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Abstract. Tropical cyclones – TCs – affecting the South Pacific region are studied using coupled atmosphere-ocean earth

system models and (offline) storm tracking software which tracks the position of simulated pressure lows through time. The

models used are the United Kingdom Earth System Model, version 1 – UKESM1 – and the related New Zealand Earth System

Model, the NZESM. The model pair considered here differ only in their treatment of the ocean and the NZESM has a nominal

resolution of 0.2◦ in the region surrounding New Zealand and 1◦ elsewhere; UKESM1 has a a uniform 1◦ resolution every-5

where. After validating the storm tracking algorithm against the track of cyclone Giselle from 1968 and cyclone Gabrielle from

2023 we use the Saffir-Simpson scale to split the tracked systems into categories based on their severity. For systems formed

in the vicinity of New Zealand (and globally) the overall number is overestimated but stronger (category 2 and 3) storms

are underestimated. We also see a general decrease in the total number of storms as radiative forcing, F , increases although

there is some evidence of a small increase at extreme levels of warming. In the metrics studied here we find no difference10

between the ensembles of UKESM1 and NZESM simulations and going forward use the UKESM1, which has larger available

ensembles. The power dissipation index, PDI, gives a first order measure of TC strength and we find that the average PDI

per storm increases with F by up to 26% under a ‘fossil-fuelled development’ scenario. Although the physical mechanisms

behind the increase in average PDI with F are relatively simple to understand, those governing the frequency of occurrence

are not. In the results shown here, vertical wind shear increases with F which tends to reduce TC numbers but the effect of the15

tropospheric relative humidity is much less clear. The increase in the area of the tropics bounded by the 26.5◦ isotherm should,

on its own, increase the number of TCs, in opposition to the general behaviour observed, except perhaps at extreme levels of

future warming.

1 Introduction

In February 2023, ex-tropical cyclone Gabrielle impacted several countries in the South Pacific and caused the largest financial20

fallout of any South Pacific tropical cyclone on record, as well as causing 11 fatalities. Gabrielle was a category 3 tropical

cyclone and is precisely the type of system which society would like to have a better understanding of in a changing climate.

A further example of an ex-tropical cyclone impacting New Zealand came in April 1968 in which cyclone Giselle caused

the sinking of the passenger vessel Wahine with the loss of over 50 lives.
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Although these two particular storms are far from unique in their physical attributes, they occupy a particularly visceral25

location in the public psyche of New Zealanders and are used in this study as benchmarks to validate cyclone tracking software.

Understanding how TCs may change in the future has enormous ramifications. For example, some authors predict that

climate change may double the economic impact of TCs by 2100 (Mendelsohn et al., 2012). Changes to populations, poverty

levels and the ability of affected governance structures to deal with TC impacts are also of paramount importance(Noy, 2016;

Peduzzi et al., 2012).30

All these issues notwithstanding, without a way to explicitly track low pressure systems through time we can’t even begin

to quantify TCs and their impacts as the climate changes.

As far as mean-sea-level pressure is concerned, global climate models typically produce gridded data with a resolution of

the order of 1◦ which is enough to detect and follow TCs around. Various algorithms and software schemes are available.

The scheme of Hodges et al., TRACK (Hodges, 1994, 1995, 1999) has been widely used in the literature but is not open-35

source, although it does track spatial features in 850hPa vorticity and thus has the advantage of being able to find storms early

in their lifetime.

In this study we use the open source stormTracking package 1, which identifies pressure extrema and their paths through

time. This is an adapted version of an ocean eddy tracking code described in detail in (Chelton et al., 2011) and a full description

of how it works is included in Appendix B. The tempestExtremes software described in (Ullrich et al., 2021) is another40

open-source package which uses sea-level-pressure data to track storms and a comparison between the results of this package

with stormTracking is given below. We also provide a comparison of the ability of the 20CR and ERA5 reanalyses to

follow the observed track of cyclone Giselle and subsequently use ERA5 because of its higher resolution and its improved

ability to to capture deep lows.

The study of Roberts et al. (Roberts et al., 2020a) compares the results of TRACK and tempestExtremes using simu-45

lations from the High Resolution Model Intercomparison Project, HighResMIP (Haarsma et al., 2016) out to 2050. They find

an overall decrease in the number of Southern Hemisphere TCs in the Indian Ocean but results for the Northern Hemisphere

and indeed other Southern Hemisphere ocean basins are unclear. They also note – and the present study agrees – that the most

damaging TCs are set to increase in their damage potential; indeed this – along with a general uncertainty concerning TC

occurrence frequency – is the broad consensus of the research community at the time of writing. They also find that refining50

the resolution of the model used has an overall positive effect on its ability to simulate important TC properties. In a companion

paper (Roberts et al., 2020b), the same two tracking algorithms are used on a related ensemble but for the historical period

covering 1950-2014 and – notably for this study – find that the frequencies of the highest category TCs are underestimated.

Some previous studies have found that Southern hemisphere tropical cyclone – TC – frequency is set to reduce as the

climate warms yet some have found the opposite (see (Chand et al., 2022) for a recent review). In contrast, the strength of55

the ‘remaining’ TCs is – more robustly – projected to increase (Knutson et al., 2010; Chand et al., 2022; Emanuel, 2005).

The number of TCs is also highly dependent on the ocean basin considered with the South Atlantic for example producing

few-to-none (Pezza and Simmonds, 2005). Our results broadly agree these findings from previous studies.

1https://github.com/ecjoliver/stormTracking/
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We firstly compare simulated, historical tropical cyclone climatologies in the New Zealand region and globally against

reanalysis data and then perform the same analysis for the whole Southern Hemisphere.60

We then move on to assessing potential future changes to storms at the end of the 21st century using various different

Shared Socioeconomic Pathways, allowing for quantification of possible future greenhouse gas emissions (Riahi et al., 2017;

Meinshausen et al., 2020). Our results show some evidence for a reduction in the number of Southern Hemisphere TCs expected

as the climate warms and a more robust expectation for increased TC strength.

