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Abstract. The Tropospheric Monitoring Instrument (TROPOMI) on-board the satellite Sentinel-5 Precursor (S5P) is part of

the latest generation of trace gas monitoring satellites and provides a new level of spatio-temporal information with daily

global coverage, which enable the calculation of daily globally averaged CH4 concentrations. To investigate changes of at-

mospheric methane, the background CH4 level (i.e. the CH4 concentration without seasonal and short-term variations) has

to be determined. CH4 growth rates vary in a complex manner and high-latitude zonal averages may have gaps in the time5

series, thus simple fitting methods don’t produce reliable results. In this manuscript we present an approach based on fitting

an ensemble of Dynamic Linear Models (DLMs) to TROPOMI data, from which the best model is chosen with the help of

cross-validation to prevent overfitting.
::::
This

::::::
method

::
is
::::::::::::::
computationally

:::
fast

::::
and

:::
not

:::::::::
dependent

::::::::
additional

::::::
inputs,

::::::::
allowing

:::
for

::
the

::::
fast

::::
and

:::::::::
continuous

:::::::
analysis

::
of

::::
the

::::
most

::::::
recent

::::
time

:::::
series

:::::
data. We present results of global annual methane increases

(AMIs) for the first 4.5 years of S5P/TROPOMI data which show good agreement with AMIs from other sources. Addition-10

ally, we investigated what information can be derived from zonal bands. Due to the fast meridional mixing within hemispheres

we use zonal growth rates instead of AMIs, since they provide a daily
:::::
higher

:
temporal resolution. Clear differences can be

observed between Northern and Southern Hemisphere growth rates, especially during 2019 and 2022. The growth rates show

similar patterns within the hemispheres and show no short-term variations during the years, indicating that air masses within a

hemisphere are well-mixed during a year. Additionally, the growth rates derived from S5P/TROPOMI data are largely consis-15

tent with growth rates derived from CAMS global inversion-optimized (CAMS/INV) data. In 2019 a reduction in growth rates

can be observed for the Southern Hemisphere, while growth rates in the Northern Hemisphere stay stable or increase. During

2020 a strong increase in Southern Hemisphere growth rates can be observed, which is in accordance with recently reported

increases in Southern Hemisphere wetland emissions. In 2022 the reduction of the global AMI can be attributed to decreased

growth rates in the Northern Hemisphere, while growth rates in the Southern Hemisphere remain high. Investigations of fluxes20

from CAMS/INV data support these observations and suggest that the Northern Hemisphere decrease is mainly due to the

decrease in anthropogenic fluxes while in the Southern Hemisphere wetland fluxes continued to rise.

1 Introduction

Methane (CH4) is one of the most important drivers of climate change with an effective radiative forcing of 1.19 Wm−2 [Arias

et al., 2021] and an atmospheric lifetime of 9.1 years [Szopa et al., 2021]. The short lifespan of CH4 compared to other green-25

house gases and the large fraction of anthropogenic emissions, makes CH4 emission reduction a straight forward way to tackle
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::
an

::::::::
attractive

:::::::
strategy

::
to

::::
slow

:::::
down

::
or

:::::::
possibly

::::::
reduce

:::::::::
man-made

:
climate change in the short- to midterm. A close monitoring

of
::::::::
Accurate

:::::::::
knowledge

::
of

:::
the

:
atmospheric CH4 concentrations is therefore vital, both for scientists and policymakers.

:::
and

:::
dry

::::::
column

:::::::
mixing

:::::
ratios

:::
are

::::::::
therefore

:::::::
essential

::
to

:::::::
improve

::::
our

:::::::::
knowledge

::
of

:::
the

:::::::
sources

:::
and

:::::
sinks

::
of
:::::

CH4 :::
for

::::::
science

::::
and

::::::::::
international

::::::::::::
environmental

::::::
policy. The globally averaged surface concentration of CH4 has increased by 156% between 175030

and 2019 reaching 1866± 3.3 ppb in 2019 (Gulev et al., 2021) and 1919.97
:::::::
1917.11 ppb in February

::::
June 2023 [Lan et al.,

2023].

While the concentrations have risen in total, the trend, i.e. the rate of change in the background level without seasonal or

short-term variations, has evolved non-linearly.An increase in global methane concentrations can be observed between the35

1980s-2000
::::::
Global

:::::::
methane

::::::::::::
concentrations

:::::
have

::::
been

::::::::
observed

::
to

:::::::
increase

:::
in

:::
the

::::::
period

::::
from

:::
the

::::::
1980s

::
to

:::::
2000 and from

2007 until the present, with
:
.
::::::::
However,

:
a plateau between 2000-2007 which

:::
was

::::::::
observed.

::::
This

:
is referred to as “stabiliza-

tion“. Whether to define the stabilization period or the period of renewed growth (2007-present) as anomalous has been the

subject of debate. There have been a variety of explanations for the observed behavior in the literature (Turner et al., 2019)

[
::::::::::::::
Turner et al., 2019]. Recent publications suggest that the period of renewed growth can be attributed to the rise in microbial40

emissions (Lan et al., 2021; Basu et al., 2022) [
:::::::::::::
Lan et al., 2021;

::::::::::::::
Basu et al., 2022] and that tropical methane emissions explain

a majority of recent changes in the atmospheric methane growth rate (Feng et al., 2022)[
::::::::::::::
Feng et al., 2022]. In 2020 and 2021

record methane increases were observed by the Global Monitoring Laboratory of the ‘National Oceanic and Atmospheric Ad-

ministration (NOAA-GML) [Lan et al., 2023] and the Copernicus Climate Change Service (C3S) [Copernicus, 2023c
:::::::::::::::
Copernicus, 2023a].

The reasons for these increases are still debated, with studies attributing them to increases in wetland emissions and changes45

in the atmospheric methane sink to varying degrees. The main sink of methane is through reaction with the hydroxyl rad-

ical (OH) in the troposphere, which itself is affected by various other atmospheric constituents
:
.
::::
The

:::
rate

:::
of

:::
this

::::::::
reaction

:::::::
depends

::
on

:::
the

::::::::::::
concentration

::
of

:::::
OH,

:::::
which

::
is
::::::::::
determined

:::
by

::
its

:::::::::::::
photochemical

::::::
sources

::::
and

:::::
sinks. Recent studies suggest

that the steep decline of nitrogen dioxide (NO2) (Cooper et al., 2022)[
:::::::::::::::
Cooper et al., 2022], carbon monoxide (CO) and non-

methane volatile organic compound emissions as a result of the measures introduced to control and limit the spread of the50

COVID-19 pandemic, lowered the levels of OH, and thus led to part of the increase in CH4 concentrations in 2020 and 2021

(Stevenson et al., 2022; Laughner et al., 2021; Peng et al., 2022; Qu et al., 2022; Feng et al., 2023)[
::::::::::::::::::
Stevenson et al., 2022;

::::::::::::::::::
Laughner et al., 2021;

::::::::::::::
Peng et al., 2022;

:::::::::::::
Qu et al., 2022;

::::::::::::::
Feng et al., 2023]. Additionally, enhanced wetland emissions, especially from tropical wet-

lands, contributed to the record increases
:
of

::::::::::
atmospheric

::::
CH4:

in 2020/21 (Peng et al., 2022; Feng et al., 2023, 2022; Qu et al., 2022)

. A potential uncertainty in studies using ground-based data originates in the high latitude regions, where measurements are55

sparse and satellites can help with identifying methane emissions.[
::::::::::::::
Peng et al., 2022;

:::::
Feng

::
et

::
al.

:
,
:::::
2023,

:::::
2022;

::::::::::::
Qu et al., 2022].

The Arctic contains large amounts of soil organic carbon (SOC) which is stored in the permafrost regions (ca. 1300 Pg) of

which roughly 800 Pg is perennially frozen (Hugelius et al., 2014)[
::::::::::::::::
Hugelius et al., 2014]. The comparatively high temperature

increase in the Arctic, compared to the rest of the world, also called “Arctic amplification“ (Serreze and Barry, 2011; Wendisch et al., 2017)60

[
::::::::::::::::::::
Serreze and Barry, 2011;

:::::::::::::::::
Wendisch et al., 2017] may lead to increased permafrost degradation and rapid SOC loss (Plaza et al., 2019)
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[
::::::::::::::
Plaza et al., 2019] by the release of carbon dioxide (CO2) and/or methane. Latitudinally resolved growth rates are especially

interesting in this regard and provided the initial motivation for this study.

In this paper we present methane growth rates and annual methane increases (AMIs) derived from Sentinel-5P/TROPOMI65

:::::
XCH4:

data using a Dynamic Linear Model (DLM) approach. In the second section we present the data used. Next, we describe

our method for calculating the
::::
these

:
growth rates, which is divided into four parts: (i) we discuss the preparation of the data;

(ii) we provide a brief introduction into DLMs; (iii) we discuss our ensemble approach which utilizes cross validation to find

the optimal DLM configuration for a given time series; (iv) we provide a method to calculate a bias related to the satellite

sampling. In the fourth section we present global annual methane increases (AMIs) for the first 4.5 years of S5P/TROPOMI70

data and compare these to AMIs from other sources. In the fifth section we investigate zonal growth rates derived from 20◦

latitudinal bands to provide spatial information to the global AMIs. Additionally, we compare the growth rates to growth rates

derived from CAMS global inversion-optimized methane data (CAMS/INV). In the sixth section we investigate CAMS/INV

fluxes to help with the interpretation of our previous results. Finally, we summarize our results and discuss potential future uses

of this method and suggestions for further research.
:
In

:::
the

:::::::::
Appendix

:::
we

::::::
provide

:::::::::
additional

::::::::::
information

:::::
about

:::
our

::::::
method

::::
and75

:::::
further

::::::
results

::::::
which

::
are

::::
not

:::::::
included

::
in

:::
the

::::
main

::::
text.

:

2 Data

2.1 Sentinel-5P/TROPOMI WFMD product

The Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 and has since delivered high quality data from

its only scientific instrument, TROPOMI, which is a nadir viewing passive grating imaging spectrometer. Combined with a80

near-polar, sun-synchronous orbit, the swath width of 2600 km provides daily global coverage. Due to the orbit geometry and

swath overlap multiple observations per day are possible in the polar regions. The spatial resolution depends on the bands

and is 5.5× 7 km2 for the short-wave infrared (SWIR) band (7× 7 km2 before August 2019) [Ludewig, 2021]. Methane is

retrieved from TROPOMI measurements of sunlight reflected by the Earth’s surface and atmosphere in the SWIR wavelengths.

We use the latest release of the WFMD product (v1.8) [Schneising et al., 2023], which includes processing improvements such85

as an increased polynomial degree (cubic instead of quadratic) and an updated digital elevation model to account for various

localized topography related biases [Hachmeister et al., 2022]. Furthermore, the machine-learning based quality filter in the

post-processing is improved to further reduce scenes with residual clouds. We use data with a quality flag qf = 0 (good) and

don’t include data with qf = 1 (potentially bad). The WFMD product includes measurements for solar zenith angles up to 75◦.

