
Author's response to RC2 

Dear Referee, 

Thank you for your insightful comment. We sincerely thank you for once again 

reviewing our manuscript carefully! I will present our point-by-point feedback as 

follows. 

Point-by-Point Feedback 

⚫ “The manuscript "Separating and Quantifying Facility-Level Methane Emissions 

with Overlapping Plumes for Spaceborne Methane Monitoring" by Y. Pang et al. 

documents an interesting topic and analysis regarding the quantification of 

pollutant or greenhouse gas emissions from industrial point sources based on 

satellite images. Such a study deserves a publication in AMT.” 

Response: Thank you sincerely for recognizing our efforts. Your insightful and 

practical advice has helped greatly in the improvement of our manuscript. 

⚫ “1) However, the text of the manuscript needs a major improvement and 

clarifications. a) There are signs of a lack of proofreading or of rigor in the 

writing, such as typos (e.g. at lines 39, 257, 273, 317, 351-352, 420, 426…), 

clumsy formulas (l.33; "given the same emission rate" at l35; "generally" at l.38, 

"the high nonlinearity of the Gaussian plume model" at line 78, "accurate priors" 

at l211, l214-215, "the increases of multi-source Gaussian plume model" at l359-

360… ), misleading shortcuts (e.g. l41-42, l317-318…).” 

Response: We sincerely appreciate your pointing out our text shortcomings. These 

errors might have escaped our spelling and grammar checks, as well as our checks as 

authors for whom English is a second language. We will give it a multi-eyed and 

thorough check in the next revision, and try our best to avoid these grammatical errors. 

⚫ “Some of the potential mistakes can be embarrassing: e.g. between mid-line 217 

and line 218, I assume that the authors talk about chemistry rather than about 



diffusion, and I do not really understand what the link can be between "the low 

concentration of methane in the atmosphere" and the diffusion or the chemistry. 

The word at line 237 is "topography" rather than "topology" ? etc.” 

Response: Thank you for pointing out these potential mistakes. I will respond point-

by-point as follows.  

For, L217-L218: The original intent of the manuscript was that (on the simulation 

scale) tracer gas concentrations are low (compared to atmospheric background 

concentrations). For tracer gas transport, convective processes dominate the gas 

transport and the molecular diffusion term can be neglected. In the next revision, we 

will cite the opinion of Nottrott et al. (2014) directly here without a rationale. 

For, L237: Thank you, it’s a linguistic mistake. We will correct it in the next 

revision. 

⚫ “b) In a general way, the concepts, plans and methods need to be better 

introduced and discussed.” 

Response: Thank you for the suggestion. The point-by-point responses are as follows. 

⚫ “From line 68, the introduction loses the clear distinction between the plume 

detection and the subsequent emission quantification when processing the CH4 

plume images in two steps, or the distinction between such a two-step approach, 

and 1-step approaches such as Gaussian plume fitting (when using the emission 

rate from this fitting), while such distinctions are critical to follow the manuscript 

correctly.” 

Response: Thank you for the suggestion. Although in some practices Gaussian plume 

fitting also requires manual specification of plume pixels and background pixels, 

explicit pixel detection algorithms are generally not emphasized in the related studies. 

If we perform fitting globally (e.g., the pixels in a surrounding rectangle), it can be 

considered as a “one-step” method. In comparison, other cases require a "two-step" 

detection-quantization approach. 

 However, we propose a different approach for the quantification of overlapping 

plumes. In this context, our proposed method can be considered as a "three-step" 

approach, i.e., separation-detection-quantification. We solve the overlapping plume 



separation by fitting Gaussian plumes with a "one-step" method and use a specific 

"two-step" method to achieve more robust quantification compared to the "one-step" 

method.  

 We will make this part of the introduction more concise and clearer in the next 

revision. 

⚫ “Lines 72-83 (which have been extracted from section 2) should be improved and 

better merged in the introduction.”  

Response: Thank you for the suggestion. We will improve the text in the next 

revision.  

⚫ “The abstract hardly manages to characterize the type of method that has been 

developed and tested in this manuscript: lines 3 to 7 seem to speak about a full 

quantification method and line 8 seems to introduce IME as a distinct 

benchmarking quantification method (and the rest of the abstract does not solve 

for this potential confusion).” 