TC formation (cyclogenesis) involves a highly complex set of inter-related physical criteria on sea surface temperature65

(SST), humidity and wind shear which goes some way to explain why the future frequency of TCs is difficult to predict and

all three of these effects are considered in this work. To first order, wind shear changes tend to reduce the number of TCs, SST

tends to increases it and the effect of relative humidity is uncertain. We show some preliminary evidence that in extreme future

warming scenarios that the effect of increasing SST may overwhelm the factors tending to reduce TC numbers although.

Regarding the future strength of TCs, we quantify how we may expect power dissipation per TC – and hence damage70

inflicted – to increase based on future scenarios of climate change and although the precise magnitude of this is uncertain, the

direction is robust, in agreement with the current literature.

2 Comparing tracking algorithms

To better understand the uncertainty associated with the use of different tracking algorithms, we start by comparing the

outputs of the stormTracking and tempestExtremes using ERA5 data from 1989-2008 as ground truth, Figure 1.75

The minimum storm duration considered is 54 hours – the tempestExtremes default value – and the input data for

stormTracking is regridded to a resolution of 2◦ before the processing algorithm is applied. The reason for this is that

the default input dataset to stormTracking is the 20CR reanalysis which has a resolution of 2◦. Only storms which have

their genesis in -20◦ < latitude < 0◦ and 132.7◦ < longitude < 216.3◦ are considered. The longitude bounds here are those of

the high-resolution ocean region in the NZESM, which is described in §4 and in (Behrens et al., 2020).80

The agreement between the two results in 1 shows that the two different algorithms are in good agreement with one another,

particularly in the number and spatial distribution of genesis sites. Overall, the stormTracking results in Figure 1 are

more sparse further away from the genesis sites compared to tempestExtremes. This is likely due to the regridding which

is applied to the input data for this algorithm which removes a substantial amount of the spatial information present in the

raw data. This is quantified by the number of storms reaching south of -60◦, Nλ<−60, which is 6 in Figure 1(a) and 11 in85

Figure 1(b). However, the agreement is striking and – along with the validation for TCs Giselle and Gabrielle below – gives

confidence that the stormTracking software is fit for purpose and for the remainder of this study stormTracking is

used exclusively.
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Figure 1. Tropical cyclone climatologies for the stormTracking – (a) – and tempestExtremes – (b) – software packages. The input

data is 6-hourly mean-sea-level pressure for 1989-2008 from the ERA5 reanalysis. Only storms with duration 54h or more are considered

and the black tracks are for storms which reach south of -60◦, the sum of which is denoted Nλ<−60.
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Figure 2. (a) Observed (Knapp et al., 2010) track from IBTrACS of cycle Giselle (◦) which hit Wellington in April 1968 causing the

Wahine disaster. All tracks show data from the beginning of the respective datasets and are terminated at 19680410T0600Z which is also

the date of the background pressure map, also from ERA5. The inset zooms in on the cyclogenesis region. (b) Observed track from NOAA

of cycle Gabrielle (◦) which hit New Zealand in Fabruary 2023. Both tracks show data from the beginning of the respective datasets and

are terminated at 20230214T0000Z which is also the date of the background pressure map, also from ERA5. NOAA data for Gabrielle is

available at https://www.ssd.noaa.gov/PS/TROP/DATA/ATCF/JTWC/bsh122023.dat.

3 Validation of storm tracking software

We now move on to validating the chosen algorithm on the two specific TCs mentioned in the introduction; Giselle from 196890

and Gabrielle from 2023.

3.1 Giselle, April 1968

Cyclone Giselle struck New Zealand and caused the sinking of the passenger ferry Wahine in April 1968. Giselle was an

ex-tropical cyclone and its path over the preceding 8 days is shown in Figure 2.

Figure 2 shows the track of cyclone Giselle from two perspectives. Firstly from the IBTrACS database (Knapp et al., 2010)95

and secondly by processing sea-level pressure data from the 20CR (Compo et al.) and ERA5 (Hersbach et al., 2020) reanalyses.
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Figure 3. (a) Observed central pressure of storm Giselle from the IBTrACS database (Knapp et al., 2010) and the calculated values from the

ERA5 (Hersbach et al., 2020) and 20CR (Compo et al.) reanalyses. All tracks show data from the beginning of the respective datasets and

are terminated at 19680410T0600Z which is the date of the background pressure map in Figure 2. (b) Observed central pressure of storm

Gabrielle from NOAA – see footnote in Figure 2 – and the calculated values from the ERA5 (Hersbach et al., 2020) reanalysis. All tracks

show data from the beginning of the respective datasets and are terminated at 20230214T0000Z which is also the date of the background

pressure map in Figure 2.
6
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At first sight, it is perhaps not surprising that the 3 tracks shown in Figure 2(a) are so similar. They are, after all, represen-

tations of the same weather system. However the resolution of the 20CR reanalysis is 2◦× 2◦ and that of ERA5 is 8 times

greater, 0.25◦× 0.25◦, i.e. 64 times the areal resolution of 20CR. However, the stormTracking package regrids all data to

the same resolution as the 20CR reanalysis, that is, the software’s default setting.100

To better visualise the difference that this makes to the ability of the respective reanalyses to reproduce the physical charac-

teristics of tropical cyclones, Figure 3 shows the magnitude of the central pressure for storm Giselle. The extreme low pressure

around April 10th 1968 – ultimately the cause of the loss of life discussed above – is well captured by the ERA5 dataset but

poorly by 20CR. Indeed, the observed precipitous drop in central pressure in from 18:00 on April 9th to 00:00 on April 10th

is completely absent from 20CR. This is likely due to improved New Zealand-based observations in ERA5, such as upper-air105

soundings – e.g. (Tradowsky et al., 2018) – and four-dimensional variational data assimilation (Bell et al., 2021); indeed the

20CR reanalysis uses only surface data. For another comparison of these reanalyses, recent work has analysed both in terms

of their Southern Annular Mode response (Morgenstern, 2021). An idea of the spatial scale of these systems can be seen in

Figure 6 below.

3.2 Gabrielle, February 2023110

During preparation of this manuscript – once Section §3.1 had been written – New Zealand and other neighbouring countries

were hit by cyclone Gabrielle. Gabrielle was – by some measures – the most financially damaging event in New Zealand’s

history (Harrington et al., 2023), as well as causing the deaths of 11 people. Figures 2(b) and 3(b) show Gabrielle’s track and

central pressure respectively.

