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Abstract. Downburstswinds, characterized by strong, localized downdrafts and subsequent horizontal -Btraight
winds, presents significant risk to civil structures. The transient nature and limited spatial extent present measurement
challenges, necessitating analytical models for accurate understanding and predicting their action on Stnisctively.

analyzes the Sannicolau Mare downburst event in Romania, from June 25, 2021, usiimgeambional analytical model

coupled with the Teaching Learning Optimization Algorithm (TLBO). The intent is to understand the distinct solutions
generated by the optimization algorithm and assess their physical validity. Supporting this examination is a damage survey
and wind speed data recorded during the downburst event. Employed techniques include agglomerative hierarchical
clustering with the Kmeans algorithm (AHKMC) and principal component analysis (PCA) to categorize and interpret

the solutions. Three main clusters emerge, each displaying different storm characteristics. Comparing the simulated
maximum velocity with hail damage trajectories indicates that the optimal solution offers the best overlap, affirming its
effectiveness in reconstructing downburst wind fields. However, these findings are specific to the Sannicolau Mare event,

underlining the need for a similar examination of multiple downburst events for broader validity.

KEYWORDS:Downburst analytical mode¥letaheuristioptimizationalgorithm, Multivariate data analysi®ownburst

kinematicand geometriparametersDamage survey.

1 Introduction

The wind climatology of Europe and several fatitude countries are primarily dominated by the presence of-extra
tropical cyclones and thunderstorms. The understanding of the formation and evolution-tfopited cyclones dates

back to the 1920s (Bjerknes and Solberg, 1922). The atmospheric boundary layer (ABLyeviedsted during such

systems are well recognized, and their influence on structures has been extensively studied and coded starting from the
1960s (Davenport, 1961). These established models continue to be emplagedemporarnengineering practice

(Solari, 2019).
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Thunderstormwinds knownas fAdownbur st o consi s tosndraff of @r genérated within and |
convective cell. These downdrafts after reaching the grounddtegapread horizontally, resulting in the formation of
the downburst gust front, also known as the downburst outflow. The presence of strong turbulent wind within the

downburst outflow poses significant risk to civil structui®szen their high frequency of occurrence, downburst events

are_among the most severe meteorological phenomena in mid latiDowsburss, often generated by isolated

thunderstormstypically exhibit sckes of less than few kilometers in extetlistinguishingthem from thdarger scale of

thunderstorms themselvesay

Additionally, they can be originated from more complex convective systems such as squall lines and bow echoes, in this
case the spatial length scale which can potentially be affected by downbursts or downburst clusters is in the order of
hundreds of kilometers (Fujita, 1978, Hjelmfelt, 200M)e size of the downburst outflow area of strong winds exhibits
variability, leading to the classification of this phenomenon as either a microburst or macrobust. A microburst is
characterized by a strong outflasize that is less than 4 km, whereas a macroburst corresponds to an airéaw

intense wind greater than 4 km (Fujita, 1985).

For overfour decadesntense downburst winds and their impact on the built environment have been key research topics

in the field of Wind Engineering (Letchford, 2002hese winds, resulting from nonstationary behadgumesoscale

thunderstorms, createdistinct horizontal wind profile. This profile, marked by a nesape with peak wind speed near

the ground level, sharply contrast withe typical wind profiles in the ABL and significantly endangers structures,

particularly those of low and medium height.

constituted

ABL-From a statistical point of view, wind velocities, characterized by a mean return period greater than 10 or 20 years,
are often due to these phenomena (Solari, 2014). The lack of a unified model for downburst outflows artebtisein
structur es, similar t o Brepca cygdomas,tisgpemarlyldaettd significemtduecertaifitiesr e x
arising by theinherent complexity of downburst windideed, the transient nature and limited spatial extent of

downbursts presents challenges in their measurements and restrict the availability of an adequate number of test cases.

The early analytical models fdiownburst wind velocities stemmed from Glauert's (1956) impinging wall jet model and

Ivan's (1986) ring vortex model. Glauert focused on radial jets, while Ivan developed an axisymmetric downburst model
validated by the Joint Airport Weather Studies ProjEafita, 1985; McCarthy et al., 1982hcorporating a primary and

mirror vortex above the ground. Osequera and Bowles (1988) developed the firstitmeasional downburst model,

later refined by Vicroy (19911992. This model, simpler yet comparable in effectiveness tov&kB86) ring vortex

model, was based on axisymmetric flow equations and empirical data from the TASS(Rrod&ey 1987a, b)and

NIMROD Project(Fujita, 1978; Fujita, 1985 Holmes and Oliver (2000) revised the impinging jet model, simplifying

the expression for radial mean wind velocity and integrating it with the downburst's translational speed. However, their

model did not clearly distinquish between the d@wel environmental flow in the ABL and the thunderstorm cell's

motion Abd-Elaalet al. (2013) used a parameifi€D model coupled with an optimization algorithm to determine that

downburst characteristics are significantly influenced by factors such as the touchdown location, time, and the downdraft's

speed and direction essential aspect already highlighted with regard to the Holmes and Oliver model (2000), and then
2
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repeated in other subsequent papers (Chay at al. 2006labbet al., 2013, andoale and Caracoglia (2017), is the

lack of a clear distinction between the translational movement of the thunderstorm cell and the boundary layer wind in

which the thunderstorm outflow is immersed at the ground. Hjelmfelt's (1988) study through radar measurements

highlighted this problem's importance by examining two downbursts. The first case depicted a nearly stationary downburst

in strong lowlevel environmental winds, while the second described aniasing downburst in a setting with little or

no ABL flow. This lack of distinction in models hinders their ability to accurately describe such divera®rigltases.

Based on these foundationasights provided by Hjelmfelt (1988bhe author®f this paperintroduced in 2020 aovel

bi-dimensionalanalytical model tosimulatethe horizontal mean wind velocity at a specific height from a moving

downburst(Xhelaj et al. 2020)This model conceptualizes the combined wind velocity at any given point during a

downburst as the vector sum of three distinct components: the radial impinging jet velocity characteristic of a stationary

downburst, the translational velocity of the storm cell, and the ambiedéel@VABL wind velocity, which encompasses

the downburst winds near the surface

3 ied out by the
algorithm-in-erderto-converge towards-the-bestsolufibe. model relies on 11 parameters, which are determined using

a global metaheuristic optimization algorithm outlined in Xhelaj et al. (2022). This optimization process combines the

analytical model with the Teaching Learning Based Optimization (TLBO) algorithm. TLBO operates with a population

of solutions and employs iterative teaching and learning to find the best solution within the population (Rao et al., 2011).

Due to the stochastic nature of TLBO, when integrated with the analytical model, the procedure can yield different optimal

solutions each time it is executed. This variability arises from the initial random population of solutions and the

intermediate transformations carried out by the algorithm to converge towards the best solution.

-This study aims to examine the characteristics of the opsiohations obtained through multiple runs of the optimization

procedurewhich integrates the Xhelaj et. 020) model with the TLBO algorithnit seeks to investigate the variability

of the best solutions when applying the optimization algorithm to reconstruct the wind field during an intense downburst
event. The main objective is to assess the extent to which the solutions differ from each other and from the solution with
the lowest objective function value. Additionally, the study explores whether these alternative solutions can be considered

physically valid, particularly when additional data describing the downburst event is incorporated.

-The selecteddownbursteventoccurred in western Timis region Bbmania on 25 June 2021 ands producediuring

the passagef an intense mesoscale convectystem in the form of a bow eclover the town of &nicolau Mareof

an-intense-mesosecale-convective-systeirbow-echotype. This event was recorded by adiial anemometer and

temperature sensor, both placed on a telecommunication tower 50 m above the ground level. The telecommunication

tower lies approximately 1 km soutif Sannicolau Mare The downburst that occurred Bénnicolau Mare was of

3
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significant magnituderesulting in extensive hail damagd the facadesof numerous buildings within the city.

