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Abstract. To learn, humans observe and experience the world, collect data, and establish patterns through repetition. In

scientific discovery, these patterns and relationships are expressed as laws and equations, data as properties and variables,

and observations as events. In
::
In

:
soil sciences, parametric models known as constitutive models

::::
(e.g.,

:::
the

::::::::
Modified

::::
Cam

:::::
Clay

:::
and

:::
the

::::::::
NorSand)

:
are used to represent the behavior of natural and artificial materials. Due to its limitations for modeling real

sands, the Modified Cam Clay
::
In

:::::::
contexts

::::::
where

::::::::::
liquefaction

::::
may

:::::
occur,

:::
the

::::::::
NorSand

::::::::::
constitutive

:
model has been replaced5

by
:::::::::
extensively

::::::
applied

:::
by

::::
both

:::::::
industry

::::
and

::::::::
academia

:::
due

:::
to

::
its

::::::::
relatively

::::::
simple

::::::
critical

:::::
state

::::::::::
formulation

:::
and

::::
low

:::::::
number

::
of

::::
input

::::::::::
parameters.

:::::::
Despite

:::
its

::::::::
suitability

:::
as

:
a
:::::
good

:::::::::
modelling

:::::::::
framework

::
to

::::::
assess

:::::
static

::::::::::
liquefaction,

:
the NorSand model

in some situations where sand-like materials need to be modelled, especially when liquefaction may occur. For example,

when the stacking of filtered tailings is considered, the height and speed of stacking are conditions that can create regions

susceptible to liquefaction within the pile. The presence of a liquefaction trigger, especially in an undrained loading regime,10

can lead to the collapse of the structure. In cases of highly complex phenomena, such as liquefaction,
:::
still

::
is

:::::
based

:::::
upon

:::::::
premises

:::::
which

::::
may

:::
not

::::::::
perfectly

::::::::
represent

:::
the

:::::::
behavior

::
of

:::
all

:::
soil

:::::
types.

::
In
::::
this

:::::::
context,

:::
the

::::::
creation

:::
of data-driven modelling

techniques can provide an impartial approach to learning using raw data from actual or simulated observations. Creating

data-driven constitutive modelsusing deep learning techniques requires large and consistent datasets, which are challenging

to acquire through experiments. Synthetic data can be generated using a theoretical function, but there is a lack of literature15

on high-volume and robust datasets of this kind. Digital soil models can be utilized to conduct numerical simulations that

produce synthetic results of triaxial tests, which are regarded as the preferred tests for assessing soil’s constitutive behavior
:::
and

::::::::::::::::
physically-informed

:::::::::::
metamodels

::::::::
emerges.

::::::::
Literature

::::::::
suggests

::::
that

:::::::::
data-driven

:::::::
models

::::::
should

:::::::
initially

:::
be

:::::::::
developed

:::::
using

:::::::
synthetic

:::::::
datasets

::
to

::::::::
establish

:
a
::::::
general

::::::::::
framework,

:::::
which

::::
can

::::
later

::
be

::::::
applied

::
to

:::::::::::
experimental

:::::::
datasets

::
to

:::::::
enhance

:::
the

:::::::
model’s

::::::::
robustness

::::
and

:::
aid

:
in
::::::::::
discovering

:::::::
potential

:::::::::::
mechanisms

::
of

:::
soil

::::::::
behavior.

:::::::::
Therefore,

::::::
creating

:::::
large

:::
and

::::::
reliable

::::::::
synthetic

:::::::
datasets20

:
is
::
a
::::::
crucial

::::
step

::
in

:::::::::::
constructing

:::::::::
data-driven

::::::::::
constitutive

:::::::
models.

::
In

::::
this

:::::::
context,

:::
the

::::::::
NorSand

:::::
model

::::::
comes

::::::
handy:

:::
by

:::::
using

:::::::
NorSand

::::::::::
simulations

::
as

:::
the

:::::::
training

::::::
dataset,

::::::::::
data-driven

::::::::::
constitutive

::::::::::
metamodels

:::
can

::::
then

::
be

:::::::::
fine-tuned

:::::
using

:::
real

::::
test

::::::
results.

:::
The

:::::::
models

::::::
created

::::
that

::::
way

::::
will

:::::::
combine

:::
the

::::::
power

:::
of

:::::::
NorSand

:::::
with

:::
the

::::::::
flexibility

::::::::
provided

:::
by

::::::::::
data-driven

::::::::::
approaches,

::::::::
enhancing

:::
the

:::::::::
modelling

::::::::::
capabilities

::
for

::::::::::
liquefaction. Therefore, for a material following the NorSand model, the present pa-

per presents a first-of-its-kind database that addresses the size and complexity issues of creating synthetic datasets for nonlinear25
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constitutive modeling of soils by simulating both drained and undrained triaxial tests. Two datasets are provided: the first one

considers a nested Latin Hypercube Sampling of input parameters encompassing 2000 soil types, each subjected to 40 initial

test configurations, resulting in a total of 160000 triaxial test results. The second one considers nested quasi-Monte Carlos

sampling techniques (Sobol and Halton) of input parameters encompassing 2048 soil types, each subjected to 42 initial test

configurations, resulting in a total of 172032 triaxial test results. Each simulation dataset comprises a 4000× 10 matrix that30

can be used for general multivariate forecasting benchmarks, in addition to direct geotechnical and soil science applications.

By using the quasi-Monte Carlo dataset and 49 of its subsamples, it is shown that the dataset of 2000 soil types and 40 initial

test configurations is sufficient to represent the general behavior of the NorSand model.
:
In
::::
this

:::::::
process,

::::
four

:::::::
Machine

::::::::
Learning

:::::::::
algorithms

::::::
(Ridge

:::::::::
Regressor,

::::::::::
KNeighbors

:::::::::
Regressor

::::
and

:::
two

:::::::
variants

:::
of

:::
the

:::::
Ridge

:::::::::
Regressor

::::::
which

:::::::::
incorporate

:::::::::
nonlinear

::::::::
Nystroem

::::::
kernels

:::::::::
mappings

::
of

:::
the

::::
input

::::
and

::::::
output

::::::
values)

::::
were

::::::
trained

:::
to

::::::
predict

:::
the

:::::::::
constitutive

::::
and

:::
test

::::::::::
parameters

:::::
based35

:::::
solely

::
on

:::
the

::::::
triaxial

::::
test

::::::
results.

:::::
These

:::::::::
algorithms

::::::::
achieved

:::::
13.91

::
%

::::
and

:::::
16.18

::
%

:::::
mean

:::::::
absolute

:::::::::
percentage

:::::
errors

::::::
among

:::
all

::
the

::::::::
fourteen

::::::::
predicted

:::::::::
parameters

:::
for

:::::::::
undrained

:::
and

:::::::
drained

::::::
triaxial

::::
tests

::::::
inputs,

:::::::::::
respectively.

:
As a secondary outcome, this

work introduces a Python script that links the established VBA implementation of NorSand to the Python environment. This

enables researchers to leverage the comprehensive capabilities of Python packages in their analyses related to this constitutive

model.40

1 Introduction

Metallic minerals are found mixed with various elements within rocks and can be extracted through mechanical and chemical

processes conducted in mining plants. Elements without commercial value typically constitute the largest percentage of rock

constituents, therefore, when removing the minerals of interest, large quantities of residual material are generated, considered

as mining waste (tailings). On the other hand, materials excavated or generated during extraction activities (or mining) and45

during mine stripping, which have no economic value, are termed sterile and are usually disposed of in piles.

Furthermore, due to the high demand for metallic ore resources, rocks with reduced metal content have become economically

viable for extraction, resulting in an increase in the quantity of tailings and necessitating larger disposal piles for this material.

In the same vein, the volume of sterile material also increases, coupled with diminishing space at the mineral extraction site.

Consequently, there arises a need to understand not only the optimal deposition methods for both tailings and sterile materials50

but also how these two substantial volumes of materials vie for available locations around the mine’s operational center.

To ensure the safe maintenance, monitoring, and operation of tailings dams, it is crucial to conduct a comprehensive,

impartial, and thoughtful evaluation of these structures during feasibility analysis, design, construction, operation, and decommissioning.

This aims to mitigate geotechnical risks associated with the subject. Similarly, when examining the stacking
:
In

::::::::
situations

::::::
where

::::::::::
liquefaction

:
is
::
a
:::::::
potential

::::::::
concern,

::::::::::
geotechnical

::::::::
engineers

::::
and

:::
soil

::::::::
scientists

::::
seek

:::::::
suitable

::::::::
modeling

::::::::::
frameworks

::
to

:::::::::
accurately55

:::::::
evaluate

:::
and

:::::::
mitigate

:::::::::
associated

:::::
risks.

:::::
One

::::::
specific

::::::::
scenario

::::::::::
highlighting

::::
this

::::
need

:::
is

:::
the

::::
case

:
of filtered tailings , related

geotechnical risks emerge. In particular, the geotechnical risks of liquefaction in this type of disposal are significant and need

to be assessed
:::::
piles.

:::::
These

:::::
piles

::::
pose

:::::::::
significant

:::::::::::
geotechnical

:::::
risks

::::::
related

::
to

:::::::::::
liquefaction,

::::::::
requiring

::::::::
thorough

::::::::::
assessment

2



through appropriate constitutive modeling. In this case,
:::::
Factors

:::::
such

::
as

:
the height and speed of stacking are conditions that

can create regions susceptible to liquefaction
::::
play

::::::
crucial

::::
roles

::
in

:::::::
creating

:::::::::
vulnerable

:::::::
regions within the pile . The presence60

:::::::::
susceptible

::
to

:::::::::::
liquefaction.

:::
The

::::::::
existence

:
of a liquefaction trigger, especially in an undrained loading regime, can lead to the

:::::::::
particularly

::
in

:::::::::
undrained

::::::
loading

::::::::::
conditions,

:::
has

:::
the

:::::::
potential

::
to

:::::
result

::
in

:::
the

::::::::
structural

:
collapse of the structure

:::
pile.

In this scenario, the NorSand constitutive model emerges as a suitable alternative to liquefaction modelling due to its rela-

tively simple critical state formulation and low number of input parameters. This model is a generalized critical state model

based on the state parameter ψ, as defined by Jefferies (1993):65

ψ = e− ec (1)

where e is the current void ration and ec is the void ratio at the critical state. The NorSand model emulates natural soil behavior

by incorporating associated plasticity and limited hardening, which enables dilation similar to that observed in real soils. This

limited hardening causes yielding during unloading conditions and provides second-order detail in replicating observed soil

behavior (Silva et al., 2022; Jefferies and Been, 2015).70

As emphasized by Silva et al. (2022), the significance and potential impact of the failure (liquefaction) of tailing dams/piles,

especially within the scope of mine operation, imply that their geotechnical design cannot be confined to current practices of

constitutive modeling. Jefferies and Been (2015) argue that the time and effort required to create models tailored to a specific

project present limitations to the use of more comprehensive numerical analyses in engineering practice. This is because

the cost of developing customized computational tools (such as implementation numerical solvers or refined constitutive75

models) can quickly exhaust the project’s available budget. Therefore, it is important to find ways to create or modify models

that can accommodate the unique characteristics of the materials of interest without necessitating elaborate computational

implementations.

Despite its suitability as a good modelling framework to assess static liquefaction (Sternik, 2015), the NorSand model still

is bused
::::
based

:
upon premises which may not perfectly represent the behavior of all soil types.

::::
Also,

::::
only

:::::::
recently

:::
the

::::::::
NorSand80

::::::
method

:::
has

::::
been

:::::::::::
implemented

::
in

::::::::::
commercial

:::::
Finite

:::::::
Element

::::::::
softwares

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rocscience, 2022; Itasca Consulting Group, 2023; Bentley, 2022)

:
.
:::::::
Besides,

::::::::
regarding

::::::::::
open-source

:::::::::::
distributions,

::::
only

::
the

::::::
Visual

:::::
Basic

::::::
(VBA)

::::::::::::
implementation

:::::::::
presented

::
by

:::::::::::::::::::::
Jefferies and Been (2015)

:
is
::::::::
available.

:
It is precisely in this context that the creation of data-driven and physically-informed metamodels emerges. These

metamodels, when based on artificial intelligence techniques, especially machine learning (ML) and deep learning (DL), may

be able to provide accurate and computationally cheap models, allowing them to be a perfect link between complex compu-85

tational models and real-time data collection and monitoring. Such methods need to be trained on large-scale datasets and

this is where the NorSand model comes handy: by using NorSand simulations as the training dataset, data-driven constitutive

metamodels can then be fine-tuned using real test results. These models will combine the power of NorSand with the flexibility

provided by data-driven approaches, enhancing the modelling capabilities for liquefaction.
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Also, only recently the NorSand method has been implemented in commercial Finite Element softwares (Rocscience, 2022; Itasca Consulting Group, 2023; Bentley, 2022)90

. Besides, regarding open-source distributions, only the Visual Basic (VBA) implementation presented by Jefferies and Been (2015)

is available. Thus, another open-source implementation easily integrated into ML and DL modelling pipelines is desirable.