Response: Thank you for the comments. As we mentioned above, we proposed a 

separation-detection-quantification schema. The detection-quantification method in 

the manuscript was basically modified from Varon’s method (Varon et al., 2018), and 

is considered as representative detection-quantification method. However, 

theoretically, the detection-quantification method here can be replaced by other 

methods of the same purpose, e.g., a similar IME-based method (Duren et al., 2019), 

angular width method (Jongaramrungruang et al., 2019), even deep learning method 

(Jongaramrungruang et al., 2022).  

 For the coherence of the text, we will move this part to the discussion and make 

the text more clear in the abstract and introduction. 

⚫ “I thank the authors for having added the results of the quantification of the 

emissions based on the Gaussian plume model fitting in the result section. 

However, now, this benchmarking needs to be announced in the introduction or 

early in section 2, this quantification method needs to be detailed in section 2, 

and the abstract should probably highlight the comparison between this 

quantification method and IME.” 



Response: Thanks for the suggestion for comparing the results of our method and the 

direct Gaussian plume fitting. We will highlight it in the next revision. 

⚫ “This is a significant result, which tend to confirm that the Gaussian plume 

model inversion does not behave as well (compared to IME) when tackling 

turbulent plumes at fine resolution than when tackling mesoscale plumes with > 1 

km resolution images.”  

Response: Our current findings show that the IME method outperforms Gaussian 

plume fitting in quantifying fine-scale plumes. 

 Limited by the computing constraints, we faced a resolution-scale trade-off in the 

WRF-LES simulation. Our preference for fine resolution limited the size of the 

simulation domain, preventing us from testing Gaussian plume fitting on larger scales.  

So, in Exp1, the number of plume pixels decreases with a sparser resolution, and the 

theoretical performance increase of the Gaussian plume with scale is not observed in 

the experiments. 

⚫ “c) see the detailed comments below, which provide other illustrations of the 

general need to improve the text, its quality and its clarity, which applies to all 

sections.” 

Response: Thanks for the detailed suggestions. We endeavor to improve the text in 

the next revision. Please see our point-by-point responses as follows. 

⚫ “2) Section 4 makes an effort to synthesize the results from section 3, to provide 

some explanations for the behaviors of the methods as a function of the 

"experimental parameters". However, it could be extended and strengthened to 

better characterize the problematic and successful cases depending on the 

methods and to provide more interpretation.” 

Response: Thanks for the suggestions and we will extend the discussion in the next 

revision. The following responses outline some areas for improvement. 

⚫ “Furthermore, some items are probably missing such as a discussion on the 

impact of using the LBPM, and a discussion on the typical range of accuracy of 

the emissions estimates that can be expected as a function of the observation 

conditions.” 



Response: Thanks for your suggestion, we will extend the discussion in the next 

discussion. 

⚫ “Regarding the LBPM, could this approach be hampered by the retrieval noise, 

or by the regular transition to the RMS metric in the optimization iterative 

process ? See also some of the following comments that connect to potential gaps 

in this discussion section. Detailed comments:- is not the abstract misleading 

regarding the assessment of using the LBPM ? the results show that it does not 

impact much the results, while the abstract seems to say it is successful. Section 

3.3 does not really highlight the fact that this impact is relatively small, and 

section 4 does not discuss it at all.” 

Response: By definition (L196-197), the LBPM may be affected by strong noise (ΔC > 

1σ). The transition of LBPM to RMS primarily relies on empirical methods, as the 

stochastic nature of the differential evolution algorithm, makes it challenging to 

quantitatively analyze this iteration. In our preliminary trials, the total number of 

iterations generally ranges in the tens, with LBPM exponentially decaying to the same 

level as RMS within the first ~10 iterations.  

The initial purpose of LBPM was to improve the sensitivity on shapes (gradient 

signs) for the fitting algorithm during the early iterations, thereby improving the 

fitting for weak point sources and avoiding local optima. LPBM performed 

exceptionally well in our preliminary tests on Gaussian plume synthetic observations. 

As illustrated in Figure RC2. 1, for fitting the synthetic observations (a), two estimates 

(b) and (c) were generated within an iteration. Despite a significant difference 

between its stronger source and the ground truth, (b) identified the weak source and 

had a lower LBPM metric from the observation. Therefore, it will be preserved for 

further iterated optimizations. Figure RC2. 2 shows that the LBPM outperforms the 

RMS in terms of convergence rate, and fitting accuracy (IoU, PWIoU) in a Monte 

Carlo stochastic test.  