Subseguern responsdo this evente-oeccurrence-of this-intense-eveancomprehensive damage survey wasertaken
conductedthrough a collaborative partnership between University of Genoa (ltaly) and the University of Bucharest

(Romania). The surveyCalotesciet; al., 2022 andCalotesclet; al., 2023 (submittéd pinpointsthe GPSposition of
the buildingswithin the city that were predominantly impacted by tdewnburst Moreover, a comprehensive map
illustrating the hail damage of the building facades was generteanapprovidesimportantinformationregarding the
wind velocity experiencedt urban scalevhich has been used validatethe reconstructigsimulation of the downburst

by the optimization procedure.

The analysis of the different optimal solutions (i.e., the data set) generated by the optimization algorithm was conducted
throughmultivariatedataanalysis (MDA). This involved the joint application of cluster analysis and principal component
analysis to effectively examine and interpret the dat&aster analysis (CA) is a data mining technique that groups
similar solutions together, aiming to identify patterns in the data. It is commonly used in fields like meteorology and
climatology to identify clusters of weather phenomena or geographical regions with similar weather patterns (Burlando
et al., 2008; Burlando et al., 200®xincipal componerdnalysis (PCA) i mathematicakchniqueaused tadecreas¢he
dimensionality of a dataset whifeinimizing the loss of information within the data. Thisalysisis commonly used in
meteorology and climatology tdecreasehe number of variable®quired forrepresering weather pattern or climate

trends and to identify regions with similar weather patte(Asnato et al., (2020);Jiang et al., (2020)) Principal

component analysis is utilized in this context to enhance the interpretationdifféinent optimal solutions.

The presentwork is structuredin 6 Sections.Following theintroduction Section 2provides a description ahe
monitoring system thaacquiredthe full-scale measurememmployed in this researctection 3 provides a brief
meteorological description of the downburst evenSannicolau Mare (Romania)Section 4 describes the data set
employed forperforming cluster analysis and principal component analgsisvell as the implementation of these
analysesSectiorb presents an hdepth account of the main results derived from the CA and R nclusionSection

6 offersa summanyf the principalfindingsderived fromthis research.

2 Monitoring system and data acquisition

The complete set ofeasuremestemployedin this researclwere obtainedhrougha monitoring system installed in
RomaniaRelevant informatiolf this monitoring networkan be accessed in the publicatibg€dotescu et al., (2021)
Calotescu and Repetto, (20222)d Calotescu €al., (2023)(submitted).The monitoring network received funding from

the THUNDERR Project (Solari et akp20), which was conducted by the "Giovanni Salawind Engineering and
Structural Dynamics" Research (&¥8ndyn) Group at the Department of Civil, Chemical, and Environmental
Engineering (DICCA) of the University of Geno@SWindyn, with a keen interest in monitoring poles and towers
exposed to thunderstorm actions worldwide, secured funding for the acquisition ofseafallstructural monitoring

network. Thismonitoringsystem wasleployedontop of a 50 mlattice tower The primary focus of this project revolves

around three key objectives: first, the detection of thunderstorms; second, the analysis of wind parameters associated with

these phenomena; and third, the experimental assessment of the structural response of telecommunication lattice towers

to the forces generated by both synoptic and thunderstorm wihds.derstorms—are-local-phenomena-that-eeccur in

aVala on a) Mtosphe a =1a y aYalliaVal Narag Qe aYa Bl a1V aYa¥lla' ence—o Via - 3 an ata ad to the
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161  tower,named TM_424is property of the SC TELEKOM ROMANIA SRL and is located in the western part of Romania,
|162 Timis county, at approximately 1 km southSdnnicolau Mareigure 1Figurel). The site is an open field, the terraij/@
New

163 is flat with low grass vegetation.

Sannicolau
Mare
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Figure 1. (a) Location of the telecommunication tower TM_424situated 1 km south of SannicolauMare in Timis County,
Romania. (b) Expandedview of the Sannicolau Maretown with the telecommunicationtower TM_424 represented by the
red dot on the map. Maps generated using Mathematica (Wolfram Research, Inc., Version 13.3, 202

https://www.wolfram.com/mathematica).
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Figure 2. TM_424 Telecommunication tower and sensors position at the top of the tower. On the horizapproximately 1
km from the tower lies the small city of S&nnicolau Mare. Image courtesy of Google Street View 2022

(https://lwww.google.com/mapk

Figure2Figure2 shows the dimension of the towé&mongthe variousetworks for the monitoring systems, the tower ha fo

is equippedvith a GILL WindObserver 70 ultrasonic anemometethattop(Figure 2Figure2). The anemometer has a New

data acquisition ratef 4 Hz, can measure the wind speed up to 70 Im/&ddition tothe anemometer senstie tower ha fo
is equipped with a temperature sensor instatledr the location of the anemometéhe-sensor-was-encased-by a
protective-caseThe working temperature range this sensor is betweeb5and70 °C.

3 The Sannicolau Mare (Romania) downburst event of 25June 2021

In this section, a brief overview of the meteorological aspects pertaining to the downburst event in Sannicolau Mare on
25 June 2021 is provideth the late afternoon of 25 June 2021, a severe downburst event affected the extreme western
region of Romania. The downbumstenttook placein the Timiscounty (Figure 1Figurela) between 18:00 and 19:00 ha fo
UTC andstruckthelittle town of Sannicolau MaréFigure 1Figure1b). At 17:30 UTC, a strong mesoscale convective | New

system movingoward the easivas approaching th®wn of Sannicolau MareFigure 3a, acquired from Eumetsat, ha fo
captures an image of a deep convective cell at 18:30 UTC. This weather phenomenon exhibits cloud tops ascending o
12 km above mean sea level, signifying the mature stage of the convection cycle. This mature storm cell was observed to
have directly impacted the town under study. Figure 3b presents composite radar reflectivity data, indicating that this
meteorological phenomenon can be classified as a mesoscale convective system known as bow echo. Radar reflectivity
values at or above 60 dBZ, as seen in this event, are typically indicative of severe weather conditions. Such conditions

are often associated with the production of hailstones, with an average diameter of approximately 2.5 cm.
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Figure 3. (a) Distribution of cloud top heights derived from Meteosat Second Generation (MSGJalid for 25 June 2021 at 18:30
UTC. Data and mapobtained from ©EUMETSAT 2022 (https://view.eumetsat.in). (b) Composite radar reflectivity (dBZ) for
June 25, 2021, al8:30 UTC. The geographical location of Sannicolau Mare and the apex of the bow echo are indicated by the
black circle. Data and map obtained by©2018Administratia Nationala de Meteorologie https://www.meteoromania.rg).

The existenceof a robustconvective motion, indicative of the typical kinematic structure of a bow echo, is distinctly
portrayed through the distribution of intensive lightning activity, as displayed in Figufes4hae figurellustrates an
approximate total 00455 lightning strikewererecordeddy theBlitzortung.org networlacros€EasterrEuropebetween
16:30 to 18:30 UTCA significant concentration of these strilaarelatesvith the bow echo structurenearthe western
Timis County in Romania.The color gradient in Figure 4a, ranging fromredange, yellow andavhite serves as a

temporal marker, with white color indicating the most recent strikesnvéthdred color denoting older oes. This color

coding effectively illustrates the temporal and spatial evolutidhe lightning activity during the severe weather event,

providing insight into the progression of the storm systBow echoes are a prevalent form of severe convective

organizationThesemesoscale convective systeoangeneratetraightlines surfacevinds that lead to extensive damage

associated with downbursts. On occasion, they may also give rise to tornadeestingly, the observed bow echo

seems talisplays a stratiform parallestructure, a rarecharacteristicariety of squall linegParker and Johnson, 2004;
Markowski and Richardson, 2010).

(a)

@ Blitzortung.org contributors.  2021-06-25 UTC 18:30:01 Strikes 10455
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Figure 4. (a) Lightning strikes recorded between16:30 to 18:30 UTC on June 25, 2021sourced from the Blitzortung.org
network archive for lightning and thunderstorms (www.blitzortung.org). The black circle marks the geographiclocation of

Sannicolau Mare situated near the apex of the observed bow ech) Typical radar echo morphology commonly observedn

bow echoescharacterizedby the generationof strong downbursts at the bow apexdenoted adDB. Adapted from Fujita (1978).