Data is currently available from 11.2017
::
We

:::::::::
performed

:::
this

:::::::
analysis

:::::
using

::::
data

::::
from

:::::::
05.2018

:
to 02.2023, however, we exclude90

::::::::
excluding data from the commissioning phase (11.2017 to 04.2018).
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2.2 CAMS global inversion-optimised greenhouse gas fluxes and concentrations (CAMS/INV)

The Copernicus Atmospheric Monitoring Service (CAMS) global inversion-optimised greenhouse gas fluxes and concentra-

tions dataset (CAMS/INV) provides model data for carbon dioxide, nitrous oxide and methane. The methane data is produced

using the CAMS CH4 Flux Inversion system [Segers et al., 2022], which is based on the TM5-4DVar inverse modeling system95

[Bergamaschi et al., 2010, 2013]. We use release v22r1, where only ground-based observations from the NOAA network are

used in the inversion (CAMS/INV-SRF) and release v21r1s, which includes satellite observations from the Greenhouse Gases

Observing Satellite (GOSAT) in addition to ground-based observations (CAMS/INV-SRF-SAT). In our analysis we use the

total column dry-air mole fractions and surface fluxes of methane from this dataset. The data is provided on a 2◦ × 3◦ grid

from 1990 to 2022.
:::
We

::::
only

::::
apply

::::
our

:::::
DLM

:::::::
approach

::
to
:::
the

::::::::
methane

::::::::::::
concentrations

::::
from

::::
this

:::
data

::::
and

:::
use

:::
the

::::::::::::
corresponding100

:::::
fluxes

::::::
directly

::
to
::::
help

::::
with

::::::::::::
interpretation.

:

2.3 NOAA CH4 Marine Boundary Layer Reference

The Marine Boundary Layer Reference (MBLR) is a 2-dimensional matrix (time vs. latitude) created from weekly air samples

from the Cooperative Air Sampling Network [Dlugokencky et al., 2021], which is created for various long-lived trace gases by

NOAA–GML. The MBLR is created by first fitting the weekly data whereby the CH4 level, seasonal component and short-term105

variations are separated. For each time step (48 evenly distributed per year) the different stations give a latitudinal distribution

of CH4 which is then smoothed. The global mean is calculated by averaging the smoothed latitudinal distribution for each time

step. A detailed explanation can be found on the NOAA website [NOAA, 2022].

2.4 Univ. Bremen C3S/CAMS satellite data (UB–C3S–CAMS)

Annual methane increases are published by the Copernicus Climate Change Service (C3S, Copernicus [2023a]
::::::::::::::::
Copernicus [2023b])110

in the context of the European State of the Climate (ESOTC) assessment. Here we use data from the ESOTC 2022 [Copernicus, 2023b
:::::::::::::::
Copernicus, 2023c]

climate indicator section [Copernicus, 2023c
:::::::::::::::
Copernicus, 2023a]. The methane data as shown on that website are (i) time series

of monthly values of the column-averaged mole fraction of atmospheric methane, XCH4, as derived from satellite data, and

(ii) annual mean methane growth rates including uncertainty estimates as derived from this time series.

115

The XCH4 time series corresponds to
::::::::
averaged satellite data over land in the latitude band 60◦ S – 60◦ N and covers the pe-

riod January 2003 to December 2022. The underlying satellite XCH4 data product for 2002–2021 is XCH4_OBS4MIPS version

4.4 available from the Copernicus Climate Data Store (CDS,Copernicus [2023d]) website [Copernicus, 2018].
::::
The

:::
data

:::::::
product

:
is
:::::::

derived
:::::
from

:::
the

:::::::
satellite

::::::::::
instruments

::::::::::::::::::::::
SCIAMACHY/ENVISAT,

::::::::::::::::::
TANSO-FTS/GOSAT

::::
and

::::::::::::::::::::::
TANSO-FTS-2/GOSAT-2. A

previous version of this data product is described in Reuter et al. [2020]. This data set is extended using a year 2022 satellite-120

derived XCH4 data product, generated for the Copernicus Atmosphere Monitoring Service (CAMS, CAMS [2023]) (see

Copernicus [2023c]
::::::::::::::::
Copernicus [2023a]

:
for details).
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The combined C3S/CAMS XCH4 time series has been generated by the University of Bremen (UB) and is
::
in

::
the

:::::::::
following

::::::
referred

::
to
:::
as

::::::::::::::
UB–C3S–CAMS

::::
data

:::
set.

::::
This

::::
data

:::
set

::
is

:::
also

:
used to derive annual mean methane growth rates for 2003–2022125

using the method as described in Buchwitz et al. [2017], for XCO2, which has later also been applied to XCH4 [Reuter et al.,

2020]. This data set is in the following referred to as UB–C3S–CAMS data set
::::::
method

:::::::
provides

::
a
::::
new

::::
time

:::::
series

:::::
from

:::
the

:::::::
monthly

:::::
XCH4::::

time
:::::
series

::::::::
described

::::::
above.

::::
The

:::
new

::::
time

:::::
series

::
is

::::::::
generated

:::
by

:::::::::
computing

:::
the

::::::::
difference

::
in

::::::
XCH4 :::

for
:
a
:::::
given

:::::::
calendar

:::::
month

::::::::
between

:::
two

::::::::::
consecutive

:::::
years

::::
(e.g.,

:::::::
January

::::
2019

::::
and

:::::
2020).

::::
The

::::
time

:::::::
assigned

::
to

::::
this

::::::::
difference

::
is

:::
the

:::::
mean

::::
time

:::::::
between

:::
the

:::
two

::::::
months

:::::
(e.g.,

::::::::
mid-July

:::::
2019).

::::
The

::::::
annual

::::
mean

:::::::
growth

:::
rate

:::
for

:
a
::::
give

::::
year

::
is

:::
the

:::::::
weighted

:::::::
average

::
of

:::
all130

:::::::
monthly

::::::::
difference

::::::
values

::
of

:::
that

::::
year.

3 Method

The method section is split into four parts. First we describe how the data is prepared for the DLM, meaning how we get from

single observations to a time-series we can fit our model to. Next
:
, we shortly introduce DLMs and provide information on the

specific types of models we are using. In the third subsection we explain how we use an ensemble of DLMs and cross-validation135

to select the best model. Lastly, we describe how we estimate the bias related to imperfect satellite sampling.

3.1 Data preparation

:::
The

::::::
XCH4::::

data
::
to

::
be

:::::
used

::
in

:::
the

:::::
DLM

:::::
fitting

:::
are

:::::::::::
preprocessed

::::
onto

::
a
:::::::::::::::
latitude-longitude

:::
grid

:::::
with

:::::::::
sufficiently

::::::::::::
homogeneous

:::::::
sampling

:::
in

:::::
space

:::
and

:::::
time.

:
Initially, the WFMD XCH4 data product is gridded onto a 2◦ × 2◦ grid. For this we assign

each measurement to a single grid cell and calculate the weighted average of all measurements per cell. The measurements140

are weighted using the inverse measurement uncertainty to disadvantage measurements with high uncertainty. To account for

inhomogeneities in spatial and temporal sampling of the data due to seasonal gaps and missing data (e.g. due to clouds)
:::
For

:::::::
example,

:::::::
reported

:::::::::::
uncertainties

:::
are

:::::
higher

:::
for

:::
low

::::::
albedo

::::::
scenes.

:::::
Thus,

::::
these

::::::
scenes

:::::::::
contribute

:::
less

::
to

:::
the

:::::::
average.

:::
The

::::::::
coverage

::
of

:::
the

:::::::
WFMD

::::
data

::
is

:::::::
roughly

::::
25%

::
in

:::
all

:::::::
regions

:::
and

::::::
mostly

::::::::
constant,

::::::
except

:::
for

::
a

:::
few

:::::
days

::::
with

:::::
lower

::::::::
coverage

::::
and

:::
the

:::::::
seasonal

::::
data

::::
gaps

::
in

::::
high

:::::::
latitudes

::::
(see

::::
Fig.

::::
D1).

:::
To

::::::
account

:::
for

::::::::::::::
inhomogeneities

::
in

::::::
spatial

:::
and

::::::::
temporal

::::::::
sampling we apply145

the method described by Sofieva et al. [2014]
::::::::::::::::
Sofieva et al. (2014). This method quantifies the sampling distribution’s inhomo-

geneity using a measure denoted as 0≤H ≤ 1, which is defined as a linear combination of the asymmetry A and entropy E

of the data:

H =
1

2
(A+ (1−E))
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150

H =
1

2
(A+ (1−E))

:::::::::::::::::

(1)

A= 2
|x̄−x0|

∆x
:::::::::::

(2)

E =
−1

loge(N)

∑
i

n(i)

n0
loge

(n(i)

n0

)
::::::::::::::::::::::::::::

(3)

Values
::
In

:::::::
equation

::
2,
:::
the

:::::
mean

:::::::
location

:::
of

::::::::::::
measurements

::
is

:::::
given

::
by

::̄
x
::::
(e.g.

:::::
mean

::::::
spatial

:::::::
position

:::
or

:::::
mean

:::::
time),

:::
x0 ::

is
:::
the

:::::
central

:::::
point

:::
and

::::
∆x

:::
the

:::::
width

::
of

:::
the

::::::
region.

::::::::
Equation

:
3
:::::::::
represents

:::
the

:::::::::
normalized

:::::::
entropy

::::
with

::
N

::
as

:::
the

:::::::
number

::
of

::::
bins

::::
(e.g.155

:::
grid

::::
cells

:::
or

::::
time

:::::
steps),

::::
n(i)

:::
the

:::::::
number

::
of

:::::::::::
observations

::
in

:::
bin

:
i
:::
and

:::
n0 :::

the
::::::
sample

::::
size.

::
A

:::
can

:::
be

:::::::::
intuitively

:::::::::
understood

:::
as

:::
the

::::::::::
asymmetry

::
of

:::
the

::::::::
sampling

:::::::::::
distribution.

:::
For

::::::::
example,

:::
A

:::::
would

:::
be

::::
high

::
if
:::::

only

:::::::::::
measurements

:::
in

:::
the

::::::
eastern

::::::::::
hemisphere

:::
are

::::::
present

:::
for

::
a
:::::
given

::::
day.

::
In

::::::::
contrast,

::
A,

::::::
would

::
be

:::::
zero

:
if
::::

the
::::::::::::
measurements

:::
are

:::::::::::
symmetrically

::::::::::
distributed

::::::
around

:::
the

::::::
central

::::::
point.

::::
The

:::::::::
normalized

:::::::
entropy

::
is
::::::
E = 1

:::
for

::::::::
perfectly

::::::::::::
homogeneous

::::::::
sampling160

::::::
patterns

::::
and

:::
gets

:::::
lower

:::
for

::::
each

:::::::
missing

::::::::::::
measurements.

::::
The

:::::::
entropy

::::
does

:::::::
however

:::
not

::::::
capture

:::
the

::::::::::
distribution

::
of

:::
the

::::::::
sampling

::::::
pattern.

::::::
Hence,

::
a

::::::::::
combination

::
of

::::
both

::::::::
measures

::
is

::::
used

::
to

:::::::
quantify

:::
the

:::::::::::
homogeneity

::
of

:::
the

::::::::
sampling

::::::::::
distribution.

::::::
Values

::
of

:::
H

close to zero indicate a homogeneous sampling distribution while values close to one indicate a very inhomogeneous distribu-

tion. Inaccurate estimates and spurious features can arise without accounting for this inhomogeneous sampling [Sofieva et al.,

2014]. We
:::
The

::::::::::::
inhomogeneity

::::
can

::
be

::::::::
calculated

::
in
:::
the

::::::::
temporal

::::::
domain

::::
(for

::::
each

::::
grid

::::
cell)

:::
and

::
in

:::
the

::::::
spatial

::::::
domain

::::
(for

::::
each165

::::
time

::::
step).

:::
We

:::
first

:
calculate the temporal inhomogeneity (HT ) for each grid cell, which

::::::::
quantifies

::::
how

::::
even

::::
and

:::::::::
symmetric

:::
the

::::
data

::
for

:::::
each

:::
grid

::::
cell

::
is

:::::::::
distributed

::
in

:::
the

::::::::
temporal

:::::::
domain.