Thus,
::::
Thus,

:
the current paper aims to address three main issues: the quantity and complexity of synthetic datasets for nonlin-

ear constitutive modeling of soils and the availability of open-source implementations of the NorSand constitutive model. The

first two aspects are addressed by simulating both drained and undrained triaxial tests. Two datasets are provided: the first one95

considers a nested Latin Hypercube Sampling of input parameters encompassing 2000 soil types, each subjected to 40 initial

test configurations, resulting in a total of 160000 triaxial test results. The second oneconsiders a nested quasi-Monte Carlos

sampling (Sobol and Halton) of input parameters encompassing 2048 soil types, each subjected to 42 initial test configurations,

resulting in a total of 172032 triaxial test results. Each simulation dataset comprises a 4000× 10 matrix that can be used

for general multivariate forecasting benchmarks, in addition to direct geotechnical and soil science applications. By using100

the quasi-Monte Carlo dataset and 49 of its subsamples, it is shown that the dataset of 2000 soil types and 40 initial test

configurations is sufficient to represent the general behavior
:::
will

:::
be

::::
used

::
to

:::::
study

::::
how

::::
large

:
a
:::::
given

::::::
dataset

:::::
must

::
be

::
in

:::::
order

::
to

::::::::
accurately

:::::::
capture

:::
the

:::::::
behavior

::
of

::
a
::::::::
NorSand

:::::::
material;

:::::
while

:::
the

::::::
second

::::
one,

::::::::::
completely

:::::::
different

:::::
from

:::
the

:::
first

:::::::
dataset,

::::
will

::
be

:
a
::::::
perfect

::::::::::::
out-of-sample

::::::
testing

::::::
dataset

::::
used

::
to

:::::::
perform

:::
the

::::::
sample

::::
size

:::::::::
validations

::::::::::
mentioned.

::
A

::::::::
byproduct

::
of

:::::
such

::::::
sample

:::
size

:::::::::
validation

:::
will

:::
be

:::
the

::::::
training

:::
of

:::::::
different

:::::::
machine

:::::::
learning

:::::::::
algorithms

:::
to

:::::::
perform

:::
the

::::::::
following

:::::::
learning

::::
task:

::::::
obtain

:::
the105

::::
input

:::::::::
parameters

:
of the NorSand model .

:::::
solely

::::
from

:::
the

::::::
results

::
of

::::::
triaxial

:::::
tests.

::::::::
Different

:::::::
sampling

:::::::::
techniques

::::
will

:::
be

::::
used

::
to

::::::
produce

:::
the

:::::::
datasets

::::::::::
mentioned,

::::
such

::
as

::::::
nested

::::
Latin

::::::::::
Hypercube

:::
and

:::::::::::
quasi-Monte

:::::
Carlo

::::::::
Sampling

::
of

:::::
input

::::::::::
parameters. Then,

the third aspect is considered by presenting an implementation which connects the well-known VBA implementation to the

Python environment. We will use the VBA code as the “processing kernel” of our Python implementation, taking advantage of

the years of tests and validation of the algorithm provided by Jefferies and Been (2015). This new Python code allows other110

researchers to use the full power of Python packages during their analyses involving NorSand.

The paper is structured as follows: Section 2 presents the general concepts of data-driven metamodels, with special emphasis

to soil constitutive modelling. Then, Section 3 introduces the Norsand model. Section 4, on the other hand, presents the Methods

considered in the present paper. Then, Section 5 describes the Data Records associated with the present paper, while Section

6 presents the Technical Validation of the results. Section 7 presents some Usage Notes and Codes considered in the present115

paper. Finally, Section 8 presents the conclusions.

2 Data-driven metamodels

Montáns et al. (2019) emphasize that human learning involves observing and experiencing the world, collecting data, and

identifying patterns through repeated experiments. Scientific discovery involves formalizing these patterns and relationships

into laws and equations, transforming data into properties and variables, and converting observations into events. Although laws120

and equations aid learning, the classical learning process in science is often slow and expensive, requiring extensive observation

and experimentation to understand the main variables and their impact on the phenomenon. Data-driven procedures, on the
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other hand, seek, if possible, an implicitly unbiased approach to our learning experience based on raw data from actual or

synthetic observations. These procedures have the added advantage of testing correlations between different variables and

observations, learning unanticipated patterns in nature, and allowing us to discover new scientific laws or even make predictions125

without the availability of such laws.

The recent rapid increase in the availability of measurement data from physical systems as well as from massive numeri-

cal simulations has stimulated the development of many data-driven methods for modeling and predicting dynamics. At the

forefront of data-driven methods are Deep Neural Networks (DNNs). DNNs not only achieve superior performance for tasks

such as image classification, but have also proven effective for future state prediction of dynamical systems (Haghighat et al.,130

2021). A key limitation of DNNs, and similar data-based methods, is the lack of interpretability of the resulting model: they

are focused on prediction and do not provide governing equations or clearly interpretable models in terms of the original set of

variables. An alternative data-based approach uses symbolic regression to directly identify the structure of a nonlinear dynam-

ical system from data (Schmidt and Lipson, 2009). This works remarkably well for discovering interpretable physical models,

but symbolic regression is computationally expensive and can be difficult to scale to large problems (Montáns et al., 2019).135

2.1 Data-driven constitutive modelling

In order to create metamodels from Neural Networks (NN), this type of approach generally requires a priori calibration of

the algorithms from data considered to be representative of material behavior (He et al., 2021). For example, NNs have been

applied to model a variety of materials, including concrete materials (Ghaboussi et al., 1991), hyperelastic materials (Shen

et al., 2005), viscoplastic steel material (Furukawa and Yagawa, 1998), and homogenized properties of mixed structures (Lefik140

and Schrefler, 2003). Once calibrated, NN-based constitutive models have been integrated into finite element codes to predict

path- or rate-dependent material behaviors (Lefik and Schrefler, 2003; Hashash et al., 2004; Jung and Ghaboussi, 2006; Stoffel

et al., 2019).

Recently, DNNs with special mechanistic architectures, such as Recurrent Neural Networks (RNNs), have been applied to

path-dependent materials (Wang and Sun, 2018; Mozaffar et al., 2019; Heider et al., 2020). It is clear that this type of approach145

has found significant applications in a wide range of engineering fields, as reinforced by He et al. (2021), when they argue

that data-driven computation with physical constraints is an emerging computational paradigm that allows the simulation of

complex materials directly based on the materials database and disregards the classical constitutive model construction.

To develop a data-driven constitutive model, a substantial and reliable dataset is necessary. However, obtaining a sufficiently

large dataset for soil science can be challenging since experimental data is often limited and inadequate for training ML and150

DL algorithms. Generating synthetic data using a theoretical function can be a useful alternative, as it allows for the creation

of an unlimited supply of data (Zhang et al., 2021a).

The literature suggests that data-driven models should initially be developed using synthetic datasets to establish a general

framework, which can later be applied to experimental datasets to enhance the model’s robustness and aid in discovering

potential mechanisms of soil behavior (Zhang et al., 2021a). By calibrating constitutive models on synthetic datasets, the impact155
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of experimental and measurement errors on the mapping ability of machine learning algorithms can be eliminated (Zhang et al.,

2020). Therefore, creating large and reliable synthetic datasets is a crucial step in constructing data-driven constitutive models.

2.1.1 Data-driven soil constitutive models

2.2
::::::::::

Data-driven
:::
soil

:::::::::::
constitutive

::::::
models

Currently, there is a lack of robust and high-volume datasets in the literature for soil modeling tasks. One effective method160

to generate synthetic datasets is through numerical simulations performed on digital soil models. Typically, these simulations

involve selecting a parametric constitutive model, sampling some parameters, and running simulations that mimic real-world

test setups. In soil modeling, triaxial tests are commonly simulated using conventional physics-driven constitutive models, such

as simple monotonic Konder’s expression (Basheer, 2000) or more advanced models like the Modified Cam Clay (MCC) (Fu

et al., 2007; Zhang et al., 2023).165

In particular, a simple sand shear constitutive model was used to generate synthetic datasets in the work of Zhang et al.

(2021b). A total of fourteen curves were generated to develop the ML-based constitutive model (nine curves for training and

five curves for testing).

On the other hand, the MCC constitutive model was utilized to produce a benchmark stress–strain dataset of a virtual soil

in the work of Zhang et al. (2023). In that study, a total of 250 soil types were considered, with 125 being part of the training170

dataset and the remaining 125 in the testing dataset. Considering all the initial states in the paper by Zhang et al. (2023), 1125

sets of stress–strain samples were employed as the training dataset, while 1250 sets of stress–strain samples constituted the

testing dataset.

The MCC model has been a fundamental element in numerous complex models developed in recent times (Yao et al., 2008).

However, this model and its variations are not well-suited for depicting the behavior of actual sands due to their insufficient rep-175

resentation of key features such as yielding and dilation. This is because these models assume that soils denser than the critical

state line are over-consolidated, resulting in an unrealistically high stiffness and excessively exaggerated strength (Woudstra,

2021). As indicated in the Introduction section, the NorSand constitutive model presents clear advantages over MCC model

and, therefore, shall be described in detail in the next Section.

3 NorSand180

The NorSand constitutive model is a comprehensive critical state model that effectively accounts for the impact of void ratio

on soil behavior, providing a robust framework for modeling static liquefaction in engineering applications. A distinctive

characteristic of soils is that their void ratios or relative densities influence their mechanical properties. In this regard, NorSand,

as a constitutive model, aptly elucidates changes in soil behavior resulting from variations in void ratio (Jefferies and Been,

2015).185

6



Within the Critical State Soil Mechanics (CSSM) framework, NorSand aligns with widely used models like Modified Cam

Clay (Roscoe and Burland, 1968).
::
the

:::::::
Original

::::
Cam

::::
Clay

::::::
(OCC,

:::::::::::::::::::::::
Schofield and Wroth (1968))

::::
and

:::
the

::::
MCC

:::::::::::::::::::::::
(Roscoe and Burland, 1968)

:
.
::
In

::::
fact,

:::
the

:::::::
NorSand

::::
and

:::::
OCC

::::
yield

:::::::
surfaces

:::::
have

:::
the

::::
same

::::::
shapes

::::
and

:::
the

::::
same

::::
flow

:::::
rules.

:
CSSM is founded on two prin-

ciples: 1) the presence of a unique failure locus known as the Critical State Locus (CSL), and 2) the assertion that shear strain

guides soil toward the CSL.190

The primary limitation of Modified Cam Clay
::::
MCC, especially when applied to sands, lies in its inability to capture the

dilation behavior observed in dense sands. Moreover, it proves inadequate in predicting the behavior of loose sands and is

unsuitable for addressing liquefaction-related issues. NorSand’s key advantage lies in its incorporation of a state parameter,

representing the difference between the current void ratio of the soil and its critical state. This approach uniquely relates soil

dilation or compaction to the state parameter (Rocscience, 2022).195

NorSand stands out for its ease of use, particularly for practical geotechnical engineers. It relies on a minimal set of material

properties, conveniently measurable through standard laboratory tests. The model effectively captures a wide range of soil

behaviors influenced by varying density and confining stress. The key additional parameter, beyond what is necessary for

defining a Modified Cam Clay
::::
MCC model, is the state parameter. In situations where precision in representing volume change

is crucial, the added effort required for parameter determination is more than justified.200

Developed initially for sands based on observations in large-scale hydraulic fills such as tailing dams, NorSand applicability

extends beyond, encompassing any soil where particle-to-particle interactions are controlled by contact forces and slips, rather

than cohesive bonds. Present applications of NorSand span a range from well-graded tills to sands and clayey silts (Jefferies

and Been, 2015).

The input parameters of the NorSand model are presented in Table 1. The sampling ranges adopted come from literature205

results on the behavior of real granular materials. An initial version of such ranges was first presented by Jefferies and Shuttle (2002)

and has been updated ever since. The ranges presented in Table 1 reflect the latest compilation available and reported by

Jefferies and Been (2015). This way, practitioners will especially benefit from the datasets generated, since the parameters

involved have been chosen as to represent real granular materials. Table 1 also present the meaning of each parameter in the

column
:
,
:::::
where

:::
the

::::::::
meaning

::
of

::::
each

::::::::
parameter

::
is
::::
also

::::::::
presented

::
in

:::
the

:::::::
column "Description"

:
".
::::
The

::::::::
sampling

::::::
ranges

::::::::
presented210

:::
will

::
be

:::::::::
discussed

::
in

:::
the

::::
next

::::::
section,

::
as

::::
they

:::
are

:::
not

:::::::
intrinsic

::
to
:::
the

::::::::
NorSand

:::::
model.