Figure 4b illustrates theharacteristikinematic structure of a bow echo astlinedby Fujita (1978).Typically, the

system originates as a singulampminent convectiveell, either isolated or embedded within a beradjuall line system

(Phase A)As the surface winds strengthen, the parent cell undergoes transformation, evolving into a line segment of cells
with a bowshaped configuration (Phase B). During the maxinmtensity, the bow's center might develop a spearhead

echo (Phase Cgharacterized by the occurrence of thest severe downburst winds at #pex of thespearheaduring

the decay phase, the wind system frequently evolves into a camapad echo (Phase B)eisman, 2001)The
comparisons between Figures 3b, 4a, and 4b elucidate that the bow echo positioned above Sannicolau Mare at 18:30 UTC
is in its most intense stage (Phase C), as evidenced by the formation of the characteristic spearhead ethe shape.
intensedownburst evengeneratectthe apex of the bow echwas recordedby theanemometer and temperature sensor
situated 50 meters above the ground onTikk 424 tower. The time histories of thenoving averagevind speed and

direction (averaged over 30 secon()lari et al., 2015; Burlando et al., 201ar the recorded onbkour duration of the
downburst event are given in Figure 5a and Figure 5b, respectivegppkoximately18:30 UTC the anemometer
recorded an instantaneoomximum velocity(sampled at 4 Hzof & 40.8 m/swhile the maximunmoving average

wind velocity was @ , = 35.8 m/s This notablehigh velocity clearly evidencesof the occurrence of an intense
downburst.The time interval spanning from 18:20 to 18:45 UTC represents the primary indicator of the downburst's
occurrence in the proximity of the telecommunication tower. This period is characterized by a sudden surge in wind speed,
commonly referred intensification stage followed by a subsequent decrease in velocity after 18:30 UTC. Throughout the
initial phase of intensification, the wind direction exhibited a clockwise rotation, ranging from 235° and extending to
approximately 360°. AdditionallyFigure SFigure5a alsoincludesl-hourtime series of the recordéemperaturelata. ha fo
The temperature sensor is positioned at the same location of the anemometer. Before the passage of the downbur@
environmental temperature was on average 27 °C, while at approximately 18:20 UTC the temperature dropped very
sharply reaching the minimum value of 14.5 °C at approximately 18:30 UTC. After the sharp drop the tengtertgdre

to rise and eventually returned to its4stermlevel (hot shown).
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The downburst in Sannicolau Maysimariy-a-significant wind-evenivas also marked by a substantial hail occurrence.
The interaction between the higklocity winds and hail, potentially influencing the trajectory and impact of the
hailstones, contributed to extensive damage, especially to the facades of numerous Biilldmsnburstin-Sannicolau

i i Hdingomprehensively assess this damage, a

collaborative survey was conducted by the University of Genoa (Italy) and the University of Bu¢Ramsinia)

(Calotescu et al., 2022; Calotescu et al., 2023, submiftes

The survey identified the affected buildings and produced a comprehensive map illustrating the hail Bamege. | 3 fo
6Figures shows a schematic representation of the distribution of hail damage per area (600°x&@thre position of New
the buildings that suffers hail damage in the town of S&nnicolau Mareelating specific damages like hail impacts

with nearsurface wind velocities involves inherent uncertainties, which are extensively explored in the study by
Calotescu et. al., 2023 (submitted).
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Figure 6. Spatial distribution of damaged buildings and locations of haildamaged structures within 600 x 600 rharea in
the town of Sannicolau Mare during the downburst event on June 25, 2021. The city boundariesS#nnicolau Mare are
delimited by the black line.

305 4 Downburst reconstruction

306  This section focuses on the modeling, optimization, and reconstruction ®étimécolau Mareownburst event. Section

307 4.1 delves into the modeling and optimization approach used for downburst reconstruction. Section 4.2 introduces
308 metaheuristic optimization and its application in the reconstruction of the specific downburst event under study. Finally,

309  Section 4.3 outlines the multivariate data analysis employed to examine the solutions generated by the optimization
310 algorithm.

311  4.1Modeling and optimization approach for downburst reconstruction

312 In this study, the authors utilize the computational model developed in a previous work by Xhelaj et al. (2020) for the
313 reconstruction and simulation of the S&nnicolau Mare downburst event discussed in Section 3. The Xhelaj et al. (2020)
314 model can simulate the spatiotemporal evolution of tkgihensional moving average (30 second window) wind speed

315 and direction experienced during a typical downburst event at a specifiedZedigive ground level (AGL)Fhexhela]

316 : . . . . . . .

317
318
319  wind—which-is—considered-as—constant-across—the-simulation—domageneral,the wind system simulated by the
320 analyticalmodel represents the outflow structure of a translating downliypstally occurring in diverse meteorological

12

020 mode 1ble-torecon mulate the spatime-evolution-of the bdimensionalmovina-averaaevind




348 conditions such as single cell thunderstorms, multicell thunderstorms, squall lines and bowFemhihesspecific case

349 of theSannicolau Mar€ownburst, the analytical model operates under the hypothesis that the downburst occurs near the
350 tip_of the bow echo during its mature stage (Phase C, Figure 4b), in line with the stuUelifisadfl978)and\Weisman

351 (2001). It is worth noting that the model does not encompass the broader, complex mesoscale circulations, commonly

352 associated with high winds in bogchoes. This represents a focused approach, considering the downburst evolution

353 within a specific context, rather than attempting to model the entire spectrum of atmospheric phenomena related to bow

354 echoes.

355 Theanalyticalmodel comprises 11 variables that describe the kinematic structure of the downburStaiadFable ha fo
356 1 presents a short description of the 11 variables upon which the model Asliasesult, the model allows for the New

357 reconstruction of the timevolving moving average wind speed and direction generated by the simulated downburst at

358 every point within the simulation domaifhe model simulates the downburst wind velocity field by combining three

359 components, the stationary radial velgditom a jet impacting a flat surface, tdeo w n d itramdlatiod\&locity (i.e.,

360 storm motion) and the low level ABL wind veldgi The virtual anemometer, situated at the center of the simulation

361 domain, measures the simulated wind speed and direction generates iypdel By employing anemometric wind

362 speed and direction data collected during the SanniddEne downburst event, an optimization procedure can be

363 formulated to minimize the relative error (objective functi®nwhich quantifies the discrepandetween the observed

364 time series of the moving average wind speed and direction and the corresponding singdatoatedy the model.

365 Since the Sannicolau Mare downburst event was recorded by an anemometer positioned at a height of 50 meters AGL,

366 the analytical model will reconstruct the wind speed and direction at the corresponding height.

’367 Table 1. Variables of the Xhelaj et, al. (2020)analytical model.

X-component touchdown location (at 1) (m) ®
2 Y-component touchdown location @@t ) (m) ()
3 Downdraft radiugm) Y
4 Normalizedradial distance frorthe center of thdownburstwherewy, Y

occurs(-) Y
5 Maximum radial velocitym/s) WF
6 Durationof theintensificationperiod(min) Y
7 Total duration of thelownburst eventmin) Y
8 Stormtranslational velocit{m/s) ®
9 Stormtranslational direction (deg) |
10 ABL wind speedbelow the cloud basgn/s) @