In the next revision, we will highlight LBPM's enhanced performance in 

detecting relatively weaker sources and extend the discussion, particularly focusing 

on potential areas for its limitation and improvement. Additionally, we will refrain 



from making somewhat overly optimistic statements. 

 

Figure RC2. 1 Demonstration of LBPM's outperformance over RMS in capturing relatively small 

sources in the iteration. 

 

Figure RC2. 2 Preliminary results of plume separation of RMS (left) and RMS (right). IOU and 

PWIoU are two separation accuracy indicators. 

⚫ “- the abstract could mention the test on real data which is significant.” 

Response: Thanks for the suggestion. We will mention it in the next revision. 

⚫ “- l11: MAPE has not been defined yet; you should rather speak about the 

average relative error in the estimates.” 

Response: We will add it in the next revision. MAPE represents “mean absolute 

percentage error”. 

⚫ “- l63: how do you derive a "median interval distances of potential methane 

sources in California" ? I’m curious about it since the result (<200m) is 

surprisingly small (it is probably a matter of definition for such a term)” 

Response:  There are 234060 targets given in the VISTA-CA inventory with their 

locations in longitude and latitude. We project these locations into ESPG: 26941 (a 

Cartesian 2D axes for California, US, with an accuracy of ~2m). The exact intervals, 



Euclidean distance between one source and its nearest neighboring source, are then 

calculated. Over 90% of the source intervals are less than 200 m (Figure 1); if sources 

with intervals less than 30 m are merged, ~50% of the spacings are less than 200 m. 

However, sources of type “oil and gas well” account for the vast majority (96.5%) 

of the inventory. If they are excluded, the median and mean interval become 495.9 m 

and 1247.1 m, respectively. The median is much lower than the mean, revealing the 

characteristic of spatial clustering distribution of emission sources. We will clarify 

this in the next revision. 

 

Figure RC2. 3 Distribution of source intervals in VISTA-CA, with (left) and without (right) "Oil 

and Gas Wells". 

⚫ “- l68-70: unclear; you mean Nassar et al. fix the secondary plume to a specific 

concentration level corresponding to the secondary source rate given by the 

emission inventory ? ”  

Response: Yes, we confirmed this point with Dr. Nassar in an Email. They fix the 

emission rates of the secondary sources. They also adjust them by ±20% to assess the 

uncertainty.  

Some potential reasons why they cannot estimate multiple sources are listed here. 

Firstly, OCO-2 observations are too sparse to provide enough constraints to estimate 

multiple sources (Nassar’s opinion). Secondly, their estimation method LS methods 

are prone to local optima and are thus inferior to heuristic optimization algorithms in 

finding global optima. Thirdly, Gaussian plume fitting is less robust than the 

combination of Gaussian plume fitting and IME method, as shown in our experiment 

(Exp1, Exp2). 



⚫ “=> then you should also discuss other papers using multiple Gaussian plume 

model inversions to tackle multiple sources with observations similar to satellite 

images, i.e. something similar to the "Multi-source Gaussian plume" method 

tested in section 3 (e.g, Krings et al., 2011, which is already cited in the 

manuscript). I think that the introduction is a bit misleading regarding this: using 

multiple Gaussian plume model fitting to handle multiple sources is not a novelty. 

However, by developing an alternative approach with a multi-objective heuristic 

optimization for the Gaussian plume fitting combined with IME (which is often 

assumed to behave better than Gaussian plume model inversions when tackling 

fine resolution images of turbulent plumes) for the quantification, the authors 

bring new ideas and insights to improve the process of overlapping plumes.” 

Response: Thank you for pointing out our oversight. We have carefully reviewed the 

paper by Krings et al. (2011) and confirmed that they indeed employed a multi-point 

Gaussian plume model. We will organize and merge L68-L83 in the introduction as 

related work, with a specific emphasis on the contributions of Krings et al. (2011) and 

Nassar et al., (2017). We sincerely appreciate your summary of our innovation and we 

will add it to the text in the next revision! 

⚫ “- l96; what does "the improvements of the separation algorithm in missed 

detection" mean ?” 