The track data in Figure 3 shows that the stormTracking software does not converge onto the observed track for a couple115

of days. This is not surprising however since the ERA5 data are regridded before applying the tracking algorithm. Once the

tracks converge, again the agreement between the precisely observed locations and those re-analysed from the ERA5 data is

excellent and the observed central pressures – Figure 3(b) – are closely followed.

As well as being a further check on the efficacy of the tracking algorithm used and providing a more recent example of

a notably devastating system, it is interesting to note the ‘noisier’ contours in Figure 3(a) compared to 3(b). This is the case120

despite both sets of contours being taken from the same input dataset and illustrates the increased density of observations

assimilated into the forcing model in the reanalysis in the intervening half-century.

4 Models used

We use results from UKESM1 (Sellar et al., 2019, 2020) and the NZESM (Behrens et al., 2020; Williams et al., 2023) and

compare their results with reanalysis data from and ERA5 (Hersbach et al., 2020) all simulations are detailed in Table 3.125

UKESM1 – United Kingdom Earth System Model – is a state-of-the-art, coupled earth system model – ESM – consisting

of dynamic atmosphere, land-surface, ocean and sea ice models with the addition of biogeophysical and biogeochemical com-

ponents (including an explicit troposphere-stratosphere chemistry scheme) and was a constituent model in CMIP6 ensemble.
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These additional components of the model are what differentiates an ‘Earth System’ model from a ‘physical’ climate model

such as the HadGEM3-GC3.1 model (Williams et al., 2018), which is the so-called ‘physical core’ of UKESM1. We use 16130

members of UKESM1 historical ensemble and 5-member ensembles of each of the Shared Socio-economic Pathways (SSPs)

in Table 1.

The NZESM is a closely-related sibling model of UKESM1 but contains a two-way nested, high-resolution (eddy permitting)

ocean surrounding the New Zealand region from -60.17◦S to -10.5◦S and 132.70◦E to 216.3◦E at a nominal resolution of

≈ 0.2◦. This region is called the ‘AGRIF’ region for the rest of this work, where AGRIF stands for Adaptive Grid Refinement135

In Fortran (Debreu et al., 2008). The precise resolution depends on latitude and longitude and a more extensive treatment of

the physics and physical oceanography of this model pair can be found elsewhere (Behrens et al., 2020, 2022). The NZESM

also contains a change to the way that ozone photolysis is treated via the inclusion of a solar cycle dependence (Dennison et al.,

2019). The atmospheric resolution of the models is 1.25◦×1.875◦ and that of the global ocean is ∼ 1◦ but varies somewhat

depending on latitude (Sellar et al., 2019).140

Throughout this work we compare ‘historical’ results for 1989-2008 and future scenarios for 2080-2099. The forcings after

2015 – the end of the historical period for CMIP6 – are described in Table 1 and are described in detail elsewhere, e.g. (O’Neill

et al., 2016; Van Vuuren et al., 2017; Fricko et al., 2017; Fujimori et al., 2017; Kriegler et al., 2017).

Additional historical simulations were carried out to test:

– The length of the spinup of the NZESM by starting in:145

– 1950, NZESM.

– 1940 (× 2), NZESM2,3.

– 1851, NZESM4. All UKESM historical ensemble members start in 1850, the extra year accounts for the first

archived January 1st boundary conditions from the parent models.

– Hardware and compiler dependency.150

– The present authors used a Cray XC50 machine and the Intel Fortran compiler; UKESM1_NZ (UKESM1 simula-

tions were run on a Cray XC40 machine using the native compiler).

– Solar-cycle dependence of ozone photolysis, NZESM_WITHOUT_PHOTOLYSIS_CHANGE.

5 Results

5.1 Cyclone occurrence frequency - comparison to ERA5155

TC severity is often delineated using the Saffir-Simpson scale (Song et al., 2010) and we use the pressure bounds to define the

different categories in Table 2.
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SSP ‘family’ Scenarios; F at 2100 [W ·m−2] Description (overview in (O’Neill et al., 2016))

1 1.9 , 2.6 ‘Sustainability’(Van Vuuren et al., 2017)

2 4.5 ‘Middle of the road’(Fricko et al., 2017)

3 7.0 ‘Regional rivalry’(Fujimori et al., 2017)

5 8.5 ‘Fossil-fuelled development’(Kriegler et al., 2017)
Table 1. Shared socioeconomic pathways – SSPs – used in this work. The names used throughout this paper are formed by joining the SSP

‘family’ (1, 2, 3, 5) and the value ofF (1.9, 2.6, 4.5, 7.0, 8.5), e.g. SSP2-4.5.F is the top of atmosphere radiative forcing at 2100 in W ·m−2.

Category Pressure bounds

1 980 < P

2 965 < Pmin < 980

3 945 < Pmin < 965

4 920 < Pmin < 945

5∗ Pmin < 920
Table 2. Category 1-3 definitions for the Saffir-Simpson scale. ∗ None detected in any of the datasets examined in this work.

The scale goes up to category 5, however our results show no TCs in this category for any of the datasets considered and

indeed too few category 4 ones to draw any conclusions from. This is of course not to say that these systems do not occur,

simply that they do not show up in our reanalysed results. This is a known limitation of cyclone tracking algorithms, e.g.160

(Roberts et al., 2020b). Recent work has shown that a resolution of ⪅ 0.5◦ gives improved representations of TCs in climate

models (Cavicchia et al., 2023) and future work using this family of models to explicitly compare against the results presented

here would be instructive.

Figures 4 shows the distribution of storms in categories 1 to 3 on the Saffir-Simpson scale as well as the total number, N ,

for the region considered in Figure 1. All data in Table 3 is shown. From here on the minimum age of systems considered is165

72 hours, which is the default minimum in the stormTracking package. Figure 4(a) shows N and there is some evidence

of a decrease as the forcing increases, although the data is noisy to say the least. Note also that the x-axis is also simply a

‘count’ of the number of models and although the forcing increased from left to right, there are more than 3 times the number

of simulations with historical forcing than any of the SSPs.