11 ABL wind directionbelow the cloud baggleg) |
368

369  The reconstruction procedure gives rise to a mathematical optimization problem characterized by beiobjstiiyle,
370 nonlinear, and bound constrained, as discuss¥tielaj et al. (2022). To tackle this optimization problem, the analytical
371 model is integrated with a global metaheuristic optimization algorithm. Specifically, the Teaching Learning Optimization
372 Algorithm (TLBO) proposed by Rao et al. (2011) is employed. The details pertaining to the integration of the analytical
73 model with the optimization algorithm, as well as the estimation of the kineamatigeometrivariables associated with
74  the downburst event, are explained in detail in Xhelaj et al. (2028).TLBO algorithmit is an iterative, stochastic, and
13
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populationbased algorithm comprising two distinct phases: the Teacher Phase and the Learner Phase. In the Teacher
Phase, the best solution in the population (the teacher) shares its knowledge (objective function) with the other solutions
(the students) to enhance their performance. In the Learner Phase, the students interact with each other to further improve
their performance. TLBO requires only two uspecified parameters: the maximum number of iteratibasd the
population sizeN,. When incorporating the objective function into a stochastic metaheuristic optimization algorithm,
running the algorithm independently multiple times is crucial to reach the optimal solution. This iterative approach allows
for a deeper exploration of the variable space, reducing the risk of getting trapped in local optima. However, it is importan

to note that in the context of metaheuristic optimization, there is no guarantee of attaining a globally optimal solution. As

a result, the procedure can yield a range of solutions ordered based on the values assumed by the objective function, with
some being better than others. In this study, the TLBO algorithm is executed 1024 times independently, with each run
producing an optimal solution. Consequently, 1024 solutions are obtained. The reconstruction of the downburst event can
be accomplished by selecting the solution with the lowest objective function value, as it is considered the best
representation of the event based on the optimization prddesstudy aimdo analyze and clarify the nature of all the
solutions generated by means of THeBO algorithmfor the downburst outflow reconstructioithis choice was made

for a twofold reason.

1 The firstreasoris to determine the best possible solution among the 1024 totals, where best solution is the one
that minimizes the objective functié® and allows to reconstruct théficolau Mare downburst event.
i The second reason, which is themary objective of this studyis to analyze these 1024 solutiomsing
multivariate data analysis (MDA). The method used in MDA are the Agglomerative hierarchical clustering
(AHC) coupled with the KMeans algorithm angrincipal component analysi®CA).
The objective is tanvestigatethe distinct characteristics difie different solutions provided by the TLBO algorithm,
enabling an understanding of their divergence from the optimal solution. If alternative solutions do exist, it signifies that

the algorithm's solution is not uniguéhis highlights the challenge in accuratelgconstrudhg downburst wind field

form just one anemometric time series, under laure-iAsr g t he

such, a more comprehensive definition of the objective function is necessary to accurately discern between the optimal
solution and its alternatives.

4.2 Metaheuristic optimization and reconstruction of the &nnicolau Mare downburst

In metaheuristic optimization, a commonly used guideline suggests setting the populafigrasizen times the number

of variables to estimate (Storn, 1996). In this study, whelBecorresponds to 11 variables, a population siZ€,ef 110

has been chosen. Additionally, considering the reported fast convergence rate of the TLBO algorithm (as mentioned in
Xhelaj et al., 2022), the maximum number of iteratidar this study has been setfie- 100.Table 2 displays the lower

and upper bounds of the optimization problem pertaining to the reconstruction of the Sannicolau Mare downburst. These

parameter values have been determined based on a comprehensive literature review, available in Xhelaj et al. (2022).

Table 2. Lower and upper bound of the decision variable parameterfor the reconstruction of the Snnicolau Mare
downburst. Table form Xhelaj et al. (2022).

Parameter¥ariables Lower Bound UpperBound

14
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1 & (m) -10000 -10000
2 & (m) -10000 -10000
3 Y (m) 200 2000
4 () 1.6 2.6
5 wfp  (mls) 0 40
6 Y (min) 2 15
7 “Y  (min) 15 60
8 @ (m/s) 0 40
9 | (deg) 0 359.9
10 @ (m/s) 0 40
11 | (deg) 0 359.9

The spatial domain of the downburst simulation covers an area of 20 x 20 km2 while the grid resolution in both the X and
ity
wAabUEs approachemploys a comprehensive simulation

Y directions is set at 50 M

approach primarily using anemometric datalue to its common availabilityThe methodology entails numeis

simulations to extract downburstés kinematic and geome

Lidar is availablethis information can be used to bound some variableseconstruction-methodslapts—integrating

these-informationtorefirmnd restrictthe model variables domain (Table 2hdo enhance model accuragyigure ha fo
New

TFigure7 illustrates the "performance chart" depicting the convergence pattern of the objective functions during t

reconstruction of the Sannicolau Mare downburst using the TLBO algorithm. The performance chart in Figure 7 illustrates
the convergence pattern of the objective functions as iterations progrelsswdtthe upper and lower envelopes that
encapsulate all 1024 independamis The regiorwithin the envelopes represents the objective function values' trend for

all runs. At the end of the 100 iterations, lineer envelopeepresentto thebestobjective function valuebtained while
theupperenvelope corresponds to thverstobjective function value obtained by the TLBO algoritirhe performance

chart in Figure 7 includes additional visual representations: a dashed line representing the mean convergence curve, and
dotted lines representing the mean plus/minus one standard deviation curves. These curves provide insights into the

average behavior and deviation of the objective function values across the 10Z4eunsformance chart demonstrates

that after approximately 70 iterations, the TLBO algorithm ceases to find significantly better or worse solutions. This is

evidenced by the convergence of both the upper and lower envelope curves. Concurrently, the mean curve appears to

plateau, although it exhibits a slight yet continuous improvement beyond the 70th iteration. This suggests that the

algorithm is still optimizing, albeit at a reduced rate. The increasing spread between the mean and the piu&minus

standard deviation curves as iterations progress indicates a complex solution landscape. This complexity is manifested in

the algorithmbés conver gmintaireng steady average parfermahce whilé increasing thea ,

variability of solutions. In this study's context, such expanding spread represents a deeper and more intricate exploration

of the solution space, a desirable characteristic to ensure a comprehensive search across the objective function domain.

approximately 70-iterations At the conclusion of 100 iterations, the best and worst objective function values correspond
to’™O =0.730 andO = 1.062, respectively. The mean and standard deviation of the objective function values are

determined a& =0.893 and =0.080, respectively.
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Figure 7. Performance chart for the reconstruction/simulation of theSannicolau Mare downburst using the TLBO algorithm.

4.3Multivariate data analysis of solutions for theSannicolau Mare downburst reconstruction

The optimization algorithm provides in outputiata table, where each row of the table is a solution of the optimization
problem Therefore the data table is composed of 1024 rows (solutidri®.table has 12 columns, where 11 columns
represent the 11 variables/parameters of the analytical model, while the last column contains the values assumed by the
objective functiodOof each solution (i.e., each row8lthough the objective functiolQ is not a variable of the analytical
model, it is treatedh Section 5as a variable from the point of view of the multivariate data analjkes.solutions are
sorted in descending order based on their objective function Faltlés means that the best overall solution among the
1024 lies in the last row of the data tabléhe analysis of the data table indicates that most variables exhibit multimodal
histograms, with two or more peaks. However, dhlyvariablesto and| are characterized byumimodal histogram
Since the aim of this document is to conduntudtivariate dataanalysis (MDA), the variables of the data table are split
into primary andsecondaryariables.Primaryvariablesparticipatein the analysis of muliariatedata (i.e., AHC + K
Means andPCA), as opposed teecondaryariables, which have no role in the calculation. Howesezpndaryariables
canindeedassist in the interpretation of the data table. Inpitessent studyw,| and| are considered asecondary
variables. This choice @imarily driven by the observatighatw, and exhibitunimodal histogramsuggesting that
they may not significantly contribute to distinguishing different cluster solutiblosvever the choice of as a

secondaryvariable is purely practical, since it makes it possible to carry out a multivariate statistical analysis, avoiding

the problem of circular statistiegd,hence simplifying the calculatiorand the interpretations of the results.