4 Methods

4.1 Data Generation

The NorSandTXL program is an Excel spreadsheet with all coding in the VBA environment and can be downloaded at

http://www.crcpress.com/product/isbn/9781482213683, as indicated in the book by Jefferies and Been (2015). This particular215

spreadsheet simulates drained and undrained triaxial tests of materials governed by the NorSand constitutive model. The input

features available in NorSandTXL were presented in Table 1. ,
::
as

::::
well

::
as

:::::
their

:::::::
sampling

:::::::
ranges.

:::
The

::::::::
sampling

::::::
ranges

:::::::
adopted

::::
come

:::::
from

::::::::
literature

::::::
results

::
on

:::
the

::::::::
behavior

::
of

::::
real

:::::::
granular

:::::::::
materials.

:::
An

:::::
initial

::::::
version

:::
of

::::
such

::::::
ranges

::::
was

:::
first

:::::::::
presented
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Table 1. Input values for NorSand model also used as inputs for the NorSandTXL VBA routine (Jefferies and Been, 2015).

Soil properties

Parameter Class Parameter Sampling range Units Description

CSL parameters
Γ|p′=1kPa [0.9,1.4] - CSL mean effective stress at p′ = 1kPa

λ [0.01,0.07] (lnkPa)−1 Slope of CSL defined on base e

Plasticity

Mtc [1.2,1.5] - Critical friction ratio, with triaxial compression as a refer-

ence condition

N [0.2,0.5] - Volumetric coupling parameter

χtc [2,5] - Relates minimum dilatancy to corresponding ψ , with tri-

axial as a reference condition

H0 [75,500] - H is the loading plastic hardening modulus, such that:

H =H0 +HψψHψ [200,500] -

Elasticity

Gmax|p′0 [30,100] MPa Shear modulus at p′ = p′0

Gexp [0.1,0.6] - Exponent of nonlinear shear modulus change with stress,

Gmax = Gmax|p′0 (p
′/p′0)

Gexp

ν [0.1,0.3] - Poisson’s ratio

Initial Soil State

Parameter Class Parameter Sampling range Units Description

Stress and Deformability

ψ0 [-0.2,ψmax/5] - Initial critical state parameter, where ψmax =Mtc/(χ(1+

N))

p′0 [50,1000] kPa Initial mean effective stress

K0 [0.8,1.2] - Geostatic stress ratio

OCR ("R") [0.5,3] - Overconsolidation ratio

::
by

:::::::::::::::::::::::
Jefferies and Shuttle (2002)

:::
and

:::
has

:::::
been

::::::
updated

::::
ever

:::::
since.

::::
The

::::::
ranges

::::::::
presented

::
in

:::::
Table

:
1
::::::
reflect

:::
the

:::::
latest

::::::::::
compilation

:::::::
available

:::
and

::::::::
reported

::
by

:::::::::::::::::::::
Jefferies and Been (2015)

:
.
::::
This

::::
way,

::::::::::
practitioners

::::
will

::::::::
especially

::::::
benefit

::::
from

:::
the

:::::::
datasets

:::::::::
generated,220

::::
since

:::
the

:::::::::
parameters

::::::::
involved

::::
have

::::
been

::::::
chosen

::
as

::
to
::::::::
represent

::::
real

:::::::
granular

::::::::
materials.

:

In order to massively simulate triaxial test conditions for materials following the NorSand constitutive model, a Python

routine has been developed. This routine performs two main steps: sampling and simulation. For the sampling process, all 14

input parameters are sampled in a nested manner, as there are two levels of hierarchy in the parameters: the higher level deals

with the soil properties, which are unique for a given material, while the lower level considers the initial soil state during the225

triaxial tests. As a result, the sampling process needs to: a) account for different types of materials and b) for each type of

material, consider several testing conditions.
::::
Two

::::::
datasets

::::
will

::
be

:::::::::
produced,

::
as

:::
the

::::
next

:::::::::
subsection

:::
will

::::::::
describe.

:

Thus, the following sampling procedure is considered to account for nsoils types of soils under nconditions initial testing

conditions:
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– Sample the soil properties (the first ten parameters in Table 1), obtaining a vector of properties spi, i= 1, ...,nsoils,230

such that spi ∈ R10. The sampling is performed using the centered Latin hypercube sampling algorithm implemented

in the chaospy package (Feinberg and Langtangen, 2015) with a maximin criterion
::::
(first

:::::::
dataset)

::
or

::::::
using

:
a
::::::

Sobol

::::::::::::
(Sobol, 1967)

::::::::::
quasi-Monte

:::::
Carlo

:::::::
sampling

:::::::::
technique

:::::::::::
implemented

::
in

:::::
SciPy

::::::::::::::::::
(Virtanen et al., 2020)

:::::::
(second

::::::
dataset).

– For each spi, the initial testing conditions (the last four parameters in Table 1) are sampled using the standard Latin hy-

percube sampling algorithm implemented in the chaospy package (Feinberg and Langtangen, 2015) with a ratio criterion235

::::
(first

:::::::
dataset)

::
or

::
a

::::::
Halton

:::::::::::::
(Halton, 1960)

::::::::::
quasi-Monte

:::::
Carlo

::::::::
sampling

::::::
scheme

:::::::
(second

:::::::
dataset)

:::::::::::
implemented

:::
in

:::::
SciPy

::::::::::::::::::
(Virtanen et al., 2020). This way, the vectors ici,j ∈ R4, j = 1, ...,nconditions are obtained for each spi. The maximum

value of ψ0 is set to ψmax/5 (as indicated in Table 1) for numerical stability. Additionally, to make the ici,j different for

each spi, the random seed of the sampling algorithm is changed for each i.

From the procedure above, the matrix In of input parameters is obtained, whose rows are NorSandTXL input vectors240

obtained by concatenating each spi with all the ici,j , i.e., [concat(sp1, ic1,1), concat(sp1, ic1,2), ..., concat(spnsoils
, icnsoils,

nconditions
)], where concat denotes a concatenation operation between vectors. This implies that In is a (nsoilsnconditions) by

14 matrix.
:::
The

:::::
filling

::::::::::
capabilities

::
of

:::
the

::::::::
sampling

:::::::
schemes

:::::::::
considered

:::
can

:::
be

::::
seen

::
in

::::::
Figure

::
1.

:::::
Figure

::
1
::::::
reveals

::::
that

:::
the

:::::
Latin

:::::::::
Hypercube

::::::::
sampling

:::::::
presents

:::
an

:::::::
apparent

::::::::::
randomness

:::
on

::::
how

:::
the

::::::
points

:::
are

:::::
spread

:::
in

:::
the

:::::
space.

:::::::::::
Quasi-Monte

:::::
Carlo

:::::::::
techniques,

:::
on

::
the

:::::
other

:::::
hand,

::::
have

:
a
::::
high

:::::::::::
predictability

:::
(as

::::
they

:::
are

::::::::::::
deterministic),

:::
but

:::
also

:::
fill

::
in

:::
the245

::::
input

:::::
space

::::::::::
adequately.

:::
The

:::::::::
difference

:::::::
between

:::
the

:::::
lower

::::
plots

::
on

::::::
Figure

::
1

:
is
::::
that

:::
the

::::::::
lower-left

:::
one

:::::::
presents

:::
the

:::::::
sampled

:::::
pairs

::
of

:::::
values

:::
for

::
a
::::
total

::
of

:::::
2048

::::::::
materials,

:::::
while

:::
the

::::::::::
lower-right

:::
one

:::::::
presents

:::
the

:::::::
sampled

:::::
pairs

:::
for

:
a
::::::
single

:::::::
material.

::::
The

::::::
nested

::::::::::
quasi-Monte

:::::
Carlo

::::::::
sampling

::::::
suffers

:::::
from

::
its

:::::::::::
deterministic

::::::
nature,

:::
but

::::::::
shuffling

:::
the

::::::
values

::::
help

::
to

:::::::
provide

:
a
:::::
better

::::::
spread,

:::
as

::::
shall

::
be

:::::::::
discussed.

:::
One

::::
may

::::::
notice

::::
that

::::::
besides

::::
ψ0,

:::::
which

::
is
::::::::

restricted
:::

by
::
a
:::::::
fraction

::
of

:::::
ψmax,

:::
an

::::::::::
independent

::::::::
sampling

::
of

:::::
input

::::::::::
parameters250

:::
was

:::::::::
conducted.

::::
This

::::
was

:::::::::
considered

::
to

:::::::
explore

:::
the

:::::::
behavior

::
of

:::
the

::::::::
NorSand

::::::
model

:::::
across

:::
all

::::::::::
conceivable

::::::
regions

::
of

:::
the

:::::
input

::::::::
parameter

::::::
space.

:::
The

::::::::
objective

::::
was

::
to

:::::::
enhance

::::::::::::
understanding

::
of

:::
the

:::::::::
analytical

::::::::::::
characteristics

::
of

:::
the

:::::::
transfer

:::::::
function,

::::::
which

::::::
accepts

:::::
these

:::::::::
parameters

::
as

:::::
inputs

::::
and

::::::::
produces

::::::
triaxial

:::
test

::::::
results

::
as

:::::::
outputs.

::::
This

:::::::
strategy

:::::::
ensures

:::
that

:::
the

:::::::
learning

:::::::
process

::::::
remains

::::::::
unbiased,

:::::::
thereby

:::::::::
preventing

:::
the

::::::::
algorithm

::::
from

::::::
solely

:::::::
learning

:::
the

::::::
transfer

:::::::
function

::::::
within

:
a
:::::::
specific

::::
area

::
of

:::::::
interest.

:::::::::
Broadening

:::
the

:::::
scope

:::
of

:::::::
learning

:::
task

:::::::
beyond

::::
such

:::::::
confines

::::
can

::::::::
positively

::::::::
influence

:::
the

::::::
overall

:::::::
learning

:::::::
process.

:::
For

:::::::
specific255

::::::::::
applications

:::::
where

:::
the

:::::::::
correlation

::::::
among

:::::
input

:::::::::
parameters

:::::
holds

::::::
greater

:::::::::::
significance,

:::::::
adjusting

::::
loss

:::::::
weights

:::
for

:::::
points

::::::
within

:::
and

::::::
outside

:::
the

::::::
region

::
of

:::::::
interest

:::::
could

::
be

:::::::::
beneficial.

::::
This

:::::::::
adjustment

:::::::::
represents

::
a

:::::
choice

::::
that

:::
can

:::
be

:::::
made.

::
In

::::::
future

::::::
works,

::::::::
especially

::
in

:::
the

:::::::::::
development

::
of

::::::::::
constitutive

::::::
models

:::::::
tailored

:::
for

:::::::
specific

::::::::
purposes,

::
it

:
is
:::::::::
advisable

::
to

:::::::
consider

:::
this

::::::::::
correlation

:::::::
structure.

:

The simulation step, on the other hand, involves opening the Excel spreadsheet provided in the book by Jefferies and260

Been (2015), inputting the sampled parameters, running both drained and undrained simulations for the input parameters and

collecting their respective results, finally saving them in .
:::
By

::::::
design,

:::
the

::::::::::::
NorSandTXL

:::::
Excel

:::::::::
spreadsheet

::::::::
considers

:::::
4000

:::::
strain

::::
steps

::
to

::
go

:::::
from

::::
zero

::
to

::::::::::::
approximately

::::
20%

:::::::
nominal

::::
axial

:::::
strain

::
at

:::
the

:::
end

::
of

:::
the

::::::::
simulated

::::
test.

::::
The

::::::
authors

::
of

:::
the

::::::::::
spreadsheet

9



Figure 1.
:::::
Scatter

::::
plot

::::::::
illustrating

:::
how

::::
each

:::::
space

::::
filling

::::::::
technique

:::::
works

::
for

:::::::
particular

::::
pairs

::
of
:::::::::
constitutive

:::
and

:::::::::
test-related

::::::::
parameters

::::::
indicate

::::
that

:::
this

:::::::
amount

:
is
::::
both

::::::::::
convenient

:::
and

::::::::
sufficient

:::::::::::::::::::::
(Jefferies and Been, 2015)

:
.
:::
On

:::
the

::::
other

:::::
hand,

:::
for

:
a
::::::
triaxial

::::::::
effective

::::
stress

:::::
state

::::
with

::::::
vertical

:::::
stress

:::
σ′
a:::::

(kPa)
:::
and

::::::::
confining

:::::
stress

:::
σ′
r:::::

(kPa),
::
a
::::
total

::
of

:::
10

::::::
entities

:::
are

:::::::
reported

:::::
from

:::
the

::::
tests,

::::::
which265

:::
are:

::
ϵ1:::::

(axial
::::::
strain);

:::
ϵv :::::::::

(volumetric
:::::::
strain);

:::::::::::::::
p′ = (σ′

a+2σ′
r)/3:::::

(mean
::::::::
effective

:::::
stress

::
in

::::
kPa);

:::::::::::
q = σ′

a−σ′
r :::::::::

(deviatoric
:::::
stress

::
in

::::
kPa);

::
e

::::
(void

::::::
ratio);

:::::
pi/p

′
:::::
(stress

::::::
ratio);

::::::::::
(pi/p

′)max :::::::::
(maximum

:::::
stress

:::::
ratio);

::
ψ
:::::
(state

::::::::::
parameter);

:::
Dp::::::::

(dilation)
::::
and

::::::::
η = q/p′.