The simulations universally overestimate N – Figure 4(a) – compared to ERA5 for the historical simulations by roughly170

10-20%. However, given the myriad of approximations going into the tracking software and the regridding done before anal-

ysis, the results here are encouraging, particularly for this preliminary analysis. Ncat1 is also overestimated and Ncat2,3 are

underestimated. This tendency to ‘lose’ higher category systems is a known feature of tempestExtremes and the same

likely applies to stormTracking too given the similarity of the two algorithms.

Figure 4(b) shows marginally clearer evidence for a decreasing number of category 1 storms as forcing increases. The inset175

shows the simulations’ results alone to illustrate this more clearly and Figures 4(c-d) shows for category 3 and 4 storms, there
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Dataset Description

ERA5 Reanalysis data (Hersbach et al., 2020)

UKESM1[_#2-16] historical simulation data from the CMIP6 UKESM ensemble (Tang et al., 2019); r1i1p1f2,

r2i1p1f2, r3i1p1f2, r4i1p1f2, r5i1p1f3, r6i1p1f3, r7i1p1f3, r8i1p1f2, r9i1p1f2, r10i1p1f2,

r11i1p1f2, r12i1p1f2, r16i1p1f2, r17i1p1f2, r18i1p1f2, r19i1p1f2.

UKESM1_NZ UKESM run by present authors using starting conditions from UKESM historical simula-

tion r4i1p1f2 at 01/01/1950 (Tang et al., 2019)

NZESM_WITHOUT_· · ·
PHOTOLYSIS_CHANGE NZESM, omitting solar-cycle dependence of photolysis (Dennison et al., 2019) starting

from UKESM historical simulation r4i1p1f2, 01/01/1950 (Tang et al., 2019)

NZESM 1×NZESM using starting conditions from UKESM historical simulation r4i1p1f2,

01/01/1950 (Tang et al., 2019).

NZESM#2,3 2×NZESM started from 01/01/1940 (starting from r17i1p1f2 and r12i1p1f2 respec-

tively)

NZESM#4 1×NZESM started from 01/01/1851 (r17i1p1f2)

NZESM_SSP126[_#2-3] 3×NZESM SSP1-2.6 scenario (Behrens et al., 2022).

NZESM_SSP245[_#2-3] 3×NZESM SSP2-4.5 scenario (Behrens et al., 2022).

NZESM_SSP370[_#2-3] 3×NZESM SSP3-7.0 scenario (Behrens et al., 2022).

UKESM1_SSP126[_#2-5] 5×UKESM SSP1-2.6 scenario (Good et al., 2019a); r1i1p1f2, r2i1p1f2,

r3i1p1f2, r4i1p1f2, r8i1p1f2.

UKESM1_SSP245[_#2-5] 5×UKESM SSP2-4.5 scenario (Good et al., 2019b); r1i1p1f2, r2i1p1f2,

r3i1p1f2, r4i1p1f2, r8i1p1f2.

UKESM1_SSP370[_#2-5] 5×UKESM SSP3-7.0 scenario (Good et al., 2019c); r1i1p1f2. r2i1p1f2,

r3i1p1f2, r4i1p1f2, r8i1p1f2.

UKESM1_SSP585[_#2-5] 5×UKESM SSP5-8.5 scenario (Good et al., 2019d); r1i1p1f2, r2i1p1f2,

r3i1p1f2, r4i1p1f2, r8i1p1f2.
Table 3. Datasets used in Figures 4. All SSP data is for 2080-2099 inclusive and all historical data is 1989-2008 inclusive. Simulation

identifiers of the form rαiβpγfδ indicate the realisation, initialisation, physics and forcing for each ensemble member, e.g. (Zhao et al.,

2022) or https://pcmdi.llnl.gov/CMIP6/Guide/modelers.html. ‘Hashtag’ (#) symbols indicate ensemble member number indices.
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Figure 4. Total number N (a) and decomposition by storm category (b-d) for the situation shown in Figure 1. Only categories 1-3 are shown

since the number in category 4 are almost universally 0 or 1; three cases have 2 and two have 3 and so basing any conclusions on such low

numbers is dubious at best. The inset to (b) shows the simulations’ alone, colour-coded the same way as the main figure and with all circle

as markers to aid the eye.

Figure 5. As for Figure 4 but globally. The numbers of category 4 storms is still too low to draw conclusions from.
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are not enough systems detected for any putative conclusions to be drawn regarding frequency versus F . The lack of any

discernible difference between the numbers given by the NZESM and UKESM is an interesting result and is far from obvious.

Indeed our initial expectation was that there would be a non-negligible difference in the overall cycle occurrence frequency in

the two models given the substantially different surface ocean physics.180

To try and draw more statistically robust conclusions, Figure 5 shows the same situation as for Figure 4 but for all longitudes.

Comparing Figures 4(a) and 5(a) shows that approximately a third of the global tropical cycles have their genesis in the region

considered in Figure 1. We also see that there is, again, a general decrease in N as forcing increases.

At extreme forcing levels though – SSP5-8.5; the dark red circles in Figure 5(a) – there is some indication that N may

actually start to increase again, albeit to a level somewhat lower than in the historical period. This behaviour is also seen for185

Ncat1 and Ncat3 although the numbers of category 3 systems are very low, averaging only 1 per 4 years or so. There is no

change in Ncat2 for either the regional or the global case and the relative over/under estimation compared to ERA5 is the same

in both cases.

In both the regional and global cases, the frequency of the more damaging systems is underestimated and represents a target

for future cyclone tracking algorithms. Indeed, ERA5 itself tends to underestimate the strong tropical cyclones (Ullrich et al.,190

2021) and so care should be taken when interpreting the results presented here too precisely.

All of the historical simulations performed by the present authors fall well within the ranges of UKESM1 historical ensemble

and so to remove any potential model dependency in the results that follow, only UKESM1 historical ensemble simulations

are included going forward. We use 5-member ensembles for all SSP results below to enable us to compare similar numbers of

simulations for each forcing scenario; the number of UKESM historical ensemble members is considerably larger than any of195

the SSPs.

We now move on to discuss the potential changes to TC strength with climate change.

5.2 Power dissipation index of tropical cyclones

In this section we illustrate one possibility to quantify the potential change to damage caused by tropical cyclones; that of the

power dissipation index, PDI. We use the definition in (Emanuel, 2005),200

PDI≡
τ∫

0

V3
maxdt, (1)

where PDI is the power dissipation index and Vmax is the maximum wind speed in the time resolution of the input data.