L e t &ise thd data table that contains omdyimary variables by a matrix. Each row(f the matrix represents a

solution vectok: , encompassing the values associated with thepmingaryvariables Therefore the solution vectoan
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total number of solutions, in this ca&:= 1024.Since the solution vectek containsi

Ry

RY ho RO  with "Qanging from 1 tdQwhere'Qepresents the

wprimary variables, the

resultingdata matrix\ is an“@Gy-0 matrix with 1024 rows and 9 columns. Ebesake of simplicity, in order to shorten

the notation, lety be the valuef the k-th primary variable in the€th solution.Hencefortht h e

term Avari al

refer toprimaryvariablesunlessxplicitly specified Consequently, the dataset within the matrixan be regarded either

as a collection of rows representing solutions to the optimization problem or as a collection of columns representing

variables of the analytical mod

clusters-based-on-their shared-variable characteriSince a generic solutich, is a set o)
wi t h

evolveswithinaspaces (a space

expressed by the Euclidean distakize

0 QLR & La )

o

9

usual Euclidean metric (i.e., the norm A2 ), then, the squared distance between two solutenand< can be

The distanc&possesses the following metric properties:

di mensions),

he goal is to

iiteritycus

oftss-analysis-allows for-a comprehensive

iact solution
wnumerical valuesk

call ed At he sol

D

directhyron-the-data-matrix are standardized ticcount for different units and scales. This common practice in statistical

modelling neutralizes scale effects allowing foeaningful comparisons across variabtEsid-be-misleading-without

O 7 C cl c o

Welohn

articularly - when—variables are
e variations.
he analysis.

nificance-to—each-wdnisible

ot+t+mately—teads—t+o—a —more—comprehensivEhereforangheprésenn di n g

work-the variables are standardized according to the following equation:

® ——h!Q plBRO pmm¢cand ! Q pBO

where® denotes thesamplemean ofthe ‘Qth variablecalculated over allCsolutions:(

samplestandard deviation dRth variable:"Y

w
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h 8
all-directions Finally, the normalized data matrik containing the set of vectods, 'Q  ph8 H@has been used in the
MDA for the identification of different typology of solutions provided by the TLBO algorithm for the
simulation/reconstruction of theiicolau Mare downbursEigure8Figure8 showcasea summary statistin the form ha fo
of a box plot, illustrating thelistribution of the standardized variablegariables such4 ~ and 4 have a large New

numberof outliers which indicates extreme values within the data$etreforeeven in the context of standardized data,

outliers can still be informative and may hold important information fomgjstshing distinct solution clusters.

Box plot of the standardized variables
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Figure 8. Box plot of the distributions of the standardized variablesOutliers in the data areplotted individually using the

red marker symbol +.

5 Results

In the following sectionthe results of multivariate data analysis (MDAncluding duster analysis andprincipal
componenianalysis applied to the data matnxis presentedAfter the clusters have been established a comprehensive
description of each of them is provided. This involves examining the variables that contribute to each cluster's composition
as well as identifying specific representative solutions within each cluster. Such an analysis allows for a deeper
understanding of the cluster characteristics and facilitates the interpretation of meaningful patterns and insights within th
data. Sectiors 5.1 to 5.3 provide a in-depthanalysisof data matrix\ from thev ar i abl eds perspect.i

agglomerativehierarchical-Khierarchical Ki Mmeansclusteing andprincipal componentanalysis.In Section5.4 the
18



595
596
597
|598
599
600
601
602
603
604

05

06
607
608
609
610
611
612
613

14

15

16
617
618
|619
620
621

22

23
624
625
626
627
628
629
630

|531

clustersare analyzedrom the point of view of the specific solutions which are the most representative of the clusters.
Finally, these representative solutiome compared with the best overall solution founded from the TLBO algorithm
The comparisons of the representative solution for each cluster and the best overall solution witts¢héefdlta is
therefore enriched considering the data from the dammageaigrsurveythat was carried owfterthe S@nnicolau Mare
downburst event.

5.1 Identification of the mostmeaningful clusters

In order b identify theappropriatenumberof clusterdor grouping thesolutions, thegglomerativehierarchicalklustering

(AHC) is firstly employed(Hartigan, (1975, Kaufman and Rousseuw (1990)n AHC, eachindividual solution is

initially treatedas a independentluster (leaf).Through a series of iterative steghge most similar clusters are
progressivelynerged forming a hierarchical tree structure known as a dendrogram. This merging process continues until

all the individual clusters are combined into a single cluster (root)

-Subsequently, the hierarchical tree is analysed, and a suitable level is chosen to cut the tree, leading to distinct and
meaningful clustersThe number of clustergbtained from theAHC forms a partition of the data seto refine and

optimize this partitiona partitioning clustering algorithm calledideans (MacQueen, 1967, Hartigan and Wong, 1979)

is subsequenthapplied Partitioning algorithms, like ¥Means, subdivides the data sets idistinct clusters ensuring

that solutions within each cluster are similar to one another while exhibiting noticeable differences between clusters.
Hence the two steps clustering procedure is callgiomerativehierarchical Ki meansclustering (AHK-MC) andis
employedo analyse thetandardizedlata matrix\. By combining the strengths of both algorithms AHC anch&ans,

AHK-MC aims to provide a comprehensive and improved clustering algorithm of the data, enabling a more accurate

identification of distinct solution groups.

-The hierarchical tree Figure 9(i.e.,dendrograhi s constructed f ol (Waw,i{1968). Righre War d
9shows—the —struecture—of the —dendrog+rSmee the total salutioasdof thec ¢ o r d
optimization problem ar® p 1 ¢ the dendrogram is very dense at the bottom level (i.e., at the leaf level, where each
solution is considered as a cluster by itself). The hierarchical tree is composed theré@re by p 1T ¢nades, the

points where two clusters (solutions or set of solutions) are merglee level (height) of each node in the tree is described

by the withircluster varianceThe level of a node in the agglomeration process, when examined from top to bottom,
indicates the reduction in withiduster variance achieved by merging two connected clu$teissreduction in variance

can be visualized using a bar graph, as depicted in Figure 10.

-FromFigure10Figurel0 it is possible to establish the level where to cut the dendrogram and consequently to establii p5 fo
the number of clusters fgartitioningthe data sefThe choice of the number of clusters is important because partitioning @
with too few clusters risk leaving groups which are not at all homogeneous. On the other hand, partitioning with too many
cluster sd cldseskhat are noewvery differgnt from each other. BEing Y U = 9 (the total variance

contained in the standardized data), the separation into two groups is able to dégdtije) T& pjw 0.4793

T Bod ofthe total variance. Considering the partitioning into three groups, the explained variance by the three clusters
isequaltoY pit Y clo jo I&pTpdT o ™ wula @ Tt of the total variance, while for four clusters

t he fiexplained vardpmncYecw Yo jequ@iptpdiotrmd nmpw 7T T

(p Bt of the total variance.
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Therefore, considering more than three clusters (refemtore 10Figure10) is going to have a very little impact on the ha fo
explained variance since very little information is gained and is no longer useful to group together any more classes.@
this reason, the dendrogram in this work is partitioned in 3 clusters (refégure 9 and therefore they can explain
approximately 60% of the total variance present in the data.

-The threecluster solution's ability to explai@bout60% of the total variance is significant, especially considering the

single-point (anemometricmeasurement nature of the downburst data. This inherent limitation often leads to high

variability, making the extraction of consistent patterns challenging. As noted in related studies, such as those by

Bogensperger and Fabel (2021), benchmarks for acceptable levels of explained variance in clustering are not universally

applicable but rather depend on the specific context and data characteristics. The present study's level of variance

explanation, given the complexity and variability of the downburst captured from one location, is therefore robust. This

is further supported by the observation in Figure 10 that additional clusters contribute minimally to the total variance

explained, suggesting that the primary structural patterns in the data are adequately captured with three clusters.
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Hierarchical tree - Wards' method

Within-cluster variance

BB i s

Solutions

Figure 9. Hierarchical tree (dendrogram) created with Ward's Method, categorizing the optimization problem solutions for
the Sannicolau Mare downburst into three clusters, each marked by a distinct color: red for cluster 1, green for cluster .
and blue for cluster 3.

Hierachical Clustering - Wards' Method

Within-cluster variance

o J . e e
1-2 2-3 34 4.5 56 6-7 7-8 89 9-10 10-11

level of cutting

Figure 10. Bar graph of the relation between thenumber of merged clusters and the wthin -cluster variance.

