cloud radar, ceilometers, and atmospheric soundings was constructed to analyze cloud and precipitation property

occurrence frequencies and their dependence on cloud thermodynamics and macrophysics. A 9-year simulation of the NASA

GISS ModelE3 ESM was then evaluated against the MICRE observations by extracting outputs at every time step in the grid685

cell containing Macquarie Island. Forward simulation of GISS-ModelE3 ceilometer and radar variables was performed via

the Earth Model Column Collaboratory (EMC2) radar and lidar instrument simulator, accounting for the sensitivities of the

instrumentation deployed during MICRE. This approach yielded a comparison of observations and the ESM in a physically

consistent framework. The main conclusions resulting from the observational analysis and the ESM evaluation are as follows:

• Clouds precipitate frequently from liquid cloud base over Macquarie Island (∼ 70% of the time where cloud bases were690

identified)

• Deeper and colder clouds precipitate more frequently and at a higher intensity than thinner and warmer clouds

• Clouds with colder CTTs precipitate more readily than at warm CTTs even for the same cloud geometric thickness

• Supercooled cloud layers experience more frequent evaporation/sublimation below LCB compared to warm cloud layers

• The GISS-ModelE3 ESM simulation produced a smaller liquid-based cloud occurrence frequency, smaller precipitation695

occurrence frequency, and greater sub-cloud evaporation/sublimation compared to observations
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• GISS-ModelE3 captures observed trends (shape and skewness) in cloud-base precipitation rate distributions whereby

precipitation rates increase with decreasing CTT and increasing cloud thickness

• Geometrically and optically thin non-precipitating clouds and fog were similarly common in both observations and

GISS-ModelE3700

The ESM evaluation demonstrated here followed a framework in which ESM column physics may be evaluated while

remaining faithful to the model’s physics parameterizations and accounting for instrument sensitivities. Systematic biases

observed in GISS-ModelE3 (i.e, lower precipitation occurrence frequencies and more evaporation relative to MICRE observa-

tions) are unlikely to result from thresholding behavior for cloud-base precipitation detection since the biases are consistent

for various minimum radar reflectivity thresholds used to qualify precipitation. Further work is needed in order to better under-705

stand these differences as they apply to GISS-ModelE3 and to other ESMs with different physics parameterizations. However,

this study demonstrates that long term, ground-based instrumentation can be used as a robust process-level constraint for ESM

evaluation of precipitation occurrence when appropriate sensitivities are considered. Indeed, Mülmenstädt et al. (2021) argue

that, for warm clouds, identifying the presence of precipitation can be a proxy to a simple binary estimate of the autoconversion

process, which is parameterized in models in a manner that produces a process rate. Such process-driven studies are important710

to understand cloud and precipitation properties in the present-day atmosphere as well as for perturbed climates and how they

may compensate, enhance, or reduce cloud radiative feedbacks in the extratropics.

Appendix A: Abbreviations and Notation
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Table A1. List of abbreviations and notation.

Abbreviations and Notation

βatt 910 nm ceilometer attenuated backscatter; units of m−1 sr−1

BASTA Bistatic Radar System for Atmospheric Sciences (Delanoë et al., 2016)

CBH Cloud base height

CTH Cloud top height

CBT Cloud base temperature

CTT Cloud top temperature

CEIL Merged ARM and University of Canterbury ceilometer datasets

Dmin Depth below cloud base used for cloud-base precipitation detection; depth

above hmin used for surface precipitation detection

EMC2 Earth Model Column Collaboratory instrument simulator (Silber et al., 2022)

GISS-ModelE3 U.S. National Aeronautics and Space Administration (NASA) Goddard Institute

for Space Studies ModelE3

hmin Minimum detectable height of the BASTA radar; set to 150 m AGL

LCB Liquid cloud base

P cb Cloud-base precipitation occurrence frequency

P sfc Surface precipitation occurrence frequency; surface is hmin = 150 m AGL

Rcb Cloud-base precipitation rate

RHliq Relative humidity with respect to liquid water

RHsfc Relative humidity from surface meteorology station

RHice Relative humidity with respect to ice

Ze W-band (95 GHz) radar reflectivity; units of dBZ

Ze,min Minimum detectable Ze

Ze,150−250m Linearly averaged reflectivity between 150 and 250 m AGL

Appendix B: Minimum Detectable BASTA Ze

The BASTA radar reports a Ze,min of -36 dBZ at 1 km AGL. Fig. B1 shows the theoretical Ze,min as a black dashed line, which715

is calculated assuming irradiance weakens inversely proportional with the square of range, while the light blue line shows the

0.01st percentile of BASTA Ze from the year during MICRE when BASTA was operational. Range gates where the reflectivity

as a function of height is less than the theoretical Ze,min are assumed to be free of hydrometeors. Importantly, we note that

the BoM BASTA radar used here as reported by Delanoë et al. (2016) and also used by Mace and Protat (2018a, b) nominally

reports a sensitivity of -49 dBZ at 1 km AGL (-36 dBZ at 4 km AGL). However, issues with the low noise amplifier during720

MICRE degraded the BoM BASTA sensitivity to -36 dBZ at 1 km AGL. We emphasize that while BASTA detects Ze values
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Figure B1. Profiles of the theoretical minimum Ze (Ze ,min, black dashed line) for a sensitivity of -36 dBZ at 1 km AGL and the 0.01st

percentile of BASTA reflectivity (effective Ze ,min, solid blue line) as a function of height. BASTA data is composited across the entire year

of MICRE.

down to -55 dBZ near hmin (150 m AGL), the sensitivity below 1 km AGL decreases rapidly with increasing range. Therefore,

precipitation detection throughout the lowest 1 km AGL is not the same as a more sensitive radar with a minimum detectable

signal of ∼ -55 dBZ over the entire 1-km depth.