:::::
Thus,

::
the

::::::
dataset

::
is
::
a
::::::::
4000× 10

:::::
array,

:::
as

::::::::
presented

::
in

:::::
Table

::
2.

::::
After

:::
the

:::::::::
simulation

::
is

::::
run,

:::
the

:::::
results

:::
are

:::::
saved

::
in

:
.h5 format files for posterior processing.

The file extension .h5 is associated with the Hierarchical Data Format (HDF5) (The HDF Group, 1997-2023), which is a270

type of high-performance distributed file system. It is specifically designed to manage large and complex data sets efficiently

and flexibly. Additionally, it enables a self-describing file format that is portable and supports parallel I/O for data compression

(Lee et al., 2022), and has shown superior performance with high-dimensional and highly structured data (Nti-Addae et al.,

2019). Literature indicates that the HDF5 has been popular in scientific communities since the late 1990s (Lee et al., 2022),
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Table 2.
:::::::
Example

::
of

::
the

::::::
dataset

:::::::
collected

::::
from

::
the

::::::::::::
‘NorSandTXL’

:::::::::
spreadsheet.

::
ϵ1 ::

ϵv ::
p′

:
q
: :

e
: ::::

pi/p
′
: :::::::::

(pi/p
′)max :

ψ
: :::

Dp :
η
:

:
0
: :

0
: :::

200
:
0
: :::::

0.9021
: ::::::

0.42306
: :

1
: :

0
: ::::::

0.92603
: :

0
:

::::::
0.06097

: ::::::
0.04314

: ::::::
209.561

: ::::::
28.2795

: ::::::
0.90128

: ::::::
0.40376

: :
1
: :

0
: ::::::

0.92603
: ::::::

0.13495
:

::::::
0.07544

: ::::::
0.05481

: ::::::
210.703

: ::::::
31.7059

: ::::::
0.90106

: ::::::
0.40811

: ::::::
0.99319

: ::::::::::
0.001981083

::::::
1.31505

: ::::::
0.15048

:

:::::
0.0897

: ::::::
0.06628

: ::::::
211.821

: ::::::
35.0611

: ::::::
0.90084

: ::::::
0.41236

: ::::::
0.99284

: ::::::::::
0.002085266

::::::
1.29952

: ::::::
0.16552

:

...

::::::
19.3293

: ::::::
2.10004

: ::::::
387.564

: :::::
562.29

: ::::::
0.86216

: ::::::
1.00101

: ::::::
1.00087

: ::::::::::
-0.000251146

: :::::::
-0.00146

::::::
1.45083

:

::::::
19.3334

: ::::::
2.10003

: ::::::
387.564

: :::::
562.29

: ::::::
0.86216

: ::::::
1.00101

: ::::::
1.00087

: ::::::::::
-0.000251018

: :::::::
-0.00146

::::::
1.45083

:

::::::
19.3374

: ::::::
2.10002

: ::::::
387.564

: :::::
562.29

: ::::::
0.86216

: ::::::
1.00101

: ::::::
1.00087

: ::::::::::
-0.000250889

: :::::::
-0.00146

::::::
1.45083

:

which is evident by the large number of open-source and commercial software packages for data visualization and analysis275

that can read and write HDF5 (Group, Accessed on April 24, 2023). As a result, this is the data format chosen for the present

paper.

4.2 Sample size validation

The samples generated using the methods in the last subsection need to be sufficiently large in order to represent the general

behavior of the NorSand model. The best way to show that the sample size is sufficient is to study how a model calibrated (or280

trained) on a given dataset performs. So, we chose the most direct (and actually most important) learning task one could face

while working with the datasets generated: back-calculation of the constitutive parameters of the model based solely on the

triaxial test results. In short, from the triaxial tests we will learn the values of the parameters which govern the behavior of the

material.

This way, it is possible to recall that a total of 14 parameters (10 constitutive and 4 related to test conditions) are used to285

generate the triaxial test results (4000 × 10
::::::::
4000× 10

:
array where 4000 denotes the number of time steps of the loading process

and 10 is the number of quantities monitored during the test)
:
,
::
as

::::::::
presented

::
in
:::::
Table

::
2. From last subsection’s notation, Let Ini

(shape 1x14
:::::
1× 14) be the i-th row of the In matrix, which contains the constitutive parameters, and let ttui and ttdi be the

results of the triaxial test under undrained and drained conditions, respectively (4000x10
::::::::
4000× 10

:
arrays, each) obtained by

using these parameters on the NorSandTXL routine.290

We will consider the following learning problem: From a sample of input parameters In= Inn,m, which considers n

different types of soil and m different test configuration (therefore with nm rows), we will use the ttui (or ttdi), for i=

1, ...,nm, to learn the vectors of parameters Ini, for i= 1, ...,nm. We wish to investigate what are the values of n and m that

suffice to produce an accurate representation of the model. In order to do so, following standard learning tasks in a Machine

Learning context, we need training, validation and testing data. It is worth noticing that our methodology needs to be robust,295

so we indeed need the validation dataset because hyperparameter tuning will be performed.

11



The
:::
first dataset obtained by following the methods of the first subsection

:::::::::
subsection

:::
4.1 was generated by a Latin Hypercube

Sampling (LHS) algorithm, which is known to provide low-discrepancy sequences of values (i.e., the samples are spread in

the domain of the sampled variables). Despite being a really powerful technique, LHS does not have an interesting property:

sequences obtained by LHS are not extensible. To put it simply, being extensible means that a sample of size j contains the300

values of the sample of size k, j > k. This way, it would not be possible to sub-sample from our original sample In in order

to build smaller datasets without loosing the space-filling capability of the dataset. This way, we needed to consider another

sampling scheme to perform our investigation.

We chose to combine two quasi-Monte Carlo low discrepancy sequence generation techniques (Sobol (Sobol, 1967) and

Halton (Halton, 1960)), which are also extensible, to perform our tests. In that case, we generated a dataset with n= 2048305

and m= 42 using Sobol sampling for the constitutive parameters (10 parameters) and Halton sampling for the experimental

test condition variables (4 variables) using the SciPy
::::
SciPy Python package (Virtanen et al., 2020). Both sequences have been

scrambled (Owen and Rudolf, 2021) to improve their robustness for space filling. By using these parameters, we ran the

NorSandTXL routine in the same manner as described in the first subsection
::::::::
subsection

::::
4.1 and obtained the corresponding

triaxial test results for both drained and undrained cases. Let us call this new dataset and qIn2048,42.310

By using the extensibility property of the sequences considered, 49 sub-samples were taken: qInn,m for n in [32, 64, 128,

256, 512, 1024, 2048] andm in [6, 12, 18, 24, 30, 36, 42]. One may see that powers of 2 were used as sample sizes for the Sobol

sampling scheme, which is standard and derives from its implementation in scipy.stats. It is worth noticing that, in general,

none of the entries of Inn,m will be in qInn,m, which indicates that using qInn,m for training and validation and Inn,m for

testing does not allow for any data “leakage”. Besides, there is a clear benefit in using Inn,m as a test set: all the models will315

be tested on the same dataset.

For the learning task considered, we used the scikit-learn Python package (Pedregosa et al., 2011) and chose 4 algorithms:

Ridge Regressor, KNeighbors Regressor and two variants of the Ridge Regressor which incorporate nonlinear mappings of

the input and output values. The first two algorithms mentioned belong to two different classes: linear and neighbors-based

regressors. They were chosen to illustrate how different types of algorithms learn our chosen task. The variants of the Ridge320

Regressor were chosen to account for nonlinearities by using the kernel trick. Considering the high dimensionality of the input

datasets, using traditional kernels is not computationally feasible, so we used Nystroem kernels (Yang et al., 2012), which

approximate a kernel map using a subset of the training data. By combining Nystroem kernels and Ridge Regressors, we can

map the inputs to a nonlinear feature space and then consider a linear regression on these features. This is a similar approach

as the one considered to build Support Vector Machine Regressors, but with a slightly different regularization for the decision325

boundary.

We also considered mapping the output values (14 parameters, in our case) to the [0,1] range by combining the scikit-learn

implementations of TransformedTargetRegressor and QuantileTransformer, which transforms the target values (outputs of the

pipeline) to follow a uniform distribution. Therefore, for a given component, this transformation tends to spread out the most

frequent values. It also reduces the impact of (marginal) outliers (Pedregosa et al., 2011). For all the algorithms considered, we330

also used a QuantileTransformer to preprocess the input values.
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This way, Figure 2 presents the methodology proposed and applied to assess the quality of the sample size. In the present

paper, the LHS-generated dataset with nsoils = 2000 and nconditions = 40, whose input parameter matrix is In2000,40, will

have its sufficiency assessed.

Quasi-Monte Carlo Dataset with n soil type and m test conditions

Traininner Test

Traininner Test

Traininner Test

...

Traininner

Traininner

Build production model by retraining on quasi-
Monte Carlo dataset {n,m} with selected 

hyperparameters

First inner loop

Second inner loop

kinner-th loop

Traininner Test

Traininner Test

Traininner Test

...

Traininner

Traininner

First inner loop

Second inner loop

kinner-th loop

1_lossinner,1

1_lossinner,2

1_lossinner,kinner

2_lossinner,1

2_lossinner,2

2_lossinner,kinner

mean_lossinner,1

mean_lossinner,2

hyperparameters1

hyperparameters2

Bayesian 
Hyperparameter 

Optimization

sample

check if minimum

check if minimum

sample

Find 
hyperparameter 

set which 
minimizes 

mean_lossinner

LHS Dataset with 2000 soil types and 40 test conditions Error metrics 
for size {n,m}

Figure 2. Methodology used to assess the sufficiency of the dataset containing 2000 soil types and 40 test conditions to represent the general

behavior of the NorSand model

It is possible to describe the workflow in Figure 2 as:335

For n in [32,64,128,256,512,1024,2048]:

For m in [6,12,18,24,30,36,42]:

– For each simulated triaxial test corresponding to the parameters matrix qInn,m, select only the columns corresponding

to ϵ1, p′, q and e (axial strain, mean effective stress, deviatoric stress and void ratio, respectively), which are the variables

commonly measured and reported. The other 7 columns are manipulations of these three
::::
(Dp ::

or
::
η,

:::
for

::::::::
example)

::::
and340

::::
could

:::
be

::::
used

::
as

:::::::::
alternative

:::::::::
regression

::::::::
variables,

::::
but

::::
such

:::::::
selection

::
is
::::
not

:::
the

::::
focus

:::
of

:::
the

::::::
present

:::::
paper. This reduced

simulation dataset is of shape 4000x4
:::::::
4000× 4.

– Each triaxial test simulation may have different start/end values for ϵ1, so it is important to "align" all the test considered.

By alignment we mean that all the tests will have measurements for the same values of ϵ1. This will enable us to use this

variable as an index and, therefore, decrease the dimensionality of each triaxial test simulation from 4000x4 to 4000x3.345

:::::::
4000× 4

::
to
::::::::
4000× 3

:::::
(each

::::
line

::::
will

:::::::::
correspond

::
to

::
a
:::::
single

:::::
value

::
of

::::
ϵ1).

:::
We

:::::
must

:::::
select

:::
the

:::::::
smallest

:::::::::
maximum

:::::
value

::
of

::
ϵ1:::::

across
:::
all

::::::::::
simulations

::::::
(which

:::
was

::::::
found

::
to

::
be

::::::
around

:::::::
15.74%

:::
for

:::
the

::::::
datasets

::::::::::
considered

:::
and

::
is

::::::::::
represented

::
as

:::
the

::::::
vertical

:::
line

:::
in

::::::
Figures

::
3

:::
and

:::
4).
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– Downsample the 4000 timesteps to 40, by using evenly spaced values on a logarithmic scale (function logspace from

Python package numpy: more values in the beginning of the time steps, where more changes are observed.
::::
This

:::::::
process350

:
is
:::::::::
illustrated

:::
on

::::::
Figures

::
3
:::
and

:::
4,

:::::
where

:::
the

::::::::::::
downsampling

::
is
:::::::::

performed
:::

for
:::
40

::::::
points

::::::::::::
logarithmically

::::::
spaced

::::::::
between

::::::::::
ϵ1 = 10−3%

::::
and

:::::
15.78

::
%). This reduces each simulated triaxial test corresponding to the parameters matrix qInn,m

from 4000x10 to 40x3
::::::::
4000× 10

::
to

::::::
40× 3. The concatenation of all triaxial test results corresponding to the parameters

matrix qInn,m shall be named qInNn,m and is of size (nm,40,3).