::::
HT tends to be higher in cells with sparse data coverage,

::::::
which

:::
are

::::
often

:::::
found

::::
over

:::
the

::::::
oceans

:::
and

:::::::
tropical

:::
rain

::::::
forests

:::
due

::
to

::::
high

:::::
cloud

::::::::
coverage

:::
(see

::::
Fig.

::
1). We then filter cells withHT > 0.5.170

This threshold value was chosen empirically to exclude cells in regions with known coverageproblems, such as areas heavily

affected by clouds (see Fig. 1)
::::
these

:::::::
regions

::::
with

::::::
limited

:::::::::
cloud-free

::::::::
coverage. Next, we calculate the spatial inhomogeneity

(HS) within the designated sub-grid, such as a zonal band.
::::
This

::::::
allows

::
to

:::::::
identify

::::
days

::::
with

::::
very

:::::::::::::
inhomogeneous

:::::::::
coverage.

:::
The

::::::
spatial

:::::::::::::
inhomogeneity

:::
can

:::
be

:::::::::
calculated

:::::
along

::::
both

::::::
spatial

::::::::::
dimensions.

::::::
Hence,

::::
we

:::::
define

::::
HS ::

as
:::
the

:::::::
equally

::::::::
weighted

:::::
linear

::::::::::
combination

::
of

:::
the

:::::::::
latitudinal

:::
and

::::::::::
longitudinal

::::::
spatial

:::::::::::::
inhomogeneity:

:
175

HS = 0.5 ·H lat
S + 0.5 ·H lon

S
:::::::::::::::::::::::

(4)

We determine a limit, H lim
S , as the median of HS plus two standard deviations

H lim
S = H̃S + 2σHS

(5)

and filter out days with HS >H lim
S . This filtering process removes days with highly inhomogeneous coverage. The equation

for H lim
S was empirically chosen and yields reliable limits for different sub-grids. Figure 1 illustrates the spatial and temporal180
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Figure 1. (a) Temporal inhomogeneity (HT ) for global XCH4 WFMDv1.8 data between May 2018 and February 2023. Grid cells with

HT > 0.5 are omitted during analysis (b) Spatial inhomogeneity (HS) for global XCH4 WFMDv1.8 data. Days above the HS threshold

(black line) are omitted from analysis, the threshold is set by Eq. 5 which was empirically chosen.

inhomogeneity for global WFMDv1.8 data.

Finally, we compute the area-weighted average of the chosen sub-grid, generating a time series for further
:::
the analysis. To

:::::
further

:
mitigate sampling bias in the global average, we first average over longitudes and subsequently over latitudes. This

approach assumes a faster mixing of background methane levels within zonal bands, while acknowledging greater latitudinal185

disparities. A more detailed description is given in Sec. 3.4. CAMS/INV
:::::
XCH4:

data is already provided on a grid
::::
with

::::::::
complete

:::::::
coverage

:
and no inhomogeneity treatment is necessary. The time series are hence just

:::::::
therefore

:
calculated using the area-

weighted average of the sub-grid. Since the DLM approach is based on the assumption that errors are present and normally

distributed, we add a Gaussian noise with σ = 0.5
::::::
σ = 0.2

:
ppb to the

::::::::::
CAMS/INV

::::::
XCH4 time series.

3.2 Dynamic Linear Model fit190

To extract information about the methane growth rate from the time-series we first
::::
need

::
to calculate the underlying

:::::
XCH4 level,

that is the smoothly changing background concentration without seasonal or short-term variation. While a simple approach,

such as fitting a polynomial plus a trigonometric function to model the seasonality, may be considered, it is insufficient due to

the complex change in methane
:::::
XCH4:

levels observed in historical records [Lan et al., 2023; Copernicus, 2023c
:::::::::::::::
Copernicus, 2023a].

The use of a moving average is not suitable due to possible data gaps, especially for high latitude bands. Therefore, we employ195

dynamic linear models to fit the
::::::
XCH4 data, which allow for the trend (i.e. the slope of the level, the growth rate) to change

over time and can deal with missing data. For the analysis of global methane growth we use AMIs, since they are already used

by other sources
::::::
similar

::
to

:::::
other

::::::
relevant

::::::
studies

:
[Dlugokencky, 2022; Copernicus, 2023c

:::::::::::::::
Copernicus, 2023a; Schneising et al.,

2023]and therefore allow easy comparison of the results.
:::::
This

::::::
enables

:::
the

::::::::
methane

::::::
growth

::
of

::::::::
different

::::::
studies

::
to

:::
be

::::::
readily

::::::::
compared. AMIs are defined as the difference in methane level between the January 1st of two consecutive years, which is200

equal to .
:::::
This

:
is
::
a
:::::::
measure

::
of

:
the integrated growth rate over the same time span. For zonal bands we directly investigate the

7



growth rate instead of AMIs (see Sec. 5 for a more detailed description).

A dynamic linear model is a regression model that can handle observations of varying accuracy, missing data, non-uniform

sampling and non-stationary processes. It allows some of its parameters to change over time and directly models the observed205

variability using unobserved state variables [Laine, 2020]. These
::::
DLM

:
properties allow the analysis of not only global but

also zonal methane data, which can have higher uncertainties and more gaps, especially in the higher latitudes. Addition-

ally, the direct modeling of the data allows the partition of the signal into different components, like
::::
such

::
as

:
an underlying

level and seasonal component, which can prove advantageous beyond the scope of this paper. DLMs have been previously

used to successfully model stratospheric ozone Laine et al., 2014, methane from different GOSAT retrievals to investigate210

the seasonal cycle and trend Kivimäki et al., 2019and methane from ground-based remote sensing Karppinen et al., 2020. For

a detailed description of DLMs, including their formulation as a special case of a space-state model, we refer readers to

Durbin and Koopman [2012] and Harvey [1990]. For a more concise introduction to DLMs, we refer to Laine [2020].

A DLM can be formulated as a special case of a space-state
:::::::::
state-space model, that is a model which consists of some unob-215

served components (represented by a state vector) and the observation vector. The evolution of the state vector and the relation

between observation- and state-vector are modeled by a set of equations. If these equations are linear we have a so-called

dynamic linear model. The DLM we use consists of three main components. First, a slowly changing background level, which

captures the long-term trend of the methane concentration. Second, a seasonal component is included to model variations aris-

ing from seasonal cycles. This component enables variations in the phase and amplitude of the seasonal cycle to be accounted220

for. Third, an autoregressive component is incorporated to model noise and residual correlations in the data, accounting for

short-term effects. Additionally, Gaussian noise can be included to model part of the errors. The ability of DLMs to capture

changing components over time is achieved by modeling these changes as Gaussian random walks, allowing for smooth tran-

sitions and adjustments. The variances of these Gaussian random walks determine the overall variability of a certain parameter

(e.g. trend). A detailed description of the model setup and the different DLM components can be found in Appendix A.Once225

the structure of the model is decided on, it can be brought into matrix form and the DLM consisting of the observation vector

and the set of equations can then be solved using a Kalman Filter Durbin and Koopman, 2012; Harvey, 1990; Laine, 2020.

The Kalman Filter is a recursive algorithm that estimates the unobserved states of a system using observed data and model

equations Kalman, 1960.

230

In general, the model parameters (e.g. variances,
:::
see

::::
Tab.

:::
A1

:::
for

:
a
::::::::
complete

::
list) are not known beforehand and have to be de-

termined. For this purpose, Maximum Likelihood Estimation (MLE) [Durbin and Koopman, 2012; Harvey, 1990] can be used.

MLE is a statistical method that estimates the parameters of a model by maximizing the likelihood of the observed data given

the model’s assumptions.
::::
Note

:::
that

:::
the

::::
data

:::::::::::
uncertainties

:::
are

:::
not

::::
used

::
in
:::

the
:::::

MLE
:::
but

:::
are

:::::::::
indirectly

:::::::
included

::::::
during

:::
the

::::
data

:::::::::
preparation

:::::::::
(gridding)

::
as

::::::::
described

::::::
above. For the end-user various software

::::::::
packages exist which provide the implementation235

of this procedure, leaving only the model configuration open for the user. In our study we use the UnobservedComponents

8



Figure 2. DLM fit for daily area-weighted global WFMDv1.8 data. (a) Shows the daily area-weighted global XCH4 together with the level

and level+seasonal components from the DLM fit (b) The trend or growth rate is the slope of the level, the dashed lines show the 1-
:
1σ

uncertainty, (c) Shows the seasonal component which captures the seasonal cycle, (d) The AR(1) component captures residual correlations in

the data, (e) The residual shows the difference between the fit and the data, (f) A histogram of the residual shows that it is roughly normally

distributed.

class of the python statsmodel package (Version 0.13.2
:::::
0.14.0, Perktold et al. [2023])

:
,
:::::
which

::::::::
provides

:::
the

:::::
means

:::
to

:::::
define

::
a

::::
DLM

::::
and

::
to

::
fit

::
it
:::::
using

:::::
MLE

:::
(see

:::::::::::::::::::::::::
statsmodels-developers [2023]

:::
for

:::::::::::::
documentation). An overview of a DLM fit for globally

averaged WFMD data can be seen in Fig. 2.

240

:::::
DLMs

:::::
have

::::
been

:::::::::
previously

:::::
used

::
to

::::::::::
successfully

::::::
model

:::::::::::
stratospheric

::::::
ozone [

::::::::::::::
Laine et al., 2014],

::::::::
methane

::::
from

::::::::
different

::::::
GOSAT

::::::::
retrievals

:::
to

:::::::::
investigate

:::
the

:::::::
seasonal

:::::
cycle

:::
and

:::::
trend

:
[
:::::::::::::::::
Kivimäki et al., 2019]

:::
and

::::::::
methane

::::
from

::::::::::::
ground-based

::::::
remote

::::::
sensing

:
[
:::::::::::::::::
Karppinen et al., 2020]

:
.
:::
For

::
a
:::::::
detailed

::::::::::
description

:::
of

::::::
DLMs,

:::::::::
including

::::
their

::::::::::
formulation

:::
as

::
a
::::::
special

::::
case

:::
of

::
a

:::::::::
state-space

::::::
model,

:::
we

::::
refer

:::::::
readers

::
to

::::::::::::::::::::::::
Durbin and Koopman [2012]

::::
and

:::::::::::::
Harvey [1990].

:::
For

::
a

::::
more

:::::::
concise

::::::::::
introduction

:::
to

::::::
DLMs,

:::
we

::::
refer

::
to

:::::::::::
Laine [2020].245

3.3 Ensemble approach and Cross Validation

The choice of model configuration is a non-trivial problem, which is impacted by prior knowledge, empirical testing and dif-

ferent quality measures. Prior knowledge may motivate
::::
From

::::
prior

:::::::::
knowledge

:
the inclusion of a seasonal component , since

::
is

9



:::::::
inferred,

:::::::
because the existence of a seasonality in atmospheric methane concentrations is known. Empirical testing can show250

that the inclusion of an autoregressive component is necessary, since
::::::
because

:
the data contains residual short-term variations.

And by quality measures we refer
::::
The

::::
term

::::::
quality

::::::::
measures

:::::
refers

:
to measures that facilitate model selection, such as the

mean squared error (MSE), which is defined as the mean of squared differences between model and data. Additionally, the

DLM provides variances
:::::::
(squared

:::::::
standard

::::::::::
deviations) for each component which can be used to compare models; models

with lower variances
:::::::::
uncertainty

:
in the level and seasonality (i.e. higher certainty & less variability) are preferable to models255

with high variances
::::::::::
uncertainties

:
for these terms.