Clustersinterpretation via PCA

and Optimization with K -Means

The three clusters of solutions are analyzed ugiitgcipal component analysis (PCA) to identify the key variables that

drive the system's behavior. By extracting the principal compaon&hish captures the most significant variation in the

data, the complexity of the system can be reduceparticular the eigenvalues of the correlation matix —

guantifythe amount of varianaccounted by each principal compon@dassambara, 201.7Jhe eigenvalues shows that
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the first components have larger values, indicating that they capturadstesignificant variation in the data set. In

contrast, the subsequent components have lower eigenvalues, representing a diminishing level of variation.

Table 3 presents displays the eigenvalues, the percentage of variance explained by each component, and the cumulative

percentage of variance.

Table 3. PCA results in term of the eigenvalues, percentage of variance and cumulative percentage of variance.

Dim-1 | Dim-2 | Dim-3 | Dim-4 | Dim-5 | Dim-6 | Dim-7 | Dim-8 Dim-9

Eigenvalues( or variance 5.278 | 1.458 | 0.884 | 0.499 | 0.378 | 0.195 | 0.167 | 0.093 0.048
Percentage of variance 58.645 | 16.204 | 9.825 | 5.542 | 4.204 | 2.170 | 1.852 | 1.028 0.530

Cumulative perc. of variance | 58.645 | 74.849 | 84.674 | 90.216 | 94.420 | 96.589 | 98.441 | 99.470 | 100.000

The first two principal components capture 74.85% of the total variance dtathset. These components define a plane

that provides significant insights into the underlying patterns and structure of th&apggavalues greater than 1 (Table

3) signify that the respective principal components explain more variance in the data compared to any single standardized
variable.Fhese-principal-componen apture-sighificant patterns—and-structures-in-the-data—contributing—more to the
overallvariabilibxIn contrast, eigenvalues less tharsthrting from the third principal component (Tablérglicate that

the associated principal components explain less variance than individual standardized variables, suggesting they have
relatively less influence on the overall variability in the dataerefore, it is probably not useful to interpret the next
dimensions andetter focusingon the first two principal dimensiorfer a more meaningful analysislt is worth
mentioning that the percentage of variance explained by the first principal component (58.65 %) is very close to the

variance explained by the hierarchical tree when is partitioned into three clusters (59.54 %).

The three clusters,fouadu si ng t he War ds6é method only, are represent e

map figure 11Figuretia). This figure shows how solutions are grouped together into three clusters when the overj ha fo
cloud of solutions is projected into the first two principal compomnéiere cluster 1 is not very well separated from New

cluster3, which means thdioth clusters share similar solutions.

To enhance the distinctiveness of the cluster patrtitioning, iWe&ns algorithm is subsequently applied. Thfsnement

step adjusts the initial parti tMeansalgarithm opliniized clustedsegatatiom u g h

by iteratively recalculating the centroids for each cluster and reassigning solutions according to their proximity in

Euclidean space. This procedure incrementally increases the ratio of betusten variance to the total variance, which

results in the reduction of overlap and a clearer delineation of clusters. The process continues until the improvement in

this variance ratio does not exceed a certain threshold, thus solidifying the partitioning. The iterative optimization by the

K-Means algorithm is what transforms the initial, less distinct clsiafgangementFigure 14)into a final partitioning

where clusters are wedleparated and more compact (Figure 11b). This refined partitioning is not only more visually

apparent but also statistically significant, and it is this final configuration that is retained for further analysitheithin
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Figure 11 (a). Solutions’ clusters partitioning on the principal component map, using the Ward’s method only. (b) Solutions’

clusters partitioning using theHierarchical K-Meansmethod.

5.3 Further considerations on the model’s parameters
In Table 4 eachstandardizedariable _is presented as a vector, summarizitgervationgorm the D24 solutions.
This formsthebasis for the analysis focusing on the first two principal components, denopeevédes-insights-into-the

ntaernre ioh-of-the re om-the pnerspective of the variable a na-on-the YV/aWaVdlalalla Ohal aTEhts

==. The table displays the correlations | qfws (wWherei = 1,2 between thevariables and these components
(column 1 and 4). Additionalljthe tablé includes the quality of the representatigniiée—projection of each variable
on-thefirst-two—principal-componen(solumns 2 and 5)ancas—well-asthe weight of each variable) o inte the
construction of these components (columns 3 arfdl6yson-ahPageg2017%). The quality of representatiof & o ¢,
measureshe extent to which a variable is accurately projected onto a principal component. The weight of a variable,

noi i p 1t 1 guantifies the variabés relaive contribution to therariance explainetly the principal component, with being

the eigemalue corresponding to that componédusson ad Pages2017)

Table4. Principal component analysis results for variables in terms of correlétiosiality of representatiofy 9, and contribution

to the constructiofr] 0) relativeto the first two principal componentsg represents the-th standardizedariable me ande= denotes

the first and the second principal compongrdspectively.

Variablesy Dim-1 Dim-1 Dim-1 Dim-2 Dim-2 Dim-2
U A & or Ao iy U e A & o Ao iy

L -0.831 0.691 13.094 -0.443 0.196 13.441

L 0.723 0.523 9.912 -0.489 0.239 16.377

q 0.578 0.334 6.326 -0.256 0.066 4.504

Z 0.715 0.512 9.699 -0.216 0.047 3.200

Tr 4o -0.909 0.827 15.664 0.079 0.006 0.424

Ao+ 0.182 0.033 0.628 0.916 0.839 57.502
Jl-. = -0.823 0.678 12.847 0.117 0.014 0.942
T« 0.969 0.939 17.789 0.132 0.017 1.189
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i Table4Table4;is also presentthe secondaryariable ;. The other two variables (and» 4 are norconsideredn

ha fo

the PCA dueo their circular nature, which does not align well with the linear interpretétéanework of principal

New

component analyss

apDespite

T4 not beinginvolved in the constructionf the principal components, is still possible to evaluate the correlation and

the quality of the representation of this variable ushreytwo principal component3o facilitate the interpretation of

Table 4, a correlation circle plot (Abdi and Williams, 2010) can be used to visually repiteseatiables. This plot

represents each variable as a point in adimeensional space, where the coordinates of each point correspond to the

correlation coefficients between the variable and the two principal compdnents 1 hem fi 1 hem ). Figure 12a

illustrates the correlation circle plot.
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Figure 12. (a) Correlation circle plot. The variables in black are considered agrimary variables whereas the variable in
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The plot geometridly represents variable correlatiorie angles between thariables indicate the level of correlations

between

variables, with acute angles sudaggiositive correlation and obtuse angles indicating negative correlation.
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cati or

ipal
vellrepresented—variables can be

interpreted-from-the-correlation-circlExcept for the variablegy and=| which are not very well represented by the
first two principal components, the remaining variables are very well represented since their tip is close to the circle of

radius 1. The set of variableqq—{ﬁq ﬁ”—F fz are positively correlatedncreasing together, similarly tevith-each-other;

his—mean hat an-increase-in-one variable ollowed by an increase-in-the other variable- The same-is-true for the

variables{ 1y + - Rl ;. m The variableris highly correlated with the firstomponengimensien(correlation of
0.97).Essentiallyyr ,can be viewed asrapresentative summary of the first principal component #Rkis-variable-could

theroforesummarize-hiscl st srinelnal componentooddrom Figure 1 25 gurela indicale sHspessibletchow ha fo
that the variablgr Jhas a strong negative correlation with the variapfgs, + wa—-F Fw{|. . m This suggests that high storm New

motion valuesy correpond with lower maximum radiaklocitieswy , position closer to the station for positive values

of @ , farther for negative values, and shorted downburst duration

— Sincer4is positively correlated with the

variables §Rl_ g , what is true fos with respect to the group of variableg,f, + f=_ i . m will alsoremain true
843  for the variables{ﬁ”—I= fz, . Finally, from the correlation circle plot, it seems that the vari#@lg.is not very well

844 Al inearlyo correlate qr..sﬂyf!ﬂ;.rﬁ sinkedt is gearty orfhagonal fvith thase vadablés.d=som {

45 a quantitative pointf view the values of the correlation coefficients between all the pairs of variables are plbttedsd ha fo
46  12Figurel2b. Tabledl i st s each variablebds contributi (colunst3@and6h e |New
47 respectively)Figure 13a and 13b graph these contributions in percentages, showing which variables have the most impact

48 on these tw@omponents.