Response: Thank you for pointing out this oversight. In our latest revision, we have 

eliminated the pixel connectivity criterion and shifted our focus primarily to the Mean 

Absolute Percentage Error (MAPE) as the evaluation indicator for quantification, to 

make the content more concise. This sentence was overlooked during the inspection. 

We will scrutinize such issues in the next revision. 

⚫ “- l124: what could be the difference between sigma_x and sigma_y when using 

Pasquill stability classes to set-up such parameters? where could sigma_x (and 

where does sigma_x) stand in eq (2)? furthermore, the formula for the function 

sigma_y(x) needs to be given or explained” 



Response: Thank you for pointing out this slip of the pen, where 𝜎𝑥  is redundant. 

cross-wind dispersion coefficient (𝜎𝑦 ) is a function of down-wind distance 𝑥  and 

Pasquill stability class (which is a function to wind speed 𝒖, sun illumination, etc), 

and surface type. 𝜎𝑦 is given by a series of functions, which can be directly found in 

the reference (Griffiths, 1994), as shown in the middle column in Figure RC2. 4. In 

some research, different definition of dispersion coefficients might be used. For 

instance, Masters (1998) proposed an alternative formulation, which has been adopted 

by studies such as Bovensmann et al. (2010) and Nassar et al. (2017); more localized 

formulations such as China’s national standard GB/T 39499-2020 may also be 

employed. Due to its diversity, we have chosen not to present them explicitly in the 

text. 

⚫ “- equations 3 and 4: we should have C(x’_n, y’_n) rather than C_n(x’, y’)” 

Response: The transferred coordinates (x’, y’)  can be replaced by (x’_n, y’_n), as 

they are dependent on the parameters of source n, including emission rates (𝑄𝑛) and 

source location (𝑥𝑛, 𝑦𝑛). However, by this convention, the suffix n of 𝐶𝑛 shouldn’t be 

omitted, as it represents the concentration caused by a certain source 𝑛. 

⚫ “- l146 The specific Gaussian plume fitting algorithm used here is questionable. 

Adjusting both u and Q to fit the observations can be problematic since these 2 

parameters impact the plume amplitude in a similar way (there is no source of 

information to discriminate them in the fitting process). Furthermore, the lack of 

adjustment of sigma_y in the plume fitting may limit the skill of the approach.” 

Figure RC2. 4  Brigg’s definition of dispersion coefficients. 

https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=0046CC3BABFD13DA98C1D06D47AE5FCA


Response: Thank you for inquiring about the fundamental principles of our method. 

As previously mentioned, the diffusion coefficient determines 𝜎𝑦  is a function of 

distance and atmospheric stability, which is a function mainly of wind speed. Thus, 

wind speed will indirectly determine the plume shape. As presented by 

Jongaramrungruang et al. (2019; Figure 9), wind speed determines the magnitude of 

the "half-mass angle" of the plume. Therefore, when the global optima achieved in the 

plume fitting, it is possible to decouple the emission rate (𝑄) and the wind speed (𝑢).   

It is worth mentioning that our LPBM as an optimization objective is to some 

extent precisely to fit the plume shape, to avoid falling into a false local optimum.                        

⚫ “- l170-l175 are very difficult to understand” 

Response: We will combine Figure 1 to provide a detailed explanation of the input, 

output, and implementation process. We will follow the sequence of parameter 

estimation, Gaussian plume, Gaussian blur, and weighted allocation for the 

implementation process. 

⚫ “- l281: the question is not whether these sources can be quantified, but rather 

whether their plumes can perturb the quantification of other sources (?)” 

Response: In the early experiments, the plume concentrations of these weak sources 

are generally similar to the noise level. Therefore, we exclude their analysis to focus 

on the larger targets, as well as to reduce the difficulty of program development. 

⚫ “- l282: I do not really understand this sentence, and in particular the term 

"aggressive". It seems to connect to the assumption that the emissions are 

constant, which makes the quantification problem and the process of the image 

easier.” 

Response: Assuming continuous emissions rates in our simulations serves to simplify 

the problem and increase the probability of plume overlap. We make this “aggressive” 

simplification as the inventory maker manually removes the overlapping plumes in its 

quality control phase (Duren et al., 2019). We will briefly state this simplification and 

its reasons in the next revision. 