Strictly speaking Vmax is the maximum sustained windspeed within the physics timestep of the model; this is 20 minutes in

UKESM1 and so this is the minimum time within which Vmax can be said to be ‘sustained’.
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Figure 6. All ERA5 cyclones formed from -20◦ to 0◦ in 1989 – 2008 which ‘hit’ New Zealand at some point in their history as indicated

by the dashed box. The colours are arbitrary and are merely present to differentiate between different systems. The transparency of the

plotted lines also decreases from 1 at genesis to 0.1 at termination. The overlaying image over the New Zealand region is the medium height

cloud cover from the ERA5 reanalysis at 20230214T0000Z and shows the huge spatial extent of tropical cyclone Gabrielle which caused

widespread destruction and loss of life. The characteristic clockwise rotation around the low pressure centre is clearly visible.
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5.2.1 Tropical cyclones in the New Zealand sector205

We have used latitude bands for genesis and intersection rather than specifically concentrating on systems that ‘hit’ New

Zealand because this makes the numbers available to study too small. Figure 6 shows the all tropical cyclones generated

between the equator and -20◦ during 1989-2008 which hit New Zealand and clearly there are not enough of them to be able to

make any meaningful, statistical conclusions about the changes to this number as the climate changes.

Firstly we consider tropical cyclones which are generated in the tropical AGRIF region which intersect New Zealand latitudes210

(again in the AGRIF region). These systems are shown in Figure 7 and further illustrate why the statistics of storms impacting

New Zealand specifically – dashed box in Figure 6 – are so sparse. For example in sub-Figures 7(p, r, x) there are no tropical

cyclones which impact New Zealand.

Even though the statistics are sparse it is of interest to examine this specific case to try and understand what information

can be gleaned from wind speeds along the entire track – every 6 hours – rather than simply counting cyclone occurrence,215

which clearly only yields one datum per system. We also consider all SSPs to quantify the projected change to cyclone damage

potential in a warming world.

Figure 8(a) shows the mean, each of the ensemble members and intra-ensemble spread of the PDI for the 5-member ensem-

bles at each SSP in Figure 7 as well as a comparable 5-member historical ensemble. The ensemble spread is large, as reflected

by the broadly-overlapping error bars. There is however a clear relationship between PDI and F . Indeed, this shows that an220

increase in PDI per storm of up to 24% in the New Zealand sector may be expected by 2100 assuming a ‘worst case’ scenario,

SSP5-8.5. The large spread of the results, particularly for SSP1-1.9 illustrates why the mean PDI is non-monotonically increas-

ing with F ; i.e. one ensemble member has a PDI which is significantly higher than the other 4. Larger regions are considered

below and once enough TCs are counted to improve the statistics, the monotonic behaviour emerges, e.g. Figure 10(e-f).

In Figure 8(b), we recast the data in Figure 8(a) to take into account the unequal spacing in the F values for each SSP. We225

also perform a linear fit to the data so that we can obtain a rough quantification of the increase in potential future storm damage

and in this case the linearity of fit parameter, R2=0.78.

The gradient of the linear fit in Figure 8(b) is represented by equation 2

d PDI
dF ≈ 1.5× 107

[
m3 · kg−1 · s

]
(2)

Equation 2 says that for every 1 W ·m−2 increase in the top of atmosphere radiative forcing,F there is an associated increase230

in the PDI, of 1.5× 107
[
m3 · kg−1 · s

]
per tropical cyclone impacting New Zealand latitudes.

We now perform the same analysis at all longitudes to attempt to improve the statistics of the analysis.

5.2.2 Global tropical cyclones

Figure 9 shows the tropical cyclone tracks for the entire southern hemisphere and for the same models as Figure 7 and using

the same latitude criteria. In general the distribution of tropical cyclones in the models is in good agreement with the ERA5235
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Figure 7. Cyclones formed in the solid box region in (a) which intersect the dashed box region. Both boxes have the same longitude extent as

the AGRIF region, the solid line box goes from the equator to -20◦ S and the dashed line box goes from -48.17◦ to -32.75◦ S. The pressure at

cyclogenesis is shown and the colour bar is the same for all simulations and the transparency of the plotted cyclone tracks decreases from 1 at

genesis to 0.1 at termination.The datasets are ERA5 and the following UKESM simulations (a), historical (b)-(f), SSP1-1.9 (g)-(k), SSP1-2.6

(l)-(p), SSP2-4.5 (q)-(u), SSP3-7.0 (v)-(z) and SSP5-8.5 (A)-(E).
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Figure 8. (a) Cyclone power dissipation index – PDI – per storm for the simulated systems shown in Figure 7. (a) Shows the ensemble mean,

the 5 individual ensemble members, and ± 1 standard. (b) Mean PDI as a function of the top of atmosphere radiative forcing, F . The best fit

line has an R2 value of 0.78.

reanalysis – Figure 9(a) – reproducing several salient features, for example the almost complete absence of South Atlantic

tropical cyclones. The paucity of storms in this basin is thought to be due to, for example, excessive wind shear in the vertical

(Pezza and Simmonds, 2005) and low sea surface temperatures (Evans and Braun, 2012).

As for the destructive power of these Southern Hemisphere storms, Figure 10(a) shows the PDI per storm, PDI, for each SSP

and Figure 10(d) as a function of F .240

As was the goal with using a larger longitude range, the error bars in Figure 10(a) are – in general – smaller than in Figure

8(a). In addition to the reduction in the error bar size, we see that when a larger population of storms is considered, R2 also

increases; from 0.78 in Figure 10(d) to 0.92 in Figure 8(b).

It is increased still further to 0.95 when the southern boundary of the tropical genesis region under consideration is widened

to -25◦ – Figure 10(e) – and is accompanied by a shift to exclusively monotonic increases in mean PDI with F – Figure 10(b).245

This increase in linearity-of-fit however is accompanied by a reduction in the gradient of increase in PDI and is indeed reduced

even further when the southward boundary of the genesis region is set to -30◦. It is thought that this reduction in upward

gradient is due to the steady inclusion of extra-tropical systems – in terms of their genesis mechanisms – which are presumed

to be essentially absent equatorward of -20◦.