49  Tebled—shewsa s ot h e wol nes of the worroableds copty byt oon
50
51
52
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881 Figure 13. (a) Contribution of the variables in the reconstruction of the first principal component (Dim1). (b) Contribution
882 of the variables in the reconstruction of the second principal component (Dif8). Variables are sorted from the strongest to
883 the weakest.The red dashed line indicates the expected average contribution.

The graphshows a red dashed line indicating the average expected vacaliéution at 11.11 %, based on 9 variables.

were evenly

eWothaoecaicthateaa c aeao AeRHRoero

at ialtesh-in-this-case-is-9.

ibuti Y/Hvbables with contributions over 11.11% sifigantly

constructa principal component. For the first componért.fir, o +F;| FH—-F Fr{|_ marekey contributors. For the second,

{45+ Bl RE_ _are most influential. The leing contributors for both components com, ranked by imgrtance in

building the first two principatomponentare{ f- . |, + iy LRy Al 8The remaining ariables {4 . R _fell

below the average contributiaf 11,11 %.lt is worth mentioning that the categorization of variables from stronger to

weakeris not universal since the partitioning might depend on the downbursticdseinvestigation.

5.4 Physical description of the solutions corresponding to clusters3l

Once the partitioning of the solutions of the optimization problems in three cluster is completed, it is important to have a

closer look athemanddescribecommon features of solutions which belong to the same cldst®m the partition

Table5Table ha fo
06 5 summarizes few keystatisticsrelated tothe three clusterdhis table includeprimaryand condaryi.e., not used New

05 analysis it is found that cluster 1 is made up of 481 soluti@hsster 2 of 85 and cluster 3 458 solution

07  for clustering)variables whichare no longestandardized to investigatieeir physicaimeaning

908
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Table 5. Description of the partition by the mean and standard deviation of all the variables.

Variablesy Overall Overalll Cluster 1 Cluster 1 Cluster 2 Cluster 2 Cluster 3 Cluster 3
Mean Std Mean Std Mean Std Mean Std

T«(m/s) 6.025 3.371 2.811 1.042 6.527 1.407 9.307 1.492

ér (m) -4386.350 | 1613.337| -3034.079 789.682 -5410.461 629.282 -5616.465 1209.346

Al 4 o(min) 6.954 2.517 5.860 1172 13.336 1.910 6.919 1.797

Tk 4+ +(m/s) 24.293 5.356 28.639 1.465 28.182 1.793 19.006 3.266

30) 0.893 0.080 0.823 0.058 0.919 0.043 0.961 0.021

i'-F (m) 3363.669 | 1809.316 2499.896 975.450 313.553 1257.946 4836.890 1160.613

J||-. ¥min) 26.03 3.167 28.269 1.8% 27.622 2.2% 23.3% 2.235

Z (-) 2.189 0.108 2.126 0.104 2.134 0.100 2.265 0.050

=| (m) 1334.478 102.519 1289.518 124.661 1301.969 90.475 1387.728 23.115

Secondaryariables

) (deg) 290.383 0.480 276.439 0.416 253.518 0.217 310.868 0.229

T (M/s) 6.811 0.670 6.648 0.774 6.705 0.768 7.002 0.449

) 4 (deg) 268.218 0.118 264.854 0.138 273.055 0.074 270.827 0.055
920
921 In columns2-3, theoverall mean,and the overall standard deviatiastd) arecalculatedwith respect taeach variable
922 (primary and gcondary. In the other columns the same calculation was repeateking into consideration the three
923 clustersMean and the std of threecondaryariables) (and» 4 have been calculated using circular statistics (Rao and
|924 Sengupta, 20010 start clarifyingthe characteristics of the differenlustersfFigurel4rigurel4 shows the scatter plot ha fo
925  anddistribution ofthe touchdown components ( RL  for all the solutions, partitioned into three clusters. In this figure [ New
926 it is shown the centenamely themean)of each cluster and the location of the touchdown position of theobestl|
927 solution. The figure shows alsdth a black line the position of the city ofiicolau Mare. Also, on the left and on the
928  top of this figure is possible to show the histogramthefvariable£ FRL  relative toeachcluster.
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Figure 14. Scatter plot and histogram density distribution for the variables(éI= ﬁ”—F . The dark black line shows the

contours of the city $nnicolau Mare.

The three clusterappeanvell separatedn terms oftouchdown position HRL . Sinceit is very unlikely that the

clustermeans coincidevith one of the solutions presenttnh e dat alesémnhe last icl uster sol

which is the closest to theeanof the clustercross all variablesAccordingly, the cluster solutisnreported iffable ha fo
6Fables, will be used to interpret the average featuresamhcluster The first row of this table is dedicated to the best | New
solution founded by the optimization algorithm (i.e., the one that have the lowest objective fi@atioong all the
solutions); the best solution belongCiusterl.
Table 6. Overall best solution and clusters representative solutions.
® ® Y W "0 ® Y ” Y | ® |
Solutions | (m/s) | (m) (min) | (m/s) () | (m) (min) | () | (m) (deg) | (m/s) | (deg)
Best 2.76 -3339.53 | 6.50 29.80 0.73 | 2826.55 | 29.89 | 2.15 | 1381.38| 271.74| 5.49 | 58.35

solution

Cluster1 | 2.51 -2944.15 | 6.05 29.54 0.81 | 2769.36 | 27.23 | 2.09 | 1287.53| 278.25| 7.15 | 268.19

Cluster2 | 6.14 -5105.66 | 14.05 | 27.07 0.91 | 383.39 | 28.18 | 2.14 | 1295.33| 255.36| 7.13 | 272.82

Cluster 3 | 9.25 -5930.81 | 7.15 17.36 0.97 | 4575.50 | 22.95 | 2.27 | 1392.86| 307.61| 6.15 | 272.71
Figure 15Figure-15 showsthe time histaies produced by théest solution and the three cluster solutjdnserms of ha fo
wind velocity (Figure15Figure15a) anddirection figure15Figureish), compared with thenoving averagedecorded New
data.The figure provides a qualitative representation of the goodness of fit between the simulations and the recorded ¢ ha fo
The goodness of fit is quantitatively measured by the objective funEtidine simulatiors producedfrom the best New
solution and the&Clusterl solution fit the datdetter than Cluster 2 and Bhis isquite obvioussince the best solution Ea;\f\?‘
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967
068

069

070

have the lowest objective functi6®andbelongs toClusterl, whereas @ister 2and Cluster3 solutiors have slightly

higherobjective functiorvalues’O(refer tocolumn5 in Table6Fable6).
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Figure 15. Comparison amongthe moving averagedwind speed (a) and direction (bpbtained from the measurements ofthe

Sannicolau Mare downburst, along with the best solution and the three cluster solutions.

In order b better understand the nature of the different solutions relative teleatdy for each solution present

drable

6Fables, the downburst 2D windelocity is evaluatet thesameheight of theanemometristation(i.e., at 50 mAGL).

The left pand of Figure 16Figure 16 (from (a) to (d) show for each of the 4 solutions the wifield reconstruction -
during the intensification stage of the downbuwgtile theright panes (from (e) to (h))describes the stage of maximum

intensity. Note that the time of maximum intensity is different for each cluster according to the corresponding value

“Y reported in columm of Table6Fables.
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Figure 16. 2D wind field reconstruction at 50 mAGL . From (a) to (d), the best solution Cluster 1,2 and 3 solutionsare depicted
at the intensification stage of the downburst. From (e) to (hthe best solution,Cluster 1, 2 and 3 solutionsare depictedat the

maximum intensification stage of the downburst.