Appendix C: Addressing Potential Biases in LCB Height Detections725

Following from the finding in Silber et al. (2018) that the ARM ceilometer tends to overestimate true LCB height by 36-50 m

relative to other observing methods, P cb is recalculated by offsetting the native CEIL-identified CBH downwards by 25 or 50

m (1 to 2 BASTA range gates). P cb is shown for these modified calculations in Fig. C1, where lowering the CBH by 25 (50) m

decreases the total P cb at the highest sensitivity by 2 (5)%. Sensitivities to Ze,min and Dmin remain consistent with these offset

CBHs. In general, offsetting the cloud base decreases the total P cb, but the sensitivity is small.730

Appendix D: Sounding RH and Ceilometer CBH Comparison

Evaluation of ceilometer CBHs was performed by co-locating in time with soundings released at nominally 12 hour intervals

during MICRE. Fig. D1 shows a joint histogram of RHliq and temperature at heights where the ceilometer recognized a CBH
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Figure C1. Cloud-base precipitation occurrence frequency (P cb, contours and color fill) as a function of Ze ,min threshold (ordinate) and

vertical resolution (Dmin, abscissa) for all cloud layers using (a) the native CEIL-recognized CBH, (b) the native CBH offset by 25 m, and

(c) the native CBH offset by 50 m. The black circles in the bottom left-hand corner of each panel represents the BASTA Ze ,min and Dmin =

50 m (2 range gates).

within 20 minutes after a sounding release time. There is a clear maximum in frequency for RHliq > 98%. Following from

Silber et al. (2021) and assuming an RHliq uncertainty of 5%, we consider a liquid-bearing cloud layer to have RHliq > 95%735

in the sounding. In Fig. 1, altitude ranges where RHliq > 95% are identified by transparent purple shading in the sounding

profile and in the BASTA time-height series, with the sounding-based CBH and CTH shown as dark purple lines. Fig. 1d

shows that this RHliq threshold appropriately identifies a sounding-based CBH where the ceilometer identifies CBH, and that

the sounding-identified CTH is correctly located at the top of the radar reflectivity hydrometeor-containing layer. The low-

frequency scatter of ceilometer CBHs with RHliq < 95% in Fig. D1 is due to heterogeneity in the vertical placement of the740

liquid layer that causes spatiotemporal discrepancies between the cloud environment sampled by CEIL and by the sounding.

Overall, 66 (80)% of soundings with colocated CEIL-identified CBHs obtained RHliq values > 95 (90)%.

Appendix E: Supercooled Partitioning Dependence on Dmin

The partitioning of supercooled versus warm-based (i.e., warm + partially supercooled) cloud layers is a strong function of

Dmin (Fig. E1). At Dmin = 50 m, ∼ 55% of detected clouds are supercooled while ∼ 45% of clouds have warm CBTs. At745

Dmin = 600 m, the fraction of cloud layers identified as supercooled increases (decreases) to ∼ 85% (15%) for supercooled

(warm-based) clouds. This is due to the higher Dmin threshold limiting the number of clouds that can be detected below the

minimum detectable CBH (i.e., Dmin + hmin). For a minimum CBH of 750 m, a large fraction of warm-based cloud layers are

omitted from the analysis and the total sample size of clouds capable of cloud-base precipitation detection decreases.

Appendix F: Fog Case Studies750

Generalized cloud morphologies are recognized during MICRE as representative of fog, where two primary cloud environments

are demonstrated in Figs. F1 and F2. The first case (Fig. F1) is representative of a moderate-to-heavy precipitation event with
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Figure D1. Joint histogram of temperature and relative humidity (RH) from soundings at the ceilometer-recognized CBH for all valid

soundings during MICRE.

Figure E1. Fraction of total detected clouds able to be identified as precipitating, distributed among supercooling (colors), as a function of

vertical resolution (Dmin). Top axis is the minimum CBH, which is equivalent to hmin (=150 m) +Dmin.
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intermittent periods of precipitation breaks. In these intermittent periods (e.g., ∼ 0600 UTC), a shallow cloud layer is notable

in the radar reflectivity that reaches 400 m AGL (Fig. F1c,d). The RHsfc exceeds 95% during this time period (Fig. F1f) and

the two soundings released during the event show completely saturated layers through at least 1 km AGL (Fig. F1a,b). The755

University of Canterbury ceilometer apparent βatt (Fig. F1e) shows a persistent period from 0000 to 1400 UTC with CBHs

very close to the surface (within the BASTA "blind zone") where the signal is entirely attenuated above ∼ 125 m AGL.