– Perform a GroupKFold cross-validation scheme to find the best hyperparameters of an algorithm A using qInNn,m and355

inputs and qInn,m as outputs. The loss function considered during the GroupKFold cross-validation is the mean absolute

percentage error across all folds;

– Retrain the algorithm A using all qInNn,m and qInn,m after fixing the hyperparameters as the optimal ones obtained

during the cross-validation scheme;

– Test the trained algorithm At on Innh,mh
, where nh and mh are the hypothesized sufficient number of materials and360

test conditions, respectively;

– Obtain the mean absolute percentage error in the predictions of all the 14 input parameters corresponding to Innh,mh
;

– Get the overall mean error, corresponding to all the input parameters.
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Figure 3.
:::::::::::
Downsampling

::::::
process

::::
from

::::
4000

::
to

::
40

:::::
points

::
in

:::
the

::::::::
logarithmic

::::
scale

:::
for

::::::
drained

:::
tests

As described, for training and validation, we considered a GroupKFold cross validation technique, which is a K-fold iterator

variant with non-overlapping groups (Pedregosa et al., 2011). This approach makes sure no material (group) is present both in365

train and validation set, which would lead to data "leakage".
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Figure 4.
:::::::::::
Downsampling

::::::
process

::::
from

::::
4000

::
to

::
40

:::::
points

::
in

:::
the

::::::::
logarithmic

::::
scale

:::
for

::::::::
undrained

:::
tests

A Bayesian optimization was performed to look for the best hyperparameters using the cross-validation folds generated.

This process was carried out using the Hyperopt Python package (Bergstra et al., 2015), which considers Tree-structured

Parzen Estimators. The search space for the Ridge and KNeighbors Regressors are the ones considered in the Hyperopt-

Sklearn Python package (Komer et al., 2014). For the Nystroem kernel, a custom search space was defined and consisted of:370

’gamma’ parameter uniformly on [0,1]; ’n_components’ parameter as a random equi-probable choice among [600,1200,1800];

’kernel’ parameter as a random equi-probable choice among ["additive_chi2", "chi2", "cosine", "linear", "poly", "polynomial",

"rbf","laplacian", "sigmoid"]; ’degree’ parameter as the integer value truncation of an uniform random variable on [1, 10] and

’coef0’ parameter uniformly on [0,1].

Finally, after the best hyperparameters are found, they are fixed and the algorithm A is retrained with the full dataset375

qInNn,m. This calibrated version is then used to test the quality of the model on the triaxial test results corresponding to

the dataset Innh,mh
. Then, the errors obtained for each model are plotted and analyzed. The reader may find the complete

codes used to implement the steps above in (Ozelim et al., 2023b).

5 Data Records

In the present paper, it is shown that the LHS-generated dataset with nsoils = 2000 and nconditions = 40 is a sufficient dataset.380

Thus, the folder containing such dataset can be found in Ozelim et al. (2023a) and has the following structure:

NorSandTXL_H5 \Simus\TT\Par_X_Y.h5

where TT stands for the test type (Drained or Undrained), X is the material index (from 0 to 1999) and Y is the sequential

index for the input parameters (from 0 to 79999).
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Each Par_X_Y.h5 file contains a dataset titled ‘NorSandTXL’ which includes the simulation results . By design, the NorSandTXL385

Excel spreadsheet considers 4000 strain steps to go from zero to approximately 20% nominal axial strain at the end of the

simulated test. The authors of the spreadsheet indicate that this amount is both convenient and sufficient (Jefferies and Been, 2015)

. On the other hand, for a triaxial effective stress state with vertical stress σ′
a (kPa) and confining stress σ′

r (kPa), a total of 10

entities are reported from the tests, which are: ϵ1 (axial strain); ϵv (volumetric strain); p′ = (σ′
a+2σ′

r)/3 (mean effective stress

in kPa); q = σ′
a−σ′

r (deviatoric stress in kPa); e (void ratio); pi/p′ (stress ratio); (pi/p′)max (maximum stress ratio); ψ (state390

parameter); Dp (dilation) and η = q/p′. Thus, the dataset is a 4000× 10 array, as presented in Table 2.

The ‘NorSandTXL’ dataset present in each Par_X_Y.h5 file. ϵ1 ϵv p′ q e pi/p′ (pi/p′)max ψ Dp η 0 0 200 0 0.9021

0.42306 1 0 0.92603 0 0.06097 0.04314 209.561 28.2795 0.90128 0.40376 1 0 0.92603 0.13495 0.07544 0.05481 210.703

31.7059 0.90106 0.40811 0.99319 0.001981083 1.31505 0.15048 0.0897 0.06628 211.821 35.0611 0.90084 0.41236 0.99284

0.002085266 1.29952 0.16552 19.3293 2.10004 387.564 562.29 0.86216 1.00101 1.00087 -0.000251146 -0.00146 1.45083395

19.3334 2.10003 387.564 562.29 0.86216 1.00101 1.00087 -0.000251018 -0.00146 1.45083 19.3374 2.10002 387.564 562.29

0.86216 1.00101 1.00087 -0.000250889 -0.00146 1.45083

It is worth noticing that the values stored are of the type float32, which is sufficient for the applications envisioned for the

dataset. In addition to the simulation results, the dataset also contains the attributes shown in Table 3. The correspondence

between the attributes, whose data type is either float32 or <U7 (fixed-length character string of 7 Unicode characters), and400

NorSandTXL input parameters is also presented in Table 3.
:
It

::
is

::::
easy

::
to

:::
see

::::
that

:::
the

::::::
dataset

::::::::
attributes

::
in

::::
each

:::
file

:::::
allow

:::
for

::
a

:::::::
complete

:::::::::::
reproduction

::
of

:::
the

:::::::
results,

:
if
:::::::
desired.

::::
The

::::
units

::
of

:::
the

::::::::::
parameters

:::
are

::::::::
consistent

::::
with

::::::::::::
NorSandTXL,

::
as

:::::::::
presented

::
in

::::
Table

::
1.
:

It is easy to see that the dataset attributes in each file allow for a complete reproduction of the results, if desired. The units

of the parameters are consistent with NorSandTXL, as presented in Table 1.405

In order to prove the sufficiency of In2000,40, we generated the dataset qIn2048,42 following the methods previously pre-

sented. This latter dataset is also available at Ozelim et al. (2023a) with a similar folder structure. In that case, the upper-level

folder is named NorSand_2048_42. It is worth noticing that, due to upload difficulties, NorSand_2048_42 was split as

NorSand_2048_42_Drained and NorSand_2048_42_Undrained, where each file contains the simulations for drained

and undrained scenarios, respectively.410

6 Technical Validation

Considering that the engine running the triaxial test simulations is the Excel spreadsheet presented in the book by Jefferies

and Been (2015) and that such spreadsheet has been extensively validated by both academia and industry, there is no need

to discuss the technical quality of the dataset. On the other hand, it is necessary to show that In2000,40 suffices to cover the

general behavior of the NorSand models.415

By following the methods previously described and plotting the mean absolute percentage error (MAPE) result of the 49

models (each trained and validated with samples of different sizes subsampled from qIn2048,42) Figure 5 and 6 were obtained
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Table 3. Attributes of the ‘NorSandTXL’ dataset present in each Par_X_Y.h5 file.

Attribute Parameter/Value

‘Gamma’ Γ|p′=1kPa

‘lambda’ λ

‘Mtc’ Mtc

‘N’ N

‘Xtc’ χtc

‘H0’ H0

‘Hy’ Hψ

‘Gmax_p0’ Gmax|p′0
‘G_exp’ Gexp

‘n’ ν

‘Psi_0’ ψ0

‘p0’ p′0

‘K0’ K0

‘OCR’ OCR ("R")

‘Type’ Drained or Undrained

for drained and undrained conditions, respectively. The 4 algorithms considered were Ridge, KNeighbors, Ridge-K (with

nonlinear kernel on inputs) and Ridge-KT (with nonlinear kernel on inputs and also QuantileTransformer on the outputs). It

is clear in the figures that, for contours of 0.5% gains in MAPE, the sample size of 2000x40
::::::::
2000× 40

:
is actually more than420

enough for the learning task considered. This can be stated by noticing that the contours with lower error encompass samples

with an exponential range of sizes (the x-axis is in log scale). This indicates a really small gradient on the error in the nxm

:::::
n×m

:
space, implying a good sample size. This happens for all 4 algorithms, indicating that not only linear and neighbors-

based regressors have reached their maximum ability to learn, but also the nonlinear variants considered. It can be seen that

the two nonlinear transformations applied (to inputs and to both inputs and outputs) present a similar behavior, although with425

considerably smaller MAPEs.

:::
The

:::::::
analysis

::
of

:::::::
Figures

:
5
::::

and
:
6
:::::::

indicate
::::
that

:::
for

:::
the

:::::::
learning

::::
task

::::::
hereby

:::::::::
considered,

:::::::::
undrained

::::
tests

::::::::
generally

::::::::
presented

::
a

:::::
better

::::::::::
performance

:::::
while

:::::::::
compared

::
to

::::::
drained

:::::
tests.

::
A

:::::::
possible

:::::
cause

::
for

:::::
such

:::::::
behavior

::
is

:::
that

::::::
during

:::::::::
undrained

::::
tests

:::
the

::::
void

::::
ratio

::
is

:::
kept

::::::::
constant.

:::::
Thus,

:::
for

:::
the

:::::::
learning

::::
task

::::::::::
considered,

::
the

:::::::::
algorithm

::::
does

:::
not

::::
need

::
to
:::::::
perform

::::
any

::::::::
nonlinear

:::::::::
operations

::
on

:::
one

:::::
third

::
of

:::
the

::::
input

::::::
dataset

::::::
(which

:::::::
consists

::
of

::
e,

:
p
::::
and

:
q
:::
for

::
40

::::::
values

::
of

:::
ϵ1).

:::
So,

::::
with

:::
the

:::::
same

::::::
number

::
of

:::::::
training

:::::::
samples430

:::
and

::::::::
analytical

::::::::
structure

::
of

:::
the

:::::::
learning

:::::::::
algorithm,

::
it
::
is

::::::::
expected

:::
that

::::
less

:::::::::::
nonlinearities

:::
in

:::
the

:::::
inputs

::::::
would

:::::
result

::
in

::
a

:::::
better

::::::::::
performance

:::::::
(smaller

::::::
errors)

::
of

:::
the

::::::::
predicted

:::::::
outputs.

Due to the space-filling qualities of both In2000,40 and qIn2048,42, qIn2048,42 can also be considered a sufficient dataset to

represent the NorSand model.
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Figure 5. Mean absolute percentage error for all the 14 parameters after being back-calculated solely from drained triaxial test results.

6.1
::::::::::::

Understanding
:::
the

::::::::
learning

::::
task435

6.1.1
:::::::
Drained

::::::
versus

:::::::::
undrained

:::::
tests

:::::::::::
performance

:::::
Figure

::
7
:::::::
presents

:::
the

::::::
MAPE

:::
for

:::::
each

::
of

:::
the

::::::::
predicted

::::::::::
parameters

::
by

::::
the

:::
best

::::::::::
performing

:::::::::
algorithm

:::::::::
(Ridge-KT

::::::
trained

::::
and

:::::::
validated

:::
on

:::
the

::::::::
2048× 42

:::::::
dataset

:::
and

:::::
tested

:::
on

:::
the

::::::::
2000× 40

::::
one.

:

::
At

::::
first

::::::
glance,

::::::
Figure

::
7
::::::::
suggests

::::
that

:::::
using

:::::
single

:::::
tests

::
to

::::::::::::
back-calculate

::::::::::
parameters

::
is

:::
not

:::
the

::::
best

::::::::::
alternative,

::
as
::::

the

::::::::::
combination

::
of

::::
both

:::::::
drained

:::
and

:::::::::
undrained

::::
tests

:::
can

:::::::::
potentially

::::
lead

::
to
::::::
better

::::::
results.

::::
This

::::
will

::
be

:::
the

:::::
topic

::
of

:::::
future

:::::::
studies,440

::::::::
especially

::
on

::::
how

:::::
many

:::::::
drained

:::
and

:::::::::
undrained

::::
tests

:::
lead

::
to
:::::::
optimal

::::::
results.