To avoid the need for manual model selection, we employ an ensemble approach, fitting a range of DLMs to the data and

automatically selecting the best model. The ensemble consists of different DLM configurations, with varying components,

as described in Appendix A. Additionally, we perform
:::::
k-fold

:
cross-validation (CV) five

:::
with

:::::
k = 5

:
folds for each DLM to260

calculate an average mean squared error (AMSE). During CV, the DLM is trained
::::
fitted

:
on a portion of the data while leaving

out another portion (the fold) for testing. The difference between the model fit and the fold is used to calculate the MSE, and

the average MSE across all five folds per DLM provides the AMSE. Low AMSE values indicate a better model fit and help in

selecting the best model for a given time-series. The final model selection is based on an aggregated score, defined as the sum

of the AMSE, the variance of the level and the variance of the seasonal term:265

Sagg =AMSE+σ2
level +σ2

seas (6)

The inclusion of the variances ensures that the uncertainty of the level and seasonal components is considered in the selection

criterion. This approach aims to select DLMs that provide good estimates of the underlying methane signal while avoiding

overfitting and reliance on expert knowledge.

270

Different methods and measure can be used for model selection and may yield different results. We want to emphasize that

the problem of model selection is non-trivial and different approaches may be suitable for different data and use-cases. Here we

select the model which yields the highest certainty fit of the level and seasonal component (i.e. the methane
:::::
XCH4 signal with-

out noise) while avoiding overfitting and manual selection. Furthermore, we want to mention that in most cases the differences

between all models in an ensemble are rather small with the best models producing approximately the same results. However,275

the use of a single DLM configuration for all zonal bands is not feasible due to the inherent differences in the seasonal signal

for each zonal band. Additionally, an over-specified model can lead to high uncertainties in the resulting fit.

To quantify the impact of model selection, we calculate a model selection bias σ2
model, which is included in the error budget

of all AMIs and growth rates. For this we calculate AMIs or growth rates
:::::
global

::::
data

:::
we

::::::::
calculate

:::
the

:::::
AMIs for all models in280

10



an ensemble and determine the weighted variance :

σ2
Model/AMI =

∑
i(AMIavg−AMIi)

2σ̃−2
i∑

i σ̃
−2
i

; σ̃2
i = σ2

avg +σ2
i

σ2
Model/trend =

∑
i(νavg−νi)2σ̃−2

i∑
i σ̃
−2
i

; σ̃2
i = σ2

avg +σ2
i

::
for

::::
each

::::
year

:::
of

:::::::
interest:

σModel/AMI,j
:::::::::::

2 =

∑
i(AMIavg,j −AMIi,j)

2σ̃i,j
−2∑

i σ̃i,j
−2 ;

:::::::::::::::::::::::::::::::::

σ̃i,j
:::

2 =
::
σavg,j
:::::

2+
::
σi,j
:::

2 (7)285

where νi is the
:::::::
AMIi,j ::

is
:::
the

::::
AMI

:::
for

::::
year

:
j
:::
and

::::::
model

::
i,

:::::::::
AMIavg,j :::

the
::::::
average

:::::
AMI

::
of

::
all

:::::::
models

::
in

::::
year

:
j,
::::
and

:::::
σavg,j::::

and

:::
σi,j:::

the
::::::::::::
corresponding

:::::::::::
uncertainties.

::::
For

:::
the

::::
case

::
of

::::::
growth

:::::
rates

:::
we

:::::::
calculate

::
a
:::::
single

::::::
model

::::::::::
uncertainty

:::::
which

::
is

::::::::
averaged

:::
over

:::
all

::::
time

:::::
steps:

:

σ2
Model/trend =

1

T

∑
t

[∑
i(νavg,t− νi,t)2σ̃i,t

−2∑
i σ̃i,t

−2

]
;

:::::::::::::::::::::::::::::::::::::::::::

σ̃i,t
::

2 =
::
σavg,t
::::

2+
::
σi,t
::

2 (8)

:::::
where

::
T

::
is

:::
the

::::
total

:::::::
number

::
of

::::
time

:::::
steps,

:::
νi,t:::

the
::::::
growth

::::
rate

:::
for

:::::
model

::
i
::
at

::::
time

:::
step

::
t,
::::::
νavg,t :::

the
::::::
average

::::::
growth

::::
rate

::
of

:::
all290

::::::
models

::
at

::::
time

::::
step

::
t,

:::::
σavg,t:::

the
::::::::::
uncertainty

::
of

:::
the

:::::::
average growth rate at time step

:
t,
::::
and

:::
σi,t:::

the
::::::::::
uncertainty

::
of

:::::
model

:
i .

::
at

::::
time

:::
step

::
t.

The contribution of the model selection bias to the error budget can be seen in Tab. 1 for global AMIs and Tab. 2 for zonal

growth rates. In case of global data, the contribution is small
::
for

:::
all

::::
years

:
with σModel < 1 ppb but can be higher in specific295

cases. For example, this is the case for global AMIs in
:::::
except

:::
for

:
2018, when only an incomplete time series is available. For

zonal data, σModel varies between the bands and is on
:
in

:
the range of 0.60

::::
1.03–4.81

::
.34

:
ppb/y.

3.4 Estimation of sampling bias

The spatio-temporal coverage of S5P XCH4 data is limited mostly by cloud coverage, the polar nights and poorly reflective

surfaces, while additional gaps may exist due to technical problems with the satellite platform. Additionally, the sampling300

distribution is not completely random but is influenced by the total land mass per latitudinal band and seasonal cloud coverage

over the tropical and subtropical oceans. Therefore, we don’t calculate the direct global average but perform initial longitudinal

averaging to ensure equal weighting of all latitudes, which is crucial given the heterogeneous daily distribution of
:::
The

:::::
daily

::::::
gridded

::::
data

:::
for

:::
S5P

::::::
XCH4::

is
:::::::
therefore

::::::
always

::::::::::
incomplete,

::::::::
meaning

::
we

:::::
have

::::
some

::::
grid

::::
cells

:::::::
without

:::
any measurements. Here

we investigate the systematic sampling bias due to polar nights, the total effect due to sampling and the effect of our zonal first305

averaging approach
::
the

::::::::
averaging

:::::::
method. For this, we use CAMS/INV

:::::
XCH4 data (see Sec. 2.2) onto which we apply different

filtering
:::::
masks and averaging methods. We then compare AMIs

:::::
Since

::::::::::
CAMS/INV

::::
data

:::
has

:
a
::::::::
complete

::::::::
coverage

::::
(due

::
to

:::::
being

:::::
model

:::::
data)

::
we

::::
can

:::::::::
investigate

:::
the

::::::
effects

::
of

:::::::
different

::::::::
sampling

::::::
masks

::
or

::::::::
averaging

::::
and

:::::::
compare

::
it

::
to

:::
the

:::::
results

::::::
gained

:::::
from

11



::
the

:::::::::
unmasked

::::
data.

310

:::
We

:::::::
therefore

::::::::
compare

:::::
AMIs

::::
(for

:::::
global

:::::
data)

:::
and

:::::::
growth

::::
rates

::::
(for

::::
zonal

:::::
data)

:
calculated using different sampling and/or

methods. To simulate the spatio-temporal pattern of S5P sampling, we created a daily mask from gridded WFMDv1.8 data

and applied it to the model data. To only simulate the systematic effect of the polar nights, we created a daily mask using the

average solar zenith angle (SZA) per grid cell with a cut-off value of 75◦. The AMIs
::
and

:::::::
growth

::::
rates for CAMS/INV

:::::
XCH4

data were calculated using the same ensemble approach used for WFMD data.315

First, we investigate the effect of our zonal first averaging approach
:::
the

::::::::
averaging

:::::::
method.

:::
We

::::::::
compare

:::::::
standard

:::::::::
averaging,

:::::
which

::
is

:::::::
defined

::
is

:::
this

:::::
study

:::
as

:::
the

::::::::::::
area-weighted

:::::
mean

::
of

:::
all

::::
grid

::::
cells

::
in
::

a
::::::
region,

:::::
with

::
an

::::::::
approach

:::
we

::::
call

:::::::::
zonal-first

::::::::
averaging.

:::::::::
Zonal-first

:::::::::
averaging,

:::::
takes

::::
into

::::::
account

:::
the

::::::::::::::
inhomogeneous

::::::::
sampling

::
at

::::
each

:::::::
latitude,

:::::
which

::
is
:::::::::
influenced

:::
by

:::
the

:::::::::
distribution

::
of

::::
land

:::::
mass

:::
and

:::::::
seasonal

:::::::::
coverage.

::::
Since

:::::
zonal

::::::::
transport

::::::
occurs

:::::
within

::::::
weeks [

::::::::::
Jacob, 1999]

:
,
:::
we

:::
first

:::::::
average

:::
the320

:::
grid

:::::
cells

::::::
zonally,

:::::::::
assuming

:::
that

:::
the

::::::::
available

::::
data

::::::
within

:
a
:::::

zonal
:::::

band
::::::::
provides

:
a
:::::
good

:::::::
estimate

::
of

:::
the

:::::
mean

:::::
zonal

:::::::
XCH4.

:::::::::::
Subsequently,

:::
we

::::::::
calculate

:::
the

:::::
global

:::::::
average

:::::
from

:::
the

:::::
zonal

::::::::
averages,

:::::
which

:::::
leads

::
to

:
a
:::::::::
consistent

:::::::::
weighting

::
of

::
all

::::::::
latitudes

::::::::
regardless

::
of

::::
their

:::::::::
individual

::::::::
coverage. Figure 3 shows AMIs calculated from CAMS/INV-SRF

:::::
XCH4:

data using (i) no
::
a)

:::
No

mask and standard averaging (ii) the
:
b)

::::
The

:
S5P XCH4 mask and standard averaging and (iii) the

:
c)
::::

The
:
S5P XCH4 mask

and zonal first
::::::::
zonal-first

:
averaging. Using zonal first

:::::::::
zonal-first averaging the AMIs are closer to the AMIs derived from the325

complete data. This is especially visible for 2020, where the AMI is overestimated by roughly 3 ppb when using the standard

averaging. Therefore, we use zonal first
::::::::
zonal-first averaging for all calculations of globally averaged data.For zonally averaged

data we use standard averaging .

:::::
Figure

::
4

:::::
shows

:::::
zonal

::::::
growth

:::::
rates

::::::::
calculated

:::::
from

::::::::::::::
CAMS/INV-SRF

::::::
XCH4 :::

data
:::::
using

:::
(a)

:::
No

:::::
mask

:::
and

:::::::
standard

:::::::::
averaging330

::
(b)

::::
The

::::
S5P

::::::
XCH4:::::

mask
::::

and
::::::::
standard

::::::::
averaging

::::
and

:::
(c)

::::
The

::::
S5P

::::::
XCH4:::::

mask
::::

and
:::::::::
zonal-first

:::::::::
averaging.

:::::::
Growth

:::::
rates

::::::::
calculated

:::
on

:::
the

:::::::
masked

::::
data

:::::
show

:::
1σ

::::::::::
agreement

::::
with

:::
the

:::::::
growth

::::
rates

:::::::::
calculated

:::
on

:::
the

:::::::::
complete

::::
data.

:::::::
Growth

:::::
rates

::::::::
calculated

:::::
using

:::
the

:::::::::
zonal-first

::::::::
averaging

:::::
show

::::::
better

:::::::::
agreement

:::
for

:::
the

::
50◦

:::
–70◦

:
S
:::::
band

:::::
while

:::
for

:::
the

:::
10◦

::::
S–10◦

:
N

:::::
band

:::
the

::::::
growth

:::
rate

::
is

:::::
more

:::::::
variable.

::::
For

::
all

:::::
other

:::::
zonal

:::::
bands

:::
the

::::::
results

:::
are

:::::
nearly

::::::::
identical.