The second example is a more traditional fog layer (Fig. F2). The CEIL apparent βatt profiles begin with enhanced values

> 10−6 m−1 sr−1 without coincident radar reflectivity, which may be deliquescenced aerosol (haze), before developing a

surface-based cloud where apparent βatt values exceed 10−4 m−1 sr−1 and radar echoes develop (∼ 1900 UTC on 22 May).760

RHsfc then exceeds 95% and the last sounding shows a liquid-saturated layer up through 800 m AGL. The CBHs in this case

are not as consistent as in Fig. F1, with CBHs often being detected up to 400 m AGL. Note also instances (e.g., ∼ 0900 UTC

on 23 May) where shallow convection appears to rise out of the fog layer.

Regardless of the formation mechanism, these βatt profiles and their physical implications account for a large portion of

cloud bases identified by CEIL (18%, see Fig. 8). Although such profiles may be regarded as contamination of the ceilometer765

signal, they are coincident with RHsfc > 95%, suggesting a prevalence of fog over this SO site with true cloud bases near the

surface, and thus the relevant physical formation mechanisms should be represented by model physics.

Appendix G: GISS-ModelE3 Sensitivities of Cloud and Precipitation Occurrence Frequency to Thresholding Behavior

Cloud and precipitation occurrence frequencies may be sensitive to certain thresholding behavior in the model. LCB detection

in GISS-ModelE3 is performed by identifying the lowest grid cell in altitude where CLWC exists. An arbitrary lower threshold770

for the statistics discussed here is found to be unnecessary for representing cloud occurrence frequency, which only decreases

by a few percent between grid-cell mean CLWC values of 10−9 g m−3 to 10−4 g m−3 (Fig. G1a). Similarly, the cloud

occurrence frequency is shown to be insensitive for βatt < ∼ 10−5 m−1 sr−1 (top axis of Fig. G1a).

The detection of precipitation relies on the existence of a precipitating hydrometeor species within the grid cell identified

as cloud base, no matter how small the Rcb is in that grid cell. However, Fig. G1b shows that the precipitating fraction only775

decreases by ∼ 2.5% for a range of Rcb from 10−12 mm hr−1 to 10−6 mm hr−1. This implies that the precipitation occurrence

frequency is also not very sensitive to relevant minimum Rcb thresholds we expect to observe in nature.

Data availability. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program ceilometer data (doi:10.5439/1181954)

and Australian BoM surface meteorology station data (doi:10.5439/1597382) are available through the DOE ARM data archive (https://adc.arm.gov/).

BASTA radar data (doi:10.26179/5d91836ca8fc3) and the University of Canterbury ceilometer data (doi:10.26179/5d91835e2ccc3) are ac-780

cessible through the Australian Antarctic Division’s Data Centre (https://data.aad.gov.au/metadata/records/AAS_4292_Macquarie_Cloud_Radar

and https://data.aad.gov.au/metadata/records/AAS_4292_Macquarie_Ceilometer, respectively). Upper air soundings from the Australian

BoM are available via online request at https://data.aad.gov.au/metadata/records/Antarctic_Meteorology. VISST-derived pixel-level prod-

ucts from the Himawari-8 satellite are available on the ARM Data Discovery website (https://adc.arm.gov/discovery/#/results/s::macquarie).
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Figure F1. Summary of fog event that occurred during moderate to heavy precipitation on 15 April 2016 showing (a) temperature and RH

for a sounding released at 2320 UTC on 14 April 2016, (b) as in (a) but for a sounding released at 1118 UTC on 15 April 2016, (c) 24-hr

time-height series of BASTA radar reflectivity (d) as in (c) but for BASTA Doppler velocity, (e) as in (c) but for apparent βatt from the

University of Canterbury ceilometer, and (f) a time series of RHsfc and Tsfc from the surface meteorological station. In (a), (b), and (f),

times/heights where RH > 95% are shaded in purple. CBHs from CEIL are given as black dots in panels (c)-(e). Sounding release times are

marked in (c)-(e) via brown lines with a light blue outline.
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Figure F2. As in Fig. F1 but for a fog event from 22-23 May 2016 where the first sounding was released at 1115 UTC on 22 May and the

second sounding was released at 1115 UTC on 23 May.
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Figure G1. Sensitivities of (a) cloud occurrence frequency to thresholding of grid-cell mean cloud liquid water content (CLWC, black solid

line) and ceilometer attenuated backscatter (βatt, blue dashed line) and (b) precipitating fraction to minimum Rcb threshold (black line). In

(b), the fraction of precipitating clouds as a function of Rcb threshold is shown as a blue dashed line.

The Earth Model Column Collaboratory (EMC2) software package is available at https://github.com/columncolab/EMC2. Code used for785

processing and scripts used to make all figures are available at https://github.com/NASA-GISS/micre_stanford-acp2023.
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