::::::::
Jefferies

:::
and

::::
Been

::::::::::::::::::::::
Jefferies and Been (2015)

::::
have

::::::::
discussed

:::
this

::::::::
situation,

:::::::::
suggesting

:::
the

:::::::
minimal

:::::::::::
combination

:::::
would

::
be

:::
of

:::
two

:::::::::
undrained

:::
and

:::
one

:::::::
drained

::::
tests.

:
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Figure 6. Mean absolute percentage error for all the 14 parameters after being back-calculated solely from undrained triaxial test results.

::::
Also

::::
from

::::::
Figure

::
7,

::
it
:::
can

:::
be

::::
seen

::::
that,

::
in
::::::::

general,
:::
the

::::::
models

::::::
trained

:::
on

:::::
either

:::::::
drained

::
or

:::::::::
undrained

:::::::
datasets

:::::::
achieved

::
a

::::::
similar

::::::::
prediction

:::::::::::
performance

:::
for

::::::::::
parameters

:::
K0,

:::
p′0,

:::
e0,

:::
ν,

::::
Hψ ,

:::
χtc,:::

N ,
::::
Mtc::::

and
::
Γ.

::::
For

:::
the

:::::::::
parameters

::::::
linked

::
to

:::
the

::::
test

:::::
setup,

::::::
namely

::::
K0,

:::
p′0 :::

and
:::
e0,

::::
this

::
is

::::::::
somewhat

::::::::
expected

::
as

:::::
there

:::
are

:::
no

:::::::::::
nonlinearities

::::::::
involved

::
in

::::::
finding

::::
such

::::::
values

:::::
from445

::::::
triaxial

:::
test

::::::
results

::
(it

::
is

:::::
matter

:::
of

:::::
simply

::::::::
checking

:::
the

:::::
initial

::::::
values

::
of

:::::::
stresses

:::
and

::::
void

::::::
ratios).

:

:::
For

::
ν,

:::::
what

:::
can

::
be

::::::::
observed

:::::
from

::::::
Figure

:
8
::
is
::::
that

:::
the

::::
ML

::::::::
algorithm

:::
did

:::
not

:::::
fully

:::::::::
succeeded

::
in

::
its

:::::::
learning

:::::
task,

::
as

:::::
there

:
is
::

a
:::::
great

::::::::
spreading

:::
of

:::
the

::::::
points

:::::
along

:::
the

:::::::
identity

::::
line.

:::
In

::::::
special,

:::::
most

:::
of

:::
the

:::::
points

::::
are

::::::
located

:::
in

:::
the

::::::
central

:::::::
vertical

::::::
region,

::::::::
indicating

::::
that

::::
most

:::
of

:::
the

::::
time

:::
the

::::::::
predicted

::::::
values

::::
were

:::
the

:::::
close

::
to

:::
the

:::::::::
mid-point

::
of

:::
the

:::::::
interval

:::::
(0.2),

:::::
which

::
is
::
a

::::::::::::::::
naive-approximator

::::::
known

::
as

:::::::
Dummy

::::::::
Regressor

:::::::
(outputs

:::
the

:::::
mean

::
of

:::
the

:::::::
training

:::::::
dataset).

::::
This

:::::
result

::::
may

::::
also

::
be

::::::
caused

:::
by450

::
the

::::::::
apparent

:::
low

::::::
impact

::::
that

:
ν
::::
has

::
on

:::
the

::::
final

:::::
result

::
of

:::
the

::::::
triaxial

::::
test.

:
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Figure 7.
::::::
Drained

:::
and

::::::::
undrained

::::
mean

::::::
absolute

:::::::::
percentage

::::
errors

:::
for

:::
each

::::::::
parameter

:::::::
obtained

::
by

:::
the

:::
best

::::::::
performing

::::::::
algorithm

:::::::::
(Ridge-KT)

:::
with

:::
the

::::::::
2048× 42

::::::
training

::::::
dataset.

::::::
Vertical

::::
lines

:::::::
represent

:::
the

::::
mean

::::::
MAPE

::
for

:::
all

::::::::
parameters

::::::::
according

::
to

::
the

:::::
colors

::
in

:::
the

:::
plot

:::::::
(drained

:
or
::::::::

undrained
::::::
models)

:::
The

:::::
same

:::::::
Dummy

::::::::
Regressor

::::::::
behavior

:::
was

::::::::
observed

::
for

::::
Hψ ,

::::
χtc,::

N
::::
and

::::
Mtc,::

as
::::::::
illustrated

::
in
::::::
Figure

::
9.

::
In

::::
such

::::::
figure,

:
it
::::
can

::
be

::::
seen

::::
that

:::
the

::::::::
spreading

::
of

:::
the

::::::
points

::
is

:::
still

:::::::::::
considerable

::::::
around

:::
the

:::::::
identity

::::
line.

::::
Also,

::::
the

::::
most

:::::::
extreme

::::::::::::::
mean-outputting

:::::::
behavior

::::
was

:::::::
observed

:::
for

::::
Hψ ,

::
as

::::::
Figure

::
10

:::::::::
illustrates.

:

:::
For

::
Γ,

::::::
Figure

::
11

:::::::
reveals

:::
that

:::
the

::::::::::::::
mean-outputting

:::::::
behavior

::
is
:::
not

:::::::::
prominent

::::::::
anymore,

::::::::
revealing

::
a

::::
good

:::::::
learning

:::::::::
capability455

::
of

:::
the

:::
ML

:::::::::
algorithm.

:::::
Even

:::::
tough

:::
the

::::::
MAPE

::
is

:::::
about

:::
the

::::
same

:::
for

:::::::::
algorithms

::::::
trained

:::
on

:::::
either

:::::::
drained

::
or

::::::::
undrained

:::::
tests,

:::
for

::
the

:::::::::
undrained

:::::
cases

::::
there

::
is

:
a
:::::
more

::::::::::
symmetrical

::::::::::
distribution

::
of

::::::
points

::::::
around

:::
the

::::::
identity

::::
line,

::::::
which

:::::::
indicates

::::
less

::::
bias

::
in

:::
the

:::::::::
predictions.

:::
In

:::
this

:::::::
context,

::::
less

::::
bias

:::
and

:::::::::
equivalent

::::::
MAPE

::::::
would

::::::
suggest

::::
the

:::
ML

:::::::::
algorithm

::::::
trained

::
on

:::::::::
undrained

::::
tests

::
is
::
a

:::::
better

:::::
choice

:::
for

:::::::::
estimating

::
Γ.

:

::
On

::::
the

::::
other

:::::
hand,

::::::
OCR,

:::::
Gexp,

::::::::
Gmax,p′0::::

and
:
λ
::::
had

::::::
smaller

:::::::
MAPEs

:::::
when

::::::::
predicted

:::
by

:::::::::
algorithms

::::::
trained

:::
on

:::::::::
undrained460

::::
tests.

:::
For

:::
the

::::
first

:::::
three

::::::::::
parameters,

:::
this

::
is
:::::::::
consistent

::::
with

:::::::::
calibration

::::::::::
procedures

:::::::
indicated

:::
in

:::::::
literature

::::::::::
(validation

::
of

::::::
elastic

::::::::
properties

:::::
using

::::::::
undrained

:::::
tests

::
as

::::::::
suggested

:::
by

:::::::::::::::::::::
Jefferies and Been (2015)

:
).
::::
The

:::::::::::
performance

::
of

:::
the

::::::::
Ridge-KT

:::::::::
algorithm

:::
for

::::
these

:::::::::
parameters

::::
can

::
be

::::
seen

::
in

:::::::
Figures

::
12

::
to

:::
14.

:

:::
For

:::
the

:::::
OCR

::::::
values,

::
it

::
is

::::
clear

:::::
from

::::::
Figure

::
12

::::
that

:::::
when

::::::
drained

::::
tests

:::
are

:::::
used

::
to

:::::::
calibrate

:::
the

::::
ML

:::::::::
algorithm,

::::
there

::
is
:::
no

::::
clear

::::
trend

:::
in

:::
the

::::
plot.

:
It
::
is
:::::
closer

:::
to

:
a
::
Z

::::::
pattern,

::::::
which

:::::::
indicates

::
a

:::::
slight

::::::::
mid-point

:::::::::
prediction

:::::::
behavior,

::::::
which

::::
pulls

:::
the

::::::
values465
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Figure 8.
:::::
Scatter

::::
plots

::
of

:::
true

:::
and

::::::::
predicted

:::::
values

::
for

::
ν

::::::
obtained

::
by

:::
the

:::
best

:::::::::
performing

:::::::
algorithm

:::::::::
(Ridge-KT)

::::
with

:::
the

::::::::
2048× 42

::::::
training

:::::
dataset

:::
for

:::
both

::::::
drained

:::
and

::::::::
undrained

::::
tests.

Figure 9.
:::::
Scatter

::::
plots

::
of

:::
true

:::
and

:::::::
predicted

:::::
values

::
for

:::
χtc:::::::

obtained
::
by

:::
the

:::
best

::::::::
performing

::::::::
algorithm

:::::::::
(Ridge-KT)

:::
with

:::
the

::::::::
2048× 42

::::::
training

:::::
dataset

:::
for

:::
both

::::::
drained

:::
and

::::::::
undrained

::::
tests.

:::::
closer

::
to

:::
the

:::::
mean

::::::
training

::::::
value.

:::::
When

::::::::
undrained

::::
tests

:::
are

:::::
used

::
in

:::
the

::::::
training

::::
and

::::::::
validation

:::::::
process,

:::::
there

:
is
::
a
:::::
much

::::::
clearer

::::::::
prediction

:::::::
pattern.

:::
For

:::
the

:::::
elastic

:::::::::
properties

:::::
Gexp :::

and
::::::::
Gmax,p′0 ,

::::::
Figures

:::
13

:::
and

:::
14

:::::::
indicate

::::
clear

:::::::
superior

::::::::::::
performances

:::
for

:::::::::
algorithms

::::::
trained

:::
and

::::::::
validated

::::
using

:::::::::
undrained

::::::
results.

:::
For

:::::
Gexp,

:::
the

::::::::
relatively

:::
low

::::::
impact

::
of

:::
this

:::::::::
parameter

::
on

:::
the

::::::
general

:::::::
outputs

::
of

:::
the

::::::
triaxial
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Figure 10.
:::::

Scatter
::::
plots

::
of

:::
true

:::
and

::::::::
predicted

:::::
values

:::
for

:::
Hψ:::::::

obtained
::
by

:::
the

:::
best

:::::::::
performing

::::::::
algorithm

:::::::::
(Ridge-KT)

::::
with

:::
the

::::::::
2048× 42

::::::
training

:::::
dataset

:::
for

:::
both

::::::
drained

:::
and

::::::::
undrained

::::
tests.

Figure 11.
:::::
Scatter

::::
plots

::
of

:::
true

:::
and

:::::::
predicted

:::::
values

:::
for

:
Γ
:::::::
obtained

::
by

::
the

::::
best

::::::::
performing

::::::::
algorithm

:::::::::
(Ridge-KT)

:::
with

:::
the

::::::::
2048× 42

::::::
training

:::::
dataset

:::
for

:::
both

::::::
drained

:::
and

::::::::
undrained

::::
tests.

::::
tests

::::::
(within

:::
the

:::::
range

:::::::::
considered)

:::::
could

::::::
impair

:::
the

:::::::
learning

:::::
tasks.

::
A

:::::
better

::::::::::
performance

::
is

::::
seen

:::::
when

::::::::
undrained

::::
tests

:::
are

:::::
used,470

:::
but

::::
there

::
is

:::
still

:::::
room

:::
for

::::::::::::
improvement.

::::
This

:
is
:::
not

:::
the

::::
case

:::
of

:::::::
Gmax,p′0 ,

::::::
which

:::
has

:
a
:::::
clear

:::::
sharp

::::
trend

::
as

::::
seen

::
in
::::::
Figure

:::
14.

:
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Figure 12.
:::::
Scatter

::::
plots

::
of
::::

true
:::
and

:::::::
predicted

:::::
values

:::
for

:::::
OCR

::::::
obtained

:::
by

::
the

::::
best

:::::::::
performing

:::::::
algorithm

:::::::::
(Ridge-KT)

::::
with

:::
the

::::::::
2048× 42

::::::
training

:::::
dataset

:::
for

:::
both

::::::
drained

:::
and

::::::::
undrained

::::
tests.

Figure 13.
:::::
Scatter

::::
plots

:::
of

:::
true

:::
and

:::::::
predicted

:::::
values

:::
for

::::
Gexp:::::::

obtained
:::
by

::
the

::::
best

::::::::
performing

::::::::
algorithm

:::::::::
(Ridge-KT)

::::
with

:::
the

::::::::
2048× 42

::::::
training

:::::
dataset

:::
for

:::
both

::::::
drained

:::
and

::::::::
undrained

::::
tests.