::::::::::
Noticeably,

:::
the

::
70◦

:::
–90◦

::
N

::::
band

::::::
shows

::
no

::::::::
variation

:::::
when

:::::
using

:::
the

:::
S5P

::::::
XCH4::::::

mask,
::::::::
indicating

::::
that

:::::::::
insufficient

::::
data

::::::::
coverage

:::::::
hinders

:::
the

::::::::
detection

::
of

::::::
growth

::::
rate335

::::::::
variation.

:::::
Since

:::::::
sampling

::::::
within

:
a
:::
20◦

:::::
zonal

::::
band

:::
can

::::
still

::::
vary

::::
with

:::::::
latitude

:::
we

:::::
follow

:::
the

:::::
same

::::::::
reasoning

::
as

::
in
:::
the

::::::::
previous

::::::::
paragraph

:::
and

::::
also

:::
use

:::::::::
zonal-first

::::::::
averaging

:::
for

:::::
zonal

::::::
growth

:::
rate

::::::::::
calculation.

:

Next, we investigated the remaining bias due to sampling
::::
effect

:::
of

:::::::
satellite

::::::::
sampling

:::
and

::::
the

:::::
polar

:::::
nights

:::
by

::::::::
applying

:::::::::::
corresponding

::::::
masks

::
to
:::::::::::

CAMS/INV
::::::
XCH4 ::::

data. For global data the
::::::::
sampling biases are calculated by taking the squared340

difference between the AMI calculated on the complete data (without any sampling filtering) and the AMI calculated on the
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Table 1. Error budget for global AMIs. σDLM is the uncertainty provided by the DLM fit, σModel is the uncertainty from model selection

and σSampling is the bias due to satellite sampling. All values show 1-
:
1σ uncertainties.

Year 2018† 2019 2020 2021 2022

σDLM 1.70 0.40 0.39 0.39 0.49

σModel 3.22 0.71 0.32 0.48 0.35

σSampling 2.96 0.25 0.19 0.26 0.25

σSampling(SZA) 0.06 0.37 0.05 0.22 0.73

σTotal 4.70 0.85 0.53 0.67 0.65

All values are in ppb, † 2018 only includes data starting 01.05.2018.

reduced
::::::
masked CAMS/INV data. We calculate a separate bias for each year in our analysis.

σ2
Sampling = (AMI −AMISampling)

2 (9)

σ2
SZA = (AMI −AMISZA)2 (10)

Table 1 shows the resulting errors for global AMIs. The sampling bias is around 0.25 ppb for all fully available years and much345

higher for 2018 with 2.92
::::
2.96 ppb. The contribution of the SZA related bias varies from year to year with a maximum value

of 0.73 ppb in the year 2022. This variability might be related to the varying difference between the high- and mid-latitudes

during the different years. When the difference between both is bigger, the masking of high-latitude regions is expected to have

a larger effect on AMIs. For the analysis of zonal bands we calculate an
:
a

::::
zonal

:
error by taking the average squared difference

between growth rates derived from the complete data and growth rates derived from the reduced CAMS/INV data
:::::
XCH4::::

data350

::
for

::::
each

:::::
band:

σ2
Sampling/Zonal =

1

N

N∑
i

(νi− νSamplingi )2 (11)

where νi is the growth rate at time step i and N is the total number of data points. The sampling errors for zonal growth rates

are shown in Tab. 2. Higher sampling errors correlate clearly with regions of high temporal inhomogeneity which visualizes

regions with
::::::
further

:::::
shows

:::
the

:
challenging sampling conditions

::
in

::::
these

:::::::
regions (see Fig. 1).355

4 Comparison of different global annual methane increases

In this section, we discuss global AMIs calculated using WFMDv1.8 data from May 2018 to February 2023. The results are

shown in Fig. 5. An overall, although non-linear, rise in methane level is observed between 2019 and 2022. The most significant

change occurs from 2019 to 2020, with an increase from 6.89± 0.85 ppb to 14.40± 0.53 ppb. The highest AMI is observed

13



Figure 3. Global AMIs derived from CAMS/INV-SRF
:::::
XCH4 data using the complete data

::
(a)

::::
The

:::::::::
non-masked

::::::
dataset

::::
with

:::::::
standard

:::::::
averaging, the

::
(b)

::::
The S5P sampled CAMS/INV-SRF data with standard averaging and the

::
(c)

::::
The S5P sampled CAMS/INV-SRF data

using our zonal-averaging first
::::::::
zonal-first

:::::::
averaging

:
approach.

in 2021, reaching 16.93±0.67 ppb. The globally averaged XCH4 has risen from 1817.32±2.81 ppb at the beginning of 2018360

to 1878.14± 0.16 ppb at the end of 2022.

To validate our findings, we compared our results with AMIs determined by Schneising et al. [2023], the NOAA–GML [Dlu-

gokencky, 2022], and data generated for the Copernicus Climate Change Service
:::
C3S

:
[Copernicus, 2023c

::::::::::::::::
Copernicus, 2023a].

Additionally, we include AMIs derived using our DLM approach for monthly WFMDv1.8 data, NOAA–GML MBLR data365

and the UB–C3S–CAMS dataset. Table 3 and Fig. 7 provide a comparison of AMIs between 2018 and 2022. While absolute

values may differ due to variations in data and methods, all AMIs exhibit the same qualitative trend. Differences are expected

specifically for
::
for

:::::::
various

:::::::
reasons.

::::
First,

::::
the

::::::::
difference

::
in
:::::::::

sampling.
:
NOAA–GML AMIs, which are based on surface flask

measurements rather than the
::::::
satellite

:
total column observations used in the other calculations. To assess

::::::
Second,

::::::::
different

:::::::
methods

:::
are

::::
used

::
to

:::::
derive

::::::
AMIs

::::
from

:::
the

::::
data

::::
(see

:::
the

::::::::::::
corresponding

::::::
sources

:::
for

:::::::::
description

:::
the

:::::
other

:::::::::
methods).

:::
And

::::::
lastly,370

::::::::
depending

:::
on

:::
the

::::
time

:::::::::
resolution

::
of

:::
the

::::
data

::::
and

:::::::
method

::::
used,

::::
the

:::::
AMIs

::::::::
represent

:::::
either

:::
the

:::::::::
difference

:::::::
between

:::
the

:::
1st

:::
of

::::::
January

::
of

::::
two

::::::::::
consecutive

::::
years

:::
or

::
the

:::::::::
difference

:::::::
between

:::
the

:::::::
monthly

:::::::
January

:::::::
average

::
of

:::
two

::::::::::
consecutive

:::::
years.

::::
The

::::::
former

:
is
:::
the

::::
case

:::
for

:::
our

:::::
DLM

::::::::
approach

::::
and

:::
the

:::::
AMIs

:::::::
derived

::
by

:::
the

::::::::::::
NOAA–GML.

::::
The

:::::
latter

::
is

:::
the

::::
case

::
for

:::
the

::::::
AMIs

::::::
derived

:::
by

:::::::::::::::::::
Schneising et al. [2023]

:::
and

:::
for

:::
the

::::
C3S

::::::
AMIs.

375
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Figure 4.
::::
Zonal

::::::
growth

::::
rates

:::::
derived

::::
from

:::::::::::::
CAMS/INV-SRF

:::::
XCH4:::

data
:::::
using

::
(a)

:::
The

::::::::::
non-masked

:::::
dataset

:::
with

::::::::
zonal-first

::::::::
averaging,

:::
(b)

:::
The

:::
S5P

::::::
sampled

:::::::::::::
CAMS/INV-SRF

::::
data

:::
with

:::::::
standard

:::::::
averaging

:::
and

:::
(c)

:::
The

:::
S5P

:::::::
sampled

:::::::::::::
CAMS/INV-SRF

:::
data

:::::
using

::
our

::::::::
zonal-first

::::::::
averaging

:::::::
approach.

::
To

::::::
discern

:
the impact of data and methodology, AMIs for the UB–C3S–CAMS and NOAA–GML datasets created using

different methods can be compared. Our DLM based AMIs agree well
::
of

::::
these

:::::::
datasets

:::::
agree

::::::
within

:::
1σ with the calculations

done for the C3S and by the NOAA–GML, indicating no significant differences due to the method used.
:::::::
However,

:::
we

:::
see

::
a

:::::::::::
comparatively

::::
high

:::::
AMI

::
in

::::
2022

:::
for

:::
the

:::::::::::
combination

::
of

:::::
DLM

:::
and

::::::::::::
NOAA–GML

::::
data

::::
(see

:::
Fig.

:::
7).

::::
This

::
is

::::::::
probably

::::::
related

::
to

::
the

::::::
higher

::::::::::
uncertainty

::
for

::::::
AMIs

::
at

:::
the

:::::::
start/end

::
of

::
a
::::
time

:::::
series,

::::::
which

:::
can

::::
also

::
be

::::
seen

:::
for

::::::::::::::
UB–C3S-CAMS

::::::
AMIs.

::
A

::::::
longer380

::::
input

::::
time

:::::
series

::::
will

:::::
likely

::::
lead

::
to

:
a
::::::::
reduction

::
in

:::::::::
uncertainty

::::
and

::
to

:
a
:::::::
reduced

::::::::
deviation

::::::::
compared

::
to

:::
the

:::::
other

::::
2022

::::::
AMIs. An

application of our DLM approach for the complete UB–C3S–CAMS and NOAA–GML MBLR data can be seen in Appendix B.

Additionally, we used our DLM approach on monthly WFMDv1.8 data, to
:::::
better compare our method to the method used

by Schneising et al. [2023], which also shows good agreement . Our results are therefore in good agreement with existing385

results from Schneising et al. [2023], the NOAA–GML Lan et al., 2023and the C3S Copernicus, 2023c, when accounting for

the difference in methodology or data used. No significant differences
:::::::::
agreement

:::::
within

::::
1σ.

::::
Only

::::::::::
differences

:::::::
smaller

::::
than

::
1σ

:
are found when comparing AMIs based on the same data or method

:::
but

:::::::
different

::::::::
methods. We also applied our approach

to CAMS/INV
:::::
XCH4 data (see: 2.2), for which global AMIs can be seen in Fig. 6. The AMIs are in qualitative agreement

and show the same structure over the 5-year period, however significant differences in absolute values are observed for 2019390
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Table 2. Sampling
:::
and

:::::
model error for zonal growth rates.

:::::
σDLM ::

is
::
not

:::::::
included

::
in

:::
this

::::
table

::::
since

::
it

::::
varies

::::
with

::::
time

:::
but

:
is
:::::
shown

::
in
::::
Fig.

:
8.
:
All values show 1-

:
1σ uncertainties.

Band
:::::
σModel:

σSampling σModel ::::::::::::
σSampling(SZA):

70–90◦ N 2.84
:::
1.44 0.78

:::
2.70

: :::
0.14

50–70◦ N 0.57
:::
1.92 0.97

:::
1.30

: :::
0.61

30–50◦ N 1.35
:::
1.87 2.06

:::
1.46

: :::
0.00

10–30◦ N 2.02
:::
3.63 4.81

:::
1.52

:::
0.00

-10–10◦ N 0.93
:::
3.34 2.81

:::
2.65

: :::
0.00

10–30◦ S 0.86
:::
1.73 1.93

:::
1.87

: :::
0.00

30–50◦ S 2.33
:::
1.03 0.60

:::
3.98

: :::
0.00

50–70◦ S 3.49
:::
2.95 3.95

:::
1.46

: :::
1.85

70–90◦ S 1.82
:::
4.34 2.02

:::
1.94

: :::
0.67

All values are given in ppb/yr.