⚫ “- there is still a lack of explicit introduction to the fact that the whole study 

relies on scenes driven by homogeneous winds, except when tackling EMIT 



observations. It’s implicitly guessed from the use of theta rather than theta_n in 

the equations, and by the quick mention to the wind speed at lines 254 (with the 

clumsy formula: "unified wind") and 285. There is also a lack of discussion on 

the fact that the use of homogeneous winds to generate the pseudo observations 

artificially inflates the skill of Gaussian plume models to support the plume 

separation: there is a piece of sentence about it at lines 461-462 but it is not very 

clear and it seems to be associated to very specific observation cases.”  

Response: Thank you for the suggestion. We employed the homogeneous winds 

assumption at two key stages:  

1. We used homogeneous winds assumption to load LES plumes with the given 

10-m winds load from ERA5 to synthesize the pseudo-observations. We will stress 

this point after Eq. 12.  

 2. Additionally, we leveraged the assumption of homogeneous winds to constrain 

the search range, thereby accelerating the convergence. We will emphasize this point 

after Eq. 4. 

We will also extend this point in the discussion. 

⚫ “- it would be useful to show images with different levels of observation noise, in 

suppl. material if not in main text (the presentation of fig 2 would be misleading 

if it does not include such a noise: does it ?) to provide an idea of the challenge 

associated to the plume separation when using noisy images.” 

Response: Thanks for the suggestion, we will consider the possibility of including 

these images in the Supplement. In Figure 2, a noise of 1% (18 ppb) to the 

background concentration has been added. The source emission rates in Figure range 

from 0.2 to 2 t/h. It’s worth noticing that the color bar is truncated, suppressing the 

noise visually. 

⚫ “Actually, one would expect charts with the APE as a function of the level of 

noise since this level could be one of the drivers of the relative success of SEP vs. 

UNSEP. In a more general way, the retrieval uncertainty is a critical topic for the 

processing of plume images and the manuscript should bring more insights about 

it.” 



Response: We tested on single source scenarios in EXP1, where the APE as a 

function of noise in bar graphs is shown in Figure 1. In EXP2, our focus shifted to 

quantification comparisons under various overlapping scenarios, where factors 

directly influencing the overlapping index (OImass) include wind speed, wind 

direction, distance between two sources, and emission ratios between two sources 

(shown in Figure 2). The inversion noise in EXP2 was considered as a secondary 

factor, hence we treated it as fixed. We didn’t expect there to be a large difference 

between SEP & UNSEP in Exp2 compared to Exp1. We will perform a new 

experiment of different noise levels in Exp2 to finally decide whether it is necessary 

to add it to the content.  

⚫ “In particular, it should provide the values of the level of noise in a more visible 

way than at lines 266 and 272, and with some justification for such values.” 

Response: We will conduct a new experiment to determine the necessity of adding 

these plume images of different noise levels. The noise levels are mainly from Varon 

et al. (2018), where the typical retrieval error for GHGSat ranges from 1%-5%.   

⚫  “What is the value of the retrieval uncertainty in EXP-3 ? Is the % applied to the 

CH4 background + plume signal? If yes, what is the corresponding background 

value ? If not, why (note that the full EMIT image is noisy in fig 8), and would not 

the values 1 to 3% be very low ? What are the typical relative uncertainties 

associated to EMIT observations ? Could the observation noise explain the 

relative failure of the use of the LBPM metric ?” 

Response: In EXP-3, the retrieval uncertainty is set at 1%, expressed as the fraction 

of the background concentration. The corresponding background is 1.8 ppm & 1 atm 

(with a concentration ~10.3g/m2), as shown in L230-L231. We focused on the next 

generation of fine-spatial resolution and hyperspectral satellites, such as GHGSat, 

capable of obtaining XCH4 with high precision. The relatively limited performance of 

LBPM may primarily stem from the limited performance of Gaussian plume for such 

a small scale.  

⚫ “- lines 290-300 poorly fit in section 2.2.3; having separate sections dedicated to 

the detection / quantification method(s) and to the data made available for the 



detection / quantification would make the presentation of the study much clearer.” 

Response: Thank you for the suggestion. In the next revision, we will introduce a 

new subsection to provide a more detailed implementation of both quantification 

schemas (UNSEP & SEP) for the observations. 