:::
For

::
λ,

:
a
:::::::
similar

:::::::
behavior

::
to

::
Γ

::
is

::::::::
observed

::::::::
regarding

::::::::
prediction

::::::
biases,

:::
as

::::
seen

::
in

::::::
Figure

:::
15.

:::
The

::::
ML

::::::::
algorithm

::::::
trained

::::
and

:::::::
validated

:::::
using

:::::::::
undrained

::::
tests

:::::::
provides

::
a
:::::
more

:::::::
balanced

::::
and

:::::::::
symmetric

:::::::::
prediction

:::::::
scenario,

::::::::::
illustrating

::::
why

:
it
:::::::::::
outperforms

::
the

:::::::::
algorithm

::::::::
calibrated

:::::
using

::::::
drained

:::::
tests.
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Figure 14.
:::::
Scatter

::::
plots

::
of

:::
true

:::
and

:::::::
predicted

:::::
values

:::
for

:::::::
Gmax,p′0 ::::::

obtained
:::
by

::
the

::::
best

::::::::
performing

::::::::
algorithm

::::::::
(Ridge-KT)

::::
with

:::
the

::::::::
2048× 42

::::::
training

:::::
dataset

:::
for

:::
both

::::::
drained

:::
and

::::::::
undrained

::::
tests.

Figure 15.
:::::
Scatter

::::
plots

::
of

:::
true

:::
and

:::::::
predicted

:::::
values

:::
for

:
λ
:::::::
obtained

::
by

::
the

::::
best

::::::::
performing

::::::::
algorithm

:::::::::
(Ridge-KT)

:::
with

:::
the

::::::::
2048× 42

::::::
training

:::::
dataset

:::
for

:::
both

::::::
drained

:::
and

::::::::
undrained

::::
tests.

:::
The

:::::::
opposite

::::::::
situation

:::::
arises

::
for

::::
H0,

:::::
which

::
is

:::::
better

:::::::
predicted

:::::
when

:::::::
drained

::::
tests

::
are

:::::::::
considered

:::::::
instead.

::::
This

::
is

:::
also

::::::::
expected475

::
as

::::
these

:::::
types

::
of

::::
tests

:::::::
provide

:
a
:::::
better

::::::::::
assessment

:::::::
whether

:::
the

:::::
stress

:::
and

:::::::::::::
state–dilatancy

::::::::
properties

:::::::
inferred

::::
from

:::
the

::::::
trends

::
in

::
the

:::::
tests

:::
are

::::::::::::
self-consistent

:::::::::::::::::::::
(Jefferies and Been, 2015)

:
.
:::::
Figure

:::
16

:::::::
presents

:::
the

::::::
results

::
of

::::
both

::::
ML

:::::::::
algorithms,

:::::::::
indicating

:::
that

::
a
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:::::
clearer

:::::
trend

::
is

:::::::
observed

:::::
when

:::::::
drained

::::
tests

:::
are

::::
used

::
as

:::::::
training

:::
and

::::::::
validation

::::::::
datasets.

::::
Even

::::::
though

:::::
there

:
is
::::
also

:
a
:::::
trend

:::::
when

::::::::
undrained

::::
tests

:::
are

:::::
used,

:::
the

:::::
spread

::::::
around

:::
the

:::::::
identity

:::
line

::
is
:::::::::::
considerable,

:::::::::
increasing

:::
the

::::::
MAPE

:::::
value.

:

Figure 16.
:::::
Scatter

::::
plots

::
of

:::
true

:::
and

::::::::
predicted

:::::
values

:::
for

:::
H0 :::::::

obtained
::
by

:::
the

:::
best

:::::::::
performing

::::::::
algorithm

:::::::::
(Ridge-KT)

::::
with

::
the

:::::::::
2048× 42

::::::
training

:::::
dataset

:::
for

:::
both

::::::
drained

:::
and

::::::::
undrained

::::
tests.

6.1.2
:::::
Effect

::
of

::::::::
training

::::::
sample

:::::
sizes

::
on

:::
the

::::::::
learning

::::
task480

::
By

:::::::::
analyzing

::::::
Figures

::
5
::::
and

::
6,

:::::::::
apparently

:::
the

::::::
overall

::::::
MAPE

:::::::
slightly

::::::::
increases

::
in

:::
the

:::::::::::
right-bottom

::::::
corner

:::::
(large

::::::::::
constitutive

:::::::::
parameters

:::::::
samples

::::
with

:::::
lower

:::
test

::::::::
parameter

::::::::
samples).

::::
This

::
is

:
a
::::::
visual

::::::
artifice

::::::
caused

::
by

:::
the

:::::::::
application

::
of

:::
the

::::::::
log-scale

::
to

:::
the

::::::::
horizontal

::::
axis,

::::::
which

::::
ends

::
up

:::::::::::
compressing

::
the

::::::
values

::
on

::::
that

::::::
corner.

:
If
:::
the

::::::
natural

:::::
scale

:::
was

::::::::::
considered,

:::
one

:::::
would

:::
see

::::
that

:::
the

:::::::
opposite

::::::
occurs:

::::
large

::::::::::
constitutive

:::::::::
parameters

:::::::
samples

::::
with

:::::
lower

::::
test

::::::::
parameter

:::::::
samples

::::
give

:::::
better

:::::
results

:::::
while

:::::::::
compared

::
to

::::
small

::::::::::
constitutive

:::::::::
parameters

:::::::
samples

:::::
with

::::
large

:::
test

:::::::::
parameter

:::::::
samples.

:::::
Such

:::::::
behavior

::::
can

::
be

::::::::
explained

:::
by

:::::::
noticing

::::
that

:::
out485

::
of

:::
the

::
14

::::::::::
parameters,

::
10

::::::::::
correspond

::
to

::::::::::
constitutive

:::::::::
parameters,

:::
so

:::
less

:::::::
training

:::::::
samples

::::::
impair

::::
their

:::::::
learning

::::
task.

:
A
::::::
MAPE

::::::::::
comparison

::
is

::::::::
presented

::
in

:::::::
Figures

::
17

::::
and

::
18

:::
for

::::
both

::::::
drained

::::
and

::::::::
undrained

::::
tests

::::
with

::::::::
different

::::::
training

::::::::
sample’s

::::::::
diversities

::::
(we

:::::::
compare

:::
the

::::
best

:::::::::
performing

::::::
models

::::::::
obtained

::
by

:::::::::
Ridge-KT

:::::::::
algorithm,

:::::
which

:::
use

:::
the

:::::::::
2048× 42

::::::
dataset,

::
to

::::
two

::::
other

:::::
case:

::::::
32× 42

::::
and

:::::::
2048× 6

:::::::
training

::::::::
samples).

::
It

::
is

:::::::
possible

::
to

:::
see

:::
that

:::
the

:::::
errors

::
of

:::
the

:::
10

:::::::::
constitutive

::::::::::
parameters

::::::
exhibit

:
a
::::::
greater

:::::::::
sensitivity

::
to

::::
less

:::::::
training

:::::::
samples

::::
than

:::
the

:::::::
opposite

::::::::
situation

::::
with

:::
test

::::::::::
parameters.

::::::
Except

:::
for

::::::
OCR,

:::
all

:::
the

:::::
other490

::::::
heavily

:::::::
impaired

::::::::::
parameters

:::
are

:::::::::
constitutive

:::::
ones.

:
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Figure 17.
::::::
Drained

::::
mean

:::::::
absolute

::::::::
percentage

:::::
errors

::::::
obtained

:::
for

:::
each

::::::::
parameter

::
by

:::
the

:::
best

:::::::::
performing

:::::::
algorithm

:::::::::
(Ridge-KT)

::::
with

::::::
training

::::::
datasets

::
of

::::::
different

::::
size.

7 Usage Notes and Codes

In Python, the h5py package provides all the necessary tools to interact with the .h5 files produced and made available in the

NorSand4AI dataset. Depending on the intended application, it might be beneficial to down-sample the 4000 × 10 matrix to

increase the axial strain increments. This can be accomplished using standard Python packages such as pandas and numpy. In495

this section, the codes used to generate the datasets are presented. At first, the following Python packages need to be imported:

1: import numpy as np

2: import math

3: import pandas as pd500

4: import xlwings as xw

5: import string

6: from skopt.space import Space

7: from skopt.sampler import Lhs

8: from scipy.stats import qmc505

9: import os

10: import h5py
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Figure 18.
::::::
Drained

::::
mean

:::::::
absolute

::::::::
percentage

:::::
errors

::::::
obtained

:::
for

:::
each

::::::::
parameter

::
by

:::
the

:::
best

:::::::::
performing

:::::::
algorithm

:::::::::
(Ridge-KT)

::::
with

::::::
training

::::::
datasets

::
of

::::::
different

::::
size.

The packages numpy, math and pandas are required for data manipulation and numeric calculations. The xlwings package is

needed to bridge Python and Excel. On the other hand, the string package is necessary to convert the (row-column) positional510

encoding to the (row-letter) alphanumeric encoding used in Excel. For the Latin Hypercube sampling procedure, skopt is

required, while qmc from scipy.stats is need for the quasi-Monte Carlos sampling. Lastly, for creating folders and files, both os

and h5py should be imported.

Let dictpos be a dictionary that points to the locations in the spreadsheet of the cells corresponding to each input parameter.

Additionally, let dict_ranges_material and dict_ranges_test be dictionaries specifying the sampling ranges of the input515

parameters. For this paper, these dictionaries are:

1: dictpos = {"Gamma":[6,4],"lambda":[7,4],"Mtc":[14,4], "N":[15,4],

2: "Xtc": [16,4],"H0":[17,4],"Hy":[18,4], "Gmax_p0":[21,4],

3: "G_exp": [22,4], "nu":[23,4],"Psi_0":[27,4],"p0":[29,4],520

4: "K0": [30,4], "OCR": [32,4]}

5: dict_ranges_material = {"Gamma":[0.9,1.4],"lambda":[0.01,0.07],"Mtc":[1.2,1.5],"N":[0.2,0.5],

6: "Xtc": [2,5],"H0":[75,500],"Hy":[200,500], "Gmax_p0":[30,100],

7: "G_exp": [0.1,0.6], "nu":[0.1,0.3]}
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8: dict_ranges_test = {"Psi_0":[−0.2,0.2],"p0":[50,1000],525

9: "K0": [0.8,1.2], "OCR": [0.5,3]}

7.1 Simply run NorSand in Python

If one seeks to simply run NorSand in Python, the function run_NorSand can be used. Its inputs are:

– final_comp: input parameters as a numpy array of shape (1,14). The parameters need to be inserted in the same order as530

dictpos.keys(), i.e., [’Gamma’, ’lambda’, ’Mtc’, ’N’, ’Xtc’, ’H0’, ’Hy’, ’Gmax_p0’, ’G_exp’, ’nu’, ’Psi_0’, ’p0’, ’K0’,

’OCR’].

– dictpos: dictionary to locate the parameters inside the spreadsheet.

– path_root: path of the spreadsheet "NorTxl.xlsm", obtained at http://www.crcpress.com/product/isbn/9781482213683

– type_v: type of the simulation (either "Drained" or "Undrained")535

1: def run_NorSand(final_comp,dictpos,path_root,type_v):

2: letters = list(string.ascii_uppercase)

3: wb = xw.Book(path_root)

4: app = wb.app540

5: macro_vba = app.macro("'NorTxl.xlsm'!RunSim")

6: macro_vba_type = app.macro("'NorTxl.xlsm'!ChangeSimMode")

7: ws = wb.sheets["Params & Plots"]

8: results_comp = []

9: for new_v in final_comp:545

10: for nv,ps in zip(new_v,dictpos.values()):

11: pl,pc = ps

12: pfinal = letters[pc−1]+str(pl)

13: ws[pfinal].value = nv

14: if ws["D34"].value == type_v:550

15: pass

16: else:

17: macro_vba_type()

18: macro_vba()

19: ws_results = wb.sheets["Txl SimResults"]555

20: np_arr = (ws_results['A4'].expand('table')).value

21: dd = np.array(np_arr).astype(np.float64)

22: dict_inpts = {}
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23: for keyv,pvalu in zip(dictpos.keys(),new_v.astype(np.float64)):

24: dict_inpts[keyv] = pvalu560

25: dict_inpts["Type"] = type_v

26: return dict_inpts,pd.DataFrame(dd)

This function outputs two entities: a dictionary containing the parameters inserted to run the simulation and a 4000x10

::::::::
4000× 10

:
pandas dataframe with simulation results (which are located inside the "Txl SimResults" tab of the xlsm file). The565

columns are the ones presented in Table 3.