::::
2020

:
and 2022. For 2019 the CAMSAMI seems to be in agreement with

::::
2020

:::
the

::::::::::
CAMS/INV

:::::
AMI

::
is

:::::::::::
significantly

:::::
lower

::::::::
compared

::
to

:
most other sources(see Tab. 3), while for 2022 CAMS is the clear outlier.

::
the

:::::::::::
CAMS/INV

::::
AMI

::
is
:::::::::::
significantly

:::::
higher

::::::::
compared

:::
to

::::
most

:::::
other

::::::
sources

::::
(see

::::
Tab.

::
3).

The AMIs for 2020 and 2021 are the largest observed since NOAA began systematic records in 1983. The drivers contribut-395

ing to these record increases have been the subject of recent debate and can be attributed to a rise in emissions, a reduction of

the CH4 sink, or a combination of both effects. According to the International Energy Agency (IEA) methane emissions from

the energy sector decreased by approximately 10 % in 2020 [IEA, 2021]. However, additional emissions due to reduced main-

tenance of landfills and oil and gas infrastructure can be expected according to Laughner et al. (2021), while McNorton et al.

(2022) suggest that the effect of the global slowdown on anthropogenic CH4 emissions is relatively small. Some studies pro-400

pose that the reduction of the OH sink, caused by decreased emissions of nitrogen oxides during the COVID-19 pandemic, may

explain part of the increase (Stevenson et al., 2022; Laughner et al., 2021; Peng et al., 2022; Qu et al., 2022; Feng et al., 2023)

[
::::::::::::::::::
Stevenson et al., 2022;

::::::::::::::::::
Laughner et al., 2021;

::::::::::::::
Peng et al., 2022;

:::::::::::::
Qu et al., 2022;

:::::::::::::
Feng et al., 2023]. Specifically, Stevenson et al.

(2022); Peng et al. (2022) suggest that approximately half of the increase can be attributed to this effect. Conversely, multiple

::::::
several other studies attribute the majority of the CH4 increase in 2020 to the growth in wetland emissions (Qu et al., 2022;405

Feng et al., 2023, 2022; Zhang et al., 2023).
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Figure 5. Global annual methane increases derived from Sentinel-5P/TROPOMI WFMDv1.8 data. The errorbars show the 1-
:
1σ uncertainty

and include the DLM, sampling and model error.

Figure 6. Global annual methane increases derived from CAMS global inversion-optimised greenhouse
:::
gas concentrations including only

surface observations. The errorbars show the 1-
:
1σ uncertainty and include the DLM and model error, which are also shown in brackets.
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Table 3. Comparison of global AMIs using different data and methods.
:::
The All errors represent 1-

:
1σ uncertainties.

:::::::::::::
Method@Dataset

::::
(time

::::::::
resolution)

:
2018 2019 2020 2021 2022

DLM@WFMDv1.8 (daily) 9.74 ± 4.70 † 6.89 ± 0.85 14.40 ± 0.53 16.93 ± 0.67 12.72 ± 0.65

DLM@WFMDv1.8 (monthly) 6.56 ± 4.23 † 7.85 ± 0.98 14.39 ± 0.93 16.55 ± 0.94 12.65 ± 1.17

Schneising et al. [2023] @WFMDv1.8 (monthly) 7.80 ± 0.60 15.00 ± 1.00 16.40 ± 0.50 13.90 ± 0.60

NOAA–GML (Version 2023-07
::::::
2023-10) @NOAA MBLR

:::::
(daily)

:

∗ 8.70
:::
8.76 ± 0.52 9.70

:::
9.68 ± 0.60 15.20

::::
15.16 ± 0.41 17.75

::::
17.82 ± 0.47 13.95

::::
13.97 ± 0.58

DLM@NOAA MBLR
:::::
(daily)

:

∗
:

9.37
:::
9.35 ± 0.89 8.64

:::
8.60 ± 0.77

:::
0.75 15.97

::::
15.99 ± 0.97 17.49

::::
18.16 ± 1.26

:::
1.22

::::
16.04

::
±

::::
1.86

Buchwitz et al. [2017] @UB–C3S–CAMS
:::::::
(monthly)

:
10.19 ± 1.96 9.00 ± 2.01 15.19 ± 2.09 17.09 ± 2.09 11.87 ± 2.77

DLM@UB–C3S–CAMS
:::::::
(monthly) 10.15 ± 1.13 8.92 ± 1.30 15.77 ± 1.20 17.04 ± 1.05 11.46 ± 1.96

DLM@CAMS/INV–SURF
:::::
(daily)

:
6.24 ± 0.97 9.86 ± 0.39 13.34 ± 0.38 18.04 ± 0.71 15.33 ± 0.48

All values are in ppb. Uncertainties reflect one standard deviation. † Larger error since only data starting with May 2018 was used. ∗ Input data has a weekly time resolution but AMIs are provided as for daily data (as the difference between the 1st

of January of two consecutive years)

Figure 7. Comparison of global AMIs listed in Tab. 3.
:::
The

:::::
labels

::
are

::::::::
formatted

::
as

:::::::::::::
Method@Dataset.

:::::
Colors

:::::::
indicate

::
the

::::
type

::
of

:::::
dataset

::::
used

:::
and

::
the

::::::
markers

::::::
denote

::
the

:::::::
method. All errors represent 1-

:
1σ uncertainties.

5 Investigation of zonal methane growth rates

In addition to our global analysis, we also investigated 20◦ zonal bands. While the
::::
The good spatio-temporal coverage of S5P

XCH4 might suggest that this would allow for the identification of
::
the

:::::
same

::::::::
approach

:::
of

:::::
using

:::::
AMIs

:::::
could

:::
be

::::::
applied

:::
to
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::::::
identify

:
zonal bands with anomalous methane increasesusing zonal AMIs, the

:
.
::::::::
However,

:::
the

::::::
impact

::
of atmospheric transport410

has to be considered. While longitudinal mixing occurs on timescales of a few weeks, meridional transport is slower, taking

1-2 months between mid-latitudes and tropics or polar regions and around a year between hemispheres [Jacob, 1999; Warneck,

1999]. The relatively longer atmospheric lifetime of 9.1 years [Szopa et al., 2021] compared to the mixing times, therefore

guarantees a relatively even latitudinal distribution of methane in the troposphere, where the main difference is driven by the

uneven distribution of CH4 sources [Warneck, 1999]. Thus, we need to sample at about 1 year or less to observe differences415

between hemispheres and 1 month or less to observe differences within a hemisphere. The daily sampling of S5P is hence

faster than meridional transport, however part of the temporal information gets lost when using AMIs which are obtained by

integrating the growth rate over one year. Thus, we look at
:::::::::
investigate

:
the growth rate, which is the trend component of our

DLM fits, to obtain a better temporal resolution of the potential zonal signals.

420

The results are shown in Fig. 8 and include growth rates derived from CAMS/INV-SRF
::::::
XCH4 data for comparison. The

shown errors include the uncertainty gained from the DLM fit σDLM , the model selection error σModel and the sampling error

σSampling (see Sec. 3.3 & 3.4). Growth rates are similar within a hemisphere, while differences between hemispheres are

clearly visible. Additionally, no significant sub-annual variations in zonal growth rates are present. Both observations are in

good agreement with the know
::::::
known atmospheric mixing times and indicate that our data currently allows for identification425

of inter-hemispheric differences while short-term variations between zonal bands are not detected. The high latitude band be-

tween 70◦–90◦ is included for completeness, but shows no inter-annual variability. This may be due to a lack of real change

in growth rates in this regionand/or ,
:
high uncertainties present in the data

:::::
and/or

:::
the

:::::
sparse

::::
data

::::::::
coverage. The corresponding

CAMS/INV-SRF
:::::
XCH4:

growth rate indicates that the variability in growth rate is relatively small in this band, which supports

the first point of our explanation. We therefore exclude this band from our following discussion. Hence, we mean bands be-430

tween 10◦ S and 90◦ S when we speak of the Southern Hemisphere (SH) and bands between 10◦ S and 70◦ N when we speak

of the Northern Hemisphere (NH). The band between 10◦ S and 10◦ N represents the boundary region and is close to the global

background as can be seen in Fig. 9, which presents zonal growth rate anomalies. Zonal growth rate anomalies are defined as

the difference between the zonal and the global growth rate for each band.

435

Overall growth rates derived from WFMD data are close to growth rates derived from CAMS/INV-SRF
:::::
XCH4:

data, with

the strongest differences in the 50S and 70S band, which is also one of the most challenging bands to fit, due to the high cloud

coverage and low landmass.
::
an

::::::
overall

:::::::::
agreement

::::::
within

:::
1σ.

:
The growth rates and the growth rate anomalies can be used to

interpret the changes in global AMIs and allow the identification of hemispheres or zonal bands with anomalous growth rates.

Differences between the hemispheres can be especially well seen in the zonal growth rate anomalies. During 2019 a decrease440

in growth rates can be observed for the whole SH
:::::
(except

:::
the

::::::::::::
southernmost

:::::
band), while growth rates in the NH increased or

stayed stable. For 2020 growth rates
::
for

:::
all

:::
SH

:::::
bands

:
increase strongly from roughly 0 ppb/y to 20 ppb/y. The NH growth

rates increase more slowly, except for the 50◦ N – 70◦ N band which exhibits a small decrease in growth rate. During 2021

most zonal growth rates move towards or around the global mean, with the strongest anomaly visible in the 10◦ N – 30◦ N band
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which shows some additional increase in growth rate, which peaks mid of the year. During 2022 a clear difference between the445

hemispheres can be seen again, with a decrease of growth rates in the NH and an increase
:
or

:::::::::::
stabilization of growth rates in

the SH. This difference is especially clear when looking at the zonal growth rate anomalies in Fig. 9.

Recent studies, which discuss the record methane increases in 2020 and 2021 can help with interpreting the structure of

zonal growth rates. Peng et al. [2022] employ an atmospheric inversion using ground-based data. They attribute the increase450

from 2019 to 2020 roughly equally to changes in the OH sink and an increase in wetland emissions located mainly in the

NH. In contrast, studies based on the inversion of satellite data from the Japanese Greenhouse gases Observing SATellite

(GOSAT) state that the majority of increase from 2019 to 2020 can be attributed to the African continent [Feng et al., 2023; Qu

et al., 2022] with additional increases in tropical South America in 2021 [Feng et al., 2023]. Our findings can thus be seen as

aligning with recent studies by Feng et al. [2023]; Qu et al. [2022]. The increase in SH growth rates from 2019 to 2020 can be455

associated
:
is

:::::::::
consistent with increased wetland emissions. The rise in the NH latitudinal bands during 2020 can be explained

by the decreasing OH sink, primarily located in the NH [Peng et al., 2022; Feng et al., 2023]. However, the continued increase

in 2021 cannot be solely explained by the OH sink, as OH levels mostly recovered in that year according to Feng et al. [2023]

and [Peng et al., 2022]. It is likely that
:::::::
Possible

:::::::::::
explanations

:::
for

:
the ongoing increase is related to

::
are

:
persistent wetland

emissions Feng et al. [2023], as well as the return to pre-pandemic methane emissions form the energy sector in 2021 [IEA,460

2023]. Finally, the decrease of growth rates in the Northern
:::
NH

:
and increase of growth rates in the SH during 2022 hasn’t been

discussed to our knowledge. Our results therefore indicate that the decrease in global AMI from 2021 to 2022 can be attributed

to a reduced growth rate in the NH. We further investigate this in the next section.

6 CAMS/INV Fluxes

As mentioned before, zonal growth rates provide information about the change of methane concentration in a given zonal band,465

including changes in sources, sinks and transport patterns. These transport patterns would average out for global AMIs given

a perfect coverage. Comparison of our global AMIs with global AMIs from other sources indicate,
::
In

::::
Sec.