5.2.3 Effect of cyclogenesis region on frequency of storms delineated by category250

Finally in this section, we separate the storms shown in Figures 7 and 9 into their Saffir-Simpson categories. The data are

shown in Figure 11 and Table A1 in Appendix B, which also shows more explicitly where projected future numbers of TCs are

projected to increase or decrease with respect to historical numbers.
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Figure 9. As for Figure 7 but globally. The datasets are ERA5 and the following UKESM simulations (a), historical (b)-(f), SSP1-1.9 (g)-(k),

SSP1-2.6 (l)-(p), SSP2-4.5 (q)-(u), SSP3-7.0 (v)-(z) and SSP5-8.5 (A)-(E). The colour bar is the same for all simulations and the transparency

of the plotted lines decreases from 1 at genesis to 0.1 at termination.
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Figure 10. Mean ± 1 standard deviation - σ - cyclone power dissipation index – PDI – per storm for the simulated systems shown in Figure

9 (a) and extending the southern boundary of the genesis region to -25◦ (b) and -30◦ (c) respectively. (d) - (f) show the mean PDI as in (a) -

(c) but against F on the x-axis; a linear fit is also shown and the R2 goodness of fit parameter is 0.92, 0.95 and 0.90 for (d-f) respectively.

One aspect of this data which is particularly striking is the convergence in the ability of the simulations – and tracking

software – to more accurately reproduce the number of cyclones in ERA5 as the size of the cyclogenesis region is increased.255

Consider Figure 11(a,b) compared to 11(c,d) for example where Ncat2 and Ncat3 are well-simulated in the latter pair but are

noticeably overestimated in the former. This is clearly a statistical effect because as the size of the genesis region considered

increases, the more likely the model is to detect these relatively rare events.

Figure 11 also quantifies of the size of the region necessary to resolved the ‘long tail’ of high-impact, low-probability events

reaching mid-latitudes. Indeed no category 4 systems are tracked within 20◦ of the equator in this analysis.260

We also see that the general underestimation in N in Figure 11(a) is alleviated when using larger regions. This underesti-

mation is the reverse to that seen above when no termination criterion was imposed, i.e. Figures 4 & 5. This tells us that, in

general, the tracking software is ‘losing’ too many cyclones too quickly after detection and is an area of possible improvement

to be targeted in future work.

In the next section we examine the physical reasons for the projected increase in tropical cyclone power dissipation discussed265

above.

5.3 What factors influence tropical cyclone frequency and severity?

As discussed above, estimating the number of tropical cyclones in the Southern Hemisphere with climate change is challenging,

however it is a robust result that they are predicted to be stronger, (Walsh et al., 2016; Knutson et al., 2010; Emanuel, 2005).
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Figure 11. Cyclone counts from the area criteria in: (a) Figure 7, (b) Figure 9, (c,d) Figure 9 but with the southern boundary of the genesis

region extended to -25◦ and -30◦ respectively. With each category (total, N , category 1, etc) the black marker shows the ERA5 results,

orange is historical, blue is SSP1-1.9 and red is SSP5-8.5. The vertical bars show ± one standard deviation within the 5 member ensembles

considered.
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Figure 12. Wind shear over ocean (a) and projected wind shear change with respect to (a) for 0◦ to -20◦ S and 132.7◦ E to 216.3◦ E for

(a) historical (1989-2008), (b) SSP1-1.9, (c) SSP1-2.6, (d) SSP2-4.5, (e) SSP3-7.0 and (f) SSP5-8.5. All data are means of the 5 member

ensembles considered above and all negative values are masked.

There are several – related – conditions for tropical cyclogenesis, e.g. high SST (Dare and McBride, 2011) and humidity (Wu270

et al., 2012) (also see (Lang, 2023) for a discussion on the problems that GCMs have in modelling tropical relative humidity

in the first place) and sufficiently small vertical wind shear (Vecchi and Soden, 2007). In this section we examine each of these

as predictors of tropical cyclone frequency.

5.3.1 Wind shear

We use the definition for vertical wind shear in (Vecchi and Soden, 2007), which is the difference in wind speed magnitude275

between 850 and 200hPa.

Figure 12(a) shows the historical UKESM wind shear and 12(b-f) show the project changes for the five SSPs with respect to

the historical period for the AGRIF region.

There is a clear increase in the wind shear across the AGRIF region shown in Figure 12 although this is not spatially uniform,

with the clearest increase in wind shear occurring in the northeast of the region considered. This trend becomes clearer when280

the area mean is considered, Figure 13(a). Figure 13(b) shows the same analysis but for all longitudes. The result is the same,
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Figure 13. (a) Area mean wind shear for 0◦ to -20◦ S and 132.7◦ E to 216.3◦ E. Negative values are masked and the error bars and shading

show ± 1 standard deviation of the 5 member ensemble means for each scenario. Inset; Annual wind shear map for 1989-2008 for the first

historical ensemble member used. (b) As for (a) but for all longitudes. Note the different y-axis scale.

i.e. that wind shear increases as radiative forcing increases and therefore – at least partly – explains the reason for the reduction

in tropical cyclone numbers seen above.

5.3.2 Relative humidity

Figure 14 shows the ensemble, zonal mean relative humidity – RH – as a function of pressure between -30◦ and the equator for;285

(a) the historical simulations, 1989-2008 and; (b-f) SSPs 1-5 with respect to (a). We have masked values above the tropopause

since it is tropospheric humidity which dictates cyclogenesis.

In contrast to the wind shear in Figures 12 and 13 the relationship between tropospheric RH and F is far from linear and of

course is three-dimensional rather than two. There are certain tendencies in the RH distribution which are clear however, such as

the decreases around 800 and 250hPa and the low-latitude increase around 500hPa. These persistent features notwithstanding,290

it is clearly very difficult to assign any potential change in tropical cyclone genesis frequency to that of RH in these results,

which aligns with the general uncertainty around changes to TC frequencies in the future.