7.2 Generate and save files

To generate the LHS inputs for the NorSandTXL spreadsheet, considering n_samples soil types and n_samples_2 initial test

conditions, the following code was considered:
570

1: def gen_NorSand_par_2(dict_ranges_material,dict_ranges_test,n_samples,n_samples_2):

2: lhs = Lhs(lhs_type="centered", criterion='maximin')

3: lhsinner = Lhs(criterion="ratio")

4: space_material = Space([(0, 1.) for x in range(len(dict_ranges_material))])

5: space_test = Space([(0, 1.) for x in range(len(dict_ranges_test))])575

6: x_mat = lhs.generate(space_material.dimensions, n_samples,random_state=11)

7: data_inp_mat = (np.array(x_mat).T)

8: data_expand_mat = []

9: for ind_vals in range(len(dict_ranges_material)):

10: vlow,vup = list(dict_ranges_material.values())[ind_vals]580

11: data_pts = data_inp_mat[ind_vals]

12: data_expand_mat.append((vup−vlow)*data_pts + vlow)

13: data_expand_mat = np.round(np.array(data_expand_mat),4)

14: data_expand_tst_corretos=[]

15: for pbb,yv in enumerate(data_expand_mat.T):585

16: x_tst = lhsinner.generate(space_test.dimensions, n_samples_2,random_state=int(11+2*pbb))

17: data_inp_tst = (np.array(x_tst).T)

18: data_expand_tst = []

19: for ind_vals in range(len(dict_ranges_test)):

20: if ind_vals==0:590

21: data_expand_tst.append(data_inp_tst[ind_vals])

22: else:

23: vlow,vup = list(dict_ranges_test.values())[ind_vals]

24: data_pts = data_inp_tst[ind_vals]

25: data_expand_tst.append((vup−vlow)*data_pts + vlow)595
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26: data_expand_tst = np.array(data_expand_tst)

27: data_expand_tst_prov = data_expand_tst.copy()

28: data_expand_tst_prov[0] = np.array([(np.clip(yv[2]/(yv[4]*(1+yv[3])),0, yv[2]/(5*yv[4]*(1+yv[3])))+0.2)*lhsv−0.2 for lhsv in

data_expand_tst_prov[0]])

29: data_expand_tst_corretos.append(data_expand_tst_prov)600

30: data_expand_tst_corretos = np.round(np.array(data_expand_tst_corretos),4)

31: final_comp=[]

32: for mat_vals,tst_vals in zip(data_expand_mat.T,data_expand_tst_corretos):

33: for ti_vals in tst_vals.T:

34: final_comp.append(np.concatenate((mat_vals,ti_vals),axis=0))605

35: return final_comp

The quasi-Monte Carlos sampling schemes (Sobol and Halton) can be used to generate the input samples by means of the

gen_NorSand_par_LD function, written as:
610

1: def gen_NorSand_par_LD(dict_ranges_material,dict_ranges_test,n_samples,n_samples_2):

2: sampler = qmc.Sobol(d=len(dict_ranges_material), scramble=True,seed=11)

3: x_mat = sampler.random_base2(m=int(np.log2(n_samples)))

4: data_inp_mat = x_mat.T

5: data_expand_mat = []615

6: for ind_vals in range(len(dict_ranges_material)):

7: vlow,vup = list(dict_ranges_material.values())[ind_vals]

8: data_pts = data_inp_mat[ind_vals]

9: data_expand_mat.append((vup−vlow)*data_pts + vlow)

10: data_expand_mat = np.round(np.array(data_expand_mat),4)620

11: data_expand_tst_corretos=[]

12: for pbb,yv in enumerate(data_expand_mat.T):

13: samplerinner = qmc.Halton(d=len(dict_ranges_test),scramble=True,seed=int(11+2*pbb))

14: x_tst = samplerinner.random(n=n_samples_2)

15: data_inp_tst = x_tst.T625

16: data_expand_tst = []

17: for ind_vals in range(len(dict_ranges_test)):

18: if ind_vals==0:

19: data_expand_tst.append(data_inp_tst[ind_vals])

20: else:630

21: vlow,vup = list(dict_ranges_test.values())[ind_vals]

22: data_pts = data_inp_tst[ind_vals]

23: data_expand_tst.append((vup−vlow)*data_pts + vlow)

24: data_expand_tst = np.array(data_expand_tst)

30



25: data_expand_tst_prov = data_expand_tst.copy()635

26: data_expand_tst_prov[0] = np.array([(np.clip(yv[2]/(yv[4]*(1+yv[3])),0,yv[2]/(5*yv[4]*(1+yv[3])))+0.2)*lhsv−0.2 for lhsv in

data_expand_tst_prov[0]])

27: data_expand_tst_corretos.append(data_expand_tst_prov)

28: data_expand_tst_corretos = np.round(np.array(data_expand_tst_corretos),4)

29: final_comp=[]640

30: for mat_vals,tst_vals in zip(data_expand_mat.T,data_expand_tst_corretos):

31: for ti_vals in tst_vals.T:

32: final_comp.append(np.concatenate((mat_vals,ti_vals),axis=0))

33: return final_comp645

On the other hand, to run the NorSandTXL Excel spreadsheet located in path_xlsm for all the input parameters previously

obtained as final_comp= gen_NorSand_par_2( dict_ranges_material, dict_ranges_test,n_samples,n_samples_2)

(or final_comp= gen_NorSand_par_LD( dict_ranges_material, dict_ranges_test,n_samples,n_samples_2) for the

quasi-Monte Carlo sampling of inputs), the following function can be run:
650

1: def run_NorSand_simus_P(final_comp,dictpos,n_samples_2,path_xlsm):

2: letras = list(string.ascii_uppercase)

3: wb = xw.Book(path_xlsm)

4: app = wb.app

5: macro_vba = app.macro("'NorTxl.xlsm'!RunSim")655

6: macro_vba_type = app.macro("'NorTxl.xlsm'!ChangeSimMode")

7: ws = wb.sheets["Params & Plots"]

8: results_comp = []

9: for idini,new_v in enumerate(final_comp):

10: matv = int(math.floor(idini/n_samples_2))660

11: for nv,ps in zip(new_v,dictpos.values()):

12: pl,pc = ps

13: pfinal = letras[pc−1]+str(pl)

14: ws[pfinal].value = nv

15: for type_v in ["Drained","Undrained"]:665

16: if ws["D34"].value == type_v:

17: pass

18: else:

19: macro_vba_type()

20: macro_vba()670

21: ws_results = wb.sheets["Txl SimResults"]

22: np_arr = (ws_results['A4'].expand('table')).value

23: path_xlsm_init = ("\\").join(path_xlsm.split("\\")[:−1])
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24: new_h5_file = path_xlsm_init+'\\Simus\\'+type_v+"\\Par_"+str(matv)+"_"+str(idini)+".h5"

25: new_h5_file_spl = new_h5_file.split("\\")675

26: for va in range(−3,0):

27: try:

28: os.mkdir(os.path.join(*new_h5_file_spl[:va]))

29: except:

30: pass680

31: h5f = h5py.File(new_h5_file, 'w')

32: dd = h5f.create_dataset('NorSandTXL', data=np.array((ws_results['A4'].expand('table')).value).astype(np.float32),compression

='gzip')

33: for keyv,pvalu in zip(dictpos.keys(),new_v.astype(np.float32)):

34: dd.attrs[keyv] = pvalu685

35: dd.attrs["Type"] = type_v

36: h5f.close()

The function run_NorSand_simus_P runs the simulation and also saves the results as .h5 files in the same folder as the

Excel spreadsheet. In this case, the new files are saved following the naming convention and folder structure discussed in the690

paper.

It is worth noticing that for the LHS sampling with 2000 soil types and 40 test conditions, two values of sampled ψ0 needed

to be reduced due to instabilities in the VBA code calculations. These were:

– final_comp[19572][10] = 0.085 and

– final_comp[10929][10] = 0.082.695

On the other hand, for the quasi-Monte Carlos sampling with 2048 soil types and 42 test conditions, five values of sampled

ψ0 needed to be reduced due to the same reasons. These were:

– final_comp[56382][10] = 0.0849,

– final_comp[57476][10] = 0.0766,

– final_comp[85371][10] = 0.0955,700

– final_comp[34971][10] = 0.08 and

– final_comp[41245][10] = 0.072.

All the codes previously presented are available as the Jupyter notebook Sample_and_Run.ipynb at Ozelim et al. (2023b).
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7.3 Analyzing errors during learning tasks

As described in the Methods section, we perform a sample size validation. Considering that the codes for such validation are705

lengthy, they are presented in Ozelim et al. (2023b). The Jupyter notebook Sample_size_validation.ipynb is fully commented

to illustrate its usage.

8 Conclusions

Obtaining massive datasets for modelling the behavior of soils is of great interest, not only because new artificial intelligence

algorithms can be built, but also to assess the adequacy of newly proposed physically informed models. In the context of critical710

state approaches, the NorSand model has shown provide a good balance balance complexity and accuracy. Also, this model

is used to assess the liquefaction potential of soils, which is a major cause of high scale disasters lately, such as tailing dams’

failures.

In this study, major issues were addressed. Firstly, the paper tackled the challenges associated with the quantity and com-

plexity of synthetic datasets required for nonlinear constitutive modeling of soils. This was achieved by simulating both drained715

and undrained triaxial tests, resulting in two datasets. The first dataset involved a nested Latin Hypercube Sampling of input

parameters, covering 2000 soil types with 40 initial test configurations for each, yielding a total of 160000 triaxial test results.

The second dataset employed a nested quasi-Monte Carlo sampling (Sobol and Halton) of input parameters, encompassing

2048 soil types with 42 initial test configurations for each, resulting in a total of 172032 triaxial test results. Each simulation

dataset was represented as a matrix of dimensions 4000× 10. The study demonstrated that the dataset of 2000 soil types and720

40 initial test configurations adequately captured the general behavior of the NorSand model.

Secondly, the paper addressed the issue of the availability of open-source implementations of the NorSand constitutive

model. This was achieved by presenting an implementation that connects the well-established VBA implementation to the

Python environment. The VBA code served as the "processing kernel" for the new Python implementation, leveraging the

extensive testing and validation conducted by Jefferies and Been (2015). This integration allows researchers to harness the full725

capabilities of Python packages in their analyses involving the NorSand model.

A comprehensive database like the one provided is crucial for developing ML and artificial intelligence models of geotech-

nical materials.
::
In

:::::::::
particular,

::
all

:::::::::::
geotechnical

:::::::
critical

::::
state

:::::::
models

::::::
involve

:::::::
specific

:::::::::::::
simplifications,

::::
with

:::
the

:::::
most

::::::::
apparent

::::
being

:::::
their

::::::
reliance

:::
on

::::::::::
’remoulded’

::
or

::::::::
disturbed

::::
soil

::::::::
properties.

:::::::::::::
Understanding

:::
the

:::::::::::
consequences

::
of

::::
such

::::::::
structural

::::::::::
alterations,

::::::::
especially

::
in

:::::
terms

::
of

:::::
their

::::::
impact

::
on

:::
the

:::::::
apparent

::::::
OCR,

:::::
poses

:::::::
notable

:::::::::
challenges.

::::
The

:::::
effect

::
on

:::
the

:::::
stress

:::::
ratio

:::
(ψ)

:::::::
remains730

::::::
unclear.

::::::::
Through

::
the

:::::::::
utilization

::
of

:::::::::::::::
physics-informed

:::::::
machine

:::::::
learning

:::
and

:::::::
artificial

::::::::::
intelligence

::::::::::
algorithms,

::::
these

:::::::::::
uncertainties

:::
can

::
be

::::::::::
thoroughly

::::::::::
investigated,

::::::::::
uncovering

:::::::
patterns

:::
and

::::::
hidden

:::::::
features

::::::
within

:::::::::::
experimental

::::
data.

:
We are confident that this

database will be widely used by
:::
the

:::::
results

:::
of

:::
the

::::::
present

:::::
paper

:::
are

:::::
useful

:::::
assets

:::
in

:::
this

:::::
quest,

:::::
being

::::::
useful

:::
for both academic

and industry
::::::::
industrial communities. Furthermore, researchers interested in modeling sequential data, such as time series,

could use this dataset for benchmarking purposes, as the highly non-linear nature of the constitutive model poses a significant735

challenge to ML and DL techniques.
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9 Code and data availability

All data associated with the current submission is available at Ozelim et al. (2023a). Any updates will also be published on

Zenodo, and the final DOI cited in the manuscript. The Python code used to generate the NorSandAI dataset is described in the

present paper and available at Ozelim et al. (2023b). Besides, the codes used for the learning task considered are also available740

at Ozelim et al. (2023b)
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