:::
3.4

:::
we

::::::
applied

::
a

:::
S5P

::::::
XCH4:::::

mask
::
to

::::::::::
CAMS/INV

::::::
XCH4::::

data
::::
(see

::::
Fig.

::
3)

::::
and

::::::::
compared

::::::
AMIs

::::::::
calculated

:::::
from

:::
this

:::::::
masked

::::
data

::::
with

::::::
AMIs

::::::::
calculated

:::::
from

:::
the

::::::::
complete

::::
data.

:::::
Since

:::::::::
differences

::::::::
between

::::
these

::::::
AMIs

:::
are

:::::
small,

:::
we

::::::::
conclude

:
that the effect of transport

related sampling biases seems to be
:
is
:
limited. Therefore, changes in global AMIs can be attributed to the total source-sink470

balance of methane and not to changes in transport patterns. Whether this is also true for zonal growth rates is less clear, since

transport effects are expected to be stronger especially within hemispheres.The similarity

:::
The

:::::::::
agreement

::::::
within

::
1σ

:
of zonal growth rates derived from WFMD and CAMS/INV

:::::
XCH4:

data in Fig. 8, suggest that the

structures observed in our zonal growth rates are not artifacts from sampling related biases. However, we cannot rule out trans-475

port effects from this comparison, meaning we can’t clearly attribute changes in hemispheres or zonal bands over the years to

a change in the source-sink balance. Hence, we also investigated the change of surface fluxes from
:::::::
between

::::::::::
consecutive

:::::
years
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Figure 8. Zonal growth rates for 20◦ bands derived from
::
(a)

:
Sentinel-5P/TROPOMI WFMDv1.8 data and

::
(b) CAMS/INV-SRF

:::::
XCH4 data.

The errors show the 1-
:
1σ uncertainty.

Figure 9. Zonal growth rate anomalies for 20◦ bands derived from Sentinel-5P/TROPOMI WFMDv1.8 data. The anomalies are defined as

the difference between zonal and global growth rates.

:::::
which

:::
are

::::::
readily

::::::::
available

::
for

:::
the

:
CAMS/INV databetween consecutive years. In Figure 10, 11 and 12 we present total, wet-
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Figure 10. Difference between total surface fluxes from the CAMS/INV-SRF data.

land and other fluxes for
::::::::::
non-wetland

::::::
fluxes

::::
from

:
CAMS/INV-SRF data respectively. Additionally, rice and biomass burning

fluxes exist, which are not shown here. The category of other
::::::::::
non-wetland

:
fluxes includes all other anthropogenic emissions480

as well as
:::::::::::
contributions

::::
from

:
oceans, wild animals, the soil sinkand termites . Overall a great change in fluxes can be observed

between all investigated years
:
,
:::::::
termites

:::
and

:::::::
biomass

:::::::
burning.

:::::
Large

:::::::
changes

::
in

:::::
fluxes

::::
are

::::::::
identified

:::::::
between

:::
all

:::
the

:::::
years

::::::::::
investigated. The wetland flux difference between 2019 and

2020 indicate a strong increase in the NH as indicated by Peng et al., 2022
::::::::::::::
Peng et al. [2022]

:
as well as some increase in485

the SH wetlands as reported by Feng et al., 2023and Qu et al., 2022
:::::::::::::::
Feng et al. [2023]

:::
and

:::::::::::::
Qu et al. [2022]. We expect the SH

wetland fluxes to be underestimated as indicated by Feng et al. [2023] since
:::::::
because the CAMS/INV-SRF data is only based on

ground-based measurements from the NOAA network, similar to the inversion performed by Peng et al. [2022], due to the poor

coverage in the tropics. Interestingly, wetland fluxes from CAMS/INV-SRF-SAT data including satellite measurements from

GOSAT show stronger SH wetland emissions between 2019 and 2020 as shown in Figure 13. Additionally
:
, an increase in other490

::::::::::
non-wetland

:
fluxes occurs between 2019–2020 and 2020–2021. In the first case these increases are mainly focused on China,

while in the second case additional increases over the Indian subcontinent can be seen. Between 2021 and 2022 a clear decrease

of
::::
total

::::::
surface

:
fluxes can be seen in large parts of the NH, while strong increases can be observed over the whole of south

:::::
South America. The large decreases in the NH can be clearly attributed to changes in the other

::::::::::
non-wetland fluxes, while the

increase over south
::::
South

:
America seems to involve a combination of wetland and other fluxes. This investigation of

:::::::::
Therefore,495

CAMS/INV fluxes indicates
::::
imply

:
that the changes in zonal growth rates we observed both in WFMD and CAMS/INV are

not merely due to changes in transport patterns but correlate with changes in surface methane fluxes between the years.
::::
This

:::::::::
conclusion

:
is
:::::::::::
strengthened

:::
by

:::
the

::::::::
qualitative

:::::::::
agreement

::
of

:::
the

::::
flux

:::::::
changes

:::::::
between

::::::::::::::
CAMS/INV-SRF

::::
and

:::
the

:::::::::::::
aforementioned

::::::
studies

::
by

::::::::::::::::
Peng et al. [2022];

:::::::::::::::
Feng et al. [2023];

::::::::::::::
Qu et al. [2022].

::::::::
However,

:::::::
further

:::::::
research

::
is

::::::
needed

:::
to

::::::::::
substantiate

:::::
these

:::::::::
inferences.500
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Figure 11. Difference between wetland surface fluxes from the CAMS/INV-SRF data.

Figure 12. Difference between other surface fluxes from the CAMS/INV-SRF data.

7 Conclusions

In this study, we presented a DLM based approach to calculate methane growth rates and AMIs from S5P/TROPOMI data. We

addressed sampling-related biases by comparing AMIs and growth rates derived from CAMS/INV
:::::
XCH4:

data both with and

without S5P XCH4 sampling. Further, we included a bias related to the model selection in our error budget. Our calculations

of global AMIs based on WFMDv1.8 data from 2018 to 2022 demonstrate good agreement with other AMIs. Additionally, we505

separated the influence of the fitting method and the underlying data by applying our DLM approach to other datasets. We show

that using the same method or the same input data results in agreement within 1-
:
1σ between all AMIs(except for CAMS/INV

AMIs). Moreover
:
.
:::::
Using

:::
the

:::::
same

::::::
method

:::
but

::::::::
different

::::
input

::::
data

::::::
results

::
in

:::::::::
qualitative

:::::::::
agreement

:::
but

::::
with

::::::::::
differences

:::::
larger

:::
than

::::
1σ.

:::::::::::
Nevertheless, the consistency of AMIs derived from diverse datasets, such as ground-based data from NOAA and

total-column
:::::
dry-air

:::::
mole

:::::::
fraction

:
data from WFMDv1.8 and UB–C3S–CAMS, highlights the robustness of these various510
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Figure 13. Difference between total surface fluxes from the CAMS/INV-SRF-SAT data. No Flux difference is available for 2022 - 2021,

since the dataset currently ends in 2021.

approaches. The record methane increase in 2020 and 2021 is therefore well documented using different data and methods

::::::::
identified

::
in

:::
the

::::::::
different

::::
data

::::
sets,

::::::
which

:::
use

::::::::
different

:::::::
methods

::
to
::::::

assess
:::::
AMIs. The underlying factors driving these in-

creases, as discussed in Section 4, remain however a subject of debate.

In addition to global AMIs we investigated growth rates for 20◦ zonal bands which provide spatial information to the global515

AMIs. We argue that this is possible due to (a) the faster zonal mixing in comparison to meridional mixing and (b) the faster

satellite sampling in comparison to the meridional mixing times. Comparisons
:::::
Firstly,

:::::::::::
comparisons

:
of zonal growth rates from

S5P/TROPOMI data with growth rates from CAMS/INV-SRF data show good agreement and
:::::
XCH4::::

data
:::::
show

:::::::::
agreement

:::::
within

:::
1σ.

:::::::::::
Additionally,

:::
we

::::::::::
investigated

::::::
growth

::::
rates

:::::::::
calculated

::::
from

:::::::::::::::
CAMS/INV-SRF

:::::
XCH4::::

data
::::::
filtered

:::::
using

:
a
::::
S5P

::::::
XCH4

::::
mask

::::::
which indicate that no significant sampling biases exist for zonal bands

:::
the

:::::
zonal

::::
band

::::::::
approach. Still we want to empha-520

size that meridional transport affects
:::
can

:::::
affect

:
the zonal growth rates, meaning they don’t only

:::::::::
necessarily indicate changes in

the sources and sinks of methane but might also show systematic changes in transport patterns. The zonal growth rates exhibit

clear differences between the hemispheres for 2019 and 2022, while
::::::
whereas

:
growth rates are more similar for 2020 and 2021.

Differences within a hemisphere are mostly smaller and no additional short-term variations are visible, which might reflect the

well-mixed state of the atmosphere within a hemisphere. The low growth rates in the SH in 2019 and subsequent increases525

suggest a rise in atmospheric methane in that region, possibly driven by tropical wetland emissions according to Feng et al.

[2023]; Qu et al. [2022]; Zhang et al. [2023]. Other factors potentially contributing to these changes include variations in the

OH sink due to pollutant reductions during the COVID-19 pandemic [Feng et al., 2023; Qu et al., 2022; Peng et al., 2022] and

the changes in global methane emissions due to the COVID-19 pandemic and the subsequent recovery [IEA, 2021].

530

We further investigated this inter-hemispheric differences by investigating the surface fluxes
::::::::
available from CAMS/INV

data, which are consistent with the derived zonal growth rates .
::::

We
:::::
argue

:::
that

::::
this

::
is

:::::::
possible

:::::
since

:::
(a)

::::::
growth

::::
rates

:::::::
derived
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::::
from

::::::::::
WFMDv1.8

::::
data

:::
are

::::::
similar

::
to

::::::
growth

:::::
rates

::::
from

::::::::::
CAMS/INV

::::
data

::::
and

::
(b)

:::
no

:::::::::
significant

::::::::
sampling

:::
bias

::
is
:::::::
present

::
as

:::
we

::::::
showed

::
in

::::
Sec.

:::
3.4. The total surface fluxes show clear changes between the years , indicating that the changes in zonal growth

rates are not only due to changes in transport patterns. The
:::
and

:::
the

:
partition into wetland and other

::::::::::
non-wetland (mainly anthro-535

pogenic) fluxes allows further interpretationand shows .
:::::::::::
Furthermore,

:::::::
changes

::
in

:::::
fluxes

:::::
show

:
reasonable qualitative agreement

with findings reported by Feng et al. [2023]; Qu et al. [2022]; Peng et al. [2022].

::
In

:::::::
addition

::
to

:::
the

::::::::::
confirmation

::
of

::::::
known

::::::
results,

::::
new

::::::::::
conclusions

:::
are

::::
also

::::::
drawn. Most notably, the decrease in

:
of

:
the global

AMI in 2022 can be attributed to
:
is
::::::
caused

:::
by

:::::::
reduced

:::
NH

:::::
zonal

:::::::
growth

:::::
rates.

::::
This

::
is

::::::
clearly

::::::
visible

::
in

:::::
zonal

::::::
growth

:::::
rates540

::::::
derived

::::
from

::::
S5P

::::::
XCH4:::

and
:::::::::::
CAMS/INV

:::::
XCH4:::::

data.
:::::::::::
Investigation

::
of

:::
the

::::::::::::
corresponding

:::::
model

:::::::
surface

:::::
fluxes,

::::::::
indicates

::::
that

::::::
changes

:::
in

:::::
zonal

::::::
growth

::::
rates

:::
are

:::::::::
consistent

::::
with

:
the decrease of other fluxes (which include mainly anthropogenic fluxes )

::::::::::
non-wetland

:::::
fluxes

:
in the NH , while wetland fluxes continue to rise

::
and

:::
the

::::::::::
continuing

:::::::
increase

::
of

:::::::
wetland

:::::
fluxes

:
in the SH.