⚫ “- l294-296: this derivation of the wind driving the plume from the wind at 10 m 

height does not really make sense for the general process of satellite images. This 

is likely inherited from studies focusing on specific sites where dedicated local 

measurement of the wind at 10 m are available. In the general case, the wind 

should be derived from other source of knowledge (typically meteorological 

analysis) with a better vertical coverage (but less precision).” 

Response: Utilizing 10-m wind speed as the near-surface wind speed for the 

quantification is a common practice in recent studies within this field, as the direct 

availability of the 10-m wind components from meteorological reanalysis databases.  

 For our simulation, the decision to use 10-m wind speed is also driven by the 

need for simplification, as elaborated in L239-L243. While simulating specific 

scenarios with real driving wind profiles and other real boundary conditions would 

undoubtedly offer greater precision, the computational cost can be huge, especially 

when considering various scenarios. Therefore, we simplify to simulate plumes of 

various wind speeds and use the 10-m wind speed from ERA5 as an index to load 

plumes from the WRF-LES database to synthesize the pseudo-observations.  

⚫ “- l297-300: clarify how it is combined with the SEP approach” 

Response: In the next revision, we will introduce a new subsection to provide a more 

detailed implementation of both quantification schemas (UNSEP & SEP) for the 

observations.  

⚫ “- there is no discussion on the CH4 background mixing ratio fields (from 

sources outside the images, or from small point sources and diffuse area sources 

within the images), on how it is dealt with in the derivation of the images or when 

processing the images. Such a background is set to 0 in EXP 1 to EXP 3. How 

could it impact the theoretical results from these 3 experiments ? Do we see some 

residual pattern of background variations in the EMIT "enhancement data" ? 



could it explain part of the biases seen in section 3.4 ?”  

Response: The complexity of the real background, decided by factors such as surface 

BRDF, instrument characteristics, as well as such “background” of interference 

concentration, has been stressed previously (Gorroño et al., 2022; Jongaramrungruang 

et al., 2022). Analysis considering such noise may require a specified instrument and 

scenario, and it is probably beyond the scope of this article. Therefore, currently, in 

our experiment, we only considered additive random noise.  

 Although such a “background” wasn’t presented in the Exp1-3, it’s important to 

note that the unexpected enhancements in the “background” might slightly inflate the 

plume concentration. However, it’s still premature to conclude whether it will finally 

inflate the IME and Q, as the “background” may also influence pixel detection, 

introducing non-linearity and complicating this issue. 

 The monotonous surface type (desert) in Figure 8 and the relatively large pixel 

size of EMIT (~60 m) might help alleviate the interferences from unexpected surface 

features. However, as shown in Figure RC2. 5, there is a large portion of pixels 

identified as plume pixels by the UNSEP and rejected by the SEP. It is difficult to tell 

them the continuity of an up-wind plume or a new plume. This explanation could 

partially explain why the quantification results of the whole cluster by UNSEP are 

slightly higher than the result by SEP. 

⚫ “- isn’t line 322 at odd with equation 14 ?” 

Response: Thank you for noticing this error in the text. Eq.14 is correct and the text 

in L322 should be “the ratio of plume mass integration from interference sources to 

that from the primary source”. We will correct it in the next revision. 

⚫ “- line 328: I do not understand why "the quantification of methane source is 

considered as solving a regression problem". Is not the target of such a 

quantification the most precise estimate for a given source at a given time ?” 

Response: Thank you for the suggestion. It should be solving a parameter estimation 

problem. 

⚫ “- l367: so far, the metric for interference should be the OImass, not "the 

interference" ” 



Response: Thank you for pointing out this glitch. We will correct it in the next 

revision. 

⚫ “- l393: Fig 6 rather gives the feeling that UNSEP tends to overestimate the 

sources ? you meant SEP ? what do the person’s R and p values correspond to in 

this line ?” 

Response: We apologize for this slip of the pen. It should be SEP in L393. Pearson’s 

R is the correlation coefficient between the ground truths and the predictions of source 

emission rates. we will correct it in the next revision. 

⚫ “- I do not understand the correction of the SEP estimations in section 3.4 (l393-

395, legend of fig 6): what is the rationale, what is done in practice ? Because of 

this correction, it is difficult to check whether SEP behaves better than UNSEP in 

section 3.4.” 