5.3.3 Surface heat fluxes

Although it is far from obvious that the combined effects of changing wind shear and RH will tend to increase or decrease

tropical cyclogenesis frequency under all circumstances, it is much clearer that whatever cyclones do occur will be stronger as295

F increases. In this section we give a quantification of the surface upward heat transfer available between the equator and the

south of New Zealand. Figure 15(a) shows the area-integrated heat transfer across all longitudes for the region shown in the

inset and sub-Figures (b)-(g) show SSTs.

Figure 15(a) shows the average surface upward heat transfer between -48◦ and the equator. The increase is of course expected

– although the linearity is particularly striking – but it gives an illustration of one measure of the ‘fuel’ available for tropical300
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Figure 14. The ensemble, zonal mean relative humidity [%] for; (a) the historical simulations, 1989-2008 and; (b-f) SSPs 1-5 with respect

to (a). Values above the tropopause are masked. The latitude range in -30◦ to 0◦.

cyclones and hence explains why tropical cyclones are expected to strengthen in the future even though their number may

decrease.

To give a more nuanced view Figures 15(b-g) show the SSTs and the 26.5◦ C isotherm, which is often used as a threshold

temperature for tropical cyclogenesis (see (McTaggart-Cowan et al., 2015) for an in-depth discussion on this). As well as the

inexorable rise in overall SST with greenhouse gas forcing, the region bounded from below by the 26.5◦ C covers almost305

the entire area considered by the time SSP5-8.5 is shown in Figure 15(g). On its own, the expansion of the region with SST

greater than 26.5◦ C would tend to increase the number of TCs formed. However we have seen consistently that tropical

cyclone numbers are relatively insensitive to forcing and indeed if anything show a decrease in their number as global warming

increases, with the exception of extreme forcing, see e.g. Figure 5(a). It is possible therefore that the simulations’ tendency to

shown an increase in the number of TCs at extreme warming scenarios is due to this increase in the region of ocean exhibiting310

SSTs greater than 26.5◦ C.

With the information that we have now gleaned from studying RH, wind shear, the position of the threshold SST for tropical

cyclogenesis and the surface upward radiation balance, the projected increase in TC strength with climate change appears

robust. The projected number of TCs however, and in particular those affecting New Zealand is highly uncertain and governed

by several related yet competing physical tendencies.315

Although not considered in this work, ocean heat content and its effect on future marine heatwaves is a field of intense

contemporary study (Behrens et al., 2022; Walsh et al., 2018; Frölicher and Laufkötter, 2018). It would be of significant

interest to study these two inter-related phenomena in a combined fashion, particularly if they were to coincide in a future
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Figure 15. (a) Area integrated surface upward heat transfer for the area in the inset figure (-48◦ to the equator). A small amount of noise has

been introduced into the F values to make it easier to see the individual symbols. The F values are 1 (approximate value for 1989-2008),

1.9, 2.6, 4.5, 6.0 and 8.5 W · m−2; (b) historical SSTs; (c-g) SSTs (reds) for SSPs 1-5 relative to the historical period. The 26.5◦ isotherms

are shown for the historical period and each of the SSPs as per the sub-figure titles.
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involving ‘compound extremes’ where multiple different variables (humidity and temperature, e.g. (Fischer and Knutti, 2013);

rainfall, temperature and high tides e.g. (Benestad and Haugen, 2007)) reinforce one another.320

6 Conclusions

In this manuscript we have examined the storm climatologies of two related climate models, and two reanalysis products using

the open source stormTracking package. This package was validated by comparison with another package – tempestExtremes

– and by its ability to reproduce the observed track of cyclones Giselle (April 1968) and Gabrielle (February 2023).

We use two, related, state-of-the-art coupled climate models in this study; The United Kingdom Earth System Model, Version325

1 – UKESM1 – and the New Zealand Earth System Model, NZESM. The latter is a sibling model of the former and the main

difference between the two is the presence of a regional, two-way-nested, eddy-permitting ocean model in the New Zealand

region.

The climate models considered were UKESM1 and the NZESM, and due to the agreement of the results obtained from the

two models (plus the lack of sensitivity to ozone photolysis, hardware and compiler types, and spinup time) only UKESM1330

was considered in future projections due to the availability of larger ensemble sizes for each SSP and the wider range of forcing

scenarios. It would be of interest in future work to explicitly consider the different between the NZESM and UKESM1 in future

projections in future work.

When all TCs produced from the entire model ensemble were considered the models overestimate N and Ncat1. The reverse

is seen for higher category storms however. In general, there is a tendency for the number of TCs to decrease except at very high335

forcing scenarios where there is some tentative evidence of an increase. This is possibly due to the fraction of ocean having

a surface temperature above the generally-accepted threshold of 26.5◦ being so large that other factors tending to reduce TC

numbers – e.g. wind shear – are overwhelmed.

For tropical cyclones with their genesis in the AGRIF region which hit New Zealand latitudes there is a clear increase, albeit

with significant uncertainty, in the and mean PDI per storm as the amount of forcing is increased. In this particular example,340

we project changes of up to approximately 25% by 2100. To reduce the size of the spread for these measures of PDI, we then

considered all longitudes and found that the ensemble spread was reduced in the mean; that is, the error bars in Figure 10(a)

are smaller than those in Figure 8(a).

As the width of the TC genesis band was increased, the linearity of the projected increase in PDI with climate forcing

increases from 0.78 for the New Zealand region alone to 0.92 when all latitudes are considered. This is increased still further345

to 0.95 for genesis latitudes equatorward of -25◦S and reduces slightly to 0.90 for the -30◦ case. As the lower boundary of

the genesis region moves southward there is a noticeable reduction in the PDI gradient with forcing and a reduction in the

magnitude of the mean PDI itself. This is because the most damaging systems tend to originate close to the equator and so

considering systems outside of the ‘high-tropics’ will tend to include more and more systems whose genesis is not purely

governed by the physical processes which define tropical systems in the first place.350
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When examining these TCs which cross New Zealand latitudes by Saffir-Simpson category, there is a general underestima-

tion in N when only the New Zealand region is considered. This is not the case for larger regions when the statistics become

more robust. This underestimation is the reverse of that seen when considering all TCs, irrespective of their destination and

shows that the tracking software has a tendency to ‘lose’ too many TCs too quickly in their evolution. This analysis also shows

evidence for underestimation of category 2 and 3 TCs unless latitude bands wider than 20◦ are considered plus an inability to355

track any category 4 systems under the same conditions.

