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Abstract. Downbursts winds, characterized by strong, localized downdrafts and subsequent horizontal straight-line 7 

winds, presents significant risk to civil structures. The transient nature and limited spatial extent present measurements 8 

challenges, necessitating analytical models for accurate understanding and predicting their action on structures. This study 9 

analyzes the Sânnicolau Mare downburst event in Romania, from June 25, 2021, using a bi-dimensional analytical model 10 

coupled with the Teaching Learning Optimization Algorithm (TLBO). The intent is to understand the distinct solutions 11 

generated by the optimization algorithm and assess their physical validity. Supporting this examination is a damage survey 12 

and wind speed data recorded during the downburst event. Employed techniques include agglomerative hierarchical 13 

clustering with the K-means algorithm (AHK-MC) and principal component analysis (PCA) to categorize and interpret 14 

the solutions. Three main clusters emerge, each displaying different storm characteristics.  Comparing the simulated 15 

maximum velocity with hail damage trajectories indicates that the optimal solution offers the best overlap, affirming its 16 

effectiveness in reconstructing downburst wind fields. However, these findings are specific to the Sânnicolau Mare event, 17 

underlining the need for a similar examination of multiple downburst events for broader validity. 18 

KEYWORDS: Downburst analytical model, Metaheuristic optimization algorithm, Multivariate data analysis, Downburst 19 

kinematic and geometric parameters, Damage survey. 20 

1 Introduction 21 

The wind climatology of Europe and several mid-latitude countries are primarily dominated by the presence of extra-22 

tropical cyclones and thunderstorms. The understanding of the formation and evolution of extra-tropical cyclones dates 23 

back to the 1920s (Bjerknes and Solberg, 1922). The atmospheric boundary layer (ABL) winds generated during such 24 

systems are well recognized, and their influence on structures has been extensively studied and coded starting from the 25 

1960s (Davenport, 1961).  These established models continue to be employed in contemporary engineering practice 26 

(Solari, 2019). Thunderstorm winds known as “downburst” consists of a strong and localized downdraft of air generated 27 

within a convective cell. These downdrafts after reaching the ground begins to spread horizontally, resulting in the 28 

formation of the downburst gust front, also known as the downburst outflow. The presence of strong turbulent wind within 29 

the downburst outflow poses significant risk to civil structures. Downburst may be generated by isolated thunderstorms, 30 

with length scales less than few kilometers. Additionally, they can be originated from more complex convective systems 31 

such as squall lines and bow echoes, in this case the spatial length scale which can potentially be affected by downbursts 32 

or downburst clusters is in the order of hundreds of kilometers (Fujita, 1978, Hjelmfelt, 2007). The size of the downburst 33 

outflow area of strong winds exhibits variability, leading to the classification of this phenomenon as either a microburst 34 
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or macrobust. A microburst is characterized by a strong outflow size that is less than 4 km, whereas a macroburst 35 

corresponds to an outflow size of intense wind greater than 4 km (Fujita, 1985). For the past four decades, the study of 36 

intense downburst wind and their impact on the built environment has constituted a prevailing subject of research in the 37 

field of Wind Engineering (Letchford, 2002). Since downburst event have high frequency of occurrence, they can be 38 

considered as one of the most severe meteorological phenomena. Thunderstorm, occurring at the mesoscale, exhibit 39 

nonstationary behaviour. Their origin is due to an instable convection condition in the atmosphere and the resulting 40 

horizontal wind profiles are significantly different from those usually observed in the ABL. From a statistical point of 41 

view, wind velocities, characterized by a mean return period greater than 10 or 20 years, are often due to these phenomena 42 

(Solari, 2014). The lack of a unified model for downburst outflows and their actions on structures, similar to Davenport’s 43 

(1961) model for extra-tropical cyclones, is primarily due to significant uncertainties arising by the inherent complexity 44 

of downburst winds. Indeed, the transient nature and limited spatial extent of downbursts presents challenges in their 45 

measurements and restrict the availability of an adequate number of test cases. In 2020, Xhelaj et. al. presented an 46 

analytical model thought to simulate the bi-dimensional structure of downbursts. The model depends on 11 parameters 47 

that are estimated using a global metaheuristic optimization algorithm described in Xhelaj et. al. (2022). The integration 48 

between the analytical model and the optimization algorithm, as well as the estimation of the kinematic parameters of the 49 

downburst outflow, is based on the Teaching Learning Based Optimization (TLBO) algorithm. The TLBO algorithm 50 

operates with a population of solutions and emulates a teaching and learning activity through iterative process to attain 51 

the best solution within the population (Rao et al., 2011). Due to the stochastic nature of the TLBO algorithm when 52 

coupled with the analytical model, the procedure can produce different optimum (or best) solutions each time the 53 

algorithm is executed. This variability arises from the initial random population of solutions generated at the beginning 54 

of the algorithm and the intermediate transformations of the set of solutions carried out by the algorithm in order to 55 

converge towards the best solution. This study aims to examine the characteristics of the optimal solutions obtained 56 

through multiple runs of the optimization procedure. It seeks to investigate the variability of the best solutions when 57 

applying the optimization algorithm to reconstruct the wind field during an intense downburst event. The main objective 58 

is to assess the extent to which the solutions differ from each other and from the solution with the lowest objective function 59 

value. Additionally, the study explores whether these alternative solutions can be considered physically valid, particularly 60 

when additional data describing the downburst event is incorporated. The selected downburst event occurred in western 61 

Timis region of Romania on 25 June 2021 and was produced during the passage over the town of Sânnicolau Mare of an 62 

intense mesoscale convective system of bow echo type. This event was recorded by a bi-axial anemometer and 63 

temperature sensor, both placed on a telecommunication tower 50 m above the ground level. The telecommunication 64 

tower lies approximately 1 km south of Sânnicolau Mare. The downburst that occurred in Sânnicolau Mare was of 65 

significant magnitude, resulting in extensive hail damage of the facades of numerous buildings within the city. Subsequent 66 

to the occurrence of this intense event, a comprehensive damage survey was undertaken through a collaborative 67 

partnership between University of Genoa (Italy) and the University of Bucharest (Romania).  The survey (Calotescu et., 68 

al., 2022 and Calotescu et., al., 2023 (submitted)) pinpoints the GPS position of the buildings within the city that were 69 

predominantly impacted by the downburst. Moreover, a comprehensive map illustrating the hail damage of the building 70 

facades was generated. The map provides important information regarding the wind velocity experienced at urban scale, 71 

which has been used to validate the reconstruction/simulation of the downburst by the optimization procedure.  72 

The analysis of the different optimal solutions (i.e., the data set) generated by the optimization algorithm was conducted 73 

through multivariate data analysis (MDA). This involved the joint application of cluster analysis and principal component 74 
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analysis to effectively examine and interpret the dataset. Cluster analysis (CA) is a data mining technique that groups 75 

similar solutions together, aiming to identify patterns in the data. It is commonly used in fields like meteorology and 76 

climatology to identify clusters of weather phenomena or geographical regions with similar weather patterns (Burlando 77 

et al., 2008; Burlando et al., 2009). Principal component analysis (PCA) is a mathematical technique used to decrease the 78 

dimensionality of a dataset while minimizing the loss of information within the data. This analysis is commonly used in 79 

meteorology and climatology to decrease the number of variables required for representing weather pattern or climate 80 

trends and to identify regions with similar weather patterns (Amato et. al., (2020); Jiang et. al., (2020)). Principal 81 

component analysis is utilized in this context to enhance the interpretation of the different optimal solutions. 82 

The present work is structured in 7 Sections. Following the introduction, Section 2 provides a description of the 83 

monitoring system that acquired the full-scale measurement employed in this research. Section 3 provides a brief 84 

meteorological description of the downburst event in Sânnicolau Mare (Romania). Section 4 describes the data set 85 

employed for performing cluster analysis and principal component analysis. Section 5 describes the implementation of 86 

these analyses. Section 6 presents an in-depth account of the main results derived from the CA and PCA. In conclusion, 87 

Section 7 offers a summary of the principal findings derived from this research. 88 

2 Monitoring system and data acquisition 89 

The complete set of measurements employed in this research were obtained through a monitoring system installed in 90 

Romania. Relevant information of this monitoring network can be accessed in the publications by Calotescu et al., (2021), 91 

Calotescu and Repetto, (2022) and Calotescu et. al., (2023) (submitted). The monitoring network received funding from 92 

the THUNDERR Project (Solari et al., 2020), which was conducted by the "Giovanni Solari – Wind Engineering and 93 

Structural Dynamics" Research (GS-Windyn) Group at the Department of Civil, Chemical, and Environmental 94 

Engineering (DICCA) of the University of Genoa. GS-Windyn, with a keen interest in monitoring poles and towers 95 

exposed to thunderstorm actions worldwide, secured funding for the acquisition of a full-scale structural monitoring 96 

network. This monitoring system was deployed on top of a 50 m lattice tower. The primary focus of this project revolves 97 

around three key objectives: first, the detection of thunderstorms; second, the analysis of wind parameters associated with 98 

these phenomena; and third, the experimental assessment of the structural response of telecommunication lattice towers 99 

to the forces generated by both synoptic and thunderstorm winds. Thunderstorms are local phenomena that occur in 100 

conditions of atmospheric instability, being characterized by the existence of vertical air currents that lead to the 101 

development of cumulonimbus clouds, the production of electric discharges, rain, and hail as well as strong downdrafts 102 

inducing damaging winds in proximity to the Earth’s surface. The vertical profile of horizontal wind velocity in downburst 103 

winds showcases distinct characteristics when compared to the traditional velocity profile observed within the boundary 104 

layer. Notably, downburst winds exhibit a nose-like shape profile, with a pronounced maximum intensity near the ground. 105 

This specific profile presents a considerable risk, particularly for structures of low to medium height. The monitoring 106 

tower, named TM_424, is property of the SC TELEKOM ROMANIA SRL and is located in the western part of Romania, 107 

Timis county, at approximately 1 km south of Sânnicolau Mare (Figure 1). The site is an open field, the terrain is flat with 108 

low grass vegetation. 109 
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 110 

 111 

Figure 1. (a) Location of the telecommunication tower TM_424, situated 1 km south of Sânnicolau Mare in Timis 

County,Romania. (b) Expanded view of the Sânnicolau Mare town with the telecommunication tower TM_424 represented 

by the red dot on the map. Maps generated using Mathematica (Wolfram Research, Inc., Version 13.3, 2023, 

https://www.wolfram.com/mathematica). 

 

 

 112 

 113 

Figure 2  shows the dimension of the tower. Among the various networks for the monitoring systems, the tower is 114 

equipped with a GILL WindObserver 70 ultrasonic anemometer at the top (Figure 2). The anemometer has a data 115 

Figure 2. TM_424 Telecommunication tower and sensors position at the top of the tower. On the horizon, approximately 

1 km from the tower lies the small city of Sânnicolau Mare. Image courtesy of  © Google Street View, 2022 

(https://www.google.com/maps). 
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acquisition rate of 4 Hz, can measure the wind speed up to 70 m/s. In addition to the anemometer sensor, the tower is 116 

equipped with a temperature sensor installed near the location of the anemometer. The sensor was encased by a protective 117 

case. The working temperature range for this sensor is between -55 and 70 °C.  118 

 119 

 3 The Sânnicolau Mare (Romania) downburst event of 25 June 2021 120 

In this section, a brief overview of the meteorological aspects pertaining to the downburst event in Sânnicolau Mare on 121 

25 June 2021 is provided. In the late afternoon of 25 June 2021, a severe downburst event affected the extreme western 122 

region of Romania. The downburst event took place in the Timis county (Figure 1a) between 18:00 and 19:00 UTC and 123 

struck the little town of Sânnicolau Mare (Figure 1b). At 17:30 UTC, a strong mesoscale convective system moving 124 

toward the east was approaching the town of Sânnicolau Mare. Figure 3a, acquired from Eumetsat, captures an image of 125 

a deep convective cell at 18:30 UTC. This weather phenomenon exhibits cloud tops ascending over 12 km above mean 126 

sea level, signifying the mature stage of the convection cycle. This mature storm cell was observed to have directly 127 

impacted the town under study. Figure 3b presents composite radar reflectivity data, indicating that this meteorological 128 

phenomenon can be classified as a mesoscale convective system known as bow echo. Radar reflectivity values at or above 129 

60 dBZ, as seen in this event, are typically indicative of severe weather conditions. Such conditions are often associated 130 

with the production of hailstones, with an average diameter of approximately 2.5 cm. 131 

  

Figure 3. (a) Distribution of cloud top heights derived from Meteosat Second Generation (MSG) valid for 25 June 2021 at 18:30 132 

UTC. Data and map obtained from ©EUMETSAT 2022 (https://view.eumetsat.int). (b) Composite radar reflectivity (dBZ) for 133 

June 25, 2021, at 18:30 UTC. The geographical location of Sânnicolau Mare and the apex of the bow echo are indicated by the 134 

black circle. Data and map obtained by ©2018 Administratia Nationala de Meteorologie (https://www.meteoromania.ro). 135 

The existence of a robust convective motion, indicative of the typical kinematic structure of a bow echo, is distinctly 136 

portrayed through the distribution of intensive lightning activity, as displayed in Figure 4a. As the figure illustrates, an 137 

approximate total of 10455 lightning strikes were recorded by the Blitzortung.org network across Eastern Europe between 138 
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16:30 to 18:30 UTC. A significant concentration of these strikes correlates with the bow echo structure   near the western 139 

Timis County in Romania. Bow echoes are a prevalent form of severe convective organization. These mesoscale 140 

convective systems can generate straight-lines surface winds that lead to extensive damage associated with downbursts. 141 

On occasion, they may also give rise to tornadoes.  142 

 

 

Figure 4. (a) Lightning strikes recorded between 16:30 to 18:30 UTC on June 25, 2021, sourced from the Blitzortung.org 143 

network archive for lightning and thunderstorms (www.blitzortung.org). The black circle marks the geographic location of 144 

Sânnicolau Mare, situated near the apex of the observed bow echo. (b) Typical radar echo morphology commonly observed in 145 

bow echoes, characterized by the generation of strong downbursts at the bow apex, denoted as DB. Adapted from Fujita (1978). 146 

Figure 4b illustrates the characteristic kinematic structure of a bow echo as outlined by Fujita (1978). Typically, the 147 

system originates as a singular, prominent convective cell, either isolated or embedded within a broader squall line system 148 

(Phase A). As the surface winds strengthen, the parent cell undergoes transformation, evolving into a line segment of cells 149 
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with a bow-shaped configuration (Phase B). During the maximum intensity, the bow's center might develop a spearhead 150 

echo (Phase C), characterized by the occurrence of the most severe downburst winds at the apex of the spearhead. During 151 

the decay phase, the wind system frequently evolves into a comma-shaped echo (Phase E) (Weisman, 2001). The 152 

comparisons between Figures 3b, 4a, and 4b elucidate that the bow echo positioned above Sânnicolau Mare at 18:30 UTC 153 

is in its most intense stage (Phase C), as evidenced by the formation of the characteristic spearhead echo shape. The 154 

intense downburst event generated at the apex of the bow echo was recorded by the anemometer and temperature sensor 155 

situated 50 meters above the ground on the TM_424 tower. The time histories of the moving average wind speed and 156 

direction (averaged over 30 seconds) (Solari et al., 2015; Burlando et al., 2017) for the recorded one-hour duration of the 157 

downburst event are given in Figure 5a and Figure 5b, respectively. At approximately 18:30 UTC the anemometer 158 

recorded an instantaneous maximum velocity (sampled at 4 Hz) of  𝑉̂ = 40.8 m/s while the maximum moving average 159 

wind velocity was 𝑉max, = 35.8 m/s. This notable high velocity clearly evidences of the occurrence of an intense 160 

downburst. The time interval spanning from 18:20 to 18:45 UTC represents the primary indicator of the downburst's 161 

occurrence in the proximity of the telecommunication tower. This period is characterized by a sudden surge in wind speed, 162 

commonly referred intensification stage followed by a subsequent decrease in velocity after 18:30 UTC. Throughout the 163 

initial phase of intensification, the wind direction exhibited a clockwise rotation, ranging from 235° and extending to 164 

approximately 360°. Additionally,  Figure 5a also includes 1-hour time series of the recorded temperature data. The 165 

temperature sensor is positioned at the same location of the anemometer. Before the passage of the downburst, the 166 

environmental temperature was on average 27 °C, while at approximately 18:20 UTC the temperature dropped very 167 

sharply reaching the minimum value of 14.5 °C at approximately 18:30 UTC. After the sharp drop the temperature started 168 

to rise and eventually returned to its pre-storm level  (not shown).  169 
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Figure 5. Telecommunication tower monitoring network measurements from 18:00 to 19:00 UTC on June 25, 2021: (a) Time 

history of the instantaneous wind speed (green), moving average mean wind speed (black) and temperature record 

(magenta); (b) Instantaneous (green) and moving average mean wind direction (black). 

 170 

The downburst in Sânnicolau Mare caused widespread hail damage to the facades of numerous buildings. A collaborative 171 

damage survey was conducted by the University of Genoa (Italy) and the University of Bucharest (Romania) (Calotescu 172 

et al., 2022; Calotescu et al., 2023, submitted). The survey identified the affected buildings and produced a comprehensive 173 

map illustrating the hail damage. Figure 6 shows a schematic representation of the distribution of hail damage per area 174 

(600 x 600 m2) and the position of the buildings that suffers hail damage in the town of Sânnicolau Mare. 175 
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 176 

Figure 6. Spatial distribution of damaged buildings and locations of hail-damaged structures within 600 x 600 m2 area in 

the town of Sânnicolau Mare during the downburst event on June 25, 2021. The city boundaries of Sânnicolau Mare are 

delimited by the black line. 

4 Downburst reconstruction 177 

This section focuses on the modeling, optimization, and reconstruction of the Sânnicolau Mare downburst event. Section 178 

4.1 delves into the modeling and optimization approach used for downburst reconstruction. Section 4.2 introduces 179 

metaheuristic optimization and its application in the reconstruction of the specific downburst event under study. Finally, 180 

Section 4.3 outlines the multivariate data analysis employed to examine the solutions generated by the optimization 181 

algorithm.  182 

4.1 Modeling and optimization approach for downburst reconstruction 183 

In this study, the authors utilize the computational model developed in a previous work by Xhelaj et al. (2020) for the 184 

reconstruction and simulation of the Sânnicolau Mare downburst event discussed in Section 3. The Xhelaj et al. (2020) 185 

model can simulate the spatiotemporal evolution of the bi-dimensional moving average (30 second window) wind speed 186 

and direction experienced during a typical downburst event at a specified height z above ground level (AGL).  The Xhelaj 187 

et al., (2020) model is able to reconstruct/simulate the space-time evolution of the bi-dimensional moving average wind 188 

speed and direction produced during a generic downburst event at a height z above the ground level (AGL). The wind 189 

system simulated by the model represents the outflow structure of a translating downburst embedded in a synoptic scale 190 

wind, which is considered as constant across the simulation domain. The model comprises 11 variables that describe the 191 

kinematic structure of the downburst wind. Table 1 presents a short description of the 11 variables upon which the model 192 
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relies. As a result, the model allows for the reconstruction of the time-evolving moving average wind speed and direction 193 

generated by the simulated downburst at every point within the simulation domain. By employing anemometric wind 194 

speed and direction data collected during the Sânnicolau Mare downburst event, an optimization procedure can be 195 

formulated to minimize the relative error (objective function F), which quantifies the discrepancy between the observed 196 

time series of the moving average wind speed and direction and the corresponding simulations generated by the model. 197 

Since the Sânnicolau Mare downburst event was recorded by an anemometer positioned at a height of 50 meters AGL, 198 

the analytical model will reconstruct the wind speed and direction at the corresponding height.  199 

Table 1. Variables of the Xhelaj et., al. (2020) analytical model. 200 

 

1 
X-component touchdown location (at 𝑡 = 0) (𝑚) 

𝑋𝐶0 

 

2 Y-component touchdown location (at 𝑡 = 0) (𝑚) 𝑌𝐶0 

3 Downdraft radius (𝑚) 𝑅 

4 
Normalized radial distance from the center of the downburst where 𝑉𝑟,𝑚𝑎𝑥  

occurs (−) 
𝜌 =

𝑅𝑚𝑎𝑥

𝑅
 

5 Maximum radial velocity (𝑚/𝑠) 𝑉𝑟,𝑚𝑎𝑥 

6 Duration of the intensification period (𝑚𝑖𝑛) 𝑇𝑚𝑎𝑥 

7 Total duration of the downburst event (𝑚𝑖𝑛) 𝑇𝑒𝑛𝑑 

8 Storm translational velocity (𝑚/𝑠) 𝑉𝑡 

9 Storm translational direction (deg) 𝛼𝑡 

10  ABL wind speed below the cloud base (𝑚/𝑠) 𝑉𝑏 

11  ABL wind direction below the cloud base (𝑑𝑒𝑔) 𝛼𝑏 

 201 

The reconstruction procedure gives rise to a mathematical optimization problem characterized by being single-objective, 202 

nonlinear, and bound constrained, as discussed in Xhelaj et al. (2022). To tackle this optimization problem, the analytical 203 

model is integrated with a global metaheuristic optimization algorithm. Specifically, the Teaching Learning Optimization 204 

Algorithm (TLBO) proposed by Rao et al. (2011) is employed. The details pertaining to the integration of the analytical 205 

model with the optimization algorithm, as well as the estimation of the kinematic variables associated with the downburst 206 

event, are explained in detail in Xhelaj et al. (2022).  The TLBO algorithm it is an iterative, stochastic, and population-207 

based algorithm comprising two distinct phases: the Teacher Phase and the Learner Phase. In the Teacher Phase, the best 208 

solution in the population (the teacher) shares its knowledge (objective function) with the other solutions (the students) 209 

to enhance their performance. In the Learner Phase, the students interact with each other to further improve their 210 

performance. TLBO requires only two user-specified parameters: the maximum number of iterations T and the population 211 

size Np. When incorporating the objective function into a stochastic metaheuristic optimization algorithm, running the 212 

algorithm independently multiple times is crucial to reach the optimal solution. This iterative approach allows for a deeper 213 

exploration of the variable space, reducing the risk of getting trapped in local optima. However, it is important to note 214 

that in the context of metaheuristic optimization, there is no guarantee of attaining a globally optimal solution. As a result, 215 

the procedure can yield a range of solutions ordered based on the values assumed by the objective function, with some 216 

being better than others. In this study, the TLBO algorithm is executed 1024 times independently, with each run producing 217 

an optimal solution. Consequently, 1024 solutions are obtained. The reconstruction of the downburst event can be 218 

accomplished by selecting the solution with the lowest objective function value, as it is considered the best representation 219 
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of the event based on the optimization process. This study aims to analyze and clarify the nature of all the solutions 220 

generated by means of the TLBO algorithm for the downburst outflow reconstruction. This choice was made for a twofold 221 

reason. 222 

• The first reason is to determine the best possible solution among the 1024 totals, where best solution is the one 223 

that minimizes the objective function 𝐹, and allows to reconstruct the Sânnicolau Mare downburst event. 224 

• The second reason, which is the primary objective of this study, is to analyze these 1024 solutions using 225 

multivariate data analysis (MDA). The method used in MDA are the Agglomerative hierarchical clustering 226 

(AHC) coupled with the K-Means algorithm and principal component analysis (PCA).  227 

The objective is to investigate the distinct characteristics of the different solutions provided by the TLBO algorithm, 228 

enabling an understanding of their divergence from the optimal solution. If alternative solutions do exist, it signifies that 229 

the algorithm's solution is not unique. As such, a more comprehensive definition of the objective function is necessary to 230 

accurately discern between the optimal solution and its alternatives. 231 

4.2 Metaheuristic optimization and reconstruction of the Sânnicolau Mare downburst 232 

In metaheuristic optimization, a commonly used guideline suggests setting the population size Np as ten times the number 233 

of variables to estimate D (Storn, 1996). In this study, where D corresponds to 11 variables, a population size of Np = 110 234 

has been chosen. Additionally, considering the reported fast convergence rate of the TLBO algorithm (as mentioned in 235 

Xhelaj et al., 2022), the maximum number of iterations T for this study has been set to T = 100. Table 2 displays the lower 236 

and upper bounds of the optimization problem pertaining to the reconstruction of the Sânnicolau Mare downburst. These 237 

parameter values have been determined based on a comprehensive literature review, available in Xhelaj et al. (2022). 238 

Table 2. Lower and upper bound of the decision variable parameters for the reconstruction of the Sânnicolau Mare 239 

downburst. Table form Xhelaj et al. (2022). 240 

 

 
Parameters/Variables Lower Bound Upper Bound 

1 𝑋𝐶0 (𝑚) -10000 -10000 

2 𝑌𝐶0 (𝑚) -10000 -10000 

3 𝑅 (𝑚) 200 2000 

4 𝜌 =
𝑅𝑚𝑎𝑥

𝑅
 (−) 

1.6 2.6 

5 𝑉𝑟,𝑚𝑎𝑥  (𝑚/𝑠) 0 40 

6 𝑇𝑚𝑎𝑥  (min) 2 15 

7 𝑇𝑒𝑛𝑑  (min) 15 60 

8 𝑉𝑡 (𝑚/𝑠) 0 40 

9 𝛼𝑡 (deg ) 0 359.9 

10 𝑉𝑏 (𝑚/𝑠) 0 40 

11  𝛼𝑏  (deg ) 0 359.9 

 241 

The spatial domain of the downburst simulation covers an area of 20 x 20 km² while the grid resolution in both the X and 242 

Y directions is set at 50 m. At the center of the domain is placed the probe that sense the time histories of the wind velocity 243 

and direction due to the passage of the simulated downburst. Figure 7 illustrates the "performance chart" depicting the 244 

convergence pattern of the objective functions during the reconstruction of the Sânnicolau Mare downburst using the 245 
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TLBO algorithm. The performance chart in Figure 7 illustrates the convergence pattern of the objective functions as 246 

iterations progress. It shows the upper and lower envelopes that encapsulate all 1024 independent runs. The region within 247 

the envelopes represents the objective function values' trend for all runs. At the end of the 100 iterations, the lower 248 

envelope represents to the best objective function value obtained, while the upper envelope corresponds to the worst 249 

objective function value obtained by the TLBO algorithm. The performance chart in Figure 7 includes additional visual 250 

representations: a dashed line representing the mean convergence curve, and dotted lines representing the mean 251 

plus/minus one standard deviation curves. These curves provide insights into the average behavior and deviation of the 252 

objective function values across the 1024 runs. Based on the analysis of the performance charts, it can be observed that 253 

the TLBO algorithm attains convergence after approximately 70 iterations.  At the conclusion of 100 iterations, the best 254 

and worst objective function values correspond to 𝐹𝑚𝑖𝑛 = 0.730 and 𝐹𝑚𝑎𝑥 = 1.062, respectively. The mean and standard 255 

deviation of the objective function values are determined as 𝑚𝐹 = 0.893 and 𝑠𝐹 = 0.080, respectively. 256 

 257 

Figure 7. Performance chart for the reconstruction/simulation of the Sânnicolau Mare downburst using the TLBO algorithm. 258 

 259 

4.3 Multivariate data analysis of solutions for the Sânnicolau Mare downburst reconstruction 260 

The optimization algorithm provides in output a data table, where each row of the table is a solution of the optimization 261 

problem. Therefore, the data table is composed of 1024 rows (solutions). The table has 12 columns, where 11 columns 262 

represent the 11 variables/parameters of the analytical model, while the last column contains the values assumed by the 263 

objective function 𝐹 of each solution (i.e., each row). Although the objective function 𝐹, is not a variable of the analytical 264 

model, it is treated in Section 5 as a variable from the point of view of the multivariate data analysis. The solutions are 265 

sorted in descending order based on their objective function value F. This means that the best overall solution among the 266 

1024, lies in the last row of the data table. The analysis of the data table indicates that most variables exhibit multimodal 267 

histograms, with two or more peaks. However, only the variables 𝑉𝑏 and 𝛼𝑏 are characterized by a unimodal histogram. 268 

Since the aim of this document is to conduct a multivariate data analysis (MDA), the variables of the data table are split 269 
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into primary and secondary variables. Primary variables participate in the analysis of multivariate data (i.e., AHC + K-270 

Means and PCA), as opposed to secondary variables, which have no role in the calculation. However, secondary variables 271 

can indeed assist in the interpretation of the data table. In the present study, 𝑉𝑏, 𝛼𝑏 and 𝛼𝑡 are considered as secondary 272 

variables. This choice is primarily driven by the observation that 𝑉𝑏,  and 𝛼𝑏 exhibit unimodal histograms, suggesting that 273 

they may not significantly contribute to distinguishing different cluster solutions. However, the choice of 𝛼𝑡 as a 274 

secondary variable is purely practical, since it makes it possible to carry out a multivariate statistical analysis, avoiding 275 

the problem of circular statistics and, hence, simplifying the calculation.  276 

Let’s define the data table that contains only primary variables by a matrix 𝕏. Each row 𝑖 of the matrix represents a 277 

solution vector 𝑿𝑖 , encompassing the values associated with the nine primary variables. Therefore the solution vector can 278 

be expressed as 𝑿𝑖 = (𝑋𝐶0𝑖
, 𝑌𝐶0𝑖

, 𝑅𝑖, 𝜌𝑖 , 𝑉𝑟,𝑚𝑎𝑥𝑖
 , 𝑇𝑚𝑎𝑥 𝑖

, 𝑇𝑓𝑖
, 𝑉𝑡𝑖

, 𝐹𝑖)
𝑇

 with 𝑖 ranging from 1 to 𝐼, where I represents the 279 

total number of solutions, in this case 𝐼 = 1024. Since the solution vector 𝑿𝑖  contains 𝐾 =  9 primary variables, the 280 

resulting data matrix 𝕏 is an 𝐼-by-𝐾 matrix with 1024 rows and 9 columns. For the sake of simplicity, in order to shorten 281 

the notation, let 𝑋𝑖𝑘 be the value of the k-th primary variable in the 𝑖-th solution. Henceforth, the term “variable” will 282 

refer to primary variables, unless explicitly specified. Consequently, the dataset within the matrix 𝕏 can be regarded either 283 

as a collection of rows representing solutions to the optimization problem or as a collection of columns representing 284 

variables of the analytical model. The focus of the MDA lies in examining the data matrix from both the solution and 285 

variable perspectives, aiming to identify similarities among solutions based on their variables. In essence, the goal is to 286 

establish a typology of solutions by identifying groups that exhibit homogeneity in terms of variable similarity. This 287 

analysis allows for a comprehensive understanding of the relationships and patterns among the solutions, facilitating the 288 

identification of distinct solution clusters based on their shared variable characteristics. Since a generic solution 𝑿, is a 289 

set of 𝐾 =  9 numerical values, 𝑿 evolves within a space ℝ𝐾(a space with 9 dimensions), called “the solution’s space”. 290 

Defining in the solution’s space the usual Euclidean metric (i.e., the 𝑙2 norm ‖∙‖2), then, the squared distance between 291 

two solutions 𝑿𝑖  and 𝑿𝑙  can be expressed by the Euclidean distance 𝑑𝑖𝑙: 292 

𝑑𝑖𝑙
2 = 𝑑2(𝑿𝑖 , 𝑿𝑙) = ‖𝑿𝑖 − 𝑿𝑙‖2

2 = ∑(𝑋𝑖𝑘 − 𝑋𝑙𝑘)2

𝐾

𝑘=1

 (1) 

The distance 𝑑 possesses the following metric properties: 293 

{

𝑑(𝑿̂𝑖 , 𝑿̂𝑙) = 0   ⟺ 𝑖 = 𝑙                                                             

𝑑(𝑿̂𝑖 , 𝑿̂𝑙) = 𝑑(𝑿̂𝑙 , 𝑿̂𝑖)      (simmetry)                                      

𝑑(𝑿̂𝑖 , 𝑿̂𝑙) ≤ 𝑑(𝑿̂𝑖 , 𝑿̂𝑗) + 𝑑(𝑿̂𝑗 , 𝑿̂𝑙)      (tirangle inequlity)

 294 

The Euclidean distance not only enables distance calculations but also allows for the definition of angles and, 295 

consequently, orthogonal projections. This concept is fundamental in principal component analysis since PCA relies on 296 

the Euclidean distance as a key component of its methodology. Conducting the analysis directly on the data matrix 𝕏 297 

could be misleading without any kind of standardization or normalization. Standardization of the data is essential, 298 

particularly when variables are expressed in different units (refer to Table 1), as it ensures comparability and removes the 299 

influence of scale variations. Additionally, even when variables share the same units, disparities in the range of variability 300 

can skew the analysis. Therefore, normalization operations become crucial to provide equal weight and significance to 301 

each variable, which ultimately leads to a more comprehensive understanding of the data’s structure and relationships. 302 

Therefore, in the present work the variables are standardized according to the following equation: 303 
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𝑋̂𝑖𝑘 =
𝑋𝑖𝑘 − 𝑋̅𝑘

𝑆𝑘

, ∀𝑖 = 1, … , 𝐼 = 1024   𝑎𝑛𝑑    ∀𝑘 = 1, … 𝐾 = 9 (2) 

where 𝑋̅𝑘 denotes the sample mean of the 𝑘-th variable calculated over all 𝐼 solutions: 𝑋̅𝑘 =
1

𝐼
∑ 𝑋𝑖𝑘

𝐼
𝐼=1  and 𝑆𝑘 is the 304 

sample standard deviation of 𝑘-th variable: 𝑆𝑘 = √
1

(𝐼−1)
∑ (𝑋𝑖𝑘 − 𝑋̅𝑘)2𝐼

𝑖=1 .  305 

From a geometric standpoint, the standardization operation holds meaningful interpretations within the solution's space 306 

ℝ𝐾.The centring operation 𝑋𝑖𝑘 − 𝑋̅𝑘  is equivalent to relocating the origin of the reference system to the centre of mass 307 

of the point cloud. The centre of mass coordinates, 𝑋̅𝑘 (for 𝑘 =  1, … , 𝐾), represent the new origin. The standardization 308 

operation, which consists of considering 𝑋̂𝑖𝑘 rather than 𝑋𝑖𝑘, modifies the cloud’s shape harmonizing its variability across 309 

all directions. Finally, the normalized data matrix 𝕏̂ containing the set of vectors 𝑿̂𝑖, 𝑖  =  1, … , 𝐼, has been used in the 310 

MDA for the identification of different typology of solutions provided by the TLBO algorithm for the 311 

simulation/reconstruction of the Sânnicolau Mare downburst. Figure 8 showcase a summary statistic in the form of a box 312 

plot, illustrating the distribution of the standardized variables. Variables such  𝑹̂𝑚𝑎𝑥  and  𝑻̂𝑚𝑎𝑥 have a large number of 313 

outliers which indicates extreme values within the dataset. Therefore, even in the context of standardized data, outliers 314 

can still be informative and may hold important information for distinguishing distinct solution clusters. 315 

 

Figure 8. Box plot of the distributions of the standardized variables. Outliers in the data are plotted individually using the 

red marker symbol + . 

5 Results 316 

In the following section the results of multivariate data analysis (MDA) including cluster analysis and principal 317 

component analysis applied to the data matrix 𝕏̂ is presented. After the clusters have been established a comprehensive 318 
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description of each of them is provided. This involves examining the variables that contribute to each cluster's composition 319 

as well as identifying specific representative solutions within each cluster. Such an analysis allows for a deeper 320 

understanding of the cluster characteristics and facilitates the interpretation of meaningful patterns and insights within the 321 

data.  Sections 5.1 to 5.3 provide an in-depth analysis of data matrix 𝕏̂ from the variable’s perspective, employing 322 

agglomerative hierarchical  K – means clustering and principal component analysis. In Section 5.4 the clusters are 323 

analyzed from the point of view of the specific solutions which are the most representative of the clusters. Finally, these 324 

representative solutions are compared with the best overall solution founded from the TLBO algorithm. The comparisons 325 

of the representative solution for each cluster and the best overall solution with the full-scale data is therefore enriched 326 

considering the data from the damage campaign that was carried out after the Sânnicolau Mare downburst event. 327 

5.1 Identification of the most meaningful clusters 328 

In order to identify the appropriate number of clusters for grouping the solutions, the agglomerative hierarchical clustering 329 

(AHC) is firstly employed (Hartigan, (1975), Kaufman and Rousseuw (1990)). In AHC, each individual solution is 330 

initially treated as an independent cluster (leaf). Through a series of iterative steps, the most similar clusters are 331 

progressively merged, forming a hierarchical tree structure known as a dendrogram. This merging process continues until 332 

all the individual clusters are combined into a single cluster (root). Subsequently, the hierarchical tree is analysed, and a 333 

suitable level is chosen to cut the tree, leading to distinct and meaningful clusters. The number of clusters obtained from 334 

the AHC forms a partition of the data set. To refine and optimize this partition, a partitioning clustering algorithm called 335 

K-means (MacQueen, 1967, Hartigan and Wong, 1979) is subsequently applied. Partitioning algorithms, like K-Means, 336 

subdivides the data sets into distinct clusters, ensuring that solutions within each cluster are similar to one another while 337 

exhibiting noticeable differences between clusters. Hence the two steps clustering procedure is called agglomerative 338 

hierarchical K – means clustering (AHK-MC) and is employed to analyse the standardized data matrix 𝕏̂. By combining 339 

the strengths of both algorithms AHC and K-means, AHK-MC aims to provide a comprehensive and improved clustering 340 

algorithm of the data, enabling a more accurate identification of distinct solution groups. The hierarchical tree (i.e., 341 

dendrogram) is constructed following the Wards’ method (Ward, (1963)). Figure 9 shows the structure of the dendrogram 342 

obtained according to the Wards’ algorithm. Since the total solutions of the optimization problem are 𝐼 =  1024, the 343 

dendrogram is very dense at the bottom level (i.e., at the leaf level, where each solution is considered as a cluster by 344 

itself). The hierarchical tree is composed therefore by 𝐼 − 1 =  1023 nodes, the points were two clusters (solutions or set 345 

of solutions) are merged. The level (height) of each node in the tree is described by the within-cluster variance. The level 346 

of a node in the agglomeration process, when examined from top to bottom, indicates the reduction in within-cluster 347 

variance achieved by merging two connected clusters. This reduction in variance can be visualized using a bar graph, as 348 

depicted in Figure 10. From Figure 10  it is possible to establish the level where to cut the dendrogram and consequently 349 

to establish the number of clusters for partitioning the data set. The choice of the number of clusters is important because 350 

partitioning with too few clusters risk leaving groups which are not at all homogeneous. On the other hand, partitioning 351 

with too many clusters’ risks creating classes that are not very different from each other. Being   ∑ ∆𝑠
𝐼−1
𝑠=1 = 𝐾 = 9 (the 352 

total variance contained in the standardized data), the separation into two groups is able to describe ∆(1,2) 𝐾⁄ =353 

4.314 9⁄ = 0.4793 (47.93 %) of the total variance. Considering the partitioning into three groups, the explained variance 354 

by the three clusters is equal to [∆(1,2) + ∆(2,3)] 𝐾⁄ = [4.314 + 1.044] 9⁄ = 0.5954 (59.54 %) of the total variance, 355 

while for four clusters the “explained variance” is equal to [∆(1,2) + ∆(2,3) + ∆(3,4)] 𝐾⁄ =356 

[4.314 + 1.044 + 0.406] 9⁄ = 0.6404 (64.05 %) of the total variance. Therefore, considering more than three clusters 357 

(refer to Figure 10) is going to have a very little impact on the explained variance since very little information is gained 358 
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and is no longer useful to group together any more classes. For this reason, the dendrogram in this work is partitioned in 359 

3 clusters (refer to Figure 10) and therefore they can explain approximately 60% of the total variance present in the data.  360 

 

Figure 9. Hierarchical tree (dendrogram) constructed according to the Wards’ Method relative to the solutions of the 361 

optimization problem for the Sânnicolau Mare downburst. 362 

 

Figure 10. Bar graph of the relation between the number of merged clusters and the within-cluster variance. 363 

5.2 Interpretation of the clusters through pca and optimization using k-means 364 

The three clusters of solutions are analyzed using principal component analysis (PCA) to identify the key variables that 365 

drive the system's behavior. By extracting the principal components, which captures the most significant variation in the 366 

data, the complexity of the system can be reduced. In particular, the eigenvalues of the correlation matrix 𝕊 = 
1

(𝐼−1)
𝕏̂ 𝑇𝕏̂ 367 

quantify the amount of variance accounted by each principal component (Kassambara, 2017). The eigenvalues shows that 368 
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the first components have larger values, indicating that they capture the most significant variation in the data set. In 369 

contrast, the subsequent components have lower eigenvalues, representing a diminishing level of variation.  370 

Table 3 presents displays the eigenvalues, the percentage of variance explained by each component, and the cumulative 371 

percentage of variance. 372 

Table 3. PCA results in term of the eigenvalues, percentage of variance and cumulative percentage of variance. 373 

 Dim-1 Dim-2 Dim-3 Dim-4 Dim-5 Dim-6 Dim-7 Dim-8 Dim-9 

Eigenvalues (𝜆𝑠) or variance 5.278 1.458 0.884 0.499 0.378 0.195 0.167 0.093 0.048 

Percentage of variance 58.645 16.204 9.825 5.542 4.204 2.170 1.852 1.028 0.530 

Cumulative perc. of variance 58.645 74.849 84.674 90.216 94.420 96.589 98.441 99.470 100.000 

 374 

The first two principal components capture 74.85% of the total variance in the dataset. These components define a plane 375 

that provides significant insights into the underlying patterns and structure of the data.  Eigenvalues greater than 1 (Table 376 

3) signify that the respective principal components explain more variance in the data compared to any single standardized 377 

variable. These principal components capture significant patterns and structures in the data, contributing more to the 378 

overall variability. In contrast, eigenvalues less than 1, starting from the third principal component (Table 3) indicate that 379 

the associated principal components explain less variance than individual standardized variables, suggesting they have 380 

relatively less influence on the overall variability in the data. Therefore, it is probably not useful to interpret the next 381 

dimensions and better focusing on the first two principal dimensions for a more meaningful analysis.  It is worth 382 

mentioning that the percentage of variance explained by the first principal component (58.65 %) is very close to the 383 

variance explained by the hierarchical tree when is partitioned into three clusters (59.54 %). The three clusters, founded 384 

using the Wards’ method only, are represented in terms of solutions in the principal component map (Figure 11a). This 385 

figure shows how solutions are grouped together into three clusters when the overall cloud of solutions is projected into 386 

the first two principal components. Here, cluster 1 is not very well separated from cluster 3, which means that both clusters 387 

share similar solutions. In order to have a better partitioning, the partition is improved (or “consolidated”) by applying 388 

the K-Means algorithm to the initial partition (Figure 11a) founded by the Wards’ method. Figure 11b shows the principal 389 

component map of the final partitioning of the solutions as result of the application of the K-means algorithm. The 390 

application of the K-Means algorithm improves the partitioning quality since the three clusters this time are very well 391 

separated from each other and are more compact. This final partitioning is therefore maintained and used for the next 392 

analysis of this paper. 393 
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Figure 11. (a). Solutions’ clusters partitioning on the principal component map, using the Ward’s method only. (b) Solutions’ 394 

clusters partitioning using the hierarchical K-means method. 395 

 396 

5.3 Further considerations on the model’s parameters 397 

Table 4 provides insights into the interpretation of the results from the perspective of the variables, focusing on the first 398 

two principal components. The table displays the correlations between the variables and these components (column 1 and 399 

4). Additionally, it includes the quality of the representation (i.e., projection) of each variable on the first two principal 400 

components (columns 2 and 5), as well as the weight of each variable to the construction of these components (columns 401 

3 and 6) (Husson anf Pagès (2017)). It is important to note that the variables in the Table 4 are vectors which represent 402 

the values observed across the 1024 solutions. 403 

Table 4. Principal component analysis results for variables in terms of correlations, quality of representation and contribution to the 404 

construction relative the first two principal components. 405 

Variables 𝑽̂𝑘 Dim-1 

𝑟( 𝑽̂𝑘 , 𝒑1) 

Dim-1 

𝑞𝑙𝑡1( 𝑽̂𝑘) 

Dim-1 

𝑞𝑡𝑟1( 𝑽̂𝑘) 

Dim-2 

𝑟( 𝑽̂𝑘, 𝒑2) 

Dim-2 

𝑞𝑙𝑡2( 𝑽̂𝑘) 

Dim-2 

𝑞𝑡𝑟2( 𝑽̂𝑘) 

𝑿̂𝑪𝟎 -0.831 0.691 13.094 -0.443 0.196 13.441 

𝒀̂𝑪𝟎 0.723 0.523 9.912 -0.489 0.239 16.377 

𝑹̂ 0.578 0.334 6.326 -0.256 0.066 4.504 

𝝆̂ 0.715 0.512 9.699 -0.216 0.047 3.200 

𝑽̂𝒓,𝒎𝒂𝒙 -0.909 0.827 15.664 0.079 0.006 0.424 

𝑻̂𝒎𝒂𝒙 0.182 0.033 0.628 0.916 0.839 57.502 

𝑻̂𝒆𝒏𝒅 -0.823 0.678 12.847 0.117 0.014 0.942 

𝑽̂𝒕 0.969 0.939 17.789 0.132 0.017 1.189 

𝑭̂ 0.861 0.741 14.042 0.188 0.035 2.421 

Secondary variable 

𝑽̂𝒃 0.299 0.089 - -0.073 0.005 - 

 406 

In Table 4, is also present the secondary variable 𝑽̂𝒃. The other two variables 𝜶̂𝒕 and 𝜶̂𝒃 are non-considered since their 407 

interpretation is not consistent with the principal component analysis approach. Despite 𝑽̂𝒃  not being involved in the 408 

construction of the principal components, it is still possible to evaluate the correlation and the quality of the representation 409 
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of this variable using the two principal components. To facilitate the interpretation of Table 4, a correlation circle plot 410 

(Abdi and Williams, 2010) can be used to visually represent the variables. This plot represents each variable as a point in 411 

a two-dimensional space, where the coordinates of each point correspond to the correlation coefficients between the 412 

variable and the two principal components (i.e., 𝑟(𝑽̂𝑘, 𝒑1), 𝑟(𝑽̂𝑘 , 𝒑2)). Figure 12a illustrates the correlation circle plot. 413 

 

Figure 12. (a) Correlation circle plot. The variables in black are considered as primary variables whereas the variable in 414 

magenta is a secondary variable (b) Correlation matrix plot. 415 

This plot offers a geometric representation of the correlations among all variable pairs, making it easier to observe the 416 

grouping of positively correlated variables and the positioning of negatively correlated variables on opposite sides relative 417 

to the origin. The total contribution of each variable's representation across all principal components is always equal to 418 

1(i.e.,  ∑ 𝑞𝑙𝑡𝑠(𝑽𝑘)𝐾
𝑠=1 = 1). If a variable is explained by the first two components, then the sum of its contribution 419 

∑ 𝑞𝑙𝑡𝑠(𝑽𝑘)𝐾=2
𝑠=1  will be equal to 1. This implies that the variable’s location on the correlation circle will exactly lie on the 420 

circumference of radius 1. Hence, a low-quality variable, which is not very well represented by the first two principal 421 

components will be positioned close to the center of the circle. Therefore, only well represented variables can be 422 

interpreted from the correlation circle. Except for the variables 𝑽̂𝒃 and 𝑹̂ which are not very well represented by the 2 423 

principal components, the remaining variables are very well represented since their tip is close to the circle of radius 1. 424 

The set of variables {𝑽̂𝒕, 𝑭̂, 𝒀̂𝑪𝟎, 𝝆̂} are positively correlated with each other; this means that an increase in one variable 425 

is followed by an increase in the other variable. The same is true for the variables {𝑽̂𝒓,𝒎𝒂𝒙, 𝑿̂𝑪𝟎, 𝑻̂𝒆𝒏𝒅}. The variable 𝑽̂𝒕 is 426 

highly correlated with the first dimension (correlation of 0.97). This variable could therefore summarize itself the first 427 

principal component axis. From Figure 12a  is possible to show that the variable 𝑽̂𝒕 is strongly negatively correlated with 428 

the variables {𝑽̂𝒓,𝒎𝒂𝒙, 𝑿̂𝑪𝟎, 𝑻̂𝒆𝒏𝒅}. This means for example that solutions which are characterized by high value of storm 429 

motion 𝑉𝑡 will systematically be characterized by low values in the maximum radial velocity 𝑉𝑟,𝑚𝑎𝑥 , “low values” of the 430 

touch down component 𝑋𝐶0 with respect to the station (which means that for lower positive values of 𝑋𝐶0,  𝑋𝐶0  will be 431 

close to the station, while for lower negative values of 𝑋𝐶0, 𝑋𝐶0will be far from the station) and low values of the total 432 

duration of the downburst event 𝑇𝑒𝑛𝑑.  Since 𝑽̂𝒕 is positively correlated with the variables {𝑭̂, 𝒀̂𝑪𝟎, 𝝆̂},  what is true for 𝑽̂𝑡 433 
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with respect to the group of variables {𝑽̂𝒓,𝒎𝒂𝒙, 𝑿̂𝑪𝟎, 𝑻̂𝒆𝒏𝒅}, will also remain true for the variables {𝑭̂, 𝒀̂𝑪𝟎, 𝝆̂}. Finally, from 434 

the correlation circle plot, it seems that the variable 𝑻̂𝒎𝒂𝒙 is not very well “linearly” correlated with the groups of variables 435 

{𝑽̂𝒓,𝒎𝒂𝒙, 𝑻̂𝒆𝒏𝒅, 𝝆̂} since it is nearly orthogonal with these variables. From a quantitative point of view the values of the 436 

correlation coefficients between all the pairs of variables are plotted in Figure 12b. Table 4  shows also the values of the 437 

variable’s contribution for the construction of the two principal components (columns 3 and 6 respectively). Also in this 438 

case, it is possible to plot these values to understand which variable contribute the most for building the first two principal 439 

axes.  Figure 13a and Figure 13b show respectively the contribution of the variables expressed in percentage for the 440 

reconstruction of the first two principal components. 441 

 

Figure 13. (a) Contribution of the variables in the reconstruction of the first principal component (Dim-1). (b) Contribution 442 

of the variables in the reconstruction of the second principal component (Dim-2).  Variables are sorted from the strongest to 443 

the weakest. The red dashed line indicates the expected average contribution. 444 

The graph displays a red dashed line representing the expected average contribution. If the contribution of variables were 445 

evenly distributed, the expected value would be calculated as 1 divided by the number of variables K, which in this case 446 

is 9. This would result in an expected average contribution of 11.11%. For a given component, a variable with a 447 

contribution larger than this cutoff could be considered as important in contributing to the construction of the component. 448 

Therefore, the set of variables {𝑽̂𝒕, 𝑽̂𝒓𝒎𝒂𝒙, 𝑭̂, 𝑿̂𝑪𝟎, 𝑻̂𝒆𝒏𝒅} contribute the most to the construction of the first principal 449 

component (Dim-1), while the set of variables {𝑻̂𝒎𝒂𝒙, 𝒀̂𝑪𝟎, 𝑿̂𝑪𝟎} contributes the most for the construction of the second 450 

principal component (Dim-2). Since the contribution can be added, the set of variables that contributes the most for the 451 

construction of Dim-1 and 2 are given by the set of variables {𝑽̂𝒕, 𝑿̂𝑪𝟎, 𝑻̂𝒎𝒂𝒙, 𝑽̂𝒓𝒎𝒂𝒙, 𝑭̂, 𝒀̂𝑪𝟎} which are ordered from the 452 

strongest to the weakest. The remaining variables {𝑻̂𝒆𝒏𝒅, 𝝆̂, 𝑹̂}  have a contribution which is lower than the threshold 453 

11.11 %. It is important to observe the partitioning in strongest variables and weakest ones does not represent necessarily 454 

a general case, since the partition might depend on the downburst case under study.  455 

5.4 Physical description of the solutions corresponding to clusters 1-3 456 

Once the partitioning of the solutions of the optimization problems in three cluster is completed, it is important to have a 457 

closer look at them and describe common features of solutions which belong to the same cluster. From the partition 458 

analysis, it is found that cluster 1 is made up of 481 solutions, cluster 2 of 85 and cluster 3 of 458 solutions. Table 5  459 

summarizes a few key statistics related to the three clusters. This table includes primary and secondary (i.e., not used for 460 

clustering) variables, which are no longer standardized to investigate their physical meaning.  461 
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Table 5. Description of the partition by the mean and standard deviation of all the variables. 462 

Variables 𝑽𝑘 Overall 

Mean 

Overall 

 Std 

Cluster 1 

Mean 

Cluster 1 

Std 

Cluster 2 

Mean 

Cluster 2 

Std 

Cluster 3 

Mean 

Cluster 3 

Std 

𝑽𝒕 (m/s) 6.025 3.371 2.811 1.042 6.527 1.407 9.307 1.492 

𝑿𝑪𝟎 (m) -4386.350 1613.337 -3034.079 789.682 -5410.461 629.282 -5616.465 1209.346 

𝑻𝒎𝒂𝒙 (min) 6.954 2.517 5.860 1.172 13.336 1.910 6.919 1.797 

𝑽𝒓,𝒎𝒂𝒙 (m/s) 24.293 5.356 28.639 1.465 28.182 1.793 19.006 3.266 

𝑭 (-) 0.893 0.080 0.823 0.058 0.919 0.043 0.961 0.021 

𝒀𝑪𝟎 (m) 3363.669 1809.316 2499.896 975.450 313.553 1257.946 4836.890 1160.613 

𝑻𝒆𝒏𝒅 (min) 26.035 3.167 28.269 1.895 27.622 2.295 23.394 2.235 

𝝆 (-) 2.189 0.108 2.126 0.104 2.134 0.100 2.265 0.050 

𝑹 (m) 1334.478 102.519 1289.518 124.661 1301.969 90.475 1387.728 23.115 

Secondary variables 

𝜶𝒕 (deg) 290.383 0.480 276.439 0.416 253.518 0.217 310.868 0.229 

𝑽𝒃 (m/s) 6.811 0.670 6.648 0.774 6.705 0.768 7.002 0.449 

𝜶𝒃 (deg) 268.218 0.118 264.854 0.138 273.055 0.074 270.827 0.055 

  463 

In columns 2-3, the overall mean, and the overall standard deviation (std) are calculated with respect to each variable 464 

(primary and secondary). In the other columns, the same calculation was repeated taking into consideration the three 465 

clusters. Mean and the std of the secondary variables 𝜶𝒕 and 𝜶𝒃 have been calculated using circular statistics (Rao and 466 

Sengupta, 2001). To start clarifying the characteristics of the different clusters, Figure 14 shows the scatter plot and 467 

distribution of the touchdown components (𝑿𝐶0, 𝒀𝐶0) for all the solutions, partitioned into three clusters. In this figure it 468 

is shown the center (namely the mean) of each cluster and the location of the touchdown position of the best overall 469 

solution. The figure shows also with a black line the position of the city of Sânnicolau Mare. Also, on the left and on the 470 

top of this figure is possible to show the histograms of the variable (𝑿𝐶0, 𝒀𝐶0) relative to each cluster. 471 
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Figure 14. Scatter plot and histogram density distribution for the variables (𝑿𝑪𝟎, 𝒀𝑪𝟎). The dark black line shows the 472 

contours of the city Sânnicolau Mare. 473 

 474 

The three clusters appear well separated in terms of touchdown position (𝑿𝐶0, 𝒀𝐶0). Since it is very unlikely that the 475 

cluster means coincide with one of the solutions present in the data set, let’s define as “cluster solution”, the solution 476 

which is the closest to the mean of the cluster. Accordingly, the cluster solutions, reported in Table 6, will be used to 477 

interpret the average features of each cluster.  The first row of this table is dedicated to the best solution founded by the 478 

optimization algorithm (i.e., the one that have the lowest objective function 𝐹 among all the solutions); the best solution 479 

belongs to Cluster 1.  480 

Table 6. Overall best solution and clusters representative solutions. 481 

 482 

 483 

Figure 15 shows the time histories produced by the best solution and the three cluster solutions, in terms of  wind velocity  484 

(Figure 15a) and direction (Figure 15b), compared with the moving averaged recorded data. The figure provides a 485 

qualitative representation of the goodness of fit between the simulations and the recorded data. The goodness of fit is 486 

quantitatively measured by the objective function F. The simulations produced from the best solution and the Cluster 1 487 

solution fit the data better than Cluster 2 and 3. This is quite obvious since the best solution have the lowest objective 488 

Solutions 

𝑉𝑡 

(m/s) 

𝑋𝐶0 

(m) 

𝑇𝑚𝑎𝑥 

(min) 

𝑉𝑟,𝑚𝑎𝑥 

(m/s) 

𝐹 

(-) 

𝑌𝐶0 

(m) 

𝑇𝑒𝑛𝑑 

(min) 

𝜌 

(-) 

𝑅 

(m) 

𝛼𝑡 

(deg) 

𝑉𝑏 

(m/s) 

𝛼𝑏 

(deg) 

Best 

solution 

2.76 -3339.53 6.50 29.80 0.73 2826.55 29.89 2.15 1381.38 271.74 5.49 58.35 

Cluster 1 2.51 -2944.15 6.05 29.54 0.81 2769.36 27.23 2.09 1287.53 278.25 7.15 268.19 

Cluster 2 6.14 -5105.66 14.05 27.07 0.91 383.39 28.18 2.14 1295.33 255.36 7.13 272.82 

Cluster 3 9.25 -5930.81 7.15 17.36 0.97 4575.50 22.95 2.27 1392.86 307.61 6.15 272.71 
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function 𝐹 and belongs to Cluster 1, whereas Cluster 2 and Cluster 3 solutions have slightly higher objective function 489 

values 𝐹 (refer to column 5 in Table 6).  490 

 491 

Figure 15. Comparison among the moving averaged wind speed (a) and direction (b) obtained from the measurements of the 492 

Sânnicolau Mare downburst, along with the best solution and the three cluster solutions. 493 

In order to better understand the nature of the different solutions relative to each cluster, for each solution present in Table 494 

6, the downburst 2D wind velocity is evaluated at the same height of the anemometric station (i.e., at 50 m AGL). The 495 

left panels of Figure 16 (from (a) to (d)) show for each of the 4 solutions the wind filed reconstruction during the 496 

intensification stage of the downburst, while the right panels (from (e) to (h)) describes the stage of maximum intensity.  497 

Note that the time of maximum intensity is different for each cluster according to the corresponding value of  𝑇𝑚𝑎𝑥  498 

reported in column 3 of Table 6. 499 

https://doi.org/10.5194/egusphere-2023-1683
Preprint. Discussion started: 20 September 2023
c© Author(s) 2023. CC BY 4.0 License.



24 
 

 500 

 501 

 502 
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 503 

Figure 16. 2D wind field reconstruction at 50 m AGL. From (a) to (d), the best solution, Cluster 1, 2 and 3 solutions are depicted 504 

at the intensification stage of the downburst. From (e) to (h), the best solution, Cluster 1, 2 and 3 solutions are depicted at the 505 

maximum intensification stage of the downburst. 506 

Cluster 1 touches down very close to the city center and moves slowly eastward, it is characterized by a low value of the 507 

downburst translation velocity 𝑉𝑡, with mean value 2.8 m/s against the overall mean among all clusters which is 6.0 m/s. 508 

In addition, it has maximum radial velocity 𝑉𝑟,𝑚𝑎𝑥  higher and overall duration of the downburst event 𝑇𝑒𝑛𝑑  longer with 509 

respect to the mean values of the other two clusters. The solutions belonging to Cluster 2 touch down around 2 km 510 

southwest of the city, they propagate northeastward with higher translation velocities compared to Cluster 1 and the 511 

longest intensification periods 𝑇𝑚𝑎𝑥  overall. The solutions in Cluster 3 touch down about 3 km northwest of the city, they 512 

move southeastward with the highest values of downburst translation velocity 𝑉𝑡 but they are the lowest-lasting as the 513 

duration of the downburst event 𝑇𝑒𝑛𝑑 is on average 23.4 min while the overall mean is 26.0 min. They also have the 514 

lowest values of maximum radial velocity 𝑉𝑟,𝑚𝑎𝑥  which compensate the high translation velocities. According to these 515 

descriptions, it is clear that in the solution’s space of the model three different solutions exist that can describe similarly 516 

the time-series measured at TM_424. The existence of different plausible solutions means that the problem of finding the 517 

downburst wind field time-space evolution using a single time-series is an underdetermined problem. 518 

The Sânnicolau Mare downburst had a strong impact, causing hail damage to numerous buildings in the town. A damage 519 

survey was conducted to assess the affected areas and identify buildings that experienced hail damage during the event. 520 

To estimate the extent of the damage, the simulated wind field generated by the analytical model was utilized. By 521 

analyzing the wind speeds at various locations, the "footprint" of the simulated damage was determined. This footprint 522 

represents the maximum wind speed recorded at different places during the downburst, providing valuable information 523 

on the areas most affected by the event. The left panels of Figure 17, labeled from (a) to (d), depict the complete footprint 524 

of the downburst potential damage area for the best solution and the three cluster solutions. In contrast, the right panels, 525 

labeled from (e) to (h), provide a closer view of the footprints overlaying the simulated maximum wind velocity vectors 526 

(indicated by blue arrows) onto the locations of hail damage. The hail damage is represented by vectors pointing 527 

orthogonally to the damaged facades (represented by pink arrows). The comparison between the facades damage, which 528 

is related to the trajectory of hail transported by the strong downburst-related outflow, and the simulated maximum 529 
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velocity reveals interesting findings. Specifically, the best solution and Cluster 1 solutions exhibit the strongest alignment 530 

between the maximum wind velocity vectors and hail damage vectors, particularly in the central part of the city and along 531 

the path of the downburst. In contrast, Cluster 2 and Cluster 3 demonstrate a consistent deviation of the maximum velocity, 532 

with Cluster 2 deviating northward and Cluster 3 deviating southward, relative to the hail trajectories. This observation 533 

suggests that the actual downburst event likely followed a pattern more closely resembling Cluster 1 rather than the other 534 

two potential solutions. 535 

 536 

 537 
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 538 

 539 

Figure 17. Simulated footprints of the downburst that occurred in Sânnicolau Mare. Panels from (a) to (d) representing the 540 

footprints for the best solution, Cluster 1, Cluster 2, and Cluster 3 respectively. Panels form (e) to (h), representing 541 

comparison between hail damage and maximum simulated wind speed for the best solution, Cluster 1, Cluster 2, and Cluster 542 

3 respectively. 543 

These observations lead to the conclusion that the optimal (best) solution, which minimizes the objective function F, is 544 

the most reliable among all possible solutions. This implies that the reconstruction of the downburst wind field should be 545 

based on a large number of simulations to ensure that the optimal solution is obtained. By conducting numerous 546 

simulations, the likelihood of obtaining the most accurate representation of the downburst event is maximized leading to 547 

a more accurate reconstruction of the event. 548 

 549 

 550 
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7 Conclusions  551 

This study focuses on the analysis of solutions obtained by combining an analytical model (Xhelaj et al., 2020) with a 552 

global metaheuristic optimization algorithm for the reconstruction of the wind field generated during the Sânnicolau Mare 553 

downburst event in Romania on June 25, 2021. The analytical model and optimization algorithm are coupled using the 554 

Teaching Learning Optimization Algorithm (TLBO) to estimate the kinematic parameters of the downburst outflow. The 555 

procedure for this coupling and parameter estimation is described in detail in the study by Xhelaj et al. (2022). Therefore, 556 

the objective was to analyse the differences among the solutions provided by the optimization algorithm and to assess 557 

their physical validity as alternatives to the optimal solution. In the presence of multiple physically sounding solutions, it 558 

has been demonstrated that additional data describing the downburst thunderstorm event is necessary to determine which 559 

solution best represents reality. To support the analysis a comprehensive damage survey was conducted in collaboration 560 

with the University of Genoa (Italy) and the University of Bucharest (Romania) to assess the extent and location of hail 561 

damage on buildings in the affected area. This survey, along with the wind speed and direction signals recorded during 562 

the downburst event by a telecommunication tower located approximately 1 km from the city, significantly enhances the 563 

information available for the reconstruction and simulation of the downburst using the optimization procedure. The 564 

analysis of the solutions generated by the optimization algorithm involves multivariate data analysis (MDA) techniques, 565 

specifically agglomerative hierarchical clustering coupled with the K-means algorithm (AHK-MC) and principal 566 

component analysis (PCA). The AHK-MC is used for classifying the solutions into different clusters based on their 567 

features, while PCA is employed to determine the importance of the variables in the analytical model for the downburst 568 

event reconstruction. 569 

The application of AHK-MC resulted in the identification of three main clusters, each with distinct characteristics, among 570 

the 1024 solutions. 571 

• Solutions belonging to Cluster 1 are characterized by a slow storm motion, small touch down distance from the 572 

city of Sânnicolau Mare and by long duration of the downburst event. The best overall solution belongs to Cluster 573 

1. 574 

• Solutions belonging to Cluster 2 are characterized by a moderate storm motion and moderate distance of the 575 

touch-down from the town of Sânnicolau Mare. These solutions are also characterized by high duration of the 576 

intensification period of the downburst event. 577 

• Solutions belonging to Cluster 3 are characterized by a high storm motion and high distance of the touch-down 578 

from Sânnicolau Mare. They are also characterized by low duration of the downburst event and low values of 579 

the maximum radial velocity. 580 

The result of the MDA allows also to establish at least for the case under consideration that the set of variables 581 

{𝑽𝒕, 𝑿𝑪𝟎 , 𝑻𝒎𝒂𝒙, 𝑽𝒓𝒎𝒂𝒙, 𝑭, 𝒀𝑪𝟎} which are ordered from the strongest to the weakest are the more important for the 582 

reconstruction/simulation of the downburst event. The remaining variables {𝑻𝒆𝒏𝒅, 𝝆, 𝑹}  have a lower contribution. It is 583 

important to observe the partitioning in strongest variables and weakest ones does not represent a general case, since the 584 

partition depends on the downburst case under study.  585 

Finally, the comparison between the facades damage, which are related to the trajectory of hails transported by the strong 586 

downburst-related outflow and the simulated maximum velocity shows that the best solution and Cluster 1 solutions seem 587 

to have a “good” overlapping between maximum wind velocity vectors and hail damage vectors. Considering the solutions 588 

of Cluster 2 and 3, it seems that the match between maximum wind velocity vectors gradually decreases, with the worst 589 
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case represented by Cluster 3 solutions. These observations allow to conclude that the optimal solution, that is, the one 590 

that minimizes the objective function 𝐹, is the best with respect to the other three cluster solutions, also from the point of 591 

view of the damage analysis. As a result, for the specific case being examined, relying on the best overall solution provided 592 

by the optimization algorithm appears to yield promising results for reconstructing the downburst wind field. Obviously, 593 

an analysis of this type, conducted on several downburst events, will be able to better confirm this statement. 594 
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