::::::::
However,

::::
more

:::::::
research

::
is
::::::
needed

::
to
::::::::::
substantiate

::::
this

:::::::
inferred

:::::::::
connection

:::::::
between

:::
the

::::::
change

::
in

::::
NH

::::::
growth

::::
rates

:::
and

::::::
fluxes.

:

545

In summary, our DLM-based approach allows for the calculation of
:::::::::
calculating

:
growth rates or AMIs for global and zonal

S5P/TROPOMI data. This approach is computationally inexpensive and
:::::
readily

:
allows for the constant integration of new data,

enabling timely assessments of global methane concentration changes. Importantly, no
::::::::
additional

:
prior information about the

atmospheric state is required. We believe that our approach provides an additional valuable tool for investigating atmospheric

methane concentrations, enabling the rapid identification of regions of interest, like
:::
such

::
as

:
the 2022 NH. Furthermore, our ap-550

proach can be readily applied to other datasets facing similar challenges, such as inhomogeneous sampling, non-linear trends,

and data gaps. For the 70◦–90◦ N band our method failed to identify any changes in growth rate, however this result is in

good agreement with the growth rates from CAMS/INV-SRF
:::::
XCH4:

data which themselves only show small variations. This

indicates that (a) The
::
the

:
small changes in growth rate could not be distinguished from the random variability in the data and

::
or (b) No

::
no anomalous increases in growth rate are visible for the northern high latitude regions .

:
in

:::
the

::::::::
observed

:::::
period

:::::
from555

::::
2018

::
–

:::::
2022.

Future research could aim to improve this approach, especially for high latitude regions, to identify smaller changes in

growth rates. To quantify
::::
Better

:::::::::
estimates

::
of

:
the impact of meridional transport on zonal growth rates , the

::::
could

::::
help

:::
to

::::::
provide

:::::
better

:::::
error

::::::::
estimates

::
for

::::
our

:::::::
method.

:::
The

:
2022 decrease in NH growth rates could be investigated in more detail and560

this approach be extended to include data sets of other atmospheric constituents. Data from future satellite mission
:::::::
missions,

with lower uncertainties and increased data coverage, could further allow for
:::::
enable

:
the investigation of sub-annual changes

in growth rates, which are presently not detectable. Finally, zonal growth rates of long-lived gases
:::
(e.g.

::::
HF)

:
without any

significant sources or sinks could possibly allow for
:::::
enable

:
the quantification of atmospheric transport patterns.
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Code and data availability. CAMS global inversion-optimized greenhouse gas fluxes and concentrations are available from https://ads.565

atmosphere.copernicus.eu/. Sentinel-5P/TROPOMI WFMD data is available from https://www.iup.uni-bremen.de/carbon_ghg/products/tropomi_

wfmd/. NOAA MBL data is available from https://gml.noaa.gov/ccgg/mbl/. Example code to recreate Fig. 5 (Global annual methane in-

creases), including the gridding and processing of the data, is available under https://doi.org/10.5281/zenodo.8178927.

Appendix A: Model setup and ensemble size

The structure of our DLMs is informed by the basic assumption
:::::::
assumes

:
that the measured methane signal can be separated570

into a slowly changing background level, a seasonal component and noise term. This section closely follows the more detailed

description in Durbin and Koopman [2012] and Harvey [1990].

The level component µt can be described by the following formulas

µt+1 = µt + νt + εlevelt, level
::::

, εlevelt, level
::::

∼N(0,σ2
level) (A1)575

νt+1 = νt + εtrendt, trend
:::::

, εtrendt, trend
:::::

∼N(0,σ2
trend) (A2)

where
::
µt::

is
:::
the

:::::
level, νt is the trend (i.e. the slope or change of the level)

::::::
growth

::::
rate)

:::
and

::
εt:::

are
:::::
steps

::
in

:
a
::::::
random

:::::
walk

:::::::
sampled

::::
from

:
a
::::::::
Gaussian

::::::::::
distribution.

::::
The

:::::::
random

:::::
walks

:::::
allow

::::::::::
components

::
to

::::::
change

::::
over

::::
time. Since we assume

:::
want

:::
to

::::
allow

:::
for

:
a

smoothly changing level we allow the trend to change over time, which is modeled by a random walk with variance σ2
trend.

Additionally
:
.
:::::::::::
Additionally, we enforce a constraint of zero variance for the level to ensure that short-term fluctuations in the580

background level are not allowed:

σ2
level = 0 (A3)

σ2
trend > 0 (A4)

The seasonal part of the signal is modeled by a truncated Fourier-series with h harmonics:

γt =

h∑
j=1

γjt (A5)585

with

γj,t+1 = γjtcos(λj) + γ∗jtsin(λj) + εseas, εseas ∼N(0,σ2
seas), λj =

2πj

s
(A6)

γ∗j,t+1 =−γjtsin(λj) + γ∗jtcos(λj) + ε∗seas, ε∗seas ∼N(0,σ2
seas), j = 1, ...,h (A7)

where s describes the seasonality of the data, e.g. for monthly data s= 12 or for daily data s= 365 when modeling yearly

patterns. The value of s= 365.25 can be used to account for leap years. We use s= 365.2 which is equal to the average number590

of days per year between 2018 and 2022. For σ2
seas > 0 the seasonal cycle is allowed to change over time. We allow values of

h ∈ {1,2,3,4}, to account for varying levels of complexity in the seasonal cycle. The motivation for this is twofold. Firstly,
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we want to only model the basic structure of the seasonal cycle and not the whole signal. Secondly, the inclusion of more

harmonics introduces further parameters which have to be estimated. This quickly leads to high uncertainties in the produced

fit since not enough information is included in the data to account for the growing number of parameters.595

The noise term accounts for residual correlations as well as random Gaussian noise in the signal. This is achieved by

including
:::::::
Residual

::::::::::
correlations

:::
can

:::
be

:::::::
modeled

:::
by

::
an

::::::::::::
autoregressive

::::::::::
component

:::::
which

:::::::
includes

:
a serial dependence between

the observations. An autoregressive noise of order n therefore includes a memory of the last n measurements. For n= 1 this

AR(1) term is600

ηt+1 = ρηt + εAR(1), εAR(1) ∼N(0,σ2
AR(1)), ρ ∈ [0,1] (A8)

which introduce
:::::
where

::
ηt::

is
:::
the

::::::::::::
autoregressive

::::::::::
component,

::
ρ

:::::::::
determines

:::
the

:::::::
strength

:::
of

:::
the

::::::::::::
autocorrelation

::::
(the

:::::::
memory

:::
of

::
the

::::::::
previous

::::
time

:::::
step)

::::
and

::::::
εAR(1) ::

is
:::::
again

:
a
::::

step
:::
in

:
a
::::::::
Gaussian

:::::::
random

:::::
walk.

::::
This

::::::::::
component

:::::::::
introduces

:
the parameters

ρ and σ2
AR(1) to the model. We confine our autoregressive component to the order of n= 1, which is enough to model the

residual correlations in the
:::
our

:
data. Higher orders would introduce further parameters to be estimated and lead to a harder605

interpretability of the results. However, exclusion of the AR(1) component leads to bad fits since the model fails to account for

the data variability.

An additional Gaussian noise can be included

εirr, εirr ∼N(0,σ2
irr) (A9)610

which we call irregular component.

The complete signal can be then written as the sum of these components

yt = µt + γt + ηt + εirr (A10)

The remaining tunable parameters are the615

:::
The

::::::::
ensemble

::::
size

::
is

:::::::::
determined

:::
by

:::
the

::::::
number

::
of

:::::::
possible

::::::
model

::::::::::::
configurations.

::
In
::::
our

::::
case

:::
this

::
is

:::::::::
determined

:::
by

:::::::
whether

::
to

:::::
allow variability of the seasonal term, the inclusion of

::::
cycle,

:::::::
whether

:::
to

::::::
include

:
a Gaussian error term and the number of

harmonicswhich determine the size of the ensemble (:
:
N = 2 · 2 · 4 = 16). An overview of all parameters can be found in Tab.

A1.620

Appendix B: Replication of complete NOAA GML & UB–C3S AMIs

To investigate the effect of the fitting method on AMIs we replicated AMIs calculated by the NOAA–GML and C3S in Fig. B1

and B2 respectively. Here we present the comparison for the whole available time range (subset of data can be seen in Tab. 3).

27



Table A1. DLM parameters.

Parameter Description Allowed range

σ2
level Variability of level 0

σ2
trend Variability of trend [0,∞]∗

σ2
seas Variability of seasonal cycle 0 or† [0,∞]∗

ρ Parameter of AR(1) [0,1]∗

σ2
AR(1) Variability of AR(1) [0,∞]∗

σ2
irr Variability of Gaussian error 0 or† [0,∞]∗

h Number of harmonics 1 – 4†

∗ determined by maximum likelihood estimation during DLM fit, † Different

settings are part of ensemble

Figure B1. Comparison of global annual methane increases derived from the NOAA–GML MBLR data using different methods.

Appendix C: Global AMIs and zonal growth rates derived from CAMS global inversion-optimised greenhouse

concentrations625

Here we present global AMIs and zonal growth rates for CAMS/INV-SRF-SAT data which includes satellite measurements

from GOSAT in its optimization (see Fig. C1 and C2
:
).
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Figure B2. Comparison of global annual methane increases derived from C3S XCH4_OBS4MIPS v4.4 data which is extended by CAMS

NRT data after 2021 using different methods.

Figure C1. Global annual methane increases derived from CAMS global inversion-optimised greenhouse concentrations including both

surface and satellite observations.

Appendix D:
::::::::::
WFMDv1.8

::::
data

::::::::
coverage
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Figure C2. Zonal growth rates for 20◦ bands derived from
::
(a) Sentinel-5P/TROPOMI WFMDv1.8 data and

::
(b)

:
CAMS/INV-SRF-SAT data.

The errors show the 1-
:
1σ uncertainty.

:::::
Figure

:::
D1

::::::
shows

:::
the

:::::::::::::
area-normalized

::::::::
coverage

::
of

:::::::::::::
S5P/TROPOMI

:::::::::::
WFMDv1.8

::::
data.

::
It

:::
can

:::
be

::::
seen

:::
that

:::::::
tropics,

:::::::::::
mid-latitudes

:::
and

::::
high

:::::::
latitudes

:::::
have

::::::
mostly

::
an

:::::::
average

::::::::
coverage

::
of

:::::
about

:::::
25%,

:::::
while

:::
the

::::
high

:::::::
latitude

::::::
regions

::::
have

::::::::
seasonal

::::
gaps

::::
due

::
to630

::
the

:::::
polar

:::::
night.

:
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Figure D1.
::::::::::::
Area-normalized

:::::::
coverage

::
of

::::::::::::
S5P/TROPOMI

:::::::::
WFMDv1.8

:::
data

:::
for

::
30◦

::::
zonal

:::::
bands,

::::::::::
representing

::
the

::::
high

::::::
latitude,

::::::::::
mid-latitude

:::
and

::::
tropic

:::::::
regions.

:::
For

:::
the

::::::::
calculation

::::
data

::
on

:
a
::

2◦
::
×2◦

::
grid

::::
was

::::
used.

::::
The

:::::::
coverage

:
is
:::::

given
::
on

::
a
::::
scale

::::
from

:
0
::

to
::

1,
:::::

where
::

1
::::::::
represents

:::::::
complete

::::::
coverage

::::::
within

:
a
::::
band.

:
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