Response: As shown by Figure 6 (b), there was a systematic underestimation and we 

found this underestimation is linear (R=0.93, p<0.01). After a linear regression, there 

is 𝑦 = 0.51𝑥 − 1.31, where 𝑦 represents the quantification result of the SEP; and 𝑥 

represents the ground truth emission rates. So, the corrected quantification result can 

be simply expressed as 1.96𝑦 + 2.57. The distribution of SEP is more concentrated, 

especially for source targets with low emission rates. 

⚫ “- l413 vs l422: does the detection and "connectivity verification" underlying the 

application of the IME method really encompass the full extent of the whole set of 

plumes ?  

Response: In non-overlapping scenarios, the main structure is typically covered. 

Connectivity verification, a straightforward attribution strategy, forms the foundation 

of the applying IME method to scenarios with plume overlapping. However, there can 

be plume confusion for unseparated overlapping plumes. Moreover, this strategy may 

omit significant portions, as illustrated in Figure RC2. 5, where a substantial number of 

pixels identified as plume pixels by UNSEP are excluded by SEP. 



 

Figure RC2. 5 Whole plume pixels (yellow, identified by SEP) and separated & attributed plumes 

(Viridis coloring; by UNSEP) in the EMIT observation. 

⚫ l413 goes too fast so it is difficult to understand what it corresponds to.” 

Response: In L413, in comparison to our separated quantification approach, we also 

employed the traditional IME method by Varon et al. (2018) to quantify the entire 

plume cluster, denoted as “whole”. We will make it clearer for this point by 

elaborating on a more detailed implementation of two quantification schemas for the 

observations in a new subsection in the next revision. 

⚫ “- l447-448: I do not understand the point which is made here, while I believe 

that the comparison between the Gaussian plume model inversion and IME for 

the emission quantification as a function of the spatial resolution and scale of the 

source quantification problem is an important topic” 

Response: We agree with the opinion and we tried to provide this comparison in the 

first experiment in 3.1. Our experiments demonstrate that for the quantification of 

small-scale plumes (within the 6× 6 km2 simulation domain), the IME method 

generally outperforms the Gaussian plume fitting (GPF). Limited by the computation 

and the scale of the simulation, a discussion for the comparison on a large scale seems 

beyond the scope of our current experiments. 

However, it's worth noting, as shown by Varon et al. (2018), that the performance 

of Gaussian plume fitting increases with pixel size on a larger scale. L447-L448 tried 

to explain why we have not yet found the turning point of performance increase of the 

GPF. One explanation is that our simulation domain is too small, and the number of 

pixel samples begins to decrease as we increase the pixel size, which counteracts the 

benefit of the averaging of eddies by large pixels for performance improvement of the 

GPF. We will make this point clearer in the next revision. 

⚫ “- l450 I do not understand "statistically correct", and the link made at lines 450-



451 between the precision of the emission quantification using Gaussian plume 

fitting and the convolution kernel” 

Response:  The LES simulated plume demonstrates Gaussian plume morphology 

after temporal averaging (Figure RC2. 6), and the LES simulation shows that a transient 

plume may deviate from the Gaussian behavior (Figure RC2. 7). In our initial 

experiments, we found that the fitted Gaussian plume could be “spiky” near the 

source, resulting in missed capturing of some near-source-parts of the transient plume 

in some cases. To address this, we employ Gaussian blurring (i.e., convolving the 

image with a Gaussian kernel.), a subtle computer vision technique, to better capture 

these transient plumes when using Gaussian plume results as weights for the 

separation. Figure RC2. 8 illustrates how the Gaussian-blurred plume demonstrates 

more “diffusive” than the original Gaussian plume, particularly near the emission 

source. We will refine the text in the next revision. 

 

Figure RC2. 6 Time-averaged plumes by WRF-LES. From left to right: 500, 800, and 1100 m of 

inversion height. From top to bottom: 1, 3, 5, 7, 9 m/s of wind speed. 



 

Figure RC2. 7 Snapshots of transient plumes by WRF-LES. 

 

Figure RC2. 8 Snapshot of LES-simulated transient plume (left), fitted Gaussian plume (middle), 

blurred Gaussian plume (right). 

⚫ “- I do not understand line 471” 

Response: As we mentioned in previous response, as well as shown in Figure 1, the 

separated plumes don’t rely on a specific plume detection and quantification method. 

So, a new plume pixel detection method and new quantification method can be 

introduced to quantify the separated plumes. We will make this point clearer in the 

next revision. 
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