Tropical cyclogenesis involves a highly-complex and coupled set of conditions to be fulfilled and our results show that the

decrease in tropical cyclone occurrence is related to the increase in tropical wind shear in a quasi-linear fashion. When the

tropospheric humidity is considered however, drawing conclusions is made more difficult by changes of different signs to the

humidity at different levels. Furthermore, when considering the area of the tropical oceans which have SSTs of at least 26.5◦C,360

we might expect the number of tropical cyclones to increase with forcing; the reverse of what is seen in our simulations except

at extreme levels of TOA forcing where almost the entire tropics have SST greater than the required threshold.

The increase in the damage potential of future tropical cyclones appears primarily due to the increase in the availability

of heat flux from the ocean surface. This is of course expected from thermodynamic arguments, however this study does not

address potential future changes to cyclone impacts from compound extremes. This complexity arises in events where multiple365

types of hazards arise, e.g. hide tides and high winds occurring either simultaneously or from the serial grouping of consecutive

cyclones. In this latter case, authorities’ and communities’ ability to respond to new circumstances is made more challenging

by the resources already pooled into dealing with the former. These combined and grouped hazards are potentially highly

non-linear in their impacts and a future dedicated study thereof would be both societal and financial benefit.

Code and data availability. The stormTracking and tempestExtremes codes are available on GitHub at370

https://github.com/ecjoliver/stormTracking and https://github.com/ClimateGlobalChange/tempestextremes respectively. All UKESM1 data

is available through the CMIP6 data archive at the Earth System grid Federation, https://esgf.llnl.gov/. The code describing the implementa-

tion of the AGRIF high-resolution ocean is available at Zenodo (Behrens, 2020)

Appendix A: Data from Figure 11

Table A1 shows the numerical data plotted in Figure 11.375

Appendix B: Generation of storm climatologies

The method used in this study to firstly detect, and subsequently follow the trajectory of individual cyclones is described in

detail in Chelton et al. (2011). Firstly, a regularly (horizontally) spaced, time series of sea-level pressure values is obtained and

is regridded to 2◦ resolution, which is the default grid spacing in the software. Next, a detection algorithm is run on the data,

which consists of:380
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Storm criteria Forcing N Ncat1 Ncat2 Ncat3 Ncat4

ERA5 57 28 18 11 –

Figure hist.




43 ± 4




34 ± 4




6 ± 2




2 –

7 SSP1-1.9 39 ± 6 32 ± 5 5 ± 1 2 –

SSP5-8.5 37 ± 5 30 ± 3 3 ± 2 3 ± 1 –

ERA5 102 54 33 15 –

Figure hist.




92 ± 13




77 ± 10




11 ± 4




3 ± 1 –

9 SSP1-1.9 80 ± 10 67 ± 9 8 ± 1 4 –

SSP5-8.5 84 ± 9 70 ± 7 8 ± 1 6 ± 3 –

ERA5 202 132 49 19 2

As for Figure 9 hist.




246 ± 16




200 ± 13 34 ± 3




12 ± 2 –

but to -25◦S SSP1-1.9 211 ± 17 174 ± 14
⇓

 22 ± 2 12 ± 3
⇑

 1

SSP5-8.5 223 ± 10 183 ± 9 26 ± 3 12 ± 1 1

ERA5 506 378 91 33 4

As for Figure 9 hist. 567 ± 20 463 ± 14




68 ± 6




33 ± 4




2 ± 2

but to -30◦S SSP1-1.9
⇓

 506 ± 18
⇓

 408 ± 18 63 ± 5 29 ± 4 4 ± 2

SSP5-8.5 490 ± 20 398 ± 19 58 ± 6 29 ± 2 4 ± 1
Table A1. Cyclones counts and – where appropriate – ± 1 standard deviation for the conditions illustrated in Figures 7 and 9. Storm

categories using the Saffir-Simpson scale pressure bounds, e.g. Song et al. (2010). The pressure bounds for categories 1-5 are: (1) ∀ P > 980,

(2) 965 < Pmin < 980, (3) 945 < Pmin < 965, (4) 920 < Pmin < 945 and (5) Pmin < 920 respectively. Uncertainty estimates are not given

where the mean standard deviation is less than 0.5 and hence rounded to zero. No category 5 storms were found in this work and N is not

exactly equal to the sum of the individual categories due to integer rounding. The curly brackets indicate whether or not differents results’

error bars overlap and the vertical arrows show the relative magnitude compared to those values not bracketed. This data is plotted in Figure

11.

1. Discretise the continuous pressure field into 200 equally-spaced value bins.

2. Finding closed regions of contours of SLP values.

3. Counting the number of data points (‘pixels’ in Chelton et al. (2011)) in the found region and rejecting it if it is too

small. The threshold value used here is 9, again, the default value. Using the built-in value of 2◦, a 3×3 square region

corresponds to roughly 650 × 650 km2.385

4. Identify the region as anticyclonic if the region contains a maximum and cyclonic if it contains a minimum.

5. Find the average pressure (‘amplitude’ in Chelton et al. (2011)) of the bound region but don’t count it if it is less than

the value of the bin spacing – see item 1 – away from the mean in the region of interest.
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This algorithm results in a list of storm latitude, longitude and amplitude which are then fed into a storm tracking algorithm.

1. Find storm centres within a region defined by a given maximum speed of propagation (i.e. 80km · hour−1).390

2. For the systems found in 1, choose the one closest to the coordinates in question.

3. Add the relevant metadata to the trajectory of the storm (coordinates, amplitude, time, date).

4. Delete the just-detected system from the list of ‘possibles’ for assignment in the next iteration of the algorithm.

5. Delete storms which (following Klotzbach et al. (2016)):

(a) Are shorter than a threshold duration; which is equal to the timestep in the data in this work (default same as395

timestep in input data) .

(b) Are shorter than a threshold total track length (default 1000km).

(c) Have a distance from start to end which is 0.6 × the total track distance.

The only modifications made here are to convert the code from Python 2 to Python 3 coding standards. This change is purely

structural and does not change any of the results obtained from the code.400
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