Cluster 1touches down very close to the city cerged moveslowly eastwargit is characterized bglow value of the
downburst translation velocity, with meanvalue2.8 m/sagainsthe overall mean among all clustevhichis 6.0 m/s.
In addition, it hasnaximum radial velocityp;  higherandoverall duration of the downburst evéivt longerwith
respect tahe mean values of the other two clustéiise solutionsbelonging toCluster2 touch down around 2 km
southwest of the citythey propagate northeastward whtgher translation velocitiesompared to Cluster 1 and the
longestintensification period”Y  overall The ®lutions inCluster3 touch down about 3 km northwest of the cihey
move southeastward withe highestvalues of downburst translation velocityp but theyare thelowestlastingas the
duration of the downburst eveiif is on average®3.4 min while the overall mean i26.0 min. They also have the
lowestvaluesof maximum radial velocityor, ~ which compensate the higtanslation velocitiesAccording to these
descriptions, itis clear thatinh e s odpacdofithe mddsthree different solutionsxistthat can describgimilarly
the timeseries measured at TM_42Phe existence of different plausible solutions means that the problem of finding the

downburst wind field timespace evolution using a single tirseries is an underdetermingblem

The Sannicolau Mare downburst had a strong impact, causing hail damage to numerous buildings in the town. A damage
survey was conducted to assess the affected areas and identify buildings that experienced hail damage during the event.
To estimate the extent of the damage, the simulated wind field generated by the analytical model was utilized. By
analyzing the wind speeds at various locations, the "footprint" of the simulated damage was determined. This footprint
represents the maximum wind speed recorded at different places during the downburst, providing valuable information
on the areas most affected by the event. The left panels of Figure 17, labeled from (a) to (d), depict the complete footprint
of the downburspotentialdamageareafor the best solution and the three cluster solutions. In contrast, the right panels,
labeled from (e) to (h), provide a closer view of the footprints overlaying the simulated maximum wind velocity vectors
(indicated by blue arrows) onto the locations of hail damage. The hail damage is represented by vectors pointing
orthogonally to the damaged facades (represented by pink arfidvesgomparison between the facades damage, which

is related to the trajectory of hail transported by the strong downrlaliaséd outflow, and the simulated maximum
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1020  velocity reveals interesting findings. Specifically, the best solution and Cluster 1 solutions exhibit the strongesttalignmen
1021 between the maximum wind velocity vectors and hail damage vectors, particularly in the central part of the city and along
1022 the path of the downburst. In contrast, Cluster 2 and Cluster 3 demonstrate a consistent deviation of the maximum velocity,
1023  with Cluster 2 deviating northward and Cluster 3 deviating southward, relative to the hail trajectories. This observation
1024  suggests that the actual downburst event likely followed a pattern more closely resembling Cluster 1 rather than the other
1025 two potential solutions.
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(c) Cluster 2 Solution - Contours of maximum wind speed (g) Cluster 2 Solution - Contours of maximum wind speed
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1030 Figure 17. Simulated footprints of the downburst that occurred inSannicolau Mare.Panels fom (a) to (d) representing the
1031 footprints for the best solution, Cluster 1, Cluster 2, and Cluster 3 respectively. Panels fore) to (h) representing
1032 comparison between hail damage and maximum simulated wind speéar the best solution, Cluster 1, Cluster 2, and Cluster

1033 3 respectively.

1034  These observations lead to the conclusion that the optimal (best) solution, which minimizes the objectiveHuisction

35  the most reliable among all possible solutiomsthe current study, this beébeen achieved through a comprehensive

36 approach involving numerous simulations, specifically tailored for cases where only anemometisc aaitable

37 despite having access additional data types like tiiRadarimages This choice was driven by the higher likelihood and

39 for theanalytical downburatnodel. The methodology involved conducting a large number of simulations to thoroughly

40 explore the solution space, given the datiated scenario. Consequently, this approach enabled the extraction of

1
1
1
1038  frequency ofavailability of anemometric data in ptaal scenarios, thus providing a more universally applicable context
1
1
1

41 kinematic and geometric parameters of the downburst outflow wind field exclusively from anemometric data.
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1042 However, it is important to acknowledge that in scenarios where additional data types Ractamsr Lidawor other
1043 sensors_are available, the approach to reconstructing the downburst wind field wouldsidiffécantly. In such
1044 situations, the availability of more diverse data allows for a more constrained and targeted reconstructiorBgrocess.
1045 integrating specific parametefsrmfrom these additional data sources, l#erm speed andigkction and ABL wind
1046 speed and direction, the solution space can be narrowed down more effectvehtialy reducing the number of
1047 simulations needed and enhancing the precision of the model.

1048

1049

1050

1051

1052

1053 6 Conclusions

1054  This study focuses on the analysis of solutions obtained by combining an analytical model (Xhelaj et al., 2020) with a
1055 global metaheuristic optimization algorithm for the reconstruction of the wind field generated during the Sannicolau Mare
1056 downburst event in Romania on June 25, 2021. The analytical model and optimization algorithm are coupled using the
1057 Teaching Learning Optimization Algorithm (TLBO) to estimate the kinematic parameters of the downburst outflow. The
1058 procedure for this coupling and parameter estimation is described in detail in the study by Xhelaj et all{202)e,

1059 the objective was tanalysethe differences among the solutions provided by the optimization algorithm and to assess
1060 their physical validity as alternatives to the optimal solutionthe presence of multiple physically sounding solutions, it

1061 has been demonstrated that additional data describing the downburst thunderstorm event is necessary to determine which
1062 solution best represents reality. To support the analysisnprehensive damage survey was conducted in collaboration
1063  with the University of Genoa (ltaly) and the University of Bucharest (Romania) to assess the extent and location of hail
1064 damage on buildings in the affected arEais survey, along with the wind speed and direction signals recorded during
1065 the downburst event by a telecommunication tower located approximately 1 km from the city, significantly enhances the
1066 information available for the reconstruction and simulation of the downburst using the optimization pro€bedure.

1067 analysis of the solutions generated by the optimization algorithm invieiuktivariatedataanalysis (MDA) techniques,

1P68 specificallyagglomerativehierarchicalclustering coupled with the feansMeansalgorithm (AHK-MC) andprincipal

1069 componentanalysis (PCA). The AHKMC is used for classifying the solutions into different clusters based on their
1070 features, while PCA is employed to determine the importance of the variables in the analytical model for the downburst
1071 event reconstruction.

1072  The application of AHKMC resulted in the identification of three main clusters, each with distinct characteristics, among
1073  the 1024 solutions.

1074 1 Solutions belonging t€luster 1 are characterized by a slow storm motion, small touch down distance from the
1075 city of SdnnicolauMare and by long duration of the downburst event. The best overall solution bel@hgstén

1076 1.

1077 1 Solutions belonging t€luster 2 are characterized by a moderate storm motion and moderate distance of the
1078 touch-down from the town oSannicolauMare. These solutions are also characterized by high duration of the
1079 intensification period of the downburst event.
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1 Solutions belonging t€luster 3 are characterized by a high storm motion and high distance of theltmch
from SannicolauMare. They are also characterized by low duration of the downburst event and low values of

the maximum radial velocity.

The result of theMDA allows also to establish at least for the case under consideration thaettted variables

{1~ Ao+ Breo AL, which are ordered from the strongest to the weakest are the more important for the
reconstruction/simulation of the downburst event. The remaining variaﬂ)‘esﬁqﬁl have a lower contribution. It is

important to observe the partitioning in strongest variables and weakest ones does not represent a general case, since the

partition depends on the downburst case under study.

Finally, the comparison between the facades damage, vahérblated to the trajectory of hails transported by the strong
downburstrelated outflow and the simulated maximum velocity shihasthebest solution an@luster 1 solutions seem

to have a Agoodod overl apping between maxi mum wind vel oc
of Cluster 2 and 3, it seems that the match between maximum wind velocity vectors gradually decreases, with the worst
case represented IGluster 3 solutionsThese observations allow to conclude that the optimal solution, that is, the one

that minimizes the objective functid@ is the best with respect to the other three cluster solutions, also from the point of
view of the damage analysis a result, for the specific case being examined, relying on the best overall solution provided

by the optimization algorithm appears to yield promising results for reconstructing the downburst wir@bfigbdisly,

an analysis of this type, conducted on several downburst events, will be able to better confirm this statement.
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