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Abstract. Downbursts winds, characterized by strong, localized downdrafts and subsequent horizontal straight-line 9 

winds, presents significant risk to civil structures. The transient nature and limited spatial extent present measurement 10 

challenges, necessitating analytical models for accurate understanding and predicting their action on structures. This study 11 

analyzes the Sânnicolau Mare downburst event in Romania, from June 25, 2021, using a bi-dimensional analytical model 12 

coupled with the Teaching Learning Optimization Algorithm (TLBO). The intent is to understand the distinct solutions 13 

generated by the optimization algorithm and assess their physical validity. Supporting this examination is a damage survey 14 

and wind speed data recorded during the downburst event. Employed techniques include agglomerative hierarchical 15 

clustering with the K-means algorithm (AHK-MC) and principal component analysis (PCA) to categorize and interpret 16 

the solutions. Three main clusters emerge, each displaying different storm characteristics.  Comparing the simulated 17 

maximum velocity with hail damage trajectories indicates that the optimal solution offers the best overlap, affirming its 18 

effectiveness in reconstructing downburst wind fields. However, these findings are specific to the Sânnicolau Mare event, 19 

underlining the need for a similar examination of multiple downburst events for broader validity. 20 

KEYWORDS: Downburst analytical model, Metaheuristic optimization algorithm, Multivariate data analysis, Downburst 21 

kinematic and geometric parameters, Damage survey. 22 

1 Introduction 23 

The wind climatology of Europe and several mid-latitude countries are primarily dominated by the presence of extra-24 

tropical cyclones and thunderstorms. The understanding of the formation and evolution of extra-tropical cyclones dates 25 

back to the 1920s (Bjerknes and Solberg, 1922). The atmospheric boundary layer (ABL) winds generated during such 26 

systems are well recognized, and their influence on structures has been extensively studied and coded starting from the 27 

1960s (Davenport, 1961).  These established models continue to be employed in contemporary engineering practice 28 

(Solari, 2019).  29 

Thunderstorm winds known as “downburst” consists of a strong and localized downdraft of air generated within a 30 

convective cell. These downdrafts after reaching the ground begin to spread horizontally, resulting in the formation of the 31 

downburst gust front, also known as the downburst outflow. The presence of strong turbulent wind within the downburst 32 

outflow poses significant risk to civil structures. Given their high frequency of occurrence, downburst events are among 33 

the most severe meteorological phenomena in mid latitudes. Downbursts, often generated by isolated thunderstorms, 34 
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typically exhibit scales of less than few kilometers in extent, distinguishing them from the larger scale of thunderstorms 35 

themselves. Additionally, they can be originated from more complex convective systems such as squall lines and bow 36 

echoes, in this case the spatial length scale which can potentially be affected by downbursts or downburst clusters is in 37 

the order of hundreds of kilometers (Fujita, 1978, Hjelmfelt, 2007). The size of the downburst outflow area of strong 38 

winds exhibits variability, leading to the classification of this phenomenon as either a microburst or macrobust. A 39 

microburst is characterized by a strong outflow size that is less than 4 km, whereas a macroburst corresponds to an outflow 40 

size of intense wind greater than 4 km (Fujita, 1985).  41 

For over four decades, intense downburst winds and their impact on the built environment have been key research topics 42 

in the field of Wind Engineering (Letchford, 2002). These winds, resulting from nonstationary behaviours in mesoscale 43 

thunderstorms, create a distinct horizontal wind profile. This profile, marked by a nose-shape with peak wind speed near 44 

the ground level, sharply contrast with the typical wind profiles in the ABL and significantly endangers structures, 45 

particularly those of low and medium height. 46 

From a statistical point of view, wind velocities, characterized by a mean return period greater than 10 or 20 years, are 47 

often due to these phenomena (Solari, 2014). The lack of a unified model for downburst outflows and their actions on 48 

structures, similar to Davenport’s (1961) model for extra-tropical cyclones, is primarily due to significant uncertainties 49 

arising by the inherent complexity of downburst winds. Indeed, the transient nature and limited spatial extent of 50 

downbursts presents challenges in their measurements and restrict the availability of an adequate number of test cases.  51 

The early analytical models for downburst wind velocities stemmed from Glauert's (1956) impinging wall jet model and 52 

Ivan's (1986) ring vortex model. Glauert focused on radial jets, while Ivan developed an axisymmetric downburst model 53 

validated by the Joint Airport Weather Studies Project (Fujita, 1985; McCarthy et al., 1982), incorporating a primary and 54 

mirror vortex above the ground. Oseguera and Bowles (1988) developed the first three-dimensional downburst model, 55 

later refined by Vicroy (1991, 1992). This model, simpler yet comparable in effectiveness to Ivan’s (1986) ring vortex 56 

model, was based on axisymmetric flow equations and empirical data from the TASS model (Proctor 1987a, b), and 57 

NIMROD Project (Fujita, 1978; Fujita, 1985). Holmes and Oliver (2000) revised the impinging jet model, simplifying 58 

the expression for radial mean wind velocity and integrating it with the downburst's translational speed. However, their 59 

model did not clearly distinguish between the low-level environmental flow in the ABL and the thunderstorm cell's 60 

motion. Abd-Elaal et al. (2013) used a parametric-CFD model coupled with an optimization algorithm to determine that 61 

downburst characteristics are significantly influenced by factors such as the touchdown location, time, and the downdraft's 62 

speed and direction. An essential aspect already highlighted with regard to the Holmes and Oliver model (2000), and then 63 

repeated in other subsequent papers (Chay at al. 2006, Abd-Elaal et al., 2013, and Hoa Le and Caracoglia (2017), is the 64 

lack of a clear distinction between the translational movement of the thunderstorm cell and the boundary layer wind in 65 

which the thunderstorm outflow is immersed at the ground. Hjelmfelt's (1988) study through radar measurements 66 

highlighted this problem's importance by examining two downbursts. The first case depicted a nearly stationary downburst 67 

in strong low-level environmental winds, while the second described a fast-moving downburst in a setting with little or 68 

no ABL flow. This lack of distinction in models hinders their ability to accurately describe such diverse real-world cases.  69 

Based on these foundational insights provided by Hjelmfelt (1988), the authors of this paper introduced in 2020 a novel 70 

bi-dimensional analytical model to simulate the horizontal mean wind velocity at a specific height from a moving 71 

downburst (Xhelaj et al. 2020). This model conceptualizes the combined wind velocity at any given point during a 72 

downburst as the vector sum of three distinct components: the radial impinging jet velocity characteristic of a stationary 73 
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downburst, the translational velocity of the storm cell, and the ambient low-level ABL wind velocity, which encompasses 74 

the downburst winds near the surface. The model relies on 11 parameters, which are determined using a global 75 

metaheuristic optimization algorithm outlined in Xhelaj et al. (2022). This optimization process combines the analytical 76 

model with the Teaching Learning Based Optimization (TLBO) algorithm. TLBO operates with a population of solutions 77 

and employs iterative teaching and learning to find the best solution within the population (Rao et al., 2011). Due to the 78 

stochastic nature of TLBO, when integrated with the analytical model, the procedure can yield different optimal solutions 79 

each time it is executed. This variability arises from the initial random population of solutions and the intermediate 80 

transformations carried out by the algorithm to converge towards the best solution. 81 

This study aims to examine the characteristics of the optimal solutions obtained through multiple runs of the optimization 82 

procedure, which integrates the Xhelaj et. al. (2020) model with the TLBO algorithm. It seeks to investigate the variability 83 

of the best solutions when applying the optimization algorithm to reconstruct the wind field during an intense downburst 84 

event. The main objective is to assess the extent to which the solutions differ from each other and from the solution with 85 

the lowest objective function value. Additionally, the study explores whether these alternative solutions can be considered 86 

physically valid, particularly when additional data describing the downburst event is incorporated. 87 

The selected downburst event occurred in western Timis region of Romania on 25 June 2021 and was produced during 88 

the passage of an intense mesoscale convective system in the form of a bow echo over the town of Sânnicolau Mare. This 89 

event was recorded by a bi-axial anemometer and temperature sensor, both placed on a telecommunication tower 50 m 90 

above the ground level. The telecommunication tower lies approximately 1 km south of Sânnicolau Mare. The downburst 91 

that occurred in Sânnicolau Mare was of significant magnitude, resulting in extensive hail damage of the facades of 92 

numerous buildings within the city. In response to this event, a comprehensive damage survey was conducted through a 93 

collaborative partnership between University of Genoa (Italy) and the University of Bucharest (Romania).  The survey 94 

(Calotescu et al., 2022 and Calotescu et al., 2023 (submitted)) pinpoints the GPS position of the buildings within the city 95 

that were predominantly impacted by the downburst. Moreover, a comprehensive map illustrating the hail damage of the 96 

building facades was generated. The map provides important information regarding the wind velocity experienced at 97 

urban scale, which has been used to validate the reconstruction/simulation of the downburst by the optimization 98 

procedure.  99 

The analysis of the different optimal solutions (i.e., the data set) generated by the optimization algorithm was conducted 100 

through multivariate data analysis (MDA). This involved the joint application of cluster analysis and principal component 101 

analysis to effectively examine and interpret the dataset. Cluster analysis (CA) is a data mining technique that groups 102 

similar solutions together, aiming to identify patterns in the data. It is commonly used in fields like meteorology and 103 

climatology to identify clusters of weather phenomena or geographical regions with similar weather patterns (Burlando 104 

et al., 2008; Burlando et al., 2009). Principal component analysis (PCA) is a mathematical technique used to decrease the 105 

dimensionality of a dataset while minimizing the loss of information within the data. This analysis is commonly used in 106 

meteorology and climatology to decrease the number of variables required for representing weather pattern or climate 107 

trends and to identify regions with similar weather patterns (Amato et al., (2020); Jiang et al., (2020)). Principal 108 

component analysis is utilized in this context to enhance the interpretation of the different optimal solutions. 109 

The present work is structured in 6 Sections. Following the introduction, Section 2 provides a description of the 110 

monitoring system that acquired the full-scale measurement employed in this research. Section 3 provides a brief 111 

meteorological description of the downburst event in Sânnicolau Mare (Romania). Section 4 describes the data set 112 
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employed for performing cluster analysis and principal component analysis as well as the implementation of these 113 

analyses. Section 5 presents an in-depth account of the main results derived from the CA and PCA. In conclusion, Section 114 

6 offers a summary of the principal findings derived from this research. 115 

2 Monitoring system and data acquisition 116 

The complete set of measurements employed in this research were obtained through a monitoring system installed in 117 

Romania. Relevant information of this monitoring network can be accessed in the publications by Calotescu et al., (2021), 118 

Calotescu and Repetto, (2022) and Calotescu et al., (2023) (submitted). The monitoring network received funding from 119 

the THUNDERR Project (Solari et al., 2020), which was conducted by the "Giovanni Solari – Wind Engineering and 120 

Structural Dynamics" Research (GS-Windyn) Group at the Department of Civil, Chemical, and Environmental 121 

Engineering (DICCA) of the University of Genoa. GS-Windyn, with a keen interest in monitoring poles and towers 122 

exposed to thunderstorm actions worldwide, secured funding for the acquisition of a full-scale structural monitoring 123 

network. This monitoring system was deployed on top of a 50 m lattice tower. The primary focus of this project revolves 124 

around three key objectives: first, the detection of thunderstorms; second, the analysis of wind parameters associated with 125 

these phenomena; and third, the experimental assessment of the structural response of telecommunication lattice towers 126 

to the forces generated by both synoptic and thunderstorm winds. The monitoring tower, named TM_424, is property of 127 

the SC TELEKOM ROMANIA SRL and is located in the western part of Romania, Timis county, at approximately 1 km 128 

south of Sânnicolau Mare (Figure 1). The site is an open field, the terrain is flat with low grass vegetation. 129 

 130 

 131 

 132 
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Figure 1. (a) Location of the telecommunication tower TM_424, situated 1 km south of Sânnicolau Mare in Timis County, 

Romania. (b) Expanded view of the Sânnicolau Mare town with the telecommunication tower TM_424 represented by the 

red dot on the map. Maps generated using Mathematica (Wolfram Research, Inc., Version 13.3, 2023, 

https://www.wolfram.com/mathematica). 

 

 

 

 133 

Figure 2. TM_424 Telecommunication tower and sensors position at the top of the tower. On the horizon, approximately 1 

km from the tower lies the small city of Sânnicolau Mare. Image courtesy of Google Street View, 2022 

(https://www.google.com/maps). 

Figure 2  shows the dimension of the tower. Among the various networks for the monitoring systems, the tower is 134 

equipped with a GILL WindObserver 70 ultrasonic anemometer at the top (Figure 2). The anemometer has a data 135 

acquisition rate of 4 Hz, can measure the wind speed up to 70 m/s. In addition to the anemometer sensor, the tower is 136 

equipped with a temperature sensor installed near the location of the anemometer. The working temperature range for this 137 

sensor is between -55 and 70 °C.  138 

 139 

 3 The Sânnicolau Mare (Romania) downburst event of 25 June 2021 140 

In this section, a brief overview of the meteorological aspects pertaining to the downburst event in Sânnicolau Mare on 141 

25 June 2021 is provided. In the late afternoon of 25 June 2021, a severe downburst event affected the extreme western 142 

region of Romania. The downburst event took place in the Timis county (Figure 1a) between 18:00 and 19:00 UTC and 143 

struck the little town of Sânnicolau Mare (Figure 1b). At 17:30 UTC, a strong mesoscale convective system moving 144 

toward the east was approaching the town of Sânnicolau Mare. Figure 3a, acquired from Eumetsat, captures an image of 145 



6 
 

a deep convective cell at 18:30 UTC. This weather phenomenon exhibits cloud tops ascending over 12 km above mean 146 

sea level, signifying the mature stage of the convection cycle. This mature storm cell was observed to have directly 147 

impacted the town under study. Figure 3b presents composite radar reflectivity data, indicating that this meteorological 148 

phenomenon can be classified as a mesoscale convective system known as bow echo. Radar reflectivity values at or above 149 

60 dBZ, as seen in this event, are typically indicative of severe weather conditions. Such conditions are often associated 150 

with the production of hailstones, with an average diameter of approximately 2.5 cm. 151 

  

Figure 3. (a) Distribution of cloud top heights derived from Meteosat Second Generation (MSG) valid for 25 June 2021 at 18:30 152 

UTC. Data and map obtained from ©EUMETSAT 2022 (https://view.eumetsat.int). (b) Composite radar reflectivity (dBZ) for 153 

June 25, 2021, at 18:30 UTC. The geographical location of Sânnicolau Mare and the apex of the bow echo are indicated by the 154 

black circle. Data and map obtained by ©2018 Administratia Nationala de Meteorologie (https://www.meteoromania.ro). 155 

The existence of a robust convective motion, indicative of the typical kinematic structure of a bow echo, is distinctly 156 

portrayed through the distribution of intensive lightning activity, as displayed in Figure 4a. As the figure illustrates, an 157 

approximate total of 10455 lightning strikes were recorded by the Blitzortung.org network across Eastern Europe between 158 

16:30 to 18:30 UTC.  A significant concentration of these strikes correlates with the bow echo structure   near the western 159 

Timis County in Romania. The color gradient in Figure 4a, ranging from red, orange, yellow and white serves as a 160 

temporal marker, with white color indicating the most recent strikes and with red color denoting older ones. This color 161 

coding effectively illustrates the temporal and spatial evolution of the lightning activity during the severe weather event, 162 

providing insight into the progression of the storm system. Bow echoes are a prevalent form of severe convective 163 

organization. These mesoscale convective systems can generate straight-lines surface winds that lead to extensive damage 164 

associated with downbursts. On occasion, they may also give rise to tornadoes. Interestingly, the observed bow echo 165 

seems to display a stratiform parallel structure, a rarer variety of squall lines (Parker and Johnson, 2004; Markowski and 166 

Richardson, 2010). 167 
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Figure 4. (a) Lightning strikes recorded between 16:30 to 18:30 UTC on June 25, 2021, sourced from the Blitzortung.org 168 

network archive for lightning and thunderstorms (www.blitzortung.org). The black circle marks the geographic location of 169 

Sânnicolau Mare, situated near the apex of the observed bow echo. (b) Typical radar echo morphology commonly observed in 170 

bow echoes, characterized by the generation of strong downbursts at the bow apex, denoted as DB. Adapted from Fujita (1978). 171 

Figure 4b illustrates the characteristic kinematic structure of a bow echo as outlined by Fujita (1978). Typically, the 172 

system originates as a singular, prominent convective cell, either isolated or embedded within a broader squall line system 173 

(Phase A). As the surface winds strengthen, the parent cell undergoes transformation, evolving into a line segment of cells 174 

with a bow-shaped configuration (Phase B). During the maximum intensity, the bow's center might develop a spearhead 175 

echo (Phase C), characterized by the occurrence of the most severe downburst winds at the apex of the spearhead. During 176 

the decay phase, the wind system frequently evolves into a comma-shaped echo (Phase E) (Weisman, 2001). The 177 

comparisons between Figures 3b, 4a, and 4b elucidate that the bow echo positioned above Sânnicolau Mare at 18:30 UTC 178 

is in its most intense stage (Phase C), as evidenced by the formation of the characteristic spearhead echo shape. The 179 

intense downburst event generated at the apex of the bow echo was recorded by the anemometer and temperature sensor 180 

http://www.blitzortung.org/
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situated 50 meters above the ground on the TM_424 tower. The time histories of the moving average wind speed and 181 

direction (averaged over 30 seconds) (Solari et al., 2015; Burlando et al., 2017) for the recorded one-hour duration of the 182 

downburst event are given in Figure 5a and Figure 5b, respectively. At approximately 18:30 UTC the anemometer 183 

recorded an instantaneous maximum velocity (sampled at 4 Hz) of  �̂� = 40.8 m/s while the maximum moving average 184 

wind velocity was 𝑉max, = 35.8 m/s. This notable high velocity clearly evidences of the occurrence of an intense 185 

downburst. The time interval spanning from 18:20 to 18:45 UTC represents the primary indicator of the downburst's 186 

occurrence in the proximity of the telecommunication tower. This period is characterized by a sudden surge in wind speed, 187 

commonly referred intensification stage followed by a subsequent decrease in velocity after 18:30 UTC. Throughout the 188 

initial phase of intensification, the wind direction exhibited a clockwise rotation, ranging from 235° and extending to 189 

approximately 360°. Additionally,  Figure 5a also includes 1-hour time series of the recorded temperature data. The 190 

temperature sensor is positioned at the same location of the anemometer. Before the passage of the downburst, the 191 

environmental temperature was on average 27 °C, while at approximately 18:20 UTC the temperature dropped very 192 

sharply reaching the minimum value of 14.5 °C at approximately 18:30 UTC. After the sharp drop the temperature started 193 

to rise and eventually returned to its pre-storm level (not shown).  194 

 195 

 

Figure 5. Telecommunication tower monitoring network measurements from 18:00 to 19:00 UTC on June 25, 2021: (a) Time 

history of the instantaneous wind speed (green), moving average mean wind speed (black) and temperature record 

(magenta); (b) Instantaneous (green) and moving average mean wind direction (black). 

 196 

The downburst in Sânnicolau Mare was also marked by a substantial hail occurrence. The interaction between the high-197 

velocity winds and hail, potentially influencing the trajectory and impact of the hailstones, contributed to extensive 198 

damage, especially to the facades of numerous buildings. To comprehensively assess this damage, a collaborative survey 199 
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was conducted by the University of Genoa (Italy) and the University of Bucharest (Romania) (Calotescu et al., 2022; 200 

Calotescu et al., 2023, submitted).. The survey identified the affected buildings and produced a comprehensive map 201 

illustrating the hail damage. Figure 6 shows a schematic representation of the distribution of hail damage per area (600 x 202 

600 m2) and the position of the buildings that suffers hail damage in the town of Sânnicolau Mare. Correlating specific 203 

damages like hail impacts with near-surface wind velocities involves inherent uncertainties, which are extensively 204 

explored in the study by Calotescu et. al., 2023 (submitted). 205 

 206 

Figure 6. Spatial distribution of damaged buildings and locations of hail-damaged structures within 600 x 600 m2 area in 

the town of Sânnicolau Mare during the downburst event on June 25, 2021. The city boundaries of Sânnicolau Mare are 

delimited by the black line. 

4 Downburst reconstruction 207 

This section focuses on the modeling, optimization, and reconstruction of the Sânnicolau Mare downburst event. Section 208 

4.1 delves into the modeling and optimization approach used for downburst reconstruction. Section 4.2 introduces 209 

metaheuristic optimization and its application in the reconstruction of the specific downburst event under study. Finally, 210 

Section 4.3 outlines the multivariate data analysis employed to examine the solutions generated by the optimization 211 

algorithm.  212 

4.1 Modeling and optimization approach for downburst reconstruction 213 

In this study, the authors utilize the computational model developed in a previous work by Xhelaj et al. (2020) for the 214 

reconstruction and simulation of the Sânnicolau Mare downburst event discussed in Section 3. The Xhelaj et al. (2020) 215 

model can simulate the spatiotemporal evolution of the bi-dimensional moving average (30 second window) wind speed 216 
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and direction experienced during a typical downburst event at a specified height z above ground level (AGL).  In general, 217 

the wind system simulated by the analytical model represents the outflow structure of a translating downburst, typically 218 

occurring in diverse meteorological conditions such as single cell thunderstorms, multicell thunderstorms, squall lines 219 

and bow echoes. For the specific case of the Sânnicolau Mare downburst, the analytical model operates under the 220 

hypothesis that the downburst occurs near the tip of the bow echo during its mature stage (Phase C, Figure 4b), in line 221 

with the studies of Fujita (1978) and Weisman (2001). It is worth noting that the model does not encompass the broader, 222 

complex mesoscale circulations, commonly associated with high winds in bow echoes. This represents a focused 223 

approach, considering the downburst evolution within a specific context, rather than attempting to model the entire 224 

spectrum of atmospheric phenomena related to bow echoes. 225 

 The analytical model comprises 11 variables that describe the kinematic structure of the downburst wind. Table 1 presents 226 

a short description of the 11 variables upon which the model relies. As a result, the model allows for the reconstruction 227 

of the time-evolving moving average wind speed and direction generated by the simulated downburst at every point within 228 

the simulation domain. The model simulates the downburst wind velocity field by combining three components, the 229 

stationary radial velocity from a jet impacting a flat surface, the downdraft’s translation velocity (i.e., storm motion) and 230 

the low level ABL wind velocity. The virtual anemometer, situated at the center of the simulation domain, measures the 231 

simulated wind speed and direction generated by the model. By employing anemometric wind speed and direction data 232 

collected during the Sânnicolau Mare downburst event, an optimization procedure can be formulated to minimize the 233 

relative error (objective function F), which quantifies the discrepancy between the observed time series of the moving 234 

average wind speed and direction and the corresponding simulations generated by the model. Since the Sânnicolau Mare 235 

downburst event was recorded by an anemometer positioned at a height of 50 meters AGL, the analytical model will 236 

reconstruct the wind speed and direction at the corresponding height.  237 

Table 1. Variables of the Xhelaj et, al. (2020) analytical model. 238 

 

1 
X-component touchdown location (at 𝑡 = 0) (m) 

𝑋𝐶0 

 

2 Y-component touchdown location (at 𝑡 = 0) (m) 𝑌𝐶0 

3 Downdraft radius (m) 𝑅 

4 
Normalized radial distance from the center of the downburst where 𝑉𝑟,𝑚𝑎𝑥  

occurs (-) 
𝜌 =

𝑅𝑚𝑎𝑥

𝑅
 

5 Maximum radial velocity (m/s) 𝑉𝑟,𝑚𝑎𝑥 

6 Duration of the intensification period (min) 𝑇𝑚𝑎𝑥 

7 Total duration of the downburst event (min) 𝑇𝑒𝑛𝑑 

8 Storm translational velocity (m/s) 𝑉𝑡 

9 Storm translational direction (deg) 𝛼𝑡 

10  ABL wind speed below the cloud base (m/s) 𝑉𝑏 

11  ABL wind direction below the cloud base (deg) 𝛼𝑏 

 239 

The reconstruction procedure gives rise to a mathematical optimization problem characterized by being single-objective, 240 

nonlinear, and bound constrained, as discussed in Xhelaj et al. (2022). To tackle this optimization problem, the analytical 241 

model is integrated with a global metaheuristic optimization algorithm. Specifically, the Teaching Learning Optimization 242 

Algorithm (TLBO) proposed by Rao et al. (2011) is employed. The details pertaining to the integration of the analytical 243 
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model with the optimization algorithm, as well as the estimation of the kinematic and geometric variables associated with 244 

the downburst event, are explained in detail in Xhelaj et al. (2022).  The TLBO algorithm  is an iterative, stochastic, and 245 

population-based algorithm comprising two distinct phases: the Teacher Phase and the Learner Phase. In the Teacher 246 

Phase, the best solution in the population (the teacher) shares its knowledge (objective function) with the other solutions 247 

(the students) to enhance their performance. In the Learner Phase, the students interact with each other to further improve 248 

their performance. TLBO requires only two user-specified parameters: the maximum number of iterations T and the 249 

population size Np. When incorporating the objective function into a stochastic metaheuristic optimization algorithm, 250 

running the algorithm independently multiple times is crucial to reach the optimal solution. This iterative approach allows 251 

for a deeper exploration of the variable space, reducing the risk of getting trapped in local optima. However, it is important 252 

to note that in the context of metaheuristic optimization, there is no guarantee of attaining a globally optimal solution. As 253 

a result, the procedure can yield a range of solutions ordered based on the values assumed by the objective function, with 254 

some being better than others. In this study, the TLBO algorithm is executed 1024 times independently, with each run 255 

producing an optimal solution. Consequently, 1024 solutions are obtained. The reconstruction of the downburst event can 256 

be accomplished by selecting the solution with the lowest objective function value, as it is considered the best 257 

representation of the event based on the optimization process. This study aims to analyze and clarify the nature of all the 258 

solutions generated by means of the TLBO algorithm for the downburst outflow reconstruction. This choice was made 259 

for a twofold reason. 260 

• The first reason is to determine the best possible solution among the 1024 totals, where best solution is the one 261 

that minimizes the objective function 𝐹, and allows to reconstruct the Sânnicolau Mare downburst event. 262 

• The second reason, which is the primary objective of this study, is to analyze these 1024 solutions using 263 

multivariate data analysis (MDA). The method used in MDA are the Agglomerative hierarchical clustering 264 

(AHC) coupled with the K-Means algorithm and principal component analysis (PCA).  265 

The objective is to investigate the distinct characteristics of the different solutions provided by the TLBO algorithm, 266 

enabling an understanding of their divergence from the optimal solution. If alternative solutions do exist, it signifies that 267 

the algorithm's solution is not unique. This highlights the challenge in accurately reconstructing downburst wind field 268 

form just one anemometric time series, underlining the problem’s inherent complexity and underdetermined nature.As 269 

such, a more comprehensive definition of the objective function is necessary to accurately discern between the optimal 270 

solution and its alternatives.  271 

4.2 Metaheuristic optimization and reconstruction of the Sânnicolau Mare downburst 272 

In metaheuristic optimization, a commonly used guideline suggests setting the population size Np as ten times the number 273 

of variables to estimate D (Storn, 1996). In this study, where D corresponds to 11 variables, a population size of Np = 110 274 

has been chosen. Additionally, considering the reported fast convergence rate of the TLBO algorithm (as mentioned in 275 

Xhelaj et al., 2022), the maximum number of iterations T for this study has been set to T = 100. Table 2 displays the lower 276 

and upper bounds of the optimization problem pertaining to the reconstruction of the Sânnicolau Mare downburst. These 277 

parameter values have been determined based on a comprehensive literature review, available in Xhelaj et al. (2022). 278 

 279 
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Table 2. Lower and upper bound of the decision variable parameters for the reconstruction of the Sânnicolau Mare 280 

downburst. Table form Xhelaj et al. (2022). 281 

 

 
Parameters/Variables Lower Bound Upper Bound 

1 𝑋𝐶0 (m) -10000 -10000 

2 𝑌𝐶0 (m) -10000 -10000 

3 𝑅 (m) 200 2000 

4 𝜌 =
𝑅𝑚𝑎𝑥

𝑅
 (-) 1.6 2.6 

5 𝑉𝑟,𝑚𝑎𝑥  (m/s) 0 40 

6 𝑇𝑚𝑎𝑥 (min) 2 15 

7 𝑇𝑒𝑛𝑑  (min) 15 60 

8 𝑉𝑡 (m/s) 0 40 

9 𝛼𝑡 (deg ) 0 359.9 

10 𝑉𝑏 (m/s) 0 40 

11  𝛼𝑏  (deg ) 0 359.9 

 282 

The spatial domain of the downburst simulation covers an area of 20 x 20 km² while the grid resolution in both the X and 283 

Y directions is set at 50 m. This approach employs a comprehensive simulation approach, primarily using anemometric 284 

data, due to its common availability. The methodology entails numerous simulations to extract downburst’s kinematic 285 

and geometric parameters. However, when additional data like Radar or Lidar is available, this information can be used 286 

to bound some variables and restrict the model variables domain (Table 2) to enhance model accuracy. Figure 7 illustrates 287 

the "performance chart" depicting the convergence pattern of the objective functions during the reconstruction of the 288 

Sânnicolau Mare downburst using the TLBO algorithm. The performance chart in Figure 7 illustrates the convergence 289 

pattern of the objective functions as iterations progress. It shows the upper and lower envelopes that encapsulate all 1024 290 

independent runs. The region within the envelopes represents the objective function values' trend for all runs. At the end 291 

of the 100 iterations, the lower envelope represents to the best objective function value obtained, while the upper envelope 292 

corresponds to the worst objective function value obtained by the TLBO algorithm. The performance chart in Figure 7 293 

includes additional visual representations: a dashed line representing the mean convergence curve, and dotted lines 294 

representing the mean plus/minus one standard deviation curves. These curves provide insights into the average behavior 295 

and deviation of the objective function values across the 1024 runs. The performance chart demonstrates that after 296 

approximately 70 iterations, the TLBO algorithm ceases to find significantly better or worse solutions. This is evidenced 297 

by the convergence of both the upper and lower envelope curves. Concurrently, the mean curve appears to plateau, 298 

although it exhibits a slight yet continuous improvement beyond the 70th iteration. This suggests that the algorithm is 299 

still optimizing, albeit at a reduced rate. The increasing spread between the mean and the plus/minus one standard 300 

deviation curves as iterations progress indicates a complex solution landscape. This complexity is manifested in the 301 

algorithm’s convergence to various local minima, maintaining steady average performance while increasing the 302 

variability of solutions. In this study's context, such expanding spread represents a deeper and more intricate exploration 303 

of the solution space, a desirable characteristic to ensure a comprehensive search across the objective function domain. .   304 

At the conclusion of 100 iterations, the best and worst objective function values correspond to 𝐹𝑚𝑖𝑛 = 0.730 and 𝐹𝑚𝑎𝑥 = 305 
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1.062, respectively. The mean and standard deviation of the objective function values are determined as 𝑚𝐹 = 0.893 and 306 

𝑠𝐹 = 0.080, respectively. 307 

 308 

Figure 7. Performance chart for the reconstruction/simulation of the Sânnicolau Mare downburst using the TLBO algorithm. 309 

 310 

4.3 Multivariate data analysis of solutions for the Sânnicolau Mare downburst reconstruction 311 

The optimization algorithm provides in output a data table, where each row of the table is a solution of the optimization 312 

problem. Therefore, the data table is composed of 1024 rows (solutions). The table has 12 columns, where 11 columns 313 

represent the 11 variables/parameters of the analytical model, while the last column contains the values assumed by the 314 

objective function 𝐹 of each solution (i.e., each row). Although the objective function 𝐹, is not a variable of the analytical 315 

model, it is treated in Section 5 as a variable from the point of view of the multivariate data analysis. The solutions are 316 

sorted in descending order based on their objective function value F. This means that the best overall solution among the 317 

1024 lies in the last row of the data table. The analysis of the data table indicates that most variables exhibit multimodal 318 

histograms, with two or more peaks. However, only the variables 𝑉𝑏 and 𝛼𝑏 are characterized by a unimodal histogram. 319 

Since the aim of this document is to conduct a multivariate data analysis (MDA), the variables of the data table are split 320 

into primary and secondary variables. Primary variables participate in the analysis of multivariate data (i.e., AHC + K-321 

Means and PCA), as opposed to secondary variables, which have no role in the calculation. However, secondary variables 322 

can indeed assist in the interpretation of the data table. In the present study, 𝑉𝑏, 𝛼𝑏 and 𝛼𝑡 are considered as secondary 323 

variables. This choice is primarily driven by the observation that 𝑉𝑏,  and 𝛼𝑏 exhibit unimodal histograms, suggesting that 324 

they may not significantly contribute to distinguishing different cluster solutions. However, the choice of 𝛼𝑡 as a 325 

secondary variable is purely practical, since it makes it possible to carry out a multivariate statistical analysis, avoiding 326 

the problem of circular statistics and, hence, simplifying the calculation and the interpretations of the results.  327 

 328 
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Let’s define the data table that contains only primary variables by a matrix 𝕏. Each row 𝑖 of the matrix represents a 329 

solution vector 𝑿𝑖 , encompassing the values associated with the nine primary variables. Therefore the solution vector can 330 

be expressed as 𝑿𝑖 = (𝑋𝐶0𝑖
, 𝑌𝐶0𝑖

, 𝑅𝑖, 𝜌𝑖 , 𝑉𝑟,𝑚𝑎𝑥𝑖
 , 𝑇𝑚𝑎𝑥 𝑖

, 𝑇𝑓𝑖
, 𝑉𝑡𝑖

, 𝐹𝑖)
𝑇

 with 𝑖 ranging from 1 to 𝐼, where 𝐼 represents the 331 

total number of solutions, in this case 𝐼 = 1024. Since the solution vector 𝑿𝑖  contains 𝐾 =  9 primary variables, the 332 

resulting data matrix 𝕏 is an 𝐼-by-𝐾 matrix with 1024 rows and 9 columns. For the sake of simplicity, in order to shorten 333 

the notation, let 𝑋𝑖𝑘 be the value of the k-th primary variable in the 𝑖-th solution. Henceforth, the term “variable” will 334 

refer to primary variables, unless explicitly specified. Consequently, the dataset within the matrix 𝕏 can be regarded either 335 

as a collection of rows representing solutions to the optimization problem or as a collection of columns representing 336 

variables of the analytical model.  The focus of MDA is to apply statistical clustering to identify similar analytical 337 

solutions. Since a generic solution 𝑿, is a set of 𝐾 =  9 numerical values, 𝑿 evolves within a space ℝ𝐾(a space with 9 338 

dimensions), called “the solution’s space”. Defining in the solution’s space the usual Euclidean metric (i.e., the 𝑙2 norm 339 

‖∙‖2), then, the squared distance between two solutions 𝑿𝑖  and 𝑿𝑙  can be expressed by the Euclidean distance 𝑑𝑖𝑙: 340 

𝑑𝑖𝑙
2 = 𝑑2(𝑿𝑖 , 𝑿𝑙) = ‖𝑿𝑖 − 𝑿𝑙‖2

2 = ∑(𝑋𝑖𝑘 − 𝑋𝑙𝑘)2

𝐾

𝑘=1

 (1) 

The distance 𝑑 possesses the following metric properties: 341 

{

𝑑(�̂�𝑖 , �̂�𝑙) = 0   ⟺ 𝑖 = 𝑙                                                             

𝑑(�̂�𝑖 , �̂�𝑙) = 𝑑(�̂�𝑙 , �̂�𝑖)      (symmetry)                                      

𝑑(�̂�𝑖 , �̂�𝑙) ≤ 𝑑(�̂�𝑖 , �̂�𝑗) + 𝑑(�̂�𝑗 , �̂�𝑙)      (tirangle inequlity)

 342 

 Variables in the data matrix 𝕏 are standardized to account for different units and scales. This common practice in 343 

statistical modelling neutralizes scale effects allowing for meaningful comparisons across variables. Therefore, the 344 

variables are standardized according to the following equation: 345 

�̂�𝑖𝑘 =
𝑋𝑖𝑘−�̅�𝑘

𝑆𝑘
, ∀ 𝑖 = 1, … , 𝐼 = 1024   and    ∀ 𝑘 = 1, … 𝐾 = 9 (2) 

where �̅�𝑘 denotes the sample mean of the 𝑘-th variable calculated over all 𝐼 solutions: �̅�𝑘 =
1

𝐼
∑ 𝑋𝑖𝑘

𝐼
𝐼=1  and 𝑆𝑘 is the 346 

sample standard deviation of 𝑘-th variable: 𝑆𝑘 = √
1

(𝐼−1)
∑ (𝑋𝑖𝑘 − �̅�𝑘)2𝐼

𝑖=1 .  347 

Finally, the normalized data matrix �̂� containing the set of vectors �̂�𝑖, 𝑖  =  1, … , 𝐼, has been used in the MDA for the 348 

identification of different typology of solutions provided by the TLBO algorithm for the simulation/reconstruction of the 349 

Sânnicolau Mare downburst. Figure 8 showcase a summary statistic in the form of a box plot, illustrating the distribution 350 

of the standardized variables. Variables such  �̂�𝑚𝑎𝑥  and  �̂�𝑚𝑎𝑥 have a large number of outliers which indicates extreme 351 

values within the dataset. Therefore, even in the context of standardized data, outliers can still be informative and may 352 

hold important information for distinguishing distinct solution clusters. 353 
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Figure 8. Box plot of the distributions of the standardized variables. Outliers in the data are plotted individually using the 

red marker symbol + . 

5 Results 354 

In the following section the results of multivariate data analysis (MDA) including cluster analysis and principal 355 

component analysis applied to the data matrix �̂� is presented. After the clusters have been established a comprehensive 356 

description of each of them is provided. This involves examining the variables that contribute to each cluster's composition 357 

as well as identifying specific representative solutions within each cluster. Such an analysis allows for a deeper 358 

understanding of the cluster characteristics and facilitates the interpretation of meaningful patterns and insights within the 359 

data.  Sections 5.1 to 5.3 provide an in-depth analysis of data matrix �̂� from the variable’s perspective, employing 360 

agglomerative hierarchical K – Means clustering and principal component analysis. In Section 5.4 the clusters are 361 

analyzed from the point of view of the specific solutions which are the most representative of the clusters. Finally, these 362 

representative solutions are compared with the best overall solution founded from the TLBO algorithm. The comparisons 363 

of the representative solution for each cluster and the best overall solution with the full-scale data is therefore enriched 364 

considering the data from the damage survey that was carried out after the Sânnicolau Mare downburst event. 365 

5.1 Identification of the most meaningful clusters 366 

In order to identify the appropriate number of clusters for grouping the solutions, the agglomerative hierarchical clustering 367 

(AHC) is firstly employed (Hartigan, (1975), Kaufman and Rousseuw (1990)). In AHC, each individual solution is 368 

initially treated as an independent cluster (leaf). Through a series of iterative steps, the most similar clusters are 369 

progressively merged, forming a hierarchical tree structure known as a dendrogram. This merging process continues until 370 

all the individual clusters are combined into a single cluster (root). 371 
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Subsequently, the hierarchical tree is analysed, and a suitable level is chosen to cut the tree, leading to distinct and 372 

meaningful clusters. The number of clusters obtained from the AHC forms a partition of the data set. To refine and 373 

optimize this partition, a partitioning clustering algorithm called K-means (MacQueen, 1967, Hartigan and Wong, 1979) 374 

is subsequently applied. Partitioning algorithms, like K-Means, subdivides the data sets into distinct clusters, ensuring 375 

that solutions within each cluster are similar to one another while exhibiting noticeable differences between clusters. 376 

Hence the two steps clustering procedure is called agglomerative hierarchical K – means clustering (AHK-MC) and is 377 

employed to analyse the standardized data matrix �̂�. By combining the strengths of both algorithms AHC and K-means, 378 

AHK-MC aims to provide a comprehensive and improved clustering algorithm of the data, enabling a more accurate 379 

identification of distinct solution groups. 380 

The hierarchical tree in Figure 9 (i.e., dendrogram) is constructed following the Wards’ method (Ward, 1963). Since the 381 

total solutions of the optimization problem are 𝐼 =  1024, the dendrogram is very dense at the bottom level (i.e., at the 382 

leaf level, where each solution is considered as a cluster by itself). The hierarchical tree is composed therefore by 𝐼 − 1 =383 

 1023 nodes, the points where two clusters (solutions or set of solutions) are merged.  The level (height) of each node in 384 

the tree is described by the within-cluster variance. The level of a node in the agglomeration process, when examined 385 

from top to bottom, indicates the reduction in within-cluster variance achieved by merging two connected clusters. This 386 

reduction in variance can be visualized using a bar graph, as depicted in Figure 10. 387 

From Figure 10  it is possible to establish the level where to cut the dendrogram and consequently to establish the number 388 

of clusters for partitioning the data set. The choice of the number of clusters is important because partitioning with too 389 

few clusters risk leaving groups which are not at all homogeneous. On the other hand, partitioning with too many clusters’ 390 

risks creating classes that are not very different from each other. Being  ∑ ∆𝑠
𝐼−1
𝑠=1 = 𝐾 = 9 (the total variance contained in 391 

the standardized data), the separation into two groups is able to describe ∆(1,2) 𝐾⁄ = 4.314 9⁄ = 0.4793 (47.93 %) of 392 

the total variance. Considering the partitioning into three groups, the explained variance by the three clusters is equal to 393 

[∆(1,2) + ∆(2,3)] 𝐾⁄ = [4.314 + 1.044] 9⁄ = 0.5954 (59.54 %) of the total variance, while for four clusters the 394 

“explained variance” is equal to [∆(1,2) + ∆(2,3) + ∆(3,4)] 𝐾⁄ = [4.314 + 1.044 + 0.406] 9⁄ = 0.6404 (64.05 %) of 395 

the total variance. 396 

 Therefore, considering more than three clusters (refer to Figure 10) is going to have a very little impact on the explained 397 

variance since very little information is gained and is no longer useful to group together any more classes. For this reason, 398 

the dendrogram in this work is partitioned in 3 clusters (refer to Figure 9) and therefore they can explain approximately 399 

60% of the total variance present in the data. 400 

The three-cluster solution's ability to explain about 60% of the total variance is significant, especially considering the 401 

single-point (anemometric) measurement nature of the downburst data. This inherent limitation often leads to high 402 

variability, making the extraction of consistent patterns challenging. As noted in related studies, such as those by 403 

Bogensperger and Fabel (2021), benchmarks for acceptable levels of explained variance in clustering are not universally 404 

applicable but rather depend on the specific context and data characteristics. The present study's level of variance 405 

explanation, given the complexity and variability of the downburst captured from one location, is therefore robust. This 406 

is further supported by the observation in Figure 10 that additional clusters contribute minimally to the total variance 407 

explained, suggesting that the primary structural patterns in the data are adequately captured with three clusters. 408 
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Figure 9. Hierarchical tree (dendrogram) created with Ward's Method, categorizing the optimization problem solutions for 

the Sânnicolau Mare downburst into three clusters, each marked by a distinct color: red for cluster 1, green for cluster 2, 

and blue for cluster 3. 

 409 

 

Figure 10. Bar graph of the relation between the number of merged clusters and the within-cluster variance. 410 

5.2 Clusters interpretation via PCA and Optimization with K-Means 411 

The three clusters of solutions are analyzed using principal component analysis (PCA) to identify the key variables that 412 

drive the system's behavior. By extracting the principal components, which captures the most significant variation in the 413 

data, the complexity of the system can be reduced. In particular, the eigenvalues of the correlation matrix 𝕊 = 
1

(𝐼−1)
�̂� 𝑇�̂� 414 

quantify the amount of variance accounted by each principal component (Kassambara, 2017). The eigenvalues shows that 415 

the first components have larger values, indicating that they capture the most significant variation in the data set. In 416 

contrast, the subsequent components have lower eigenvalues, representing a diminishing level of variation. Table 3 417 



18 
 

presents displays the eigenvalues, the percentage of variance explained by each component, and the cumulative percentage 418 

of variance. 419 

Table 3. PCA results in term of the eigenvalues, percentage of variance and cumulative percentage of variance. 420 

 Dim-1 Dim-2 Dim-3 Dim-4 Dim-5 Dim-6 Dim-7 Dim-8 Dim-9 

Eigenvalues (𝜆𝑠) or variance 5.278 1.458 0.884 0.499 0.378 0.195 0.167 0.093 0.048 

Percentage of variance 58.645 16.204 9.825 5.542 4.204 2.170 1.852 1.028 0.530 

Cumulative perc. of variance 58.645 74.849 84.674 90.216 94.420 96.589 98.441 99.470 100.000 

 421 

The first two principal components capture 74.85% of the total variance in the dataset. These components define a plane 422 

that provides significant insights into the underlying patterns and structure of the data.  Eigenvalues greater than 1 (Table 423 

3) signify that the respective principal components explain more variance in the data compared to any single standardized 424 

variable. In contrast, eigenvalues less than 1, starting from the third principal component (Table 3) indicate that the 425 

associated principal components explain less variance than individual standardized variables, suggesting they have 426 

relatively less influence on the overall variability in the data. Therefore, it is probably not useful to interpret the next 427 

dimensions and better focusing on the first two principal dimensions for a more meaningful analysis.  It is worth 428 

mentioning that the percentage of variance explained by the first principal component (58.65 %) is very close to the 429 

variance explained by the hierarchical tree when is partitioned into three clusters (59.54 %).  430 

The three clusters, found using the Wards’ method only, are represented in terms of solutions in the principal component 431 

map (Figure 11a). This figure shows how solutions are grouped together into three clusters when the overall cloud of 432 

solutions is projected into the first two principal components. Here, cluster 1 is not very well separated from cluster 3, 433 

which means that both clusters share similar solutions.  434 

To enhance the distinctiveness of the cluster partitioning, the K-Means algorithm is subsequently applied. This refinement 435 

step adjusts the initial partitioning obtained through Ward’s method. The K-Means algorithm optimizes cluster separation 436 

by iteratively recalculating the centroids for each cluster and reassigning solutions according to their proximity in 437 

Euclidean space. This procedure incrementally increases the ratio of between-cluster variance to the total variance, which 438 

results in the reduction of overlap and a clearer delineation of clusters. The process continues until the improvement in 439 

this variance ratio does not exceed a certain threshold, thus solidifying the partitioning. The iterative optimization by the 440 

K-Means algorithm is what transforms the initial, less distinct clusters arrangement (Figure 11a) into a final partitioning 441 

where clusters are well-separated and more compact (Figure 11b). This refined partitioning is not only more visually 442 

apparent but also statistically significant, and it is this final configuration that is retained for further analysis within the 443 

paper. 444 
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Figure 11. (a). Solutions’ clusters partitioning on the principal component map, using the Ward’s method only. (b) Solutions’ 445 

clusters partitioning using the Hierarchical K-Means method. 446 

 447 

5.3 Further considerations on the model’s parameters 448 

In Table 4, each standardized variable �̂�𝑘 is presented as a vector, summarizing observations form the 1024 solutions. 449 

This forms the basis for the analysis focusing on the first two principal components, denoted as  𝒑𝟏 and 𝒑𝟐. The table 450 

displays the correlations 𝑟𝑠 = 𝑟( �̂�𝑘, 𝒑
𝑠
) (where 𝑠 = 1,2) between the variables and these components (column 1 and 4). 451 

Additionally, the table includes the quality of the representation 𝑞𝑙𝑡𝑠 of each variable (columns 2 and 5), and the weight 452 

of each variable 𝑞𝑡𝑟𝑠 in the construction of these components (columns 3 and 6). The quality of representation, 𝑞𝑙𝑡𝑠 = 𝑟𝑠
2, 453 

measures the extent to which a variable is accurately projected onto a principal component. The weight of a variable, 454 

𝑞𝑡𝑟𝑠 =
𝑟𝑠

2

𝜆𝑠
∙ 100%, quantifies the variable’s relative contribution to the variance explained by the principal component, with 𝜆𝑠 being 455 

the eigenvalue corresponding to that component (Husson and Pagès, 2017).  456 

Table 4. Principal component analysis results for variables in terms of correlations (𝑟), quality of representation (𝑞𝑙𝑡), and contribution 457 

to the construction (𝑞𝑡𝑟) relative to the first two principal components.  �̂�𝒌 represents the k-th standardized variable; 𝒑1 and 𝒑1 denotes 458 

the first and the second principal components, respectively. 459 

Variables �̂�𝑘 Dim-1 

𝑟( �̂�𝑘 , 𝒑1) 

Dim-1 

𝑞𝑙𝑡1( �̂�𝑘) 

Dim-1 

𝑞𝑡𝑟1( �̂�𝑘) 

Dim-2 

𝑟( �̂�𝑘, 𝒑2) 

Dim-2 

𝑞𝑙𝑡2( �̂�𝑘) 

Dim-2 

𝑞𝑡𝑟2( �̂�𝑘) 

�̂�𝑪𝟎 -0.831 0.691 13.094 -0.443 0.196 13.441 

�̂�𝑪𝟎 0.723 0.523 9.912 -0.489 0.239 16.377 

�̂� 0.578 0.334 6.326 -0.256 0.066 4.504 

�̂� 0.715 0.512 9.699 -0.216 0.047 3.200 

�̂�𝒓,𝒎𝒂𝒙 -0.909 0.827 15.664 0.079 0.006 0.424 

�̂�𝒎𝒂𝒙 0.182 0.033 0.628 0.916 0.839 57.502 

�̂�𝒆𝒏𝒅 -0.823 0.678 12.847 0.117 0.014 0.942 

�̂�𝒕 0.969 0.939 17.789 0.132 0.017 1.189 

�̂� 0.861 0.741 14.042 0.188 0.035 2.421 

Secondary variable 

�̂�𝒃 0.299 0.089 - -0.073 0.005 - 

 460 



20 
 

 Table 4 also presents the secondary variable �̂�𝒃. The other two variables �̂�𝒕 and �̂�𝒃 are non-considered in the PCA due 461 

to their circular nature, which does not align well with the linear interpretation framework of principal component 462 

analysis. Despite �̂�𝒃  not being involved in the construction of the principal components, it is still possible to evaluate the 463 

correlation and the quality of the representation of this variable using the two principal components. To facilitate the 464 

interpretation of Table 4, a correlation circle plot (Abdi and Williams, 2010) can be used to visually represent the 465 

variables. This plot represents each variable as a point in a two-dimensional space, where the coordinates of each point 466 

correspond to the correlation coefficients between the variable and the two principal components (i.e., 467 

𝑟(�̂�𝑘, 𝒑1), 𝑟(�̂�𝑘, 𝒑2)). Figure 12a illustrates the correlation circle plot. 468 

 

Figure 12. (a) Correlation circle plot. The variables in black are considered as primary variables whereas the variable in 469 

magenta is a secondary variable (b) Correlation matrix plot. 470 

The plot geometrically represents variable correlations: the angles between the variables indicate the level of correlations 471 

between variables, with acute angles suggesting positive correlation and obtuse angles indicating negative correlation. 472 

Each variable’s total contribution across all principal components equals 1. Variables fully explained by the first two 473 

components will be located on the circle’s circumference (radius 1) in the correlation circle. Variables not well represented 474 

by these components will be near the center, indicating that only those near the circumference are significantly 475 

represented. Except for the variables �̂�𝒃 and �̂� which are not very well represented by the first two principal components, 476 

the remaining variables are very well represented since their tip is close to the circle of radius 1. The set of variables 477 

{�̂�𝒕, �̂�, �̂�𝑪𝟎, �̂�} are positively correlated, increasing together, similarly to {�̂�𝒓,𝒎𝒂𝒙, �̂�𝑪𝟎, �̂�𝒆𝒏𝒅}. The variable �̂�𝒕 is highly 478 

correlated with the first component (correlation of 0.97). Essentially �̂�𝒕 can be viewed as a representative summary of the 479 

first principal component axis. Figure 12a indicates  that the variable �̂�𝒕 has a strong negative correlation with the variables 480 

{�̂�𝒓,𝒎𝒂𝒙, �̂�𝑪𝟎, �̂�𝒆𝒏𝒅}. This suggests that high storm motion values 𝑉𝑡 correspond with lower maximum radial velocities 481 

𝑉𝑟,𝑚𝑎𝑥 , position closer to the station for positive values of 𝑋𝐶0, farther for negative values, and shorted downburst duration 482 

𝑇𝑒𝑛𝑑 . 483 
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 Since �̂�𝒕 is positively correlated with the variables {�̂�, �̂�𝑪𝟎, �̂�},  what is true for �̂�𝑡 with respect to the group of variables 484 

{�̂�𝒓,𝒎𝒂𝒙, �̂�𝑪𝟎, �̂�𝒆𝒏𝒅}, will also remain true for the variables {�̂�, �̂�𝑪𝟎, �̂�}. Finally, from the correlation circle plot, it seems 485 

that the variable �̂�𝒎𝒂𝒙 is not very well “linearly” correlated with the groups of variables {�̂�𝒓,𝒎𝒂𝒙, �̂�𝒆𝒏𝒅, �̂�} since it is nearly 486 

orthogonal with these variables. From a quantitative point of view the values of the correlation coefficients between all 487 

the pairs of variables are plotted in Figure 12b. Table 4 lists each variable’s contributions to the first and second principal 488 

components (columns 3 and 6 respectively). Figure 13a and 13b graph these contributions in percentages, showing which 489 

variables have the most impact on these two components. 490 

 491 

 

Figure 13. (a) Contribution of the variables in the reconstruction of the first principal component (Dim-1). (b) Contribution 492 

of the variables in the reconstruction of the second principal component (Dim-2).  Variables are sorted from the strongest to 493 

the weakest. The red dashed line indicates the expected average contribution. 494 

The graph shows a red dashed line indicating the average expected variable contribution at 11.11 %, based on 9 variables. 495 

Variables with contributions over 11.11% significantly construct a principal component. For the first component, 496 

{�̂�𝒕, �̂�𝒓𝒎𝒂𝒙, �̂�, �̂�𝑪𝟎, �̂�𝒆𝒏𝒅} are key contributors. For the second, {�̂�𝒎𝒂𝒙, �̂�𝑪𝟎, �̂�𝑪𝟎} are most influential. The leading 497 

contributors for both components combined, ranked by importance in building the first two principal components are 498 

{�̂�𝒕, �̂�𝑪𝟎, �̂�𝒎𝒂𝒙, �̂�𝒓𝒎𝒂𝒙, �̂�, �̂�𝑪𝟎}. The remaining variables {�̂�𝒆𝒏𝒅, �̂�, �̂�}  fell below the average contribution of 11,11 %. It 499 

is worth mentioning that the categorization of variables from stronger to weaker is not universal since the partitioning 500 

might depend on the downburst case under investigation. 501 

5.4 Physical description of the solutions corresponding to clusters 1-3 502 

Once the partitioning of the solutions of the optimization problems in three cluster is completed, it is important to have a 503 

closer look at them and describe common features of solutions which belong to the same cluster. From the partition 504 

analysis, it is found that cluster 1 is made up of 481 solutions, cluster 2 of 85 and cluster 3 of 458 solutions. Table 5  505 

summarizes a few key statistics related to the three clusters. This table includes primary and secondary (i.e., not used for 506 

clustering) variables, which are no longer standardized to investigate their physical meaning.  507 

 508 
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Table 5. Description of the partition by the mean and standard deviation of all the variables. 509 

Variables 𝑽𝑘 Overall 

Mean 

Overall 

 Std 

Cluster 1 

Mean 

Cluster 1 

Std 

Cluster 2 

Mean 

Cluster 2 

Std 

Cluster 3 

Mean 

Cluster 3 

Std 

𝑽𝒕 (m/s) 6.025 3.371 2.811 1.042 6.527 1.407 9.307 1.492 

𝑿𝑪𝟎 (m) -4386.350 1613.337 -3034.079 789.682 -5410.461 629.282 -5616.465 1209.346 

𝑻𝒎𝒂𝒙 (min) 6.954 2.517 5.860 1.172 13.336 1.910 6.919 1.797 

𝑽𝒓,𝒎𝒂𝒙 (m/s) 24.293 5.356 28.639 1.465 28.182 1.793 19.006 3.266 

𝑭 (-) 0.893 0.080 0.823 0.058 0.919 0.043 0.961 0.021 

𝒀𝑪𝟎 (m) 3363.669 1809.316 2499.896 975.450 313.553 1257.946 4836.890 1160.613 

𝑻𝒆𝒏𝒅 (min) 26.035 3.167 28.269 1.895 27.622 2.295 23.394 2.235 

𝝆 (-) 2.189 0.108 2.126 0.104 2.134 0.100 2.265 0.050 

𝑹 (m) 1334.478 102.519 1289.518 124.661 1301.969 90.475 1387.728 23.115 

Secondary variables 

𝜶𝒕 (deg) 290.383 0.480 276.439 0.416 253.518 0.217 310.868 0.229 

𝑽𝒃 (m/s) 6.811 0.670 6.648 0.774 6.705 0.768 7.002 0.449 

𝜶𝒃 (deg) 268.218 0.118 264.854 0.138 273.055 0.074 270.827 0.055 

  510 

In columns 2-3, the overall mean, and the overall standard deviation (std) are calculated with respect to each variable 511 

(primary and secondary). In the other columns, the same calculation was repeated taking into consideration the three 512 

clusters. Mean and the std of the secondary variables 𝜶𝒕 and 𝜶𝒃 have been calculated using circular statistics (Rao and 513 

Sengupta, 2001). To start clarifying the characteristics of the different clusters, Figure 14 shows the scatter plot and 514 

distribution of the touchdown components (𝑿𝐶0, 𝒀𝐶0) for all the solutions, partitioned into three clusters. In this figure it 515 

is shown the center (namely the mean) of each cluster and the location of the touchdown position of the best overall 516 

solution. The figure shows also with a black line the position of the city of Sânnicolau Mare. Also, on the left and on the 517 

top of this figure is possible to show the histograms of the variable (𝑿𝐶0, 𝒀𝐶0) relative to each cluster. 518 
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Figure 14. Scatter plot and histogram density distribution for the variables (𝑿𝑪𝟎, 𝒀𝑪𝟎). The dark black line shows the 519 

contours of the city Sânnicolau Mare. 520 

 521 

The three clusters appear well separated in terms of touchdown position (𝑿𝐶0, 𝒀𝐶0). Since it is very unlikely that the 522 

cluster means coincide with one of the solutions present in the data set, let’s define as “cluster solution”, the solution 523 

which is the closest to the mean of the cluster across all variables. Accordingly, the cluster solutions, reported in Table 6, 524 

will be used to interpret the average features of each cluster.  The first row of this table is dedicated to the best solution 525 

founded by the optimization algorithm (i.e., the one that have the lowest objective function 𝐹 among all the solutions); 526 

the best solution belongs to Cluster 1.  527 

Table 6. Overall best solution and clusters representative solutions. 528 

 529 

 530 

Figure 15 shows the time histories produced by the best solution and the three cluster solutions, in terms of  wind velocity  531 

(Figure 15a) and direction (Figure 15b), compared with the moving averaged recorded data. The figure provides a 532 

qualitative representation of the goodness of fit between the simulations and the recorded data. The goodness of fit is 533 

quantitatively measured by the objective function F. The simulations produced from the best solution and the Cluster 1 534 

solution fit the data better than Cluster 2 and 3. This is quite obvious since the best solution have the lowest objective 535 

Solutions 

𝑉𝑡 

(m/s) 

𝑋𝐶0 

(m) 

𝑇𝑚𝑎𝑥 

(min) 

𝑉𝑟,𝑚𝑎𝑥 

(m/s) 

𝐹 

(-) 

𝑌𝐶0 

(m) 

𝑇𝑒𝑛𝑑 

(min) 

𝜌 

(-) 

𝑅 

(m) 

𝛼𝑡 

(deg) 

𝑉𝑏 

(m/s) 

𝛼𝑏 

(deg) 

Best 

solution 

2.76 -3339.53 6.50 29.80 0.73 2826.55 29.89 2.15 1381.38 271.74 5.49 58.35 

Cluster 1 2.51 -2944.15 6.05 29.54 0.81 2769.36 27.23 2.09 1287.53 278.25 7.15 268.19 

Cluster 2 6.14 -5105.66 14.05 27.07 0.91 383.39 28.18 2.14 1295.33 255.36 7.13 272.82 

Cluster 3 9.25 -5930.81 7.15 17.36 0.97 4575.50 22.95 2.27 1392.86 307.61 6.15 272.71 
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function 𝐹 and belongs to Cluster 1, whereas Cluster 2 and Cluster 3 solutions have slightly higher objective function 536 

values 𝐹 (refer to column 5 in Table 6).  537 

 538 

 539 

Figure 15. Comparison among the moving averaged wind speed (a) and direction (b) obtained from the measurements of the 540 

Sânnicolau Mare downburst, along with the best solution and the three cluster solutions. 541 

In order to better understand the nature of the different solutions relative to each cluster, for each solution present in Table 542 

6, the downburst 2D wind velocity is evaluated at the same height of the anemometric station (i.e., at 50 m AGL). The 543 

left panels of Figure 16 (from (a) to (d)) show for each of the 4 solutions the wind field reconstruction during the 544 

intensification stage of the downburst, while the right panels (from (e) to (h)) describes the stage of maximum intensity.  545 

Note that the time of maximum intensity is different for each cluster according to the corresponding value of  𝑇𝑚𝑎𝑥  546 

reported in column 3 of Table 6. 547 
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 548 

 549 

 550 
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 551 

Figure 16. 2D wind field reconstruction at 50 m AGL. From (a) to (d), the best solution, Cluster 1, 2 and 3 solutions are depicted 552 

at the intensification stage of the downburst. From (e) to (h), the best solution, Cluster 1, 2 and 3 solutions are depicted at the 553 

maximum intensification stage of the downburst. 554 

Cluster 1 touches down very close to the city center and moves slowly eastward, it is characterized by a low value of the 555 

downburst translation velocity 𝑉𝑡, with mean value 2.8 m/s against the overall mean among all clusters which is 6.0 m/s. 556 

In addition, it has maximum radial velocity 𝑉𝑟,𝑚𝑎𝑥  higher and overall duration of the downburst event 𝑇𝑒𝑛𝑑  longer with 557 

respect to the mean values of the other two clusters. The solutions belonging to Cluster 2 touch down around 2 km 558 

southwest of the city, they propagate northeastward with higher translation velocities compared to Cluster 1 and the 559 

longest intensification periods 𝑇𝑚𝑎𝑥  overall. The solutions in Cluster 3 touch down about 3 km northwest of the city, they 560 

move southeastward with the highest values of downburst translation velocity 𝑉𝑡 but they are the lowest-lasting as the 561 

duration of the downburst event 𝑇𝑒𝑛𝑑 is on average 23.4 min while the overall mean is 26.0 min. They also have the 562 

lowest values of maximum radial velocity 𝑉𝑟,𝑚𝑎𝑥  which compensate the high translation velocities. According to these 563 

descriptions, it is clear that in the solution’s space of the model three different solutions exist that can describe similarly 564 

the time-series measured at TM_424. The existence of different plausible solutions means that the problem of finding the 565 

downburst wind field time-space evolution using a single time-series is an underdetermined problem. 566 

The Sânnicolau Mare downburst had a strong impact, causing hail damage to numerous buildings in the town. A damage 567 

survey was conducted to assess the affected areas and identify buildings that experienced hail damage during the event. 568 

To estimate the extent of the damage, the simulated wind field generated by the analytical model was utilized. By 569 

analyzing the wind speeds at various locations, the "footprint" of the simulated damage was determined. This footprint 570 

represents the maximum wind speed recorded at different places during the downburst, providing valuable information 571 

on the areas most affected by the event. The left panels of Figure 17, labeled from (a) to (d), depict the complete footprint 572 

of the downburst potential damage area for the best solution and the three cluster solutions. In contrast, the right panels, 573 

labeled from (e) to (h), provide a closer view of the footprints overlaying the simulated maximum wind velocity vectors 574 

(indicated by blue arrows) onto the locations of hail damage. The hail damage is represented by vectors pointing 575 

orthogonally to the damaged facades (represented by pink arrows). The comparison between the facades damage, which 576 

is related to the trajectory of hail transported by the strong downburst-related outflow, and the simulated maximum 577 
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velocity reveals interesting findings. Specifically, the best solution and Cluster 1 solutions exhibit the strongest alignment 578 

between the maximum wind velocity vectors and hail damage vectors, particularly in the central part of the city and along 579 

the path of the downburst. In contrast, Cluster 2 and Cluster 3 demonstrate a consistent deviation of the maximum velocity, 580 

with Cluster 2 deviating northward and Cluster 3 deviating southward, relative to the hail trajectories. This observation 581 

suggests that the actual downburst event likely followed a pattern more closely resembling Cluster 1 rather than the other 582 

two potential solutions. 583 

 584 

 585 
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 586 

 587 

Figure 17. Simulated footprints of the downburst that occurred in Sânnicolau Mare. Panels from (a) to (d) representing the 588 

footprints for the best solution, Cluster 1, Cluster 2, and Cluster 3 respectively. Panels form (e) to (h), representing 589 

comparison between hail damage and maximum simulated wind speed for the best solution, Cluster 1, Cluster 2, and Cluster 590 

3 respectively. 591 

These observations lead to the conclusion that the optimal (best) solution, which minimizes the objective function F, is 592 

the most reliable among all possible solutions. In the current study, this has been achieved through a comprehensive 593 

approach involving numerous simulations, specifically tailored for cases where only anemometric data is available, 594 

despite having access to additional data types like the Radar images. This choice was driven by the higher likelihood and 595 

frequency of availability of anemometric data in practical scenarios, thus providing a more universally applicable context 596 

for the analytical downburst model. The methodology involved conducting a large number of simulations to thoroughly 597 

explore the solution space, given the data-limited scenario. Consequently, this approach enabled the extraction of 598 

kinematic and geometric parameters of the downburst outflow wind field exclusively from anemometric data. 599 
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However, it is important to acknowledge that in scenarios where additional data types such as Radar or Lidar or other 600 

sensors are available, the approach to reconstructing the downburst wind field would differ significantly. In such 601 

situations, the availability of more diverse data allows for a more constrained and targeted reconstruction process. By 602 

integrating specific parameters from these additional data sources, like storm speed and direction and ABL wind speed 603 

and direction, the solution space can be narrowed down more effectively, potentially reducing the number of simulations 604 

needed and enhancing the precision of the model. 605 

6 Conclusions  606 

This study focuses on the analysis of solutions obtained by combining an analytical model (Xhelaj et al., 2020) with a 607 

global metaheuristic optimization algorithm for the reconstruction of the wind field generated during the Sânnicolau Mare 608 

downburst event in Romania on June 25, 2021. The analytical model and optimization algorithm are coupled using the 609 

Teaching Learning Optimization Algorithm (TLBO) to estimate the kinematic parameters of the downburst outflow. The 610 

procedure for this coupling and parameter estimation is described in detail in the study by Xhelaj et al. (2022). Therefore, 611 

the objective was to analyse the differences among the solutions provided by the optimization algorithm and to assess 612 

their physical validity as alternatives to the optimal solution. In the presence of multiple physically sounding solutions, it 613 

has been demonstrated that additional data describing the downburst thunderstorm event is necessary to determine which 614 

solution best represents reality. To support the analysis a comprehensive damage survey was conducted in collaboration 615 

with the University of Genoa (Italy) and the University of Bucharest (Romania) to assess the extent and location of hail 616 

damage on buildings in the affected area. This survey, along with the wind speed and direction signals recorded during 617 

the downburst event by a telecommunication tower located approximately 1 km from the city, significantly enhances the 618 

information available for the reconstruction and simulation of the downburst using the optimization procedure. The 619 

analysis of the solutions generated by the optimization algorithm involves multivariate data analysis (MDA) techniques, 620 

specifically agglomerative hierarchical clustering coupled with the K-Means algorithm (AHK-MC) and principal 621 

component analysis (PCA). The AHK-MC is used for classifying the solutions into different clusters based on their 622 

features, while PCA is employed to determine the importance of the variables in the analytical model for the downburst 623 

event reconstruction. 624 

The application of AHK-MC resulted in the identification of three main clusters, each with distinct characteristics, among 625 

the 1024 solutions. 626 

• Solutions belonging to Cluster 1 are characterized by a slow storm motion, small touch down distance from the 627 

city of Sânnicolau Mare and by long duration of the downburst event. The best overall solution belongs to Cluster 628 

1. 629 

• Solutions belonging to Cluster 2 are characterized by a moderate storm motion and moderate distance of the 630 

touch-down from the town of Sânnicolau Mare. These solutions are also characterized by high duration of the 631 

intensification period of the downburst event. 632 

• Solutions belonging to Cluster 3 are characterized by a high storm motion and high distance of the touch-down 633 

from Sânnicolau Mare. They are also characterized by low duration of the downburst event and low values of 634 

the maximum radial velocity. 635 

The result of the MDA allows also to establish at least for the case under consideration that the set of variables 636 

{𝑽𝒕, 𝑿𝑪𝟎 , 𝑻𝒎𝒂𝒙, 𝑽𝒓𝒎𝒂𝒙, 𝑭, 𝒀𝑪𝟎} which are ordered from the strongest to the weakest are the more important for the 637 

reconstruction/simulation of the downburst event. The remaining variables {𝑻𝒆𝒏𝒅, 𝝆, 𝑹}  have a lower contribution. It is 638 
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important to observe the partitioning in strongest variables and weakest ones does not represent a general case, since the 639 

partition depends on the downburst case under study.  640 

Finally, the comparison between the facades damage, which are related to the trajectory of hails transported by the strong 641 

downburst-related outflow and the simulated maximum velocity shows that the best solution and Cluster 1 solutions seem 642 

to have a “good” overlapping between maximum wind velocity vectors and hail damage vectors. Considering the solutions 643 

of Cluster 2 and 3, it seems that the match between maximum wind velocity vectors gradually decreases, with the worst 644 

case represented by Cluster 3 solutions. These observations allow to conclude that the optimal solution, that is, the one 645 

that minimizes the objective function 𝐹, is the best with respect to the other three cluster solutions, also from the point of 646 

view of the damage analysis. As a result, for the specific case being examined, relying on the best overall solution provided 647 

by the optimization algorithm appears to yield promising results for reconstructing the downburst wind field. Obviously, 648 

an analysis of this type, conducted on several downburst events, will be able to better confirm this statement